1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombiner.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 #define DEBUG_TYPE "instcombine" 45 46 using namespace llvm; 47 using namespace PatternMatch; 48 49 STATISTIC(NumAggregateReconstructionsSimplified, 50 "Number of aggregate reconstructions turned into reuse of the " 51 "original aggregate"); 52 53 /// Return true if the value is cheaper to scalarize than it is to leave as a 54 /// vector operation. If the extract index \p EI is a constant integer then 55 /// some operations may be cheap to scalarize. 56 /// 57 /// FIXME: It's possible to create more instructions than previously existed. 58 static bool cheapToScalarize(Value *V, Value *EI) { 59 ConstantInt *CEI = dyn_cast<ConstantInt>(EI); 60 61 // If we can pick a scalar constant value out of a vector, that is free. 62 if (auto *C = dyn_cast<Constant>(V)) 63 return CEI || C->getSplatValue(); 64 65 if (CEI && match(V, m_Intrinsic<Intrinsic::stepvector>())) { 66 ElementCount EC = cast<VectorType>(V->getType())->getElementCount(); 67 // Index needs to be lower than the minimum size of the vector, because 68 // for scalable vector, the vector size is known at run time. 69 return CEI->getValue().ult(EC.getKnownMinValue()); 70 } 71 72 // An insertelement to the same constant index as our extract will simplify 73 // to the scalar inserted element. An insertelement to a different constant 74 // index is irrelevant to our extract. 75 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 76 return CEI; 77 78 if (match(V, m_OneUse(m_Load(m_Value())))) 79 return true; 80 81 if (match(V, m_OneUse(m_UnOp()))) 82 return true; 83 84 Value *V0, *V1; 85 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 86 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 87 return true; 88 89 CmpPredicate UnusedPred; 90 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 91 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 92 return true; 93 94 return false; 95 } 96 97 // If we have a PHI node with a vector type that is only used to feed 98 // itself and be an operand of extractelement at a constant location, 99 // try to replace the PHI of the vector type with a PHI of a scalar type. 100 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 101 PHINode *PN) { 102 SmallVector<Instruction *, 2> Extracts; 103 // The users we want the PHI to have are: 104 // 1) The EI ExtractElement (we already know this) 105 // 2) Possibly more ExtractElements with the same index. 106 // 3) Another operand, which will feed back into the PHI. 107 Instruction *PHIUser = nullptr; 108 for (auto *U : PN->users()) { 109 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 110 if (EI.getIndexOperand() == EU->getIndexOperand()) 111 Extracts.push_back(EU); 112 else 113 return nullptr; 114 } else if (!PHIUser) { 115 PHIUser = cast<Instruction>(U); 116 } else { 117 return nullptr; 118 } 119 } 120 121 if (!PHIUser) 122 return nullptr; 123 124 // Verify that this PHI user has one use, which is the PHI itself, 125 // and that it is a binary operation which is cheap to scalarize. 126 // otherwise return nullptr. 127 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 128 !(isa<BinaryOperator>(PHIUser)) || 129 !cheapToScalarize(PHIUser, EI.getIndexOperand())) 130 return nullptr; 131 132 // Create a scalar PHI node that will replace the vector PHI node 133 // just before the current PHI node. 134 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 135 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), PN->getIterator())); 136 // Scalarize each PHI operand. 137 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 138 Value *PHIInVal = PN->getIncomingValue(i); 139 BasicBlock *inBB = PN->getIncomingBlock(i); 140 Value *Elt = EI.getIndexOperand(); 141 // If the operand is the PHI induction variable: 142 if (PHIInVal == PHIUser) { 143 // Scalarize the binary operation. Its first operand is the 144 // scalar PHI, and the second operand is extracted from the other 145 // vector operand. 146 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 147 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 148 Value *Op = InsertNewInstWith( 149 ExtractElementInst::Create(B0->getOperand(opId), Elt, 150 B0->getOperand(opId)->getName() + ".Elt"), 151 B0->getIterator()); 152 Value *newPHIUser = InsertNewInstWith( 153 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 154 scalarPHI, Op, B0), B0->getIterator()); 155 scalarPHI->addIncoming(newPHIUser, inBB); 156 } else { 157 // Scalarize PHI input: 158 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 159 // Insert the new instruction into the predecessor basic block. 