xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp (revision 5d2393a222c751723b0906485bf90a28dd4e564b)
1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombiner.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 #include <utility>
43 
44 #define DEBUG_TYPE "instcombine"
45 
46 using namespace llvm;
47 using namespace PatternMatch;
48 
49 STATISTIC(NumAggregateReconstructionsSimplified,
50           "Number of aggregate reconstructions turned into reuse of the "
51           "original aggregate");
52 
53 /// Return true if the value is cheaper to scalarize than it is to leave as a
54 /// vector operation. If the extract index \p EI is a constant integer then
55 /// some operations may be cheap to scalarize.
56 ///
57 /// FIXME: It's possible to create more instructions than previously existed.
58 static bool cheapToScalarize(Value *V, Value *EI) {
59   ConstantInt *CEI = dyn_cast<ConstantInt>(EI);
60 
61   // If we can pick a scalar constant value out of a vector, that is free.
62   if (auto *C = dyn_cast<Constant>(V))
63     return CEI || C->getSplatValue();
64 
65   if (CEI && match(V, m_Intrinsic<Intrinsic::stepvector>())) {
66     ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
67     // Index needs to be lower than the minimum size of the vector, because
68     // for scalable vector, the vector size is known at run time.
69     return CEI->getValue().ult(EC.getKnownMinValue());
70   }
71 
72   // An insertelement to the same constant index as our extract will simplify
73   // to the scalar inserted element. An insertelement to a different constant
74   // index is irrelevant to our extract.
75   if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
76     return CEI;
77 
78   if (match(V, m_OneUse(m_Load(m_Value()))))
79     return true;
80 
81   if (match(V, m_OneUse(m_UnOp())))
82     return true;
83 
84   Value *V0, *V1;
85   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
86     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
87       return true;
88 
89   CmpPredicate UnusedPred;
90   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
91     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
92       return true;
93 
94   return false;
95 }
96 
97 // If we have a PHI node with a vector type that is only used to feed
98 // itself and be an operand of extractelement at a constant location,
99 // try to replace the PHI of the vector type with a PHI of a scalar type.
100 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
101                                             PHINode *PN) {
102   SmallVector<Instruction *, 2> Extracts;
103   // The users we want the PHI to have are:
104   // 1) The EI ExtractElement (we already know this)
105   // 2) Possibly more ExtractElements with the same index.
106   // 3) Another operand, which will feed back into the PHI.
107   Instruction *PHIUser = nullptr;
108   for (auto *U : PN->users()) {
109     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
110       if (EI.getIndexOperand() == EU->getIndexOperand())
111         Extracts.push_back(EU);
112       else
113         return nullptr;
114     } else if (!PHIUser) {
115       PHIUser = cast<Instruction>(U);
116     } else {
117       return nullptr;
118     }
119   }
120 
121   if (!PHIUser)
122     return nullptr;
123 
124   // Verify that this PHI user has one use, which is the PHI itself,
125   // and that it is a binary operation which is cheap to scalarize.
126   // otherwise return nullptr.
127   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
128       !(isa<BinaryOperator>(PHIUser)) ||
129       !cheapToScalarize(PHIUser, EI.getIndexOperand()))
130     return nullptr;
131 
132   // Create a scalar PHI node that will replace the vector PHI node
133   // just before the current PHI node.
134   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
135       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), PN->getIterator()));
136   // Scalarize each PHI operand.
137   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
138     Value *PHIInVal = PN->getIncomingValue(i);
139     BasicBlock *inBB = PN->getIncomingBlock(i);
140     Value *Elt = EI.getIndexOperand();
141     // If the operand is the PHI induction variable:
142     if (PHIInVal == PHIUser) {
143       // Scalarize the binary operation. Its first operand is the
144       // scalar PHI, and the second operand is extracted from the other
145       // vector operand.
146       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
147       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
148       Value *Op = InsertNewInstWith(
149           ExtractElementInst::Create(B0->getOperand(opId), Elt,
150                                      B0->getOperand(opId)->getName() + ".Elt"),
151           B0->getIterator());
152       Value *newPHIUser = InsertNewInstWith(
153           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
154                                                 scalarPHI, Op, B0), B0->getIterator());
155       scalarPHI->addIncoming(newPHIUser, inBB);
156     } else {
157       // Scalarize PHI input:
158       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
159       // Insert the new instruction into the predecessor basic block.
160       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
161       BasicBlock::iterator InsertPos;
162       if (pos && !isa<PHINode>(pos)) {
163         InsertPos = ++pos->getIterator();
164       } else {
165         InsertPos = inBB->getFirstInsertionPt();
166       }
167 
168       InsertNewInstWith(newEI, InsertPos);
169 
170       scalarPHI->addIncoming(newEI, inBB);
171     }
172   }
173 
174   for (auto *E : Extracts) {
175     replaceInstUsesWith(*E, scalarPHI);
176     // Add old extract to worklist for DCE.
177     addToWorklist(E);
178   }
179 
180   return &EI;
181 }
182 
183 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) {
184   Value *X;
185   uint64_t ExtIndexC;
186   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
187       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
188     return nullptr;
189 
190   ElementCount NumElts =
191       cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
192   Type *DestTy = Ext.getType();
193   unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
194   bool IsBigEndian = DL.isBigEndian();
195 
196   // If we are casting an integer to vector and extracting a portion, that is
197   // a shift-right and truncate.
198   if (X->getType()->isIntegerTy()) {
199     assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) &&
200            "Expected fixed vector type for bitcast from scalar integer");
201 
202     // Big endian requires adjusting the extract index since MSB is at index 0.
203     // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8
204     // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8
205     if (IsBigEndian)
206       ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC;
207     unsigned ShiftAmountC = ExtIndexC * DestWidth;
208     if ((!ShiftAmountC ||
209          isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) &&
210         Ext.getVectorOperand()->hasOneUse()) {
211       if (ShiftAmountC)
212         X = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset");
213       if (DestTy->isFloatingPointTy()) {
214         Type *DstIntTy = IntegerType::getIntNTy(X->getContext(), DestWidth);
215         Value *Trunc = Builder.CreateTrunc(X, DstIntTy);
216         return new BitCastInst(Trunc, DestTy);
217       }
218       return new TruncInst(X, DestTy);
219     }
220   }
221 
222   if (!X->getType()->isVectorTy())
223     return nullptr;
224 
225   // If this extractelement is using a bitcast from a vector of the same number
226   // of elements, see if we can find the source element from the source vector:
227   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
228   auto *SrcTy = cast<VectorType>(X->getType());
229   ElementCount NumSrcElts = SrcTy->getElementCount();
230   if (NumSrcElts == NumElts)
231     if (Value *Elt = findScalarElement(X, ExtIndexC))
232       return new BitCastInst(Elt, DestTy);
233 
234   assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
235          "Src and Dst must be the same sort of vector type");
236 
237   // If the source elements are wider than the destination, try to shift and
238   // truncate a subset of scalar bits of an insert op.
239   if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
240     Value *Scalar;
241     Value *Vec;
242     uint64_t InsIndexC;
243     if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar),
244                               m_ConstantInt(InsIndexC))))
245       return nullptr;
246 
247     // The extract must be from the subset of vector elements that we inserted
248     // into. Example: if we inserted element 1 of a <2 x i64> and we are
249     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
250     // of elements 4-7 of the bitcasted vector.
251     unsigned NarrowingRatio =
252         NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
253 
254     if (ExtIndexC / NarrowingRatio != InsIndexC) {
255       // Remove insertelement, if we don't use the inserted element.
256       // extractelement (bitcast (insertelement (Vec, b)), a) ->
257       // extractelement (bitcast (Vec), a)
258       // FIXME: this should be removed to SimplifyDemandedVectorElts,
259       // once scale vectors are supported.
260       if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) {
261         Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType());
262         return ExtractElementInst::Create(NewBC, Ext.getIndexOperand());
263       }
264       return nullptr;
265     }
266 
267     // We are extracting part of the original scalar. How that scalar is
268     // inserted into the vector depends on the endian-ness. Example:
269     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
270     //                                       +--+--+--+--+--+--+--+--+
271     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
272     // extelt <4 x i16> V', 3:               |                 |S2|S3|
273     //                                       +--+--+--+--+--+--+--+--+
274     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
275     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
276     // In this example, we must right-shift little-endian. Big-endian is just a
277     // truncate.
278     unsigned Chunk = ExtIndexC % NarrowingRatio;
279     if (IsBigEndian)
280       Chunk = NarrowingRatio - 1 - Chunk;
281 
282     // Bail out if this is an FP vector to FP vector sequence. That would take
283     // more instructions than we started with unless there is no shift, and it
284     // may not be handled as well in the backend.
285     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
286     bool NeedDestBitcast = DestTy->isFloatingPointTy();
287     if (NeedSrcBitcast && NeedDestBitcast)
288       return nullptr;
289 
290     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
291     unsigned ShAmt = Chunk * DestWidth;
292 
293     // TODO: This limitation is more strict than necessary. We could sum the
294     // number of new instructions and subtract the number eliminated to know if
295     // we can proceed.
296     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
297       if (NeedSrcBitcast || NeedDestBitcast)
298         return nullptr;
299 
300     if (NeedSrcBitcast) {
301       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
302       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
303     }
304 
305     if (ShAmt) {
306       // Bail out if we could end with more instructions than we started with.
307       if (!Ext.getVectorOperand()->hasOneUse())
308         return nullptr;
309       Scalar = Builder.CreateLShr(Scalar, ShAmt);
310     }
311 
312     if (NeedDestBitcast) {
313       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
314       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
315     }
316     return new TruncInst(Scalar, DestTy);
317   }
318 
319   return nullptr;
320 }
321 
322 /// Find elements of V demanded by UserInstr.
323 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
324   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
325 
326   // Conservatively assume that all elements are needed.
327   APInt UsedElts(APInt::getAllOnes(VWidth));
328 
329   switch (UserInstr->getOpcode()) {
330   case Instruction::ExtractElement: {
331     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
332     assert(EEI->getVectorOperand() == V);
333     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
334     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
335       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
336     }
337     break;
338   }
339   case Instruction::ShuffleVector: {
340     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
341     unsigned MaskNumElts =
342         cast<FixedVectorType>(UserInstr->getType())->getNumElements();
343 
344     UsedElts = APInt(VWidth, 0);
345     for (unsigned i = 0; i < MaskNumElts; i++) {
346       unsigned MaskVal = Shuffle->getMaskValue(i);
347       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
348         continue;
349       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
350         UsedElts.setBit(MaskVal);
351       if (Shuffle->getOperand(1) == V &&
352           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
353         UsedElts.setBit(MaskVal - VWidth);
354     }
355     break;
356   }
357   default:
358     break;
359   }
360   return UsedElts;
361 }
362 
363 /// Find union of elements of V demanded by all its users.
364 /// If it is known by querying findDemandedEltsBySingleUser that
365 /// no user demands an element of V, then the corresponding bit
366 /// remains unset in the returned value.
367 static APInt findDemandedEltsByAllUsers(Value *V) {
368   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
369 
370   APInt UnionUsedElts(VWidth, 0);
371   for (const Use &U : V->uses()) {
372     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
373       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
374     } else {
375       UnionUsedElts = APInt::getAllOnes(VWidth);
376       break;
377     }
378 
379     if (UnionUsedElts.isAllOnes())
380       break;
381   }
382 
383   return UnionUsedElts;
384 }
385 
386 /// Given a constant index for a extractelement or insertelement instruction,
387 /// return it with the canonical type if it isn't already canonical.  We
388 /// arbitrarily pick 64 bit as our canonical type.  The actual bitwidth doesn't
389 /// matter, we just want a consistent type to simplify CSE.
390 static ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) {
391   const unsigned IndexBW = IndexC->getBitWidth();
392   if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64)
393     return nullptr;
394   return ConstantInt::get(IndexC->getContext(),
395                           IndexC->getValue().zextOrTrunc(64));
396 }
397 
398 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
399   Value *SrcVec = EI.getVectorOperand();
400   Value *Index = EI.getIndexOperand();
401   if (Value *V = simplifyExtractElementInst(SrcVec, Index,
402                                             SQ.getWithInstruction(&EI)))
403     return replaceInstUsesWith(EI, V);
404 
405   // extractelt (select %x, %vec1, %vec2), %const ->
406   // select %x, %vec1[%const], %vec2[%const]
407   // TODO: Support constant folding of multiple select operands:
408   // extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2)
409   // If the extractelement will for instance try to do out of bounds accesses
410   // because of the values of %c1 and/or %c2, the sequence could be optimized
411   // early. This is currently not possible because constant folding will reach
412   // an unreachable assertion if it doesn't find a constant operand.
413   if (SelectInst *SI = dyn_cast<SelectInst>(EI.getVectorOperand()))
414     if (SI->getCondition()->getType()->isIntegerTy() &&
415         isa<Constant>(EI.getIndexOperand()))
416       if (Instruction *R = FoldOpIntoSelect(EI, SI))
417         return R;
418 
419   // If extracting a specified index from the vector, see if we can recursively
420   // find a previously computed scalar that was inserted into the vector.
421   auto *IndexC = dyn_cast<ConstantInt>(Index);
422   bool HasKnownValidIndex = false;
423   if (IndexC) {
424     // Canonicalize type of constant indices to i64 to simplify CSE
425     if (auto *NewIdx = getPreferredVectorIndex(IndexC))
426       return replaceOperand(EI, 1, NewIdx);
427 
428     ElementCount EC = EI.getVectorOperandType()->getElementCount();
429     unsigned NumElts = EC.getKnownMinValue();
430     HasKnownValidIndex = IndexC->getValue().ult(NumElts);
431 
432     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
433       Intrinsic::ID IID = II->getIntrinsicID();
434       // Index needs to be lower than the minimum size of the vector, because
435       // for scalable vector, the vector size is known at run time.
436       if (IID == Intrinsic::stepvector && IndexC->getValue().ult(NumElts)) {
437         Type *Ty = EI.getType();
438         unsigned BitWidth = Ty->getIntegerBitWidth();
439         Value *Idx;
440         // Return index when its value does not exceed the allowed limit
441         // for the element type of the vector, otherwise return undefined.
442         if (IndexC->getValue().getActiveBits() <= BitWidth)
443           Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
444         else
445           Idx = PoisonValue::get(Ty);
446         return replaceInstUsesWith(EI, Idx);
447       }
448     }
449 
450     // InstSimplify should handle cases where the index is invalid.
451     // For fixed-length vector, it's invalid to extract out-of-range element.
452     if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
453       return nullptr;
454 
455     if (Instruction *I = foldBitcastExtElt(EI))
456       return I;
457 
458     // If there's a vector PHI feeding a scalar use through this extractelement
459     // instruction, try to scalarize the PHI.
460     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
461       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
462         return ScalarPHI;
463   }
464 
465   // TODO come up with a n-ary matcher that subsumes both unary and
466   // binary matchers.
467   UnaryOperator *UO;
468   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
469     // extelt (unop X), Index --> unop (extelt X, Index)
470     Value *X = UO->getOperand(0);
471     Value *E = Builder.CreateExtractElement(X, Index);
472     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
473   }
474 
475   // If the binop is not speculatable, we cannot hoist the extractelement if
476   // it may make the operand poison.