160 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 161 BasicBlock::iterator InsertPos; 162 if (pos && !isa<PHINode>(pos)) { 163 InsertPos = ++pos->getIterator(); 164 } else { 165 InsertPos = inBB->getFirstInsertionPt(); 166 } 167 168 InsertNewInstWith(newEI, InsertPos); 169 170 scalarPHI->addIncoming(newEI, inBB); 171 } 172 } 173 174 for (auto *E : Extracts) { 175 replaceInstUsesWith(*E, scalarPHI); 176 // Add old extract to worklist for DCE. 177 addToWorklist(E); 178 } 179 180 return &EI; 181 } 182 183 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) { 184 Value *X; 185 uint64_t ExtIndexC; 186 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 187 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 188 return nullptr; 189 190 ElementCount NumElts = 191 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 192 Type *DestTy = Ext.getType(); 193 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 194 bool IsBigEndian = DL.isBigEndian(); 195 196 // If we are casting an integer to vector and extracting a portion, that is 197 // a shift-right and truncate. 198 if (X->getType()->isIntegerTy()) { 199 assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) && 200 "Expected fixed vector type for bitcast from scalar integer"); 201 202 // Big endian requires adjusting the extract index since MSB is at index 0. 203 // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8 204 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8 205 if (IsBigEndian) 206 ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC; 207 unsigned ShiftAmountC = ExtIndexC * DestWidth; 208 if ((!ShiftAmountC || 209 isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) && 210 Ext.getVectorOperand()->hasOneUse()) { 211 if (ShiftAmountC) 212 X = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset"); 213 if (DestTy->isFloatingPointTy()) { 214 Type *DstIntTy = IntegerType::getIntNTy(X->getContext(), DestWidth); 215 Value *Trunc = Builder.CreateTrunc(X, DstIntTy); 216 return new BitCastInst(Trunc, DestTy); 217 } 218 return new TruncInst(X, DestTy); 219 } 220 } 221 222 if (!X->getType()->isVectorTy()) 223 return nullptr; 224 225 // If this extractelement is using a bitcast from a vector of the same number 226 // of elements, see if we can find the source element from the source vector: 227 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 228 auto *SrcTy = cast<VectorType>(X->getType()); 229 ElementCount NumSrcElts = SrcTy->getElementCount(); 230 if (NumSrcElts == NumElts) 231 if (Value *Elt = findScalarElement(X, ExtIndexC)) 232 return new BitCastInst(Elt, DestTy); 233 234 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 235 "Src and Dst must be the same sort of vector type"); 236 237 // If the source elements are wider than the destination, try to shift and 238 // truncate a subset of scalar bits of an insert op. 239 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 240 Value *Scalar; 241 Value *Vec; 242 uint64_t InsIndexC; 243 if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar), 244 m_ConstantInt(InsIndexC)))) 245 return nullptr; 246 247 // The extract must be from the subset of vector elements that we inserted 248 // into. Example: if we inserted element 1 of a <2 x i64> and we are 249 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 250 // of elements 4-7 of the bitcasted vector. 251 unsigned NarrowingRatio = 252 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 253 254 if (ExtIndexC / NarrowingRatio != InsIndexC) { 255 // Remove insertelement, if we don't use the inserted element. 256 // extractelement (bitcast (insertelement (Vec, b)), a) -> 257 // extractelement (bitcast (Vec), a) 258 // FIXME: this should be removed to SimplifyDemandedVectorElts, 259 // once scale vectors are supported. 260 if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) { 261 Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType()); 262 return ExtractElementInst::Create(NewBC, Ext.getIndexOperand()); 263 } 264 return nullptr; 265 } 266 267 // We are extracting part of the original scalar. How that scalar is 268 // inserted into the vector depends on the endian-ness. Example: 269 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 270 // +--+--+--+--+--+--+--+--+ 271 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 272 // extelt <4 x i16> V', 3: | |S2|S3| 273 // +--+--+--+--+--+--+--+--+ 274 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 275 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 276 // In this example, we must right-shift little-endian. Big-endian is just a 277 // truncate. 278 unsigned Chunk = ExtIndexC % NarrowingRatio; 279 if (IsBigEndian) 280 Chunk = NarrowingRatio - 1 - Chunk; 281 282 // Bail out if this is an FP vector to FP vector sequence. That would take 283 // more instructions than we started with unless there is no shift, and it 284 // may not be handled as well in the backend. 285 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 286 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 287 if (NeedSrcBitcast && NeedDestBitcast) 288 return nullptr; 289 290 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 291 unsigned ShAmt = Chunk * DestWidth; 292 293 // TODO: This limitation is more strict than necessary. We could sum the 294 // number of new instructions and subtract the number eliminated to know if 295 // we can proceed. 296 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 297 if (NeedSrcBitcast || NeedDestBitcast) 298 return nullptr; 299 300 if (NeedSrcBitcast) { 301 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 302 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 303 } 304 305 if (ShAmt) { 306 // Bail out if we could end with more instructions than we started with. 307 if (!Ext.getVectorOperand()->hasOneUse()) 308 return nullptr; 309 Scalar = Builder.CreateLShr(Scalar, ShAmt); 310 } 311 312 if (NeedDestBitcast) { 313 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 314 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 315 } 316 return new TruncInst(Scalar, DestTy); 317 } 318 319 return nullptr; 320 } 321 322 /// Find elements of V demanded by UserInstr. 323 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 324 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 325 326 // Conservatively assume that all elements are needed. 327 APInt UsedElts(APInt::getAllOnes(VWidth)); 328 329 switch (UserInstr->getOpcode()) { 330 case Instruction::ExtractElement: { 331 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 332 assert(EEI->getVectorOperand() == V); 333 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 334 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 335 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 336 } 337 break; 338 } 339 case Instruction::ShuffleVector: { 340 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 341 unsigned MaskNumElts = 342 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 343 344 UsedElts = APInt(VWidth, 0); 345 for (unsigned i = 0; i < MaskNumElts; i++) { 346 unsigned MaskVal = Shuffle->getMaskValue(i); 347 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 348 continue; 349 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 350 UsedElts.setBit(MaskVal); 351 if (Shuffle->getOperand(1) == V && 352 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 353 UsedElts.setBit(MaskVal - VWidth); 354 } 355 break; 356 } 357 default: 358 break; 359 } 360 return UsedElts; 361 } 362 363 /// Find union of elements of V demanded by all its users. 364 /// If it is known by querying findDemandedEltsBySingleUser that 365 /// no user demands an element of V, then the corresponding bit 366 /// remains unset in the returned value. 367 static APInt findDemandedEltsByAllUsers(Value *V) { 368 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 369 370 APInt UnionUsedElts(VWidth, 0); 371 for (const Use &U : V->uses()) { 372 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 373 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 374 } else { 375 UnionUsedElts = APInt::getAllOnes(VWidth); 376 break; 377 } 378 379 if (UnionUsedElts.isAllOnes()) 380 break; 381 } 382 383 return UnionUsedElts; 384 } 385 386 /// Given a constant index for a extractelement or insertelement instruction, 387 /// return it with the canonical type if it isn't already canonical. We 388 /// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't 389 /// matter, we just want a consistent type to simplify CSE. 390 static ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) { 391 const unsigned