477   BinaryOperator *BO;
478   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index) &&
479       (HasKnownValidIndex ||
480        isSafeToSpeculativelyExecuteWithVariableReplaced(BO))) {
481     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
482     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
483     Value *E0 = Builder.CreateExtractElement(X, Index);
484     Value *E1 = Builder.CreateExtractElement(Y, Index);
485     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
486   }
487 
488   Value *X, *Y;
489   CmpPredicate Pred;
490   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
491       cheapToScalarize(SrcVec, Index)) {
492     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
493     Value *E0 = Builder.CreateExtractElement(X, Index);
494     Value *E1 = Builder.CreateExtractElement(Y, Index);
495     CmpInst *SrcCmpInst = cast<CmpInst>(SrcVec);
496     return CmpInst::CreateWithCopiedFlags(SrcCmpInst->getOpcode(), Pred, E0, E1,
497                                           SrcCmpInst);
498   }
499 
500   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
501     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
502       // instsimplify already handled the case where the indices are constants
503       // and equal by value, if both are constants, they must not be the same
504       // value, extract from the pre-inserted value instead.
505       if (isa<Constant>(IE->getOperand(2)) && IndexC)
506         return replaceOperand(EI, 0, IE->getOperand(0));
507     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
508       auto *VecType = cast<VectorType>(GEP->getType());
509       ElementCount EC = VecType->getElementCount();
510       uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
511       if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
512         // Find out why we have a vector result - these are a few examples:
513         //  1. We have a scalar pointer and a vector of indices, or
514         //  2. We have a vector of pointers and a scalar index, or
515         //  3. We have a vector of pointers and a vector of indices, etc.
516         // Here we only consider combining when there is exactly one vector
517         // operand, since the optimization is less obviously a win due to
518         // needing more than one extractelements.
519 
520         unsigned VectorOps =
521             llvm::count_if(GEP->operands(), [](const Value *V) {
522               return isa<VectorType>(V->getType());
523             });
524         if (VectorOps == 1) {
525           Value *NewPtr = GEP->getPointerOperand();
526           if (isa<VectorType>(NewPtr->getType()))
527             NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
528 
529           SmallVector<Value *> NewOps;
530           for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
531             Value *Op = GEP->getOperand(I);
532             if (isa<VectorType>(Op->getType()))
533               NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
534             else
535               NewOps.push_back(Op);
536           }
537 
538           GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
539               GEP->getSourceElementType(), NewPtr, NewOps);
540           NewGEP->setIsInBounds(GEP->isInBounds());
541           return NewGEP;
542         }
543       }
544     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
545       // If this is extracting an element from a shufflevector, figure out where
546       // it came from and extract from the appropriate input element instead.
547       // Restrict the following transformation to fixed-length vector.
548       if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
549         int SrcIdx =
550             SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
551         Value *Src;
552         unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
553                                 ->getNumElements();
554 
555         if (SrcIdx < 0)
556           return replaceInstUsesWith(EI, PoisonValue::get(EI.getType()));
557         if (SrcIdx < (int)LHSWidth)
558           Src = SVI->getOperand(0);
559         else {
560           SrcIdx -= LHSWidth;
561           Src = SVI->getOperand(1);
562         }
563         Type *Int64Ty = Type::getInt64Ty(EI.getContext());
564         return ExtractElementInst::Create(
565             Src, ConstantInt::get(Int64Ty, SrcIdx, false));
566       }
567     } else if (auto *CI = dyn_cast<CastInst>(I)) {
568       // Canonicalize extractelement(cast) -> cast(extractelement).
569       // Bitcasts can change the number of vector elements, and they cost
570       // nothing.
571       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
572         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
573         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
574       }
575     }
576   }
577 
578   // Run demanded elements after other transforms as this can drop flags on
579   // binops.  If there's two paths to the same final result, we prefer the
580   // one which doesn't force us to drop flags.
581   if (IndexC) {
582     ElementCount EC = EI.getVectorOperandType()->getElementCount();
583     unsigned NumElts = EC.getKnownMinValue();
584     // This instruction only demands the single element from the input vector.
585     // Skip for scalable type, the number of elements is unknown at
586     // compile-time.
587     if (!EC.isScalable() && NumElts != 1) {
588       // If the input vector has a single use, simplify it based on this use
589       // property.
590       if (SrcVec->hasOneUse()) {
591         APInt PoisonElts(NumElts, 0);
592         APInt DemandedElts(NumElts, 0);
593         DemandedElts.setBit(IndexC->getZExtValue());
594         if (Value *V =
595                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, PoisonElts))
596           return replaceOperand(EI, 0, V);
597       } else {
598         // If the input vector has multiple uses, simplify it based on a union
599         // of all elements used.
600         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
601         if (!DemandedElts.isAllOnes()) {
602           APInt PoisonElts(NumElts, 0);
603           if (Value *V = SimplifyDemandedVectorElts(
604                   SrcVec, DemandedElts, PoisonElts, 0 /* Depth */,
605                   true /* AllowMultipleUsers */)) {
606             if (V != SrcVec) {
607               Worklist.addValue(SrcVec);
608               SrcVec->replaceAllUsesWith(V);
609               return &EI;
610             }
611           }
612         }
613       }
614     }
615   }
616   return nullptr;
617 }
618 
619 /// If V is a shuffle of values that ONLY returns elements from either LHS or
620 /// RHS, return the shuffle mask and true. Otherwise, return false.
621 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
622                                          SmallVectorImpl<int> &Mask) {
623   assert(LHS->getType() == RHS->getType() &&
624          "Invalid CollectSingleShuffleElements");
625   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
626 
627   if (match(V, m_Poison())) {
628     Mask.assign(NumElts, -1);
629     return true;
630   }
631 
632   if (V == LHS) {
633     for (unsigned i = 0; i != NumElts; ++i)
634       Mask.push_back(i);
635     return true;
636   }
637 
638   if (V == RHS) {
639     for (unsigned i = 0; i != NumElts; ++i)
640       Mask.push_back(i + NumElts);
641     return true;
642   }
643 
644   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
645     // If this is an insert of an extract from some other vector, include it.
646     Value *VecOp    = IEI->getOperand(0);
647     Value *ScalarOp = IEI->getOperand(1);
648     Value *IdxOp    = IEI->getOperand(2);
649 
650     if (!isa<ConstantInt>(IdxOp))
651       return false;
652     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
653 
654     if (isa<PoisonValue>(ScalarOp)) {  // inserting poison into vector.
655       // We can handle this if the vector we are inserting into is
656       // transitively ok.
657       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
658         // If so, update the mask to reflect the inserted poison.
659         Mask[InsertedIdx] = -1;
660         return true;
661       }
662     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
663       if (isa<ConstantInt>(EI->getOperand(1))) {
664         unsigned ExtractedIdx =
665         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
666         unsigned NumLHSElts =
667             cast<FixedVectorType>(LHS->getType())->getNumElements();
668 
669         // This must be extracting from either LHS or RHS.
670         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
671           // We can handle this if the vector we are inserting into is
672           // transitively ok.
673           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
674             // If so, update the mask to reflect the inserted value.
675             if (EI->getOperand(0) == LHS) {
676               Mask[InsertedIdx % NumElts] = ExtractedIdx;
677             } else {
678               assert(EI->getOperand(0) == RHS);
679               Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
680             }
681             return true;
682           }
683         }
684       }
685     }
686   }
687 
688   return false;
689 }
690 
691 /// If we have insertion into a vector that is wider than the vector that we
692 /// are extracting from, try to widen the source vector to allow a single
693 /// shufflevector to replace one or more insert/extract pairs.
694 static bool replaceExtractElements(InsertElementInst *InsElt,
695                                    ExtractElementInst *ExtElt,
696                                    InstCombinerImpl &IC) {
697   auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
698   auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
699   unsigned NumInsElts = InsVecType->getNumElements();
700   unsigned NumExtElts = ExtVecType->getNumElements();
701 
702   // The inserted-to vector must be wider than the extracted-from vector.
703   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
704       NumExtElts >= NumInsElts)
705     return false;
706 
707   // Create a shuffle mask to widen the extended-from vector using poison
708   // values. The mask selects all of the values of the original vector followed
709   // by as many poison values as needed to create a vector of the same length
710   // as the inserted-to vector.
711   SmallVector<int, 16> ExtendMask;
712   for (unsigned i = 0; i < NumExtElts; ++i)
713     ExtendMask.push_back(i);
714   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
715     ExtendMask.push_back(-1);
716 
717   Value *ExtVecOp = ExtElt->getVectorOperand();
718   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
719   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
720                                    ? ExtVecOpInst->getParent()
721                                    : ExtElt->getParent();
722 
723   // TODO: This restriction matches the basic block check below when creating
724   // new extractelement instructions. If that limitation is removed, this one
725   // could also be removed. But for now, we just bail out to ensure that we
726   // will replace the extractelement instruction that is feeding our
727   // insertelement instruction. This allows the insertelement to then be
728   // replaced by a shufflevector. If the insertelement is not replaced, we can
729   // induce infinite looping because there's an optimization for extractelement
730   // that will delete our widening shuffle. This would trigger another attempt
731   // here to create that shuffle, and we spin forever.
732   if (InsertionBlock != InsElt->getParent())
733     return false;
734 
735   // TODO: This restriction matches the check in visitInsertElementInst() and
736   // prevents an infinite loop caused by not turning the extract/insert pair
737   // into a shuffle. We really should not need either check, but we're lacking
738   // folds for shufflevectors because we're afraid to generate shuffle masks
739   // that the backend can't handle.
740   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
741     return false;
742 
743   auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask);
744 
745   // Insert the new shuffle after the vector operand of the extract is defined
746   // (as long as it's not a PHI) or at the start of the basic block of the
747   // extract, so any subsequent extracts in the same basic block can use it.
748   // TODO: Insert before the earliest ExtractElementInst that is replaced.
749   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
750     WideVec->insertAfter(ExtVecOpInst->getIterator());
751   else
752     IC.InsertNewInstWith(WideVec, ExtElt->getParent()->getFirstInsertionPt());
753 
754   // Replace extracts from the original narrow vector with extracts from the new
755   // wide vector.
756   for (User *U : ExtVecOp->users()) {
757     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
758     if (!OldExt || OldExt->getParent() != WideVec->getParent())
759       continue;
760     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
761     IC.InsertNewInstWith(NewExt, OldExt->getIterator());
762     IC.replaceInstUsesWith(*OldExt, NewExt);
763     // Add the old extracts to the worklist for DCE. We can't remove the
764     // extracts directly, because they may still be used by the calling code.
765     IC.addToWorklist(OldExt);
766   }
767 
768   return true;
769 }
770 
771 /// We are building a shuffle to create V, which is a sequence of insertelement,
772 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
773 /// not rely on the second vector source. Return a std::pair containing the
774 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
775 /// parameter as required.
776 ///
777 /// Note: we intentionally don't try to fold earlier shuffles since they have
778 /// often been chosen carefully to be efficiently implementable on the target.
779 using ShuffleOps = std::pair<Value *, Value *>;
780 
781 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
782                                          Value *PermittedRHS,
783                                          InstCombinerImpl &IC, bool &Rerun) {
784   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
785   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
786 
787   if (match(V, m_Poison())) {
788     Mask.assign(NumElts, -1);
789     return std::make_pair(
790         PermittedRHS ? PoisonValue::get(PermittedRHS->getType()) : V, nullptr);
791   }
792 
793   if (isa<ConstantAggregateZero>(V)) {
794     Mask.assign(NumElts, 0);
795     return std::make_pair(V, nullptr);
796   }
797 
798   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
799     // If this is an insert of an extract from some other vector, include it.
800     Value *VecOp    = IEI->getOperand(0);
801     Value *ScalarOp = IEI->getOperand(1);
802     Value *IdxOp    = IEI->getOperand(2);
803 
804     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
805       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
806         unsigned ExtractedIdx =
807           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
808         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
809 
810         // Either the extracted from or inserted into vector must be RHSVec,
811         // otherwise we'd end up with a shuffle of three inputs.
812         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
813           Value *RHS = EI->getOperand(0);
814           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC, Rerun);
815           assert(LR.second == nullptr || LR.second == RHS);
816 
817           if (LR.first->getType() != RHS->getType()) {
818             // Although we are giving up for now, see if we can create extracts
819             // that match the inserts for another round of combining.
820             if (replaceExtractElements(IEI, EI, IC))
821               Rerun = true;
822 
823             // We tried our best, but we can't find anything compatible with RHS
824             // further up the chain. Return a trivial shuffle.
825             for (unsigned i = 0; i < NumElts; ++i)
826               Mask[i] = i;
827             return std::make_pair(V, nullptr);
828           }
829 
830           unsigned NumLHSElts =
831               cast<FixedVectorType>(RHS->getType())->getNumElements();
832           Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
833           return std::make_pair(LR.first, RHS);
834         }
835 
836         if (VecOp == PermittedRHS) {
837           // We've gone as far as we can: anything on the other side of the
838           // extractelement will already have been converted into a shuffle.
839           unsigned NumLHSElts =
840               cast<FixedVectorType>(EI->getOperand(0)->getType())
841                   ->getNumElements();
842           for (unsigned i = 0; i != NumElts; ++i)
843             Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
844           return std::make_pair(EI->getOperand(0), PermittedRHS);
845         }
846 
847         // If this insertelement is a chain that comes from exactly these two
848         // vectors, return the vector and the effective shuffle.
849         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
850             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
851                                          Mask))
852           return std::make_pair(EI->getOperand(0), PermittedRHS);
853       }
854     }
855   }
856 
857   // Otherwise, we can't do anything fancy. Return an identity vector.
858   for (unsigned i = 0; i != NumElts; ++i)
859     Mask.push_back(i);
860   return std::make_pair(V, nullptr);
861 }
862 
863 /// Look for chain of insertvalue's that fully define an aggregate, and trace
864 /// back the values inserted, see if they are all were extractvalue'd from
865 /// the same source aggregate from the exact same element indexes.
866 /// If they were, just reuse the source aggregate.
867 /// This potentially deals with PHI indirections.
868 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
869     InsertValueInst &OrigIVI) {
870   Type *AggTy = OrigIVI.getType();
871   unsigned NumAggElts;
872   switch (AggTy->getTypeID()) {
873   case Type::StructTyID:
874     NumAggElts = AggTy->getStructNumElements();
875     break;
876   case Type::ArrayTyID:
877     NumAggElts = AggTy->getArrayNumElements();
878     break;
879   default:
880     llvm_unreachable("Unhandled aggregate type?");
881   }
882 
883   // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
884   // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
885   // FIXME: any interesting patterns to be caught with larger limit?
886   assert(NumAggElts > 0 && "Aggregate should have elements.");
887   if (NumAggElts > 2)
888     return nullptr;
889 
890   static constexpr auto NotFound = std::nullopt;
891   static constexpr auto FoundMismatch = nullptr;
892 
893   // Try to find a value of each element of an aggregate.
894   // FIXME: deal with more complex, not one-dimensional, aggregate types
895   SmallVector<std::optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
896 
897   // Do we know values for each element of the aggregate?