IndexBW = IndexC->getBitWidth(); 392 if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64) 393 return nullptr; 394 return ConstantInt::get(IndexC->getContext(), 395 IndexC->getValue().zextOrTrunc(64)); 396 } 397 398 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 399 Value *SrcVec = EI.getVectorOperand(); 400 Value *Index = EI.getIndexOperand(); 401 if (Value *V = simplifyExtractElementInst(SrcVec, Index, 402 SQ.getWithInstruction(&EI))) 403 return replaceInstUsesWith(EI, V); 404 405 // extractelt (select %x, %vec1, %vec2), %const -> 406 // select %x, %vec1[%const], %vec2[%const] 407 // TODO: Support constant folding of multiple select operands: 408 // extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2) 409 // If the extractelement will for instance try to do out of bounds accesses 410 // because of the values of %c1 and/or %c2, the sequence could be optimized 411 // early. This is currently not possible because constant folding will reach 412 // an unreachable assertion if it doesn't find a constant operand. 413 if (SelectInst *SI = dyn_cast<SelectInst>(EI.getVectorOperand())) 414 if (SI->getCondition()->getType()->isIntegerTy() && 415 isa<Constant>(EI.getIndexOperand())) 416 if (Instruction *R = FoldOpIntoSelect(EI, SI)) 417 return R; 418 419 // If extracting a specified index from the vector, see if we can recursively 420 // find a previously computed scalar that was inserted into the vector. 421 auto *IndexC = dyn_cast<ConstantInt>(Index); 422 bool HasKnownValidIndex = false; 423 if (IndexC) { 424 // Canonicalize type of constant indices to i64 to simplify CSE 425 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 426 return replaceOperand(EI, 1, NewIdx); 427 428 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 429 unsigned NumElts = EC.getKnownMinValue(); 430 HasKnownValidIndex = IndexC->getValue().ult(NumElts); 431 432 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 433 Intrinsic::ID IID = II->getIntrinsicID(); 434 // Index needs to be lower than the minimum size of the vector, because 435 // for scalable vector, the vector size is known at run time. 436 if (IID == Intrinsic::stepvector && IndexC->getValue().ult(NumElts)) { 437 Type *Ty = EI.getType(); 438 unsigned BitWidth = Ty->getIntegerBitWidth(); 439 Value *Idx; 440 // Return index when its value does not exceed the allowed limit 441 // for the element type of the vector, otherwise return undefined. 442 if (IndexC->getValue().getActiveBits() <= BitWidth) 443 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 444 else 445 Idx = PoisonValue::get(Ty); 446 return replaceInstUsesWith(EI, Idx); 447 } 448 } 449 450 // InstSimplify should handle cases where the index is invalid. 451 // For fixed-length vector, it's invalid to extract out-of-range element. 452 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 453 return nullptr; 454 455 if (Instruction *I = foldBitcastExtElt(EI)) 456 return I; 457 458 // If there's a vector PHI feeding a scalar use through this extractelement 459 // instruction, try to scalarize the PHI. 460 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 461 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 462 return ScalarPHI; 463 } 464 465 // TODO come up with a n-ary matcher that subsumes both unary and 466 // binary matchers. 467 UnaryOperator *UO; 468 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { 469 // extelt (unop X), Index --> unop (extelt X, Index) 470 Value *X = UO->getOperand(0); 471 Value *E = Builder.CreateExtractElement(X, Index); 472 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 473 } 474 475 // If the binop is not speculatable, we cannot hoist the extractelement if 476 // it may make the operand poison. 477 BinaryOperator *BO; 478 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index) && 479 (HasKnownValidIndex || 480 isSafeToSpeculativelyExecuteWithVariableReplaced(BO))) { 481 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 482 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 483 Value *E0 = Builder.CreateExtractElement(X, Index); 484 Value *E1 = Builder.CreateExtractElement(Y, Index); 485 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 486 } 487 488 Value *X, *Y; 489 CmpPredicate Pred; 490 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 491 cheapToScalarize(SrcVec, Index)) { 492 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 493 Value *E0 = Builder.CreateExtractElement(X, Index); 494 Value *E1 = Builder.CreateExtractElement(Y, Index); 495 CmpInst *SrcCmpInst = cast<CmpInst>(SrcVec); 496 return CmpInst::CreateWithCopiedFlags(SrcCmpInst->getOpcode(), Pred, E0, E1, 497 SrcCmpInst); 498 } 499 500 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 501 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 502 // instsimplify already handled the case where the indices are constants 503 // and equal by value, if both are constants, they must not be the same 504 // value, extract from the pre-inserted value instead. 