898   auto KnowAllElts = [&AggElts]() {
899     return !llvm::is_contained(AggElts, NotFound);
900   };
901 
902   int Depth = 0;
903 
904   // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
905   // every element being overwritten twice, which should never happen.
906   static const int DepthLimit = 2 * NumAggElts;
907 
908   // Recurse up the chain of `insertvalue` aggregate operands until either we've
909   // reconstructed full initializer or can't visit any more `insertvalue`'s.
910   for (InsertValueInst *CurrIVI = &OrigIVI;
911        Depth < DepthLimit && CurrIVI && !KnowAllElts();
912        CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
913                        ++Depth) {
914     auto *InsertedValue =
915         dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
916     if (!InsertedValue)
917       return nullptr; // Inserted value must be produced by an instruction.
918 
919     ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
920 
921     // Don't bother with more than single-level aggregates.
922     if (Indices.size() != 1)
923       return nullptr; // FIXME: deal with more complex aggregates?
924 
925     // Now, we may have already previously recorded the value for this element
926     // of an aggregate. If we did, that means the CurrIVI will later be
927     // overwritten with the already-recorded value. But if not, let's record it!
928     std::optional<Instruction *> &Elt = AggElts[Indices.front()];
929     Elt = Elt.value_or(InsertedValue);
930 
931     // FIXME: should we handle chain-terminating undef base operand?
932   }
933 
934   // Was that sufficient to deduce the full initializer for the aggregate?
935   if (!KnowAllElts())
936     return nullptr; // Give up then.
937 
938   // We now want to find the source[s] of the aggregate elements we've found.
939   // And with "source" we mean the original aggregate[s] from which
940   // the inserted elements were extracted. This may require PHI translation.
941 
942   enum class AggregateDescription {
943     /// When analyzing the value that was inserted into an aggregate, we did
944     /// not manage to find defining `extractvalue` instruction to analyze.
945     NotFound,
946     /// When analyzing the value that was inserted into an aggregate, we did
947     /// manage to find defining `extractvalue` instruction[s], and everything
948     /// matched perfectly - aggregate type, element insertion/extraction index.
949     Found,
950     /// When analyzing the value that was inserted into an aggregate, we did
951     /// manage to find defining `extractvalue` instruction, but there was
952     /// a mismatch: either the source type from which the extraction was didn't
953     /// match the aggregate type into which the insertion was,
954     /// or the extraction/insertion channels mismatched,
955     /// or different elements had different source aggregates.
956     FoundMismatch
957   };
958   auto Describe = [](std::optional<Value *> SourceAggregate) {
959     if (SourceAggregate == NotFound)
960       return AggregateDescription::NotFound;
961     if (*SourceAggregate == FoundMismatch)
962       return AggregateDescription::FoundMismatch;
963     return AggregateDescription::Found;
964   };
965 
966   // If an aggregate element is defined in UseBB, we can't use it in PredBB.
967   bool EltDefinedInUseBB = false;
968 
969   // Given the value \p Elt that was being inserted into element \p EltIdx of an
970   // aggregate AggTy, see if \p Elt was originally defined by an
971   // appropriate extractvalue (same element index, same aggregate type).
972   // If found, return the source aggregate from which the extraction was.
973   // If \p PredBB is provided, does PHI translation of an \p Elt first.
974   auto FindSourceAggregate =
975       [&](Instruction *Elt, unsigned EltIdx, std::optional<BasicBlock *> UseBB,
976           std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
977     // For now(?), only deal with, at most, a single level of PHI indirection.
978     if (UseBB && PredBB) {
979       Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
980       if (Elt && Elt->getParent() == *UseBB)
981         EltDefinedInUseBB = true;
982     }
983     // FIXME: deal with multiple levels of PHI indirection?
984 
985     // Did we find an extraction?
986     auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
987     if (!EVI)
988       return NotFound;
989 
990     Value *SourceAggregate = EVI->getAggregateOperand();
991 
992     // Is the extraction from the same type into which the insertion was?
993     if (SourceAggregate->getType() != AggTy)
994       return FoundMismatch;
995     // And the element index doesn't change between extraction and insertion?
996     if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
997       return FoundMismatch;
998 
999     return SourceAggregate; // AggregateDescription::Found
1000   };
1001 
1002   // Given elements AggElts that were constructing an aggregate OrigIVI,
1003   // see if we can find appropriate source aggregate for each of the elements,
1004   // and see it's the same aggregate for each element. If so, return it.
1005   auto FindCommonSourceAggregate =
1006       [&](std::optional<BasicBlock *> UseBB,
1007           std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
1008     std::optional<Value *> SourceAggregate;
1009 
1010     for (auto I : enumerate(AggElts)) {
1011       assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
1012              "We don't store nullptr in SourceAggregate!");
1013       assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
1014                  (I.index() != 0) &&
1015              "SourceAggregate should be valid after the first element,");
1016 
1017       // For this element, is there a plausible source aggregate?
1018       // FIXME: we could special-case undef element, IFF we know that in the
1019       //        source aggregate said element isn't poison.
1020       std::optional<Value *> SourceAggregateForElement =
1021           FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
1022 
1023       // Okay, what have we found? Does that correlate with previous findings?
1024 
1025       // Regardless of whether or not we have previously found source
1026       // aggregate for previous elements (if any), if we didn't find one for
1027       // this element, passthrough whatever we have just found.
1028       if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
1029         return SourceAggregateForElement;
1030 
1031       // Okay, we have found source aggregate for this element.
1032       // Let's see what we already know from previous elements, if any.
1033       switch (Describe(SourceAggregate)) {
1034       case AggregateDescription::NotFound:
1035         // This is apparently the first element that we have examined.
1036         SourceAggregate = SourceAggregateForElement; // Record the aggregate!
1037         continue; // Great, now look at next element.
1038       case AggregateDescription::Found:
1039         // We have previously already successfully examined other elements.
1040         // Is this the same source aggregate we've found for other elements?
1041         if (*SourceAggregateForElement != *SourceAggregate)
1042           return FoundMismatch;
1043         continue; // Still the same aggregate, look at next element.
1044       case AggregateDescription::FoundMismatch:
1045         llvm_unreachable("Can't happen. We would have early-exited then.");
1046       };
1047     }
1048 
1049     assert(Describe(SourceAggregate) == AggregateDescription::Found &&
1050            "Must be a valid Value");
1051     return *SourceAggregate;
1052   };
1053 
1054   std::optional<Value *> SourceAggregate;
1055 
1056   // Can we find the source aggregate without looking at predecessors?
1057   SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/std::nullopt,
1058                                               /*PredBB=*/std::nullopt);
1059   if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
1060     if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
1061       return nullptr; // Conflicting source aggregates!
1062     ++NumAggregateReconstructionsSimplified;
1063     return replaceInstUsesWith(OrigIVI, *SourceAggregate);
1064   }
1065 
1066   // Okay, apparently we need to look at predecessors.
1067 
1068   // We should be smart about picking the "use" basic block, which will be the
1069   // merge point for aggregate, where we'll insert the final PHI that will be
1070   // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
1071   // We should look in which blocks each of the AggElts is being defined,
1072   // they all should be defined in the same basic block.
1073   BasicBlock *UseBB = nullptr;
1074 
1075   for (const std::optional<Instruction *> &I : AggElts) {
1076     BasicBlock *BB = (*I)->getParent();
1077     // If it's the first instruction we've encountered, record the basic block.
1078     if (!UseBB) {
1079       UseBB = BB;
1080       continue;
1081     }
1082     // Otherwise, this must be the same basic block we've seen previously.
1083     if (UseBB != BB)
1084       return nullptr;
1085   }
1086 
1087   // If *all* of the elements are basic-block-independent, meaning they are
1088   // either function arguments, or constant expressions, then if we didn't
1089   // handle them without predecessor-aware handling, we won't handle them now.
1090   if (!UseBB)
1091     return nullptr;
1092 
1093   // If we didn't manage to find source aggregate without looking at
1094   // predecessors, and there are no predecessors to look at, then we're done.
1095   if (pred_empty(UseBB))
1096     return nullptr;
1097 
1098   // Arbitrary predecessor count limit.
1099   static const int PredCountLimit = 64;
1100 
1101   // Cache the (non-uniqified!) list of predecessors in a vector,
1102   // checking the limit at the same time for efficiency.
1103   SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
1104   for (BasicBlock *Pred : predecessors(UseBB)) {
1105     // Don't bother if there are too many predecessors.
1106     if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
1107       return nullptr;
1108     Preds.emplace_back(Pred);
1109   }
1110 
1111   // For each predecessor, what is the source aggregate,
1112   // from which all the elements were originally extracted from?
1113   // Note that we want for the map to have stable iteration order!
1114   SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
1115   bool FoundSrcAgg = false;
1116   for (BasicBlock *Pred : Preds) {
1117     std::pair<decltype(SourceAggregates)::iterator, bool> IV =
1118         SourceAggregates.insert({Pred, nullptr});
1119     // Did we already evaluate this predecessor?
1120     if (!IV.second)
1121       continue;
1122 
1123     // Let's hope that when coming from predecessor Pred, all elements of the
1124     // aggregate produced by OrigIVI must have been originally extracted from
1125     // the same aggregate. Is that so? Can we find said original aggregate?
1126     SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1127     if (Describe(SourceAggregate) == AggregateDescription::Found) {
1128       FoundSrcAgg = true;
1129       IV.first->second = *SourceAggregate;
1130     } else {
1131       // If UseBB is the single successor of Pred, we can add InsertValue to
1132       // Pred.
1133       auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
1134       if (!BI || !BI->isUnconditional())
1135         return nullptr;
1136     }
1137   }
1138 
1139   if (!FoundSrcAgg)
1140     return nullptr;
1141 
1142   // Do some sanity check if we need to add insertvalue into predecessors.
1143   auto OrigBB = OrigIVI.getParent();
1144   for (auto &It : SourceAggregates) {
1145     if (Describe(It.second) == AggregateDescription::Found)
1146       continue;
1147 
1148     // Element is defined in UseBB, so it can't be used in predecessors.
1149     if (EltDefinedInUseBB)
1150       return nullptr;
1151 
1152     // Do this transformation cross loop boundary may cause dead loop. So we
1153     // should avoid this situation. But LoopInfo is not generally available, we
1154     // must be conservative here.
1155     // If OrigIVI is in UseBB and it's the only successor of PredBB, PredBB
1156     // can't be in inner loop.
1157     if (UseBB != OrigBB)
1158       return nullptr;
1159 
1160     // Avoid constructing constant aggregate because constant value may expose
1161     // more optimizations.
1162     bool ConstAgg = true;
1163     for (auto Val : AggElts) {
1164       Value *Elt = (*Val)->DoPHITranslation(UseBB, It.first);
1165       if (!isa<Constant>(Elt)) {
1166         ConstAgg = false;
1167         break;
1168       }
1169     }
1170     if (ConstAgg)
1171       return nullptr;
1172   }
1173 
1174   // For predecessors without appropriate source aggregate, create one in the
1175   // predecessor.
1176   for (auto &It : SourceAggregates) {
1177     if (Describe(It.second) == AggregateDescription::Found)
1178       continue;
1179 
1180     BasicBlock *Pred = It.first;
1181     Builder.SetInsertPoint(Pred->getTerminator());
1182     Value *V = PoisonValue::get(AggTy);
1183     for (auto [Idx, Val] : enumerate(AggElts)) {
1184       Value *Elt = (*Val)->DoPHITranslation(UseBB, Pred);
1185       V = Builder.CreateInsertValue(V, Elt, Idx);
1186     }
1187 
1188     It.second = V;
1189   }
1190 
1191   // All good! Now we just need to thread the source aggregates here.
1192   // Note that we have to insert the new PHI here, ourselves, because we can't
1193   // rely on InstCombinerImpl::run() inserting it into the right basic block.
1194   // Note that the same block can be a predecessor more than once,
1195   // and we need to preserve that invariant for the PHI node.
1196   BuilderTy::InsertPointGuard Guard(Builder);
1197   Builder.SetInsertPoint(UseBB, UseBB->getFirstNonPHIIt());
1198   auto *PHI =
1199       Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
1200   for (BasicBlock *Pred : Preds)
1201     PHI->addIncoming(SourceAggregates[Pred], Pred);
1202 
1203   ++NumAggregateReconstructionsSimplified;
1204   return replaceInstUsesWith(OrigIVI, PHI);
1205 }
1206 
1207 /// Try to find redundant insertvalue instructions, like the following ones:
1208 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1209 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
1210 /// Here the second instruction inserts values at the same indices, as the
1211 /// first one, making the first one redundant.
1212 /// It should be transformed to:
1213 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
1214 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
1215   if (Value *V = simplifyInsertValueInst(
1216           I.getAggregateOperand(), I.getInsertedValueOperand(), I.getIndices(),
1217           SQ.getWithInstruction(&I)))
1218     return replaceInstUsesWith(I, V);
1219 
1220   bool IsRedundant = false;
1221   ArrayRef<unsigned int> FirstIndices = I.getIndices();
1222 
1223   // If there is a chain of insertvalue instructions (each of them except the
1224   // last one has only one use and it's another insertvalue insn from this
1225   // chain), check if any of the 'children' uses the same indices as the first
1226   // instruction. In this case, the first one is redundant.
1227   Value *V = &I;
1228   unsigned Depth = 0;
1229   while (V->hasOneUse() && Depth < 10) {
1230     User *U = V->user_back();
1231     auto UserInsInst = dyn_cast<InsertValueInst>(U);
1232     if (!UserInsInst || U->getOperand(0) != V)
1233       break;
1234     if (UserInsInst->getIndices() == FirstIndices) {
1235       IsRedundant = true;
1236       break;
1237     }
1238     V = UserInsInst;
1239     Depth++;
1240   }
1241 
1242   if (IsRedundant)
1243     return replaceInstUsesWith(I, I.getOperand(0));
1244 
1245   if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
1246     return NewI;
1247 
1248   return nullptr;
1249 }
1250 
1251 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
1252   // Can not analyze scalable type, the number of elements is not a compile-time
1253   // constant.
1254   if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
1255     return false;
1256 
1257   int MaskSize = Shuf.getShuffleMask().size();
1258   int VecSize =
1259       cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
1260 
1261   // A vector select does not change the size of the operands.
1262   if (MaskSize != VecSize)
1263     return false;
1264 
1265   // Each mask element must be undefined or choose a vector element from one of
1266   // the source operands without crossing vector lanes.
1267   for (int i = 0; i != MaskSize; ++i) {
1268     int Elt = Shuf.getMaskValue(i);
1269     if (Elt != -1 && Elt != i && Elt != i + VecSize)
1270       return false;
1271   }
1272 
1273   return true;
1274 }
1275 
1276 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1277 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1278 /// shufflevector(insertelt(X, %k, 0), poison, zero)
1279 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
1280   // We are interested in the last insert in a chain. So if this insert has a
1281   // single user and that user is an insert, bail.
1282   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
1283     return nullptr;
1284 
1285   VectorType *VecTy = InsElt.getType();
1286   // Can not handle scalable type, the number of elements is not a compile-time
1287   // constant.