505 if (isa<Constant>(IE->getOperand(2)) && IndexC) 506 return replaceOperand(EI, 0, IE->getOperand(0)); 507 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 508 auto *VecType = cast<VectorType>(GEP->getType()); 509 ElementCount EC = VecType->getElementCount(); 510 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 511 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 512 // Find out why we have a vector result - these are a few examples: 513 // 1. We have a scalar pointer and a vector of indices, or 514 // 2. We have a vector of pointers and a scalar index, or 515 // 3. We have a vector of pointers and a vector of indices, etc. 516 // Here we only consider combining when there is exactly one vector 517 // operand, since the optimization is less obviously a win due to 518 // needing more than one extractelements. 519 520 unsigned VectorOps = 521 llvm::count_if(GEP->operands(), [](const Value *V) { 522 return isa<VectorType>(V->getType()); 523 }); 524 if (VectorOps == 1) { 525 Value *NewPtr = GEP->getPointerOperand(); 526 if (isa<VectorType>(NewPtr->getType())) 527 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 528 529 SmallVector<Value *> NewOps; 530 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 531 Value *Op = GEP->getOperand(I); 532 if (isa<VectorType>(Op->getType())) 533 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 534 else 535 NewOps.push_back(Op); 536 } 537 538 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 539 GEP->getSourceElementType(), NewPtr, NewOps); 540 NewGEP->setIsInBounds(GEP->isInBounds()); 541 return NewGEP; 542 } 543 } 544 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 545 // If this is extracting an element from a shufflevector, figure out where 546 // it came from and extract from the appropriate input element instead. 547 // Restrict the following transformation to fixed-length vector. 548 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 549 int SrcIdx = 550 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 551 Value *Src; 552 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 553 ->getNumElements(); 554 555 if (SrcIdx < 0) 556 return replaceInstUsesWith(EI, PoisonValue::get(EI.getType())); 557 if (SrcIdx < (int)LHSWidth) 558 Src = SVI->getOperand(0); 559 else { 560 SrcIdx -= LHSWidth; 561 Src = SVI->getOperand(1); 562 } 563 Type *Int64Ty = Type::getInt64Ty(EI.getContext()); 564 return ExtractElementInst::Create( 565 Src, ConstantInt::get(Int64Ty, SrcIdx, false)); 566 } 567 } else if (auto *CI = dyn_cast<CastInst>(I)) { 568 // Canonicalize extractelement(cast) -> cast(extractelement). 569 // Bitcasts can change the number of vector elements, and they cost 570 // nothing. 571 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 572 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 573 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 574 } 575 } 576 } 577 578 // Run demanded elements after other transforms as this can drop flags on 579 // binops. If there's two paths to the same final result, we prefer the 580 // one which doesn't force us to drop flags. 581 if (IndexC) { 582 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 583 unsigned NumElts = EC.getKnownMinValue(); 584 // This instruction only demands the single element from the input vector. 585 // Skip for scalable type, the number of elements is unknown at 586 // compile-time. 587 if (!EC.isScalable() && NumElts != 1) { 588 // If the input vector has a single use, simplify it based on this use 589 // property. 