1288   if (isa<ScalableVectorType>(VecTy))
1289     return nullptr;
1290   unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1291 
1292   // Do not try to do this for a one-element vector, since that's a nop,
1293   // and will cause an inf-loop.
1294   if (NumElements == 1)
1295     return nullptr;
1296 
1297   Value *SplatVal = InsElt.getOperand(1);
1298   InsertElementInst *CurrIE = &InsElt;
1299   SmallBitVector ElementPresent(NumElements, false);
1300   InsertElementInst *FirstIE = nullptr;
1301 
1302   // Walk the chain backwards, keeping track of which indices we inserted into,
1303   // until we hit something that isn't an insert of the splatted value.
1304   while (CurrIE) {
1305     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
1306     if (!Idx || CurrIE->getOperand(1) != SplatVal)
1307       return nullptr;
1308 
1309     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
1310     // Check none of the intermediate steps have any additional uses, except
1311     // for the root insertelement instruction, which can be re-used, if it
1312     // inserts at position 0.
1313     if (CurrIE != &InsElt &&
1314         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
1315       return nullptr;
1316 
1317     ElementPresent[Idx->getZExtValue()] = true;
1318     FirstIE = CurrIE;
1319     CurrIE = NextIE;
1320   }
1321 
1322   // If this is just a single insertelement (not a sequence), we are done.
1323   if (FirstIE == &InsElt)
1324     return nullptr;
1325 
1326   // If we are not inserting into a poison vector, make sure we've seen an
1327   // insert into every element.
1328   // TODO: If the base vector is not undef, it might be better to create a splat
1329   //       and then a select-shuffle (blend) with the base vector.
1330   if (!match(FirstIE->getOperand(0), m_Poison()))
1331     if (!ElementPresent.all())
1332       return nullptr;
1333 
1334   // Create the insert + shuffle.
1335   Type *Int64Ty = Type::getInt64Ty(InsElt.getContext());
1336   PoisonValue *PoisonVec = PoisonValue::get(VecTy);
1337   Constant *Zero = ConstantInt::get(Int64Ty, 0);
1338   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
1339     FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "",
1340                                         InsElt.getIterator());
1341 
1342   // Splat from element 0, but replace absent elements with poison in the mask.
1343   SmallVector<int, 16> Mask(NumElements, 0);
1344   for (unsigned i = 0; i != NumElements; ++i)
1345     if (!ElementPresent[i])
1346       Mask[i] = -1;
1347 
1348   return new ShuffleVectorInst(FirstIE, Mask);
1349 }
1350 
1351 /// Try to fold an insert element into an existing splat shuffle by changing
1352 /// the shuffle's mask to include the index of this insert element.
1353 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
1354   // Check if the vector operand of this insert is a canonical splat shuffle.
1355   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1356   if (!Shuf || !Shuf->isZeroEltSplat())
1357     return nullptr;
1358 
1359   // Bail out early if shuffle is scalable type. The number of elements in
1360   // shuffle mask is unknown at compile-time.
1361   if (isa<ScalableVectorType>(Shuf->getType()))
1362     return nullptr;
1363 
1364   // Check for a constant insertion index.
1365   uint64_t IdxC;
1366   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1367     return nullptr;
1368 
1369   // Check if the splat shuffle's input is the same as this insert's scalar op.
1370   Value *X = InsElt.getOperand(1);
1371   Value *Op0 = Shuf->getOperand(0);
1372   if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
1373     return nullptr;
1374 
1375   // Replace the shuffle mask element at the index of this insert with a zero.
1376   // For example:
1377   // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1
1378   //   --> shuf (inselt undef, X, 0), poison, <0,0,0,undef>
1379   unsigned NumMaskElts =
1380       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1381   SmallVector<int, 16> NewMask(NumMaskElts);
1382   for (unsigned i = 0; i != NumMaskElts; ++i)
1383     NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1384 
1385   return new ShuffleVectorInst(Op0, NewMask);
1386 }
1387 
1388 /// Try to fold an extract+insert element into an existing identity shuffle by
1389 /// changing the shuffle's mask to include the index of this insert element.
1390 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
1391   // Check if the vector operand of this insert is an identity shuffle.
1392   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1393   if (!Shuf || !match(Shuf->getOperand(1), m_Poison()) ||
1394       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1395     return nullptr;
1396 
1397   // Bail out early if shuffle is scalable type. The number of elements in
1398   // shuffle mask is unknown at compile-time.
1399   if (isa<ScalableVectorType>(Shuf->getType()))
1400     return nullptr;
1401 
1402   // Check for a constant insertion index.
1403   uint64_t IdxC;
1404   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1405     return nullptr;
1406 
1407   // Check if this insert's scalar op is extracted from the identity shuffle's
1408   // input vector.
1409   Value *Scalar = InsElt.getOperand(1);
1410   Value *X = Shuf->getOperand(0);
1411   if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
1412     return nullptr;
1413 
1414   // Replace the shuffle mask element at the index of this extract+insert with
1415   // that same index value.
1416   // For example:
1417   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1418   unsigned NumMaskElts =
1419       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1420   SmallVector<int, 16> NewMask(NumMaskElts);
1421   ArrayRef<int> OldMask = Shuf->getShuffleMask();
1422   for (unsigned i = 0; i != NumMaskElts; ++i) {
1423     if (i != IdxC) {
1424       // All mask elements besides the inserted element remain the same.
1425       NewMask[i] = OldMask[i];
1426     } else if (OldMask[i] == (int)IdxC) {
1427       // If the mask element was already set, there's nothing to do
1428       // (demanded elements analysis may unset it later).
1429       return nullptr;
1430     } else {
1431       assert(OldMask[i] == PoisonMaskElem &&
1432              "Unexpected shuffle mask element for identity shuffle");
1433       NewMask[i] = IdxC;
1434     }
1435   }
1436 
1437   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
1438 }
1439 
1440 /// If we have an insertelement instruction feeding into another insertelement
1441 /// and the 2nd is inserting a constant into the vector, canonicalize that
1442 /// constant insertion before the insertion of a variable:
1443 ///
1444 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1445 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1446 ///
1447 /// This has the potential of eliminating the 2nd insertelement instruction
1448 /// via constant folding of the scalar constant into a vector constant.
1449 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
1450                                      InstCombiner::BuilderTy &Builder) {
1451   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
1452   if (!InsElt1 || !InsElt1->hasOneUse())
1453     return nullptr;
1454 
1455   Value *X, *Y;
1456   Constant *ScalarC;
1457   ConstantInt *IdxC1, *IdxC2;
1458   if (match(InsElt1->getOperand(0), m_Value(X)) &&
1459       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
1460       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
1461       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
1462       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
1463     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
1464     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
1465   }
1466 
1467   return nullptr;
1468 }
1469 
1470 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1471 /// --> shufflevector X, CVec', Mask'
1472 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
1473   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
1474   // Bail out if the parent has more than one use. In that case, we'd be
1475   // replacing the insertelt with a shuffle, and that's not a clear win.
1476   if (!Inst || !Inst->hasOneUse())
1477     return nullptr;
1478   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
1479     // The shuffle must have a constant vector operand. The insertelt must have
1480     // a constant scalar being inserted at a constant position in the vector.
1481     Constant *ShufConstVec, *InsEltScalar;
1482     uint64_t InsEltIndex;
1483     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
1484         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
1485         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
1486       return nullptr;
1487 
1488     // Adding an element to an arbitrary shuffle could be expensive, but a
1489     // shuffle that selects elements from vectors without crossing lanes is
1490     // assumed cheap.
1491     // If we're just adding a constant into that shuffle, it will still be
1492     // cheap.
1493     if (!isShuffleEquivalentToSelect(*Shuf))
1494       return nullptr;
1495 
1496     // From the above 'select' check, we know that the mask has the same number
1497     // of elements as the vector input operands. We also know that each constant
1498     // input element is used in its lane and can not be used more than once by
1499     // the shuffle. Therefore, replace the constant in the shuffle's constant
1500     // vector with the insertelt constant. Replace the constant in the shuffle's
1501     // mask vector with the insertelt index plus the length of the vector
1502     // (because the constant vector operand of a shuffle is always the 2nd
1503     // operand).
1504     ArrayRef<int> Mask = Shuf->getShuffleMask();
1505     unsigned NumElts = Mask.size();
1506     SmallVector<Constant *, 16> NewShufElts(NumElts);
1507     SmallVector<int, 16> NewMaskElts(NumElts);
1508     for (unsigned I = 0; I != NumElts; ++I) {
1509       if (I == InsEltIndex) {
1510         NewShufElts[I] = InsEltScalar;
1511         NewMaskElts[I] = InsEltIndex + NumElts;
1512       } else {
1513         // Copy over the existing values.
1514         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
1515         NewMaskElts[I] = Mask[I];
1516       }
1517 
1518       // Bail if we failed to find an element.
1519       if (!NewShufElts[I])
1520         return nullptr;
1521     }
1522 
1523     // Create new operands for a shuffle that includes the constant of the
1524     // original insertelt. The old shuffle will be dead now.
1525     return new ShuffleVectorInst(Shuf->getOperand(0),
1526                                  ConstantVector::get(NewShufElts), NewMaskElts);
1527   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1528     // Transform sequences of insertelements ops with constant data/indexes into
1529     // a single shuffle op.
1530     // Can not handle scalable type, the number of elements needed to create
1531     // shuffle mask is not a compile-time constant.
1532     if (isa<ScalableVectorType>(InsElt.getType()))
1533       return nullptr;
1534     unsigned NumElts =
1535         cast<FixedVectorType>(InsElt.getType())->getNumElements();
1536 
1537     uint64_t InsertIdx[2];
1538     Constant *Val[2];
1539     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1540         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1541         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1542         !match(IEI->getOperand(1), m_Constant(Val[1])))
1543       return nullptr;
1544     SmallVector<Constant *, 16> Values(NumElts);
1545     SmallVector<int, 16> Mask(NumElts);
1546     auto ValI = std::begin(Val);
1547     // Generate new constant vector and mask.
1548     // We have 2 values/masks from the insertelements instructions. Insert them
1549     // into new value/mask vectors.
1550     for (uint64_t I : InsertIdx) {
1551       if (!Values[I]) {
1552         Values[I] = *ValI;
1553         Mask[I] = NumElts + I;
1554       }
1555       ++ValI;
1556     }
1557     // Remaining values are filled with 'poison' values.
1558     for (unsigned I = 0; I < NumElts; ++I) {
1559       if (!Values[I]) {
1560         Values[I] = PoisonValue::get(InsElt.getType()->getElementType());
1561         Mask[I] = I;
1562       }
1563     }
1564     // Create new operands for a shuffle that includes the constant of the
1565     // original insertelt.
1566     return new ShuffleVectorInst(IEI->getOperand(0),
1567                                  ConstantVector::get(Values), Mask);
1568   }
1569   return nullptr;
1570 }
1571 
1572 /// If both the base vector and the inserted element are extended from the same
1573 /// type, do the insert element in the narrow source type followed by extend.
1574 /// TODO: This can be extended to include other cast opcodes, but particularly
1575 ///       if we create a wider insertelement, make sure codegen is not harmed.
1576 static Instruction *narrowInsElt(InsertElementInst &InsElt,
1577                                  InstCombiner::BuilderTy &Builder) {
1578   // We are creating a vector extend. If the original vector extend has another
1579   // use, that would mean we end up with 2 vector extends, so avoid that.
1580   // TODO: We could ease the use-clause to "if at least one op has one use"
1581   //       (assuming that the source types match - see next TODO comment).
1582   Value *Vec = InsElt.getOperand(0);
1583   if (!Vec->hasOneUse())
1584     return nullptr;
1585 
1586   Value *Scalar = InsElt.getOperand(1);
1587   Value *X, *Y;
1588   CastInst::CastOps CastOpcode;
1589   if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y))))
1590     CastOpcode = Instruction::FPExt;
1591   else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y))))
1592     CastOpcode = Instruction::SExt;
1593   else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y))))
1594     CastOpcode = Instruction::ZExt;
1595   else
1596     return nullptr;
1597 
1598   // TODO: We can allow mismatched types by creating an intermediate cast.
1599   if (X->getType()->getScalarType() != Y->getType())
1600     return nullptr;
1601 
1602   // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
1603   Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2));
1604   return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType());
1605 }
1606 
1607 /// If we are inserting 2 halves of a value into adjacent elements of a vector,
1608 /// try to convert to a single insert with appropriate bitcasts.
1609 static Instruction *foldTruncInsEltPair(InsertElementInst &InsElt,
1610                                         bool IsBigEndian,
1611                                         InstCombiner::BuilderTy &Builder) {
1612   Value *VecOp    = InsElt.getOperand(0);
1613   Value *ScalarOp = InsElt.getOperand(1);
1614   Value *IndexOp  = InsElt.getOperand(2);
1615 
1616   // Pattern depends on endian because we expect lower index is inserted first.
1617   // Big endian:
1618   // inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1
1619   // Little endian:
1620   // inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1
1621   // Note: It is not safe to do this transform with an arbitrary base vector
1622   //       because the bitcast of that vector to fewer/larger elements could
1623   //       allow poison to spill into an element that was not poison before.
1624   // TODO: Detect smaller fractions of the scalar.
1625   // TODO: One-use checks are conservative.
1626   auto *VTy = dyn_cast<FixedVectorType>(InsElt.getType());
1627   Value *Scalar0, *BaseVec;
1628   uint64_t Index0, Index1;
1629   if (!VTy || (VTy->getNumElements() & 1) ||
1630       !match(IndexOp, m_ConstantInt(Index1)) ||
1631       !match(VecOp, m_InsertElt(m_Value(BaseVec), m_Value(Scalar0),
1632                                 m_ConstantInt(Index0))) ||
1633       !match(BaseVec, m_Undef()))
1634     return nullptr;
1635 
1636   // The first insert must be to the index one less than this one, and
1637   // the first insert must be to an even index.
1638   if (Index0 + 1 != Index1 || Index0 & 1)
1639     return nullptr;
1640 
1641   // For big endian, the high half of the value should be inserted first.
1642   // For little endian, the low half of the value should be inserted first.
1643   Value *X;
1644   uint64_t ShAmt;
1645   if (IsBigEndian) {
1646     if (!match(ScalarOp, m_Trunc(m_Value(X))) ||
1647         !match(Scalar0, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
1648       return nullptr;
1649   } else {
1650     if (!match(Scalar0, m_Trunc(m_Value(X))) ||
1651         !match(ScalarOp, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
1652       return nullptr;
1653   }
1654 
1655   Type *SrcTy = X->getType();
1656   unsigned ScalarWidth = SrcTy->getScalarSizeInBits();
1657   unsigned VecEltWidth = VTy->getScalarSizeInBits();
1658   if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth)
1659     return nullptr;
1660 
1661   // Bitcast the base vector to a vector type with the source element type.
1662   Type *CastTy = FixedVectorType::get(SrcTy, VTy->getNumElements() / 2);
1663   Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy);
1664 
1665   // Scale the insert index for a vector with half as many elements.
1666   // bitcast (inselt (bitcast BaseVec), X, NewIndex)
1667   uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2;
1668   Value *NewInsert = Builder.CreateInsertElement(CastBaseVec, X, NewIndex);
1669   return new BitCastInst(NewInsert, VTy);
1670 }
1671 
1672 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
1673   Value *VecOp    = IE.getOperand(0);
1674   Value *ScalarOp = IE.getOperand(1);
1675   Value *IdxOp    = IE.getOperand(2);
1676 
1677   if (auto *V = simplifyInsertElementInst(
1678           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1679     return replaceInstUsesWith(IE, V);
1680 
1681   // Canonicalize type of constant indices to i64 to simplify CSE
1682   if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) {
1683     if (auto *NewIdx = getPreferredVectorIndex(IndexC))
1684       return replaceOperand(IE, 2, NewIdx);
1685 
1686     Value *BaseVec, *OtherScalar;
1687     uint64_t OtherIndexVal;
1688     if (match(VecOp, m_OneUse(m_InsertElt(m_Value(BaseVec),
1689                                           m_Value(OtherScalar),
1690                                           m_ConstantInt(OtherIndexVal)))) &&
1691         !isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) {
1692       Value *NewIns = Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp);
1693       return InsertElementInst::Create(NewIns, OtherScalar,
1694                                        Builder.getInt64(OtherIndexVal));
1695     }
1696   }
1697 
1698   // If the scalar is bitcast and inserted into undef, do the insert in the
1699   // source type followed by bitcast.
1700   // TODO: Generalize for insert into any constant, not just undef?
1701   Value *ScalarSrc;
1702   if (match(VecOp, m_Undef()) &&
1703       match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1704       (ScalarSrc->getType()->isIntegerTy() ||
1705        ScalarSrc->getType()->isFloatingPointTy())) {
1706     // inselt undef, (bitcast ScalarSrc), IdxOp -->
1707     //   bitcast (inselt undef, ScalarSrc, IdxOp)
1708     Type *ScalarTy = ScalarSrc->getType();
1709     Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1710     Constant *NewUndef = isa<PoisonValue>(VecOp) ? PoisonValue::get(VecTy)
1711                                                  : UndefValue::get(VecTy);
1712     Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1713     return new BitCastInst(NewInsElt, IE.getType());
1714   }
1715 
1716   // If the vector and scalar are both bitcast from the same element type, do
1717   // the insert in that source type followed by bitcast.
1718   Value *VecSrc;
1719   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1720       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1721       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1722       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1723       cast<VectorType>(VecSrc->getType())->getElementType() ==
1724           ScalarSrc->getType()) {
1725     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1726     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1727     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1728     return new BitCastInst(NewInsElt, IE.getType());
1729   }
1730 
1731   // If the inserted element was extracted from some other fixed-length vector
1732   // and both indexes are valid constants, try to turn this into a shuffle.
1733   // Can not handle scalable vector type, the number of elements needed to
1734   // create shuffle mask is not a compile-time constant.
1735   uint64_t InsertedIdx, ExtractedIdx;
1736   Value *ExtVecOp;
1737   if (isa<FixedVectorType>(IE.getType()) &&
1738       match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1739       match(ScalarOp,
1740             m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1741       isa<FixedVectorType>(ExtVecOp->getType()) &&
1742       ExtractedIdx <
1743           cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1744     // TODO: Looking at the user(s) to determine if this insert is a
1745     // fold-to-shuffle opportunity does not match the usual instcombine
1746     // constraints. We should decide if the transform is worthy based only
1747     // on this instruction and its operands, but that may not work currently.
1748     //
1749     // Here, we are trying to avoid creating shuffles before reaching
1750     // the end of a chain of extract-insert pairs. This is complicated because
1751     // we do not generally form arbitrary shuffle masks in instcombine
1752     // (because those may codegen poorly), but collectShuffleElements() does
1753     // exactly that.
1754     //
1755     // The rules for determining what is an acceptable target-independent
1756     // shuffle mask are fuzzy because they evolve based on the backend's
1757     // capabilities and real-world impact.
1758     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1759       if (!Insert.hasOneUse())
1760         return true;
1761       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1762       if (!InsertUser)
1763         return true;
1764       return false;
1765     };
1766 
1767     // Try to form a shuffle from a chain of extract-insert ops.
1768     if (isShuffleRootCandidate(IE)) {
1769       bool Rerun = true;
1770       while (Rerun) {
1771         Rerun = false;
1772 
1773         SmallVector<int, 16> Mask;
1774         ShuffleOps LR =
1775             collectShuffleElements(&IE, Mask, nullptr, *this, Rerun);
1776 
1777         // The proposed shuffle may be trivial, in which case we shouldn't
1778         // perform the combine.
1779         if (LR.first != &IE && LR.second != &IE) {
1780           // We now have a shuffle of LHS, RHS, Mask.
1781           if (LR.second == nullptr)
1782             LR.second = PoisonValue::get(LR.first->getType());
1783           return new ShuffleVectorInst(LR.first, LR.second, Mask);
1784         }
1785       }
1786     }
1787   }
1788 
1789   if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1790     unsigned VWidth = VecTy->getNumElements();
1791     APInt PoisonElts(VWidth, 0);
1792     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1793     if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask,
1794                                               PoisonElts)) {
1795       if (V != &IE)
1796         return replaceInstUsesWith(IE, V);
1797       return &IE;
1798     }
1799   }
1800 
1801   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1802     return Shuf;
1803 
1804   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1805     return NewInsElt;
1806 
1807   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1808     return Broadcast;
1809 
1810   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1811     return Splat;
1812 
1813   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1814     return IdentityShuf;
1815 
1816   if (Instruction *Ext = narrowInsElt(IE, Builder))
1817     return Ext;
1818 
1819   if (Instruction *Ext = foldTruncInsEltPair(IE, DL.isBigEndian(), Builder))
1820     return Ext;
1821 
1822   return nullptr;
1823 }
1824 
1825 /// Return true if we can evaluate the specified expression tree if the vector
1826 /// elements were shuffled in a different order.
1827 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1828                                 unsigned Depth = 5) {
1829   // We can always reorder the elements of a constant.
1830   if (isa<Constant>(V))
1831     return true;
1832 
1833   // We won't reorder vector arguments. No IPO here.
1834   Instruction *I = dyn_cast<Instruction>(V);
1835   if (!I) return false;
1836 
1837   // Two users may expect different orders of the elements. Don't try it.
1838   if (!I->hasOneUse())
1839     return false;
1840 
1841   if (Depth == 0) return false;
1842 
1843   switch (I->getOpcode()) {
1844     case Instruction::UDiv:
1845     case Instruction::SDiv:
1846     case Instruction::URem:
1847     case Instruction::SRem:
1848       // Propagating an undefined shuffle mask element to integer div/rem is not
1849       // allowed because those opcodes can create immediate undefined behavior
1850       // from an undefined element in an operand.
1851       if (llvm::is_contained(Mask, -1))
1852         return false;
1853       [[fallthrough]];
1854     case Instruction::Add:
1855     case Instruction::FAdd:
1856     case Instruction::Sub:
1857     case Instruction::FSub:
1858     case Instruction::Mul:
1859     case Instruction::FMul:
1860     case Instruction::FDiv:
1861     case Instruction::FRem:
1862     case Instruction::Shl:
1863     case Instruction::LShr:
1864     case Instruction::AShr:
1865     case Instruction::And:
1866     case Instruction::Or:
1867     case Instruction::Xor:
1868     case Instruction::ICmp:
1869     case Instruction::FCmp:
1870     case Instruction::Trunc:
1871     case Instruction::ZExt:
1872     case Instruction::SExt:
1873     case Instruction::FPToUI:
1874     case Instruction::FPToSI:
1875     case Instruction::UIToFP:
1876     case Instruction::SIToFP:
1877     case Instruction::FPTrunc:
1878     case Instruction::FPExt:
1879     case Instruction::GetElementPtr: {
1880       // Bail out if we would create longer vector ops. We could allow creating
1881       // longer vector ops, but that may result in more expensive codegen.
1882       Type *ITy = I->getType();
1883       if (ITy->isVectorTy() &&
1884           Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
1885         return false;
1886       for (Value *Operand : I->operands()) {
1887         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1888           return false;
1889       }
1890       return true;
1891     }
1892     case Instruction::InsertElement: {
1893       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1894       if (!CI) return false;
1895       int ElementNumber = CI->getLimitedValue();
1896 
1897       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1898       // can't put an element into multiple indices.
1899       bool SeenOnce = false;
1900       for (int I : Mask) {
1901         if (I == ElementNumber) {
1902           if (SeenOnce)
1903             return false;
1904           SeenOnce = true;
1905         }
1906       }
1907       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1908     }
1909   }
1910   return false;
1911 }
1912 
1913 /// Rebuild a new instruction just like 'I' but with the new operands given.
1914 /// In the event of type mismatch, the type of the operands is correct.
1915 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps,
1916                        IRBuilderBase &Builder) {
1917   Builder.SetInsertPoint(I);
1918   switch (I->getOpcode()) {
1919     case Instruction::Add:
1920     case Instruction::FAdd:
1921     case Instruction::Sub:
1922     case Instruction::FSub:
1923     case Instruction::Mul:
1924     case Instruction::FMul:
1925     case Instruction::UDiv:
1926     case Instruction::SDiv:
1927     case Instruction::FDiv:
1928     case Instruction::URem:
1929     case Instruction::SRem:
1930     case Instruction::FRem:
1931     case Instruction::Shl:
1932     case Instruction::LShr:
1933     case Instruction::AShr:
1934     case Instruction::And:
1935     case Instruction::Or:
1936     case Instruction::Xor: {
1937       BinaryOperator *BO = cast<BinaryOperator>(I);
1938       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1939       Value *New = Builder.CreateBinOp(cast<BinaryOperator>(I)->getOpcode(),
1940                                        NewOps[0], NewOps[1]);
1941       if (auto *NewI = dyn_cast<Instruction>(New)) {
1942         if (isa<OverflowingBinaryOperator>(BO)) {
1943           NewI->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1944           NewI->setHasNoSignedWrap(BO->hasNoSignedWrap());
1945         }
1946         if (isa<PossiblyExactOperator>(BO)) {
1947           NewI->setIsExact(BO->isExact());
1948         }
1949         if (isa<FPMathOperator>(BO))
1950           NewI->copyFastMathFlags(I);
1951       }
1952       return New;
1953     }
1954     case Instruction::ICmp:
1955       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1956       return Builder.CreateICmp(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
1957                                 NewOps[1]);
1958     case Instruction::FCmp:
1959       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1960       return Builder.CreateFCmp(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
1961                                 NewOps[1]);
1962     case Instruction::Trunc:
1963     case Instruction::ZExt:
1964     case Instruction::SExt:
1965     case Instruction::FPToUI:
1966     case Instruction::FPToSI:
1967     case Instruction::UIToFP:
1968     case Instruction::SIToFP:
1969     case Instruction::FPTrunc:
1970     case Instruction::FPExt: {
1971       // It's possible that the mask has a different number of elements from
1972       // the original cast. We recompute the destination type to match the mask.
1973       Type *DestTy = VectorType::get(
1974           I->getType()->getScalarType(),
1975           cast<VectorType>(NewOps[0]->getType())->getElementCount());
1976       assert(NewOps.size() == 1 && "cast with #ops != 1");
1977       return Builder.CreateCast(cast<CastInst>(I)->getOpcode(), NewOps[0],
1978                                 DestTy);
1979     }
1980     case Instruction::GetElementPtr: {
1981       Value *Ptr = NewOps[0];
1982       ArrayRef<Value*> Idx = NewOps.slice(1);
1983       return Builder.CreateGEP(cast<GEPOperator>(I)->getSourceElementType(),
1984                                Ptr, Idx, "",
1985                                cast<GEPOperator>(I)->isInBounds());
1986     }
1987   }
1988   llvm_unreachable("failed to rebuild vector instructions");
1989 }
1990 
1991 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask,
1992                                               IRBuilderBase &Builder) {
1993   // Mask.size() does not need to be equal to the number of vector elements.
1994 
1995   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1996   Type *EltTy = V->getType()->getScalarType();
1997 
1998   if (isa<PoisonValue>(V))
1999     return PoisonValue::get(FixedVectorType::get(EltTy, Mask.size()));
2000 
2001   if (match(V, m_Undef()))
2002     return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
2003 
2004   if (isa<ConstantAggregateZero>(V))
2005     return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
2006 
2007   if (Constant *C = dyn_cast<Constant>(V))
2008     return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
2009                                           Mask);
2010 
2011   Instruction *I = cast<Instruction>(V);
2012   switch (I->getOpcode()) {
2013     case Instruction::Add:
2014     case Instruction::FAdd:
2015     case Instruction::Sub:
2016     case Instruction::FSub:
2017     case Instruction::Mul:
2018     case Instruction::FMul:
2019     case Instruction::UDiv:
2020     case Instruction::SDiv:
2021     case Instruction::FDiv:
2022     case Instruction::URem:
2023     case Instruction::SRem:
2024     case Instruction::FRem:
2025     case Instruction::Shl:
2026     case Instruction::LShr:
2027     case Instruction::AShr:
2028     case Instruction::And:
2029     case Instruction::Or:
2030     case Instruction::Xor:
2031     case Instruction::ICmp:
2032     case Instruction::FCmp:
2033     case Instruction::Trunc:
2034     case Instruction::ZExt:
2035     case Instruction::SExt:
2036     case Instruction::FPToUI:
2037     case Instruction::FPToSI:
2038     case Instruction::UIToFP:
2039     case Instruction::SIToFP:
2040     case Instruction::FPTrunc:
2041     case Instruction::FPExt:
2042     case Instruction::Select:
2043     case Instruction::GetElementPtr: {
2044       SmallVector<Value*, 8> NewOps;
2045       bool NeedsRebuild =
2046           (Mask.size() !=
2047            cast<FixedVectorType>(I->getType())->getNumElements());
2048       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
2049         Value *V;
2050         // Recursively call evaluateInDifferentElementOrder on vector arguments
2051         // as well. E.g. GetElementPtr may have scalar operands even if the
2052         // return value is a vector, so we need to examine the operand type.
2053         if (I->getOperand(i)->getType()->isVectorTy())
2054           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask, Builder);
2055         else
2056           V = I->getOperand(i);
2057         NewOps.push_back(V);
2058         NeedsRebuild |= (V != I->getOperand(i));
2059       }
2060       if (NeedsRebuild)
2061         return buildNew(I, NewOps, Builder);
2062       return I;
2063     }
2064     case Instruction::InsertElement: {
2065       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
2066 
2067       // The insertelement was inserting at Element. Figure out which element
2068       // that becomes after shuffling. The answer is guaranteed to be unique
2069       // by CanEvaluateShuffled.
2070       bool Found = false;
2071       int Index = 0;
2072       for (int e = Mask.size(); Index != e; ++Index) {
2073         if (Mask[Index] == Element) {
2074           Found = true;
2075           break;
2076         }
2077       }
2078 
2079       // If element is not in Mask, no need to handle the operand 1 (element to
2080       // be inserted). Just evaluate values in operand 0 according to Mask.