590 if (SrcVec->hasOneUse()) { 591 APInt PoisonElts(NumElts, 0); 592 APInt DemandedElts(NumElts, 0); 593 DemandedElts.setBit(IndexC->getZExtValue()); 594 if (Value *V = 595 SimplifyDemandedVectorElts(SrcVec, DemandedElts, PoisonElts)) 596 return replaceOperand(EI, 0, V); 597 } else { 598 // If the input vector has multiple uses, simplify it based on a union 599 // of all elements used. 600 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 601 if (!DemandedElts.isAllOnes()) { 602 APInt PoisonElts(NumElts, 0); 603 if (Value *V = SimplifyDemandedVectorElts( 604 SrcVec, DemandedElts, PoisonElts, 0 /* Depth */, 605 true /* AllowMultipleUsers */)) { 606 if (V != SrcVec) { 607 Worklist.addValue(SrcVec); 608 SrcVec->replaceAllUsesWith(V); 609 return &EI; 610 } 611 } 612 } 613 } 614 } 615 } 616 return nullptr; 617 } 618 619 /// If V is a shuffle of values that ONLY returns elements from either LHS or 620 /// RHS, return the shuffle mask and true. Otherwise, return false. 621 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 622 SmallVectorImpl<int> &Mask) { 623 assert(LHS->getType() == RHS->getType() && 624 "Invalid CollectSingleShuffleElements"); 625 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 626 627 if (match(V, m_Poison())) { 628 Mask.assign(NumElts, -1); 629 return true; 630 } 631 632 if (V == LHS) { 633 for (unsigned i = 0; i != NumElts; ++i) 634 Mask.push_back(i); 635 return true; 636 } 637 638 if (V == RHS) { 639 for (unsigned i = 0; i != NumElts; ++i) 640 Mask.push_back(i + NumElts); 641 return true; 642 } 643 644 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 645 // If this is an insert of an extract from some other vector, include it. 646 Value *VecOp = IEI->getOperand(0); 647 Value *ScalarOp = IEI->getOperand(1); 648 Value *IdxOp = IEI->getOperand(2); 649 650 if (!isa<ConstantInt>(IdxOp)) 651 return false; 652 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 653 654 if (isa<PoisonValue>(ScalarOp)) { // inserting poison into vector. 655 // We can handle this if the vector we are inserting into is 656 // transitively ok. 657 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 658 // If so, update the mask to reflect the inserted poison. 659 Mask[InsertedIdx] = -1; 660 return true; 661 } 662 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 663 if (isa<ConstantInt>(EI->getOperand(1))) { 664 unsigned ExtractedIdx = 665 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 666 unsigned NumLHSElts = 667 cast<FixedVectorType>(LHS->getType())->getNumElements(); 668 669 // This must be extracting from either LHS or RHS. 670 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 671 // We can handle this if the vector we are inserting into is 672 // transitively ok. 673 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 674 // If so, update the mask to reflect the inserted value. 675 if (EI->getOperand(0) == LHS) { 676 Mask[InsertedIdx % NumElts] = ExtractedIdx; 677 } else { 678 assert(EI->getOperand(0) == RHS); 679 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 680 } 681 return true; 682 } 683 } 684 } 685 } 686 } 687 688 return false; 689 } 690 691 /// If we have insertion into a vector that is wider than the vector that we 692 /// are extracting from, try to widen the source vector to allow a single 693 /// shufflevector to replace one or more insert/extract pairs. 694 static bool replaceExtractElements(InsertElementInst *InsElt, 695 ExtractElementInst *ExtElt, 696 InstCombinerImpl &IC) { 697 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 698 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 699 unsigned NumInsElts = InsVecType->getNumElements(); 700 unsigned NumExtElts = ExtVecType->getNumElements(); 701 702 // The inserted-to vector must be wider than the extracted-from vector. 703 if (InsVecType->getElementType() != ExtVecType->getElementType() || 704 NumExtElts >= NumInsElts) 705 return false; 706 707 // Create a shuffle mask to widen the extended-from vector using poison 708 // values. The mask selects all of the values of the original vector followed 709 // by as many poison values as needed to create a vector of the same length 710 // as the inserted-to vector. 