2081       if (!Found)
2082         return evaluateInDifferentElementOrder(I->getOperand(0), Mask, Builder);
2083 
2084       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask,
2085                                                  Builder);
2086       Builder.SetInsertPoint(I);
2087       return Builder.CreateInsertElement(V, I->getOperand(1), Index);
2088     }
2089   }
2090   llvm_unreachable("failed to reorder elements of vector instruction!");
2091 }
2092 
2093 // Returns true if the shuffle is extracting a contiguous range of values from
2094 // LHS, for example:
2095 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2096 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
2097 //   Shuffles to:  |EE|FF|GG|HH|
2098 //                 +--+--+--+--+
2099 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
2100                                        ArrayRef<int> Mask) {
2101   unsigned LHSElems =
2102       cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
2103   unsigned MaskElems = Mask.size();
2104   unsigned BegIdx = Mask.front();
2105   unsigned EndIdx = Mask.back();
2106   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
2107     return false;
2108   for (unsigned I = 0; I != MaskElems; ++I)
2109     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
2110       return false;
2111   return true;
2112 }
2113 
2114 /// These are the ingredients in an alternate form binary operator as described
2115 /// below.
2116 struct BinopElts {
2117   BinaryOperator::BinaryOps Opcode;
2118   Value *Op0;
2119   Value *Op1;
2120   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
2121             Value *V0 = nullptr, Value *V1 = nullptr) :
2122       Opcode(Opc), Op0(V0), Op1(V1) {}
2123   operator bool() const { return Opcode != 0; }
2124 };
2125 
2126 /// Binops may be transformed into binops with different opcodes and operands.
2127 /// Reverse the usual canonicalization to enable folds with the non-canonical
2128 /// form of the binop. If a transform is possible, return the elements of the
2129 /// new binop. If not, return invalid elements.
2130 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
2131   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
2132   Type *Ty = BO->getType();
2133   switch (BO->getOpcode()) {
2134   case Instruction::Shl: {
2135     // shl X, C --> mul X, (1 << C)
2136     Constant *C;
2137     if (match(BO1, m_ImmConstant(C))) {
2138       Constant *ShlOne = ConstantFoldBinaryOpOperands(
2139           Instruction::Shl, ConstantInt::get(Ty, 1), C, DL);
2140       assert(ShlOne && "Constant folding of immediate constants failed");
2141       return {Instruction::Mul, BO0, ShlOne};
2142     }
2143     break;
2144   }
2145   case Instruction::Or: {
2146     // or disjoin X, C --> add X, C
2147     if (cast<PossiblyDisjointInst>(BO)->isDisjoint())
2148       return {Instruction::Add, BO0, BO1};
2149     break;
2150   }
2151   case Instruction::Sub:
2152     // sub 0, X --> mul X, -1
2153     if (match(BO0, m_ZeroInt()))
2154       return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)};
2155     break;
2156   default:
2157     break;
2158   }
2159   return {};
2160 }
2161 
2162 /// A select shuffle of a select shuffle with a shared operand can be reduced
2163 /// to a single select shuffle. This is an obvious improvement in IR, and the
2164 /// backend is expected to lower select shuffles efficiently.
2165 static Instruction *foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf) {
2166   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
2167 
2168   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2169   SmallVector<int, 16> Mask;
2170   Shuf.getShuffleMask(Mask);
2171   unsigned NumElts = Mask.size();
2172 
2173   // Canonicalize a select shuffle with common operand as Op1.
2174   auto *ShufOp = dyn_cast<ShuffleVectorInst>(Op0);
2175   if (ShufOp && ShufOp->isSelect() &&
2176       (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) {
2177     std::swap(Op0, Op1);
2178     ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2179   }
2180 
2181   ShufOp = dyn_cast<ShuffleVectorInst>(Op1);
2182   if (!ShufOp || !ShufOp->isSelect() ||
2183       (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0))
2184     return nullptr;
2185 
2186   Value *X = ShufOp->getOperand(0), *Y = ShufOp->getOperand(1);
2187   SmallVector<int, 16> Mask1;
2188   ShufOp->getShuffleMask(Mask1);
2189   assert(Mask1.size() == NumElts && "Vector size changed with select shuffle");
2190 
2191   // Canonicalize common operand (Op0) as X (first operand of first shuffle).
2192   if (Y == Op0) {
2193     std::swap(X, Y);
2194     ShuffleVectorInst::commuteShuffleMask(Mask1, NumElts);
2195   }
2196 
2197   // If the mask chooses from X (operand 0), it stays the same.
2198   // If the mask chooses from the earlier shuffle, the other mask value is
2199   // transferred to the combined select shuffle:
2200   // shuf X, (shuf X, Y, M1), M --> shuf X, Y, M'
2201   SmallVector<int, 16> NewMask(NumElts);
2202   for (unsigned i = 0; i != NumElts; ++i)
2203     NewMask[i] = Mask[i] < (signed)NumElts ? Mask[i] : Mask1[i];
2204 
2205   // A select mask with undef elements might look like an identity mask.
2206   assert((ShuffleVectorInst::isSelectMask(NewMask, NumElts) ||
2207           ShuffleVectorInst::isIdentityMask(NewMask, NumElts)) &&
2208          "Unexpected shuffle mask");
2209   return new ShuffleVectorInst(X, Y, NewMask);
2210 }
2211 
2212 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf,
2213                                                 const SimplifyQuery &SQ) {
2214   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
2215 
2216   // Are we shuffling together some value and that same value after it has been
2217   // modified by a binop with a constant?
2218   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2219   Constant *C;
2220   bool Op0IsBinop;
2221   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
2222     Op0IsBinop = true;
2223   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
2224     Op0IsBinop = false;
2225   else
2226     return nullptr;
2227 
2228   // The identity constant for a binop leaves a variable operand unchanged. For
2229   // a vector, this is a splat of something like 0, -1, or 1.
2230   // If there's no identity constant for this binop, we're done.
2231   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
2232   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
2233   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
2234   if (!IdC)
2235     return nullptr;
2236 
2237   Value *X = Op0IsBinop ? Op1 : Op0;
2238 
2239   // Prevent folding in the case the non-binop operand might have NaN values.
2240   // If X can have NaN elements then we have that the floating point math
2241   // operation in the transformed code may not preserve the exact NaN
2242   // bit-pattern -- e.g. `fadd sNaN, 0.0 -> qNaN`.
2243   // This makes the transformation incorrect since the original program would
2244   // have preserved the exact NaN bit-pattern.
2245   // Avoid the folding if X can have NaN elements.
2246   if (Shuf.getType()->getElementType()->isFloatingPointTy() &&
2247       !isKnownNeverNaN(X, 0, SQ))
2248     return nullptr;
2249 
2250   // Shuffle identity constants into the lanes that return the original value.
2251   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
2252   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
2253   // The existing binop constant vector remains in the same operand position.
2254   ArrayRef<int> Mask = Shuf.getShuffleMask();
2255   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
2256                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
2257 
2258   bool MightCreatePoisonOrUB =
2259       is_contained(Mask, PoisonMaskElem) &&
2260       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
2261   if (MightCreatePoisonOrUB)
2262     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
2263 
2264   // shuf (bop X, C), X, M --> bop X, C'
2265   // shuf X, (bop X, C), M --> bop X, C'
2266   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
2267   NewBO->copyIRFlags(BO);
2268 
2269   // An undef shuffle mask element may propagate as an undef constant element in
2270   // the new binop. That would produce poison where the original code might not.
2271   // If we already made a safe constant, then there's no danger.
2272   if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB)
2273     NewBO->dropPoisonGeneratingFlags();
2274   return NewBO;
2275 }
2276 
2277 /// If we have an insert of a scalar to a non-zero element of an undefined
2278 /// vector and then shuffle that value, that's the same as inserting to the zero
2279 /// element and shuffling. Splatting from the zero element is recognized as the
2280 /// canonical form of splat.
2281 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
2282                                             InstCombiner::BuilderTy &Builder) {
2283   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2284   ArrayRef<int> Mask = Shuf.getShuffleMask();
2285   Value *X;
2286   uint64_t IndexC;
2287 
2288   // Match a shuffle that is a splat to a non-zero element.
2289   if (!match(Op0, m_OneUse(m_InsertElt(m_Poison(), m_Value(X),
2290                                        m_ConstantInt(IndexC)))) ||
2291       !match(Op1, m_Poison()) || match(Mask, m_ZeroMask()) || IndexC == 0)
2292     return nullptr;
2293 
2294   // Insert into element 0 of a poison vector.
2295   PoisonValue *PoisonVec = PoisonValue::get(Shuf.getType());
2296   Value *NewIns = Builder.CreateInsertElement(PoisonVec, X, (uint64_t)0);
2297 
2298   // Splat from element 0. Any mask element that is poison remains poison.
2299   // For example:
2300   // shuf (inselt poison, X, 2), _, <2,2,undef>
2301   //   --> shuf (inselt poison, X, 0), poison, <0,0,undef>
2302   unsigned NumMaskElts =
2303       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2304   SmallVector<int, 16> NewMask(NumMaskElts, 0);
2305   for (unsigned i = 0; i != NumMaskElts; ++i)
2306     if (Mask[i] == PoisonMaskElem)
2307       NewMask[i] = Mask[i];
2308 
2309   return new ShuffleVectorInst(NewIns, NewMask);
2310 }
2311 
2312 /// Try to fold shuffles that are the equivalent of a vector select.
2313 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) {
2314   if (!Shuf.isSelect())
2315     return nullptr;
2316 
2317   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
2318   // Commuting undef to operand 0 conflicts with another canonicalization.
2319   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2320   if (!match(Shuf.getOperand(1), m_Undef()) &&
2321       Shuf.getMaskValue(0) >= (int)NumElts) {
2322     // TODO: Can we assert that both operands of a shuffle-select are not undef
2323     // (otherwise, it would have been folded by instsimplify?
2324     Shuf.commute();
2325     return &Shuf;
2326   }
2327 
2328   if (Instruction *I = foldSelectShuffleOfSelectShuffle(Shuf))
2329     return I;
2330 
2331   if (Instruction *I = foldSelectShuffleWith1Binop(
2332           Shuf, getSimplifyQuery().getWithInstruction(&Shuf)))
2333     return I;
2334 
2335   BinaryOperator *B0, *B1;
2336   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
2337       !match(Shuf.getOperand(1), m_BinOp(B1)))
2338     return nullptr;
2339 
2340   // If one operand is "0 - X", allow that to be viewed as "X * -1"
2341   // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired
2342   // with a multiply, we will exit because C0/C1 will not be set.
2343   Value *X, *Y;
2344   Constant *C0 = nullptr, *C1 = nullptr;
2345   bool ConstantsAreOp1;
2346   if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
2347       match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
2348     ConstantsAreOp1 = false;
2349   else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)),
2350                                  m_Neg(m_Value(X)))) &&
2351            match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)),
2352                                  m_Neg(m_Value(Y)))))
2353     ConstantsAreOp1 = true;
2354   else
2355     return nullptr;
2356 
2357   // We need matching binops to fold the lanes together.
2358   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
2359   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
2360   bool DropNSW = false;
2361   if (ConstantsAreOp1 && Opc0 != Opc1) {
2362     // TODO: We drop "nsw" if shift is converted into multiply because it may
2363     // not be correct when the shift amount is BitWidth - 1. We could examine
2364     // each vector element to determine if it is safe to keep that flag.
2365     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
2366       DropNSW = true;
2367     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
2368       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
2369       Opc0 = AltB0.Opcode;
2370       C0 = cast<Constant>(AltB0.Op1);
2371     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
2372       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
2373       Opc1 = AltB1.Opcode;
2374       C1 = cast<Constant>(AltB1.Op1);
2375     }
2376   }
2377 
2378   if (Opc0 != Opc1 || !C0 || !C1)
2379     return nullptr;
2380 
2381   // The opcodes must be the same. Use a new name to make that clear.
2382   BinaryOperator::BinaryOps BOpc = Opc0;
2383 
2384   // Select the constant elements needed for the single binop.
2385   ArrayRef<int> Mask = Shuf.getShuffleMask();
2386   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
2387 
2388   // We are moving a binop after a shuffle. When a shuffle has an undefined
2389   // mask element, the result is undefined, but it is not poison or undefined
2390   // behavior. That is not necessarily true for div/rem/shift.
2391   bool MightCreatePoisonOrUB =
2392       is_contained(Mask, PoisonMaskElem) &&
2393       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
2394   if (MightCreatePoisonOrUB)
2395     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
2396                                                        ConstantsAreOp1);
2397 
2398   Value *V;
2399   if (X == Y) {
2400     // Remove a binop and the shuffle by rearranging the constant:
2401     // shuffle (op V, C0), (op V, C1), M --> op V, C'
2402     // shuffle (op C0, V), (op C1, V), M --> op C', V
2403     V = X;
2404   } else {
2405     // If there are 2 different variable operands, we must create a new shuffle
2406     // (select) first, so check uses to ensure that we don't end up with more
2407     // instructions than we started with.
2408     if (!B0->hasOneUse() && !B1->hasOneUse())
2409       return nullptr;
2410 
2411     // If we use the original shuffle mask and op1 is *variable*, we would be
2412     // putting an undef into operand 1 of div/rem/shift. This is either UB or
2413     // poison. We do not have to guard against UB when *constants* are op1
2414     // because safe constants guarantee that we do not overflow sdiv/srem (and
2415     // there's no danger for other opcodes).
2416     // TODO: To allow this case, create a new shuffle mask with no undefs.
2417     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2418       return nullptr;
2419 
2420     // Note: In general, we do not create new shuffles in InstCombine because we
2421     // do not know if a target can lower an arbitrary shuffle optimally. In this
2422     // case, the shuffle uses the existing mask, so there is no additional risk.
2423 
2424     // Select the variable vectors first, then perform the binop:
2425     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2426     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2427     V = Builder.CreateShuffleVector(X, Y, Mask);
2428   }
2429 
2430   Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) :
2431                                    Builder.CreateBinOp(BOpc, NewC, V);
2432 
2433   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2434   // 1. If we changed an opcode, poison conditions might have changed.
2435   // 2. If the shuffle had undef mask elements, the new binop might have undefs
2436   //    where the original code did not. But if we already made a safe constant,
2437   //    then there's no danger.
2438   if (auto *NewI = dyn_cast<Instruction>(NewBO)) {
2439     NewI->copyIRFlags(B0);
2440     NewI->andIRFlags(B1);
2441     if (DropNSW)
2442       NewI->setHasNoSignedWrap(false);
2443     if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB)
2444       NewI->dropPoisonGeneratingFlags();
2445   }
2446   return replaceInstUsesWith(Shuf, NewBO);
2447 }
2448 
2449 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2450 /// Example (little endian):
2451 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
2452 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
2453                                      bool IsBigEndian) {
2454   // This must be a bitcasted shuffle of 1 vector integer operand.
2455   Type *DestType = Shuf.getType();
2456   Value *X;
2457   if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
2458       !match(Shuf.getOperand(1), m_Poison()) || !DestType->isIntOrIntVectorTy())
2459     return nullptr;
2460 
2461   // The source type must have the same number of elements as the shuffle,
2462   // and the source element type must be larger than the shuffle element type.
2463   Type *SrcType = X->getType();
2464   if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2465       cast<FixedVectorType>(SrcType)->getNumElements() !=
2466           cast<FixedVectorType>(DestType)->getNumElements() ||
2467       SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
2468     return nullptr;
2469 
2470   assert(Shuf.changesLength() && !Shuf.increasesLength() &&
2471          "Expected a shuffle that decreases length");
2472 
2473   // Last, check that the mask chooses the correct low bits for each narrow
2474   // element in the result.
2475   uint64_t TruncRatio =
2476       SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
2477   ArrayRef<int> Mask = Shuf.getShuffleMask();
2478   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2479     if (Mask[i] == PoisonMaskElem)
2480       continue;
2481     uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2482     assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
2483     if (Mask[i] != (int)LSBIndex)
2484       return nullptr;
2485   }
2486 
2487   return new TruncInst(X, DestType);
2488 }
2489 
2490 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2491 /// narrowing (concatenating with poison and extracting back to the original
2492 /// length). This allows replacing the wide select with a narrow select.
2493 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
2494                                        InstCombiner::BuilderTy &Builder) {
2495   // This must be a narrowing identity shuffle. It extracts the 1st N elements
2496   // of the 1st vector operand of a shuffle.
2497   if (!match(Shuf.getOperand(1), m_Poison()) || !Shuf.isIdentityWithExtract())
2498     return nullptr;
2499 
2500   // The vector being shuffled must be a vector select that we can eliminate.
2501   // TODO: The one-use requirement could be eased if X and/or Y are constants.
2502   Value *Cond, *X, *Y;
2503   if (!match(Shuf.getOperand(0),
2504              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
2505     return nullptr;
2506 
2507   // We need a narrow condition value. It must be extended with poison elements
2508   // and have the same number of elements as this shuffle.
2509   unsigned NarrowNumElts =
2510       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2511   Value *NarrowCond;
2512   if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Poison()))) ||
2513       cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
2514           NarrowNumElts ||
2515       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
2516     return nullptr;
2517 
2518   // shuf (sel (shuf NarrowCond, poison, WideMask), X, Y), poison, NarrowMask)
2519   // -->
2520   // sel NarrowCond, (shuf X, poison, NarrowMask), (shuf Y, poison, NarrowMask)
2521   Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2522   Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
2523   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
2524 }
2525 
2526 /// Canonicalize FP negate/abs after shuffle.
2527 static Instruction *foldShuffleOfUnaryOps(ShuffleVectorInst &Shuf,
2528                                           InstCombiner::BuilderTy &Builder) {
2529   auto *S0 = dyn_cast<Instruction>(Shuf.getOperand(0));
2530   Value *X;
2531   if (!S0 || !match(S0, m_CombineOr(m_FNeg(m_Value(X)), m_FAbs(m_Value(X)))))
2532     return nullptr;
2533 
2534   bool IsFNeg = S0->getOpcode() == Instruction::FNeg;
2535 
2536   // Match 1-input (unary) shuffle.
2537   // shuffle (fneg/fabs X), Mask --> fneg/fabs (shuffle X, Mask)
2538   if (S0->hasOneUse() && match(Shuf.getOperand(1), m_Poison())) {
2539     Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2540     if (IsFNeg)
2541       return UnaryOperator::CreateFNegFMF(NewShuf, S0);
2542 
2543     Function *FAbs = Intrinsic::getOrInsertDeclaration(
2544         Shuf.getModule(), Intrinsic::fabs, Shuf.getType());
2545     CallInst *NewF = CallInst::Create(FAbs, {NewShuf});
2546     NewF->setFastMathFlags(S0->getFastMathFlags());
2547     return NewF;
2548   }
2549 
2550   // Match 2-input (binary) shuffle.
2551   auto *S1 = dyn_cast<Instruction>(Shuf.getOperand(1));
2552   Value *Y;
2553   if (!S1 || !match(S1, m_CombineOr(m_FNeg(m_Value(Y)), m_FAbs(m_Value(Y)))) ||
2554       S0->getOpcode() != S1->getOpcode() ||
2555       (!S0->hasOneUse() && !S1->hasOneUse()))
2556     return nullptr;
2557 
2558   // shuf (fneg/fabs X), (fneg/fabs Y), Mask --> fneg/fabs (shuf X, Y, Mask)
2559   Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
2560   Instruction *NewF;
2561   if (IsFNeg) {
2562     NewF = UnaryOperator::CreateFNeg(NewShuf);
2563   } else {
2564     Function *FAbs = Intrinsic::getOrInsertDeclaration(
2565         Shuf.getModule(), Intrinsic::fabs, Shuf.getType());
2566     NewF = CallInst::Create(FAbs, {NewShuf});
2567   }
2568   NewF->copyIRFlags(S0);
2569   NewF->andIRFlags(S1);
2570   return NewF;
2571 }
2572 
2573 /// Canonicalize casts after shuffle.
2574 static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf,
2575                                     InstCombiner::BuilderTy &Builder) {
2576   // Do we have 2 matching cast operands?
2577   auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0));
2578   auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1));
2579   if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() ||
2580       Cast0->getSrcTy() != Cast1->getSrcTy())
2581     return nullptr;
2582 
2583   // TODO: Allow other opcodes? That would require easing the type restrictions
2584   //       below here.
2585   CastInst::CastOps CastOpcode = Cast0->getOpcode();
2586   switch (CastOpcode) {
2587   case Instruction::FPToSI:
2588   case Instruction::FPToUI:
2589   case Instruction::SIToFP:
2590   case Instruction::UIToFP:
2591     break;
2592   default:
2593     return nullptr;
2594   }
2595 
2596   VectorType *ShufTy = Shuf.getType();
2597   VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType());
2598   VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy());
2599 
2600   // TODO: Allow length-increasing shuffles?
2601   if (ShufTy->getElementCount().getKnownMinValue() >
2602       ShufOpTy->getElementCount().getKnownMinValue())
2603     return nullptr;
2604 
2605   // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)?
2606   assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) &&
2607          "Expected fixed vector operands for casts and binary shuffle");
2608   if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits())
2609     return nullptr;
2610 
2611   // At least one of the operands must have only one use (the shuffle).
2612   if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
2613     return nullptr;
2614 
2615   // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
2616   Value *X = Cast0->getOperand(0);
2617   Value *Y = Cast1->getOperand(0);
2618   Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
2619   return CastInst::Create(CastOpcode, NewShuf, ShufTy);
2620 }
2621 
2622 /// Try to fold an extract subvector operation.
2623 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
2624   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2625   if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Poison()))
2626     return nullptr;
2627 
2628   // Check if we are extracting all bits of an inserted scalar:
2629   // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2630   Value *X;
2631   if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
2632       X->getType()->getPrimitiveSizeInBits() ==
2633           Shuf.getType()->getPrimitiveSizeInBits())
2634     return new BitCastInst(X, Shuf.getType());
2635 
2636   // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2637   Value *Y;
2638   ArrayRef<int> Mask;
2639   if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
2640     return nullptr;
2641 
2642   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2643   // then combining may result in worse codegen.
2644   if (!Op0->hasOneUse())
2645     return nullptr;
2646 
2647   // We are extracting a subvector from a shuffle. Remove excess elements from
2648   // the 1st shuffle mask to eliminate the extract.
2649   //
2650   // This transform is conservatively limited to identity extracts because we do
2651   // not allow arbitrary shuffle mask creation as a target-independent transform
2652   // (because we can't guarantee that will lower efficiently).
2653   //
2654   // If the extracting shuffle has an poison mask element, it transfers to the
2655   // new shuffle mask. Otherwise, copy the original mask element. Example:
2656   //   shuf (shuf X, Y, <C0, C1, C2, poison, C4>), poison, <0, poison, 2, 3> -->
2657   //   shuf X, Y, <C0, poison, C2, poison>
2658   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2659   SmallVector<int, 16> NewMask(NumElts);
2660   assert(NumElts < Mask.size() &&
2661          "Identity with extract must have less elements than its inputs");
2662 
2663   for (unsigned i = 0; i != NumElts; ++i) {
2664     int ExtractMaskElt = Shuf.getMaskValue(i);
2665     int MaskElt = Mask[i];
2666     NewMask[i] = ExtractMaskElt == PoisonMaskElem ? ExtractMaskElt : MaskElt;
2667   }
2668   return new ShuffleVectorInst(X, Y, NewMask);
2669 }
2670 
2671 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2672 /// operand with the operand of an insertelement.
2673 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
2674                                           InstCombinerImpl &IC) {
2675   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
2676   SmallVector<int, 16> Mask;
2677   Shuf.getShuffleMask(Mask);
2678 
2679   int NumElts = Mask.size();
2680   int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements();
2681 
2682   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2683   // not be able to handle it there if the insertelement has >1 use.
2684   // If the shuffle has an insertelement operand but does not choose the
2685   // inserted scalar element from that value, then we can replace that shuffle
2686   // operand with the source vector of the insertelement.
2687   Value *X;
2688   uint64_t IdxC;
2689   if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2690     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2691     if (!is_contained(Mask, (int)IdxC))
2692       return IC.replaceOperand(Shuf, 0, X);
2693   }
2694   if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2695     // Offset the index constant by the vector width because we are checking for
2696     // accesses to the 2nd vector input of the shuffle.
2697     IdxC += InpNumElts;
2698     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2699     if (!is_contained(Mask, (int)IdxC))
2700       return IC.replaceOperand(Shuf, 1, X);
2701   }
2702   // For the rest of the transform, the shuffle must not change vector sizes.
2703   // TODO: This restriction could be removed if the insert has only one use
2704   //       (because the transform would require a new length-changing shuffle).
2705   if (NumElts != InpNumElts)
2706     return nullptr;
2707 
2708   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2709   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
2710     // We need an insertelement with a constant index.
2711     if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
2712                                m_ConstantInt(IndexC))))
2713       return false;
2714 
2715     // Test the shuffle mask to see if it splices the inserted scalar into the
2716     // operand 1 vector of the shuffle.
2717     int NewInsIndex = -1;
2718     for (int i = 0; i != NumElts; ++i) {
2719       // Ignore undef mask elements.
2720       if (Mask[i] == -1)
2721         continue;
2722 
2723       // The shuffle takes elements of operand 1 without lane changes.
2724       if (Mask[i] == NumElts + i)
2725         continue;
2726 
2727       // The shuffle must choose the inserted scalar exactly once.
2728       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2729         return false;
2730 
2731       // The shuffle is placing the inserted scalar into element i.
2732       NewInsIndex = i;
2733     }
2734 
2735     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
2736 
2737     // Index is updated to the potentially translated insertion lane.
2738     IndexC = ConstantInt::get(IndexC->getIntegerType(), NewInsIndex);
2739     return true;
2740   };
2741 
2742   // If the shuffle is unnecessary, insert the scalar operand directly into
2743   // operand 1 of the shuffle. Example:
2744   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2745   Value *Scalar;
2746   ConstantInt *IndexC;
2747   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2748     return InsertElementInst::Create(V1, Scalar, IndexC);
2749 
2750   // Try again after commuting shuffle. Example:
2751   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2752   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2753   std::swap(V0, V1);
2754   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2755   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2756     return InsertElementInst::Create(V1, Scalar, IndexC);
2757 
2758   return nullptr;
2759 }
2760 
2761 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
2762   // Match the operands as identity with padding (also known as concatenation
2763   // with undef) shuffles of the same source type. The backend is expected to
2764   // recreate these concatenations from a shuffle of narrow operands.
2765   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
2766   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
2767   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2768       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2769     return nullptr;
2770 
2771   // We limit this transform to power-of-2 types because we expect that the
2772   // backend can convert the simplified IR patterns to identical nodes as the
2773   // original IR.
2774   // TODO: If we can verify the same behavior for arbitrary types, the
2775   //       power-of-2 checks can be removed.
2776   Value *X = Shuffle0->getOperand(0);
2777   Value *Y = Shuffle1->getOperand(0);
2778   if (X->getType() != Y->getType() ||
2779       !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
2780       !isPowerOf2_32(
2781           cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
2782       !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
2783       match(X, m_Undef()) || match(Y, m_Undef()))
2784     return nullptr;
2785   assert(match(Shuffle0->getOperand(1), m_Undef()) &&
2786          match(Shuffle1->getOperand(1), m_Undef()) &&
2787          "Unexpected operand for identity shuffle");
2788 
2789   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2790   // operands directly by adjusting the shuffle mask to account for the narrower
2791   // types:
2792   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2793   int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
2794   int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
2795   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
2796 
2797   ArrayRef<int> Mask = Shuf.getShuffleMask();
2798   SmallVector<int, 16> NewMask(Mask.size(), -1);
2799   for (int i = 0, e = Mask.size(); i != e; ++i) {
2800     if (Mask[i] == -1)
2801       continue;
2802 
2803     // If this shuffle is choosing an undef element from 1 of the sources, that
2804     // element is undef.
2805     if (Mask[i] < WideElts) {
2806       if (Shuffle0->getMaskValue(Mask[i]) == -1)
2807         continue;
2808     } else {
2809       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2810         continue;
2811     }
2812 
2813     // If this shuffle is choosing from the 1st narrow op, the mask element is
2814     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2815     // element is offset down to adjust for the narrow vector widths.
2816     if (Mask[i] < WideElts) {
2817       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
2818       NewMask[i] = Mask[i];
2819     } else {
2820       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
2821       NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2822     }
2823   }
2824   return new ShuffleVectorInst(X, Y, NewMask);
2825 }
2826 
2827 // Splatting the first element of the result of a BinOp, where any of the
2828 // BinOp's operands are the result of a first element splat can be simplified to
2829 // splatting the first element of the result of the BinOp
2830 Instruction *InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst &SVI) {
2831   if (!match(SVI.getOperand(1), m_Poison()) ||
2832       !match(SVI.getShuffleMask(), m_ZeroMask()) ||
2833       !SVI.getOperand(0)->hasOneUse())
2834     return nullptr;
2835 
2836   Value *Op0 = SVI.getOperand(0);
2837   Value *X, *Y;
2838   if (!match(Op0, m_BinOp(m_Shuffle(m_Value(X), m_Poison(), m_ZeroMask()),
2839                           m_Value(Y))) &&
2840       !match(Op0, m_BinOp(m_Value(X),
2841                           m_Shuffle(m_Value(Y), m_Poison(), m_ZeroMask()))))
2842     return nullptr;
2843   if (X->getType() != Y->getType())
2844     return nullptr;
2845 
2846   auto *BinOp = cast<BinaryOperator>(Op0);
2847   if (!isSafeToSpeculativelyExecuteWithVariableReplaced(BinOp))
2848     return nullptr;
2849 
2850   Value *NewBO = Builder.CreateBinOp(BinOp->getOpcode(), X, Y);
2851   if (auto NewBOI = dyn_cast<Instruction>(NewBO))
2852     NewBOI->copyIRFlags(BinOp);
2853 
2854   return new ShuffleVectorInst(NewBO, SVI.getShuffleMask());
2855 }
2856 
2857 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
2858   Value *LHS = SVI.getOperand(0);
2859   Value *RHS = SVI.getOperand(1);
2860   SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
2861   if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
2862                                           SVI.getType(), ShufQuery))
2863     return replaceInstUsesWith(SVI, V);
2864 
2865   if (Instruction *I = simplifyBinOpSplats(SVI))
2866     return I;
2867 
2868   // Canonicalize splat shuffle to use poison RHS. Handle this explicitly in
2869   // order to support scalable vectors.