711 SmallVector<int, 16> ExtendMask; 712 for (unsigned i = 0; i < NumExtElts; ++i) 713 ExtendMask.push_back(i); 714 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 715 ExtendMask.push_back(-1); 716 717 Value *ExtVecOp = ExtElt->getVectorOperand(); 718 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 719 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 720 ? ExtVecOpInst->getParent() 721 : ExtElt->getParent(); 722 723 // TODO: This restriction matches the basic block check below when creating 724 // new extractelement instructions. If that limitation is removed, this one 725 // could also be removed. But for now, we just bail out to ensure that we 726 // will replace the extractelement instruction that is feeding our 727 // insertelement instruction. This allows the insertelement to then be 728 // replaced by a shufflevector. If the insertelement is not replaced, we can 729 // induce infinite looping because there's an optimization for extractelement 730 // that will delete our widening shuffle. This would trigger another attempt 731 // here to create that shuffle, and we spin forever. 732 if (InsertionBlock != InsElt->getParent()) 733 return false; 734 735 // TODO: This restriction matches the check in visitInsertElementInst() and 736 // prevents an infinite loop caused by not turning the extract/insert pair 737 // into a shuffle. We really should not need either check, but we're lacking 738 // folds for shufflevectors because we're afraid to generate shuffle masks 739 // that the backend can't handle. 740 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 741 return false; 742 743 auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); 744 745 // Insert the new shuffle after the vector operand of the extract is defined 746 // (as long as it's not a PHI) or at the start of the basic block of the 747 // extract, so any subsequent extracts in the same basic block can use it. 748 // TODO: Insert before the earliest ExtractElementInst that is replaced. 749 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 750 WideVec->insertAfter(ExtVecOpInst->getIterator()); 751 else 752 IC.InsertNewInstWith(WideVec, ExtElt->getParent()->getFirstInsertionPt()); 753 754 // Replace extracts from the original narrow vector with extracts from the new 755 // wide vector. 756 for (User *U : ExtVecOp->users()) { 757 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 758 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 759 continue; 760 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 761 IC.InsertNewInstWith(NewExt, OldExt->getIterator()); 762 IC.replaceInstUsesWith(*OldExt, NewExt); 763 // Add the old extracts to the worklist for DCE. We can't remove the 764 // extracts directly, because they may still be used by the calling code. 765 IC.addToWorklist(OldExt); 766 } 767 768 return true; 769 } 770 771 /// We are building a shuffle to create V, which is a sequence of insertelement, 772 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 773 /// not rely on the second vector source. Return a std::pair containing the 774 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 775 /// parameter as required. 776 /// 777 /// Note: we intentionally don't try to fold earlier shuffles since they have 778 /// often been chosen carefully to be efficiently implementable on the target. 779 using ShuffleOps = std::pair<Value *, Value *>; 780 781 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 782 Value *PermittedRHS, 783 InstCombinerImpl &IC, bool &Rerun) { 784 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 785 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 786 787 if (match(V, m_Poison())) { 788 Mask.assign(NumElts, -1); 789 return std::make_pair( 790 PermittedRHS ? PoisonValue::get(PermittedRHS->getType()) : V, nullptr); 791 } 792 793 if (isa<ConstantAggregateZero>(V)) { 794 Mask.assign(NumElts, 0); 795 return std::make_pair(V, nullptr); 796 } 797 798 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 799 // If this is an insert of an extract from some other vector, include it. 800 Value *VecOp = IEI->getOperand(0); 801 Value *ScalarOp = IEI->getOperand(1); 802 Value *IdxOp = IEI->getOperand(2); 803 804 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 805 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 806 unsigned ExtractedIdx = 807 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 808 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 809 810 // Either the extracted from or inserted into vector must be RHSVec, 811 // otherwise we'd end up with a shuffle of three inputs. 812 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 813 Value *RHS = EI->getOperand(0); 814 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC, Rerun); 815 assert(LR.second == nullptr || LR.second == RHS); 816 817 if (LR.first->getType() != RHS->getType()) { 818 // Although we are giving up for now, see if we can create extracts 819 // that match the inserts for another round of combining. 820 if (replaceExtractElements(IEI, EI, IC)) 821 Rerun = true; 822 823 // We tried our best, but we can't find anything compatible with RHS 824 // further up the chain. Return a trivial shuffle. 825 for (unsigned i = 0; i < NumElts; ++i) 826 Mask[i] = i; 827 return std::make_pair(V, nullptr); 828 } 829 830 unsigned NumLHSElts = 831 cast<FixedVectorType>(RHS->getType())->getNumElements(); 832 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 833 return std::make_pair(LR.first, RHS); 834 } 835 836 if (VecOp == PermittedRHS) { 837 // We've gone as far as we can: anything on the other side of the 838 // extractelement will already have been converted into a shuffle. 839 unsigned NumLHSElts = 840 cast<FixedVectorType>(EI->getOperand(0)->getType()) 841 ->getNumElements(); 842 for (unsigned i = 0; i != NumElts; ++i) 843 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 844 return std::make_pair(EI->getOperand(0), PermittedRHS); 845 } 846 847 // If this insertelement is a chain that comes from exactly these two 848 // vectors, return the vector and the effective shuffle. 849 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 850 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 851 Mask)) 852 return std::make_pair(EI->getOperand(0), PermittedRHS); 853 } 854 } 855 } 856 857 // Otherwise, we can't do anything fancy. Return an identity vector. 858 for (unsigned i = 0; i != NumElts; ++i) 859 Mask.push_back(i); 860 return std::make_pair(V, nullptr); 861 } 862 863 /// Look for chain of insertvalue's that fully define an aggregate, and trace 864 /// back the values inserted, see if they are all were extractvalue'd from 865 /// the same source aggregate from the exact same element indexes. 866 /// If they were, just reuse the source aggregate. 867 /// This potentially deals with PHI indirections. 868 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 869 InsertValueInst &OrigIVI) { 870 Type *AggTy = OrigIVI.getType(); 871 unsigned NumAggElts; 872 switch (AggTy->getTypeID()) { 873 case Type::StructTyID: 874 NumAggElts = AggTy->getStructNumElements(); 875 break; 876 case Type::ArrayTyID: 877 NumAggElts = AggTy->getArrayNumElements(); 878 break; 879 default: 880 llvm_unreachable("Unhandled aggregate type?"); 881 } 882 883 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 884 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 885 // FIXME: any interesting patterns to be caught with larger limit? 886 assert(NumAggElts > 0 && "Aggregate should have elements."); 887 if (NumAggElts > 2) 888 return nullptr; 889 890 static constexpr auto NotFound = std::nullopt; 891 static constexpr auto FoundMismatch = nullptr; 892 893 // Try to find a value of each element of an aggregate. 894 // FIXME: deal with more complex, not one-dimensional, aggregate types 895 SmallVector<std::optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 896 897 // Do we know values for each element of the aggregate? 898 auto KnowAllElts = [&AggElts]() { 899 return !llvm::is_contained(AggElts, NotFound); 900 }; 901 902 int Depth = 0; 903 904 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 905 // every element being overwritten twice, which should never happen. 906 static const int DepthLimit = 2 * NumAggElts; 907 908 // Recurse up the chain of `insertvalue` aggregate operands until either we've 909 // reconstructed full initializer or can't visit any more `insertvalue`'s. 910 for (InsertValueInst *CurrIVI = &OrigIVI; 911 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 912 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 913 ++Depth) { 914 auto *InsertedValue = 915 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 916 if (!InsertedValue) 917 return nullptr; // Inserted value must be produced by an instruction. 918 919 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 920 921 // Don't bother with more than single-level aggregates. 922 if (Indices.size() != 1) 923 return nullptr; // FIXME: deal with more complex aggregates? 924 925 // Now, we may have already previously recorded the value for this element 926 // of an aggregate. If we did, that means the CurrIVI will later be 927 // overwritten with the already-recorded value. But if not, let's record it! 928 std::optional<Instruction *> &Elt = AggElts[Indices.front()]; 929 Elt = Elt.value_