2870   if (match(SVI.getShuffleMask(), m_ZeroMask()) && !isa<PoisonValue>(RHS))
2871     return replaceOperand(SVI, 1, PoisonValue::get(RHS->getType()));
2872 
2873   if (isa<ScalableVectorType>(LHS->getType()))
2874     return nullptr;
2875 
2876   unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
2877   unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
2878 
2879   // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2880   //
2881   // if X and Y are of the same (vector) type, and the element size is not
2882   // changed by the bitcasts, we can distribute the bitcasts through the
2883   // shuffle, hopefully reducing the number of instructions. We make sure that
2884   // at least one bitcast only has one use, so we don't *increase* the number of
2885   // instructions here.
2886   Value *X, *Y;
2887   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
2888       X->getType()->isVectorTy() && X->getType() == Y->getType() &&
2889       X->getType()->getScalarSizeInBits() ==
2890           SVI.getType()->getScalarSizeInBits() &&
2891       (LHS->hasOneUse() || RHS->hasOneUse())) {
2892     Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
2893                                            SVI.getName() + ".uncasted");
2894     return new BitCastInst(V, SVI.getType());
2895   }
2896 
2897   ArrayRef<int> Mask = SVI.getShuffleMask();
2898 
2899   // Peek through a bitcasted shuffle operand by scaling the mask. If the
2900   // simulated shuffle can simplify, then this shuffle is unnecessary:
2901   // shuf (bitcast X), undef, Mask --> bitcast X'
2902   // TODO: This could be extended to allow length-changing shuffles.
2903   //       The transform might also be obsoleted if we allowed canonicalization
2904   //       of bitcasted shuffles.
2905   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
2906       X->getType()->isVectorTy() && VWidth == LHSWidth) {
2907     // Try to create a scaled mask constant.
2908     auto *XType = cast<FixedVectorType>(X->getType());
2909     unsigned XNumElts = XType->getNumElements();
2910     SmallVector<int, 16> ScaledMask;
2911     if (scaleShuffleMaskElts(XNumElts, Mask, ScaledMask)) {
2912       // If the shuffled source vector simplifies, cast that value to this
2913       // shuffle's type.
2914       if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType),
2915                                               ScaledMask, XType, ShufQuery))
2916         return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2917     }
2918   }
2919 
2920   // shuffle x, x, mask --> shuffle x, undef, mask'
2921   if (LHS == RHS) {
2922     assert(!match(RHS, m_Undef()) &&
2923            "Shuffle with 2 undef ops not simplified?");
2924     return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth));
2925   }
2926 
2927   // shuffle undef, x, mask --> shuffle x, undef, mask'
2928   if (match(LHS, m_Undef())) {
2929     SVI.commute();
2930     return &SVI;
2931   }
2932 
2933   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2934     return I;
2935 
2936   if (Instruction *I = foldSelectShuffle(SVI))
2937     return I;
2938 
2939   if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2940     return I;
2941 
2942   if (Instruction *I = narrowVectorSelect(SVI, Builder))
2943     return I;
2944 
2945   if (Instruction *I = foldShuffleOfUnaryOps(SVI, Builder))
2946     return I;
2947 
2948   if (Instruction *I = foldCastShuffle(SVI, Builder))
2949     return I;
2950 
2951   APInt PoisonElts(VWidth, 0);
2952   APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2953   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, PoisonElts)) {
2954     if (V != &SVI)
2955       return replaceInstUsesWith(SVI, V);
2956     return &SVI;
2957   }
2958 
2959   if (Instruction *I = foldIdentityExtractShuffle(SVI))
2960     return I;
2961 
2962   // These transforms have the potential to lose undef knowledge, so they are
2963   // intentionally placed after SimplifyDemandedVectorElts().
2964   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2965     return I;
2966   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2967     return I;
2968 
2969   if (match(RHS, m_Constant())) {
2970     if (auto *SI = dyn_cast<SelectInst>(LHS)) {
2971       // We cannot do this fold for elementwise select since ShuffleVector is
2972       // not elementwise.
2973       if (SI->getCondition()->getType()->isIntegerTy() &&
2974           (isa<PoisonValue>(RHS) ||
2975            isGuaranteedNotToBePoison(SI->getCondition()))) {
2976         if (Instruction *I = FoldOpIntoSelect(SVI, SI))
2977           return I;
2978       }
2979     }
2980     if (auto *PN = dyn_cast<PHINode>(LHS)) {
2981       if (Instruction *I = foldOpIntoPhi(SVI, PN, /*AllowMultipleUses=*/true))
2982         return I;
2983     }
2984   }
2985 
2986   if (match(RHS, m_Poison()) && canEvaluateShuffled(LHS, Mask)) {
2987     Value *V = evaluateInDifferentElementOrder(LHS, Mask, Builder);
2988     return replaceInstUsesWith(SVI, V);
2989   }
2990 
2991   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2992   // a non-vector type. We can instead bitcast the original vector followed by
2993   // an extract of the desired element:
2994   //
2995   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2996   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2997   //   %1 = bitcast <4 x i8> %sroa to i32
2998   // Becomes:
2999   //   %bc = bitcast <16 x i8> %in to <4 x i32>
3000   //   %ext = extractelement <4 x i32> %bc, i32 0
3001   //
3002   // If the shuffle is extracting a contiguous range of values from the input
3003   // vector then each use which is a bitcast of the extracted size can be
3004   // replaced. This will work if the vector types are compatible, and the begin
3005   // index is aligned to a value in the casted vector type. If the begin index
3006   // isn't aligned then we can shuffle the original vector (keeping the same
3007   // vector type) before extracting.
3008   //
3009   // This code will bail out if the target type is fundamentally incompatible
3010   // with vectors of the source type.
3011   //
3012   // Example of <16 x i8>, target type i32:
3013   // Index range [4,8):         v-----------v Will work.
3014   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
3015   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
3016   //     <4 x i32>: |           |           |           |           |
3017   //                +-----------+-----------+-----------+-----------+
3018   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
3019   // Target type i40:           ^--------------^ Won't work, bail.
3020   bool MadeChange = false;
3021   if (isShuffleExtractingFromLHS(SVI, Mask)) {
3022     Value *V = LHS;
3023     unsigned MaskElems = Mask.size();
3024     auto *SrcTy = cast<FixedVectorType>(V->getType());
3025     unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedValue();
3026     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
3027     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
3028     unsigned SrcNumElems = SrcTy->getNumElements();
3029     SmallVector<BitCastInst *, 8> BCs;
3030     DenseMap<Type *, Value *> NewBCs;
3031     for (User *U : SVI.users())
3032       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
3033         if (!BC->use_empty())
3034           // Only visit bitcasts that weren't previously handled.
3035           BCs.push_back(BC);
3036     for (BitCastInst *BC : BCs) {
3037       unsigned BegIdx = Mask.front();
3038       Type *TgtTy = BC->getDestTy();
3039       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
3040       if (!TgtElemBitWidth)
3041         continue;
3042       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
3043       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
3044       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
3045       if (!VecBitWidthsEqual)
3046         continue;
3047       if (!VectorType::isValidElementType(TgtTy))
3048         continue;
3049       auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
3050       if (!BegIsAligned) {
3051         // Shuffle the input so [0,NumElements) contains the output, and
3052         // [NumElems,SrcNumElems) is undef.
3053         SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
3054         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
3055           ShuffleMask[I] = Idx;
3056         V = Builder.CreateShuffleVector(V, ShuffleMask,
3057                                         SVI.getName() + ".extract");
3058         BegIdx = 0;
3059       }
3060       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
3061       assert(SrcElemsPerTgtElem);
3062       BegIdx /= SrcElemsPerTgtElem;
3063       auto [It, Inserted] = NewBCs.try_emplace(CastSrcTy);
3064       if (Inserted)
3065         It->second = Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
3066       auto *Ext = Builder.CreateExtractElement(It->second, BegIdx,
3067                                                SVI.getName() + ".extract");
3068       // The shufflevector isn't being replaced: the bitcast that used it
3069       // is. InstCombine will visit the newly-created instructions.
3070       replaceInstUsesWith(*BC, Ext);
3071       MadeChange = true;
3072     }
3073   }
3074 
3075   // If the LHS is a shufflevector itself, see if we can combine it with this
3076   // one without producing an unusual shuffle.
3077   // Cases that might be simplified:
3078   // 1.
3079   // x1=shuffle(v1,v2,mask1)
3080   //  x=shuffle(x1,undef,mask)
3081   //        ==>
3082   //  x=shuffle(v1,undef,newMask)
3083   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
3084   // 2.
3085   // x1=shuffle(v1,undef,mask1)
3086   //  x=shuffle(x1,x2,mask)
3087   // where v1.size() == mask1.size()
3088   //        ==>
3089   //  x=shuffle(v1,x2,newMask)
3090   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
3091   // 3.
3092   // x2=shuffle(v2,undef,mask2)
3093   //  x=shuffle(x1,x2,mask)
3094   // where v2.size() == mask2.size()
3095   //        ==>
3096   //  x=shuffle(x1,v2,newMask)
3097   // newMask[i] = (mask[i] < x1.size())
3098   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
3099   // 4.
3100   // x1=shuffle(v1,undef,mask1)
3101   // x2=shuffle(v2,undef,mask2)
3102   //  x=shuffle(x1,x2,mask)
3103   // where v1.size() == v2.size()
3104   //        ==>
3105   //  x=shuffle(v1,v2,newMask)
3106   // newMask[i] = (mask[i] < x1.size())
3107   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
3108   //
3109   // Here we are really conservative:
3110   // we are absolutely afraid of producing a shuffle mask not in the input
3111   // program, because the code gen may not be smart enough to turn a merged
3112   // shuffle into two specific shuffles: it may produce worse code.  As such,
3113   // we only merge two shuffles if the result is either a splat or one of the
3114   // input shuffle masks.  In this case, merging the shuffles just removes
3115   // one instruction, which we know is safe.  This is good for things like
3116   // turning: (splat(splat)) -> splat, or
3117   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
3118   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
3119   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
3120   if (LHSShuffle)
3121     if (!match(LHSShuffle->getOperand(1), m_Poison()) &&
3122         !match(RHS, m_Poison()))
3123       LHSShuffle = nullptr;
3124   if (RHSShuffle)
3125     if (!match(RHSShuffle->getOperand(1), m_Poison()))
3126       RHSShuffle = nullptr;
3127   if (!LHSShuffle && !RHSShuffle)
3128     return MadeChange ? &SVI : nullptr;
3129 
3130   Value* LHSOp0 = nullptr;
3131   Value* LHSOp1 = nullptr;
3132   Value* RHSOp0 = nullptr;
3133   unsigned LHSOp0Width = 0;
3134   unsigned RHSOp0Width = 0;
3135   if (LHSShuffle) {
3136     LHSOp0 = LHSShuffle->getOperand(0);
3137     LHSOp1 = LHSShuffle->getOperand(1);
3138     LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
3139   }
3140   if (RHSShuffle) {
3141     RHSOp0 = RHSShuffle->getOperand(0);
3142     RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
3143   }
3144   Value* newLHS = LHS;
3145   Value* newRHS = RHS;
3146   if (LHSShuffle) {
3147     // case 1
3148     if (match(RHS, m_Poison())) {
3149       newLHS = LHSOp0;
3150       newRHS = LHSOp1;
3151     }
3152     // case 2 or 4
3153     else if (LHSOp0Width == LHSWidth) {
3154       newLHS = LHSOp0;
3155     }
3156   }
3157   // case 3 or 4
3158   if (RHSShuffle && RHSOp0Width == LHSWidth) {
3159     newRHS = RHSOp0;
3160   }
3161   // case 4
3162   if (LHSOp0 == RHSOp0) {
3163     newLHS = LHSOp0;
3164     newRHS = nullptr;
3165   }
3166 
3167   if (newLHS == LHS && newRHS == RHS)
3168     return MadeChange ? &SVI : nullptr;
3169 
3170   ArrayRef<int> LHSMask;
3171   ArrayRef<int> RHSMask;
3172   if (newLHS != LHS)
3173     LHSMask = LHSShuffle->getShuffleMask();
3174   if (RHSShuffle && newRHS != RHS)
3175     RHSMask = RHSShuffle->getShuffleMask();
3176 
3177   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
3178   SmallVector<int, 16> newMask;
3179   bool isSplat = true;
3180   int SplatElt = -1;
3181   // Create a new mask for the new ShuffleVectorInst so that the new
3182   // ShuffleVectorInst is equivalent to the original one.
3183   for (unsigned i = 0; i < VWidth; ++i) {
3184     int eltMask;
3185     if (Mask[i] < 0) {
3186       // This element is a poison value.
3187       eltMask = -1;
3188     } else if (Mask[i] < (int)LHSWidth) {
3189       // This element is from left hand side vector operand.
3190       //
3191       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
3192       // new mask value for the element.
3193       if (newLHS != LHS) {
3194         eltMask = LHSMask[Mask[i]];
3195         // If the value selected is an poison value, explicitly specify it
3196         // with a -1 mask value.
3197         if (eltMask >= (int)LHSOp0Width && isa<PoisonValue>(LHSOp1))
3198           eltMask = -1;
3199       } else
3200         eltMask = Mask[i];
3201     } else {
3202       // This element is from right hand side vector operand
3203       //
3204       // If the value selected is a poison value, explicitly specify it
3205       // with a -1 mask value. (case 1)
3206       if (match(RHS, m_Poison()))
3207         eltMask = -1;
3208       // If RHS is going to be replaced (case 3 or 4), calculate the
3209       // new mask value for the element.
3210       else if (newRHS != RHS) {
3211         eltMask = RHSMask[Mask[i]-LHSWidth];
3212         // If the value selected is an poison value, explicitly specify it
3213         // with a -1 mask value.
3214         if (eltMask >= (int)RHSOp0Width) {
3215           assert(match(RHSShuffle->getOperand(1), m_Poison()) &&
3216                  "should have been check above");
3217           eltMask = -1;
3218         }
3219       } else
3220         eltMask = Mask[i]-LHSWidth;
3221 
3222       // If LHS's width is changed, shift the mask value accordingly.
3223       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
3224       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
3225       // If newRHS == newLHS, we want to remap any references from newRHS to
3226       // newLHS so that we can properly identify splats that may occur due to
3227       // obfuscation across the two vectors.
3228       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
3229         eltMask += newLHSWidth;
3230     }
3231 
3232     // Check if this could still be a splat.
3233     if (eltMask >= 0) {
3234       if (SplatElt >= 0 && SplatElt != eltMask)
3235         isSplat = false;
3236       SplatElt = eltMask;
3237     }
3238 
3239     newMask.push_back(eltMask);
3240   }
3241 
3242   // If the result mask is equal to one of the original shuffle masks,
3243   // or is a splat, do the replacement.
3244   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
3245     if (!newRHS)
3246       newRHS = PoisonValue::get(newLHS->getType());
3247     return new ShuffleVectorInst(newLHS, newRHS, newMask);
3248   }
3249 
3250   return MadeChange ? &SVI : nullptr;
3251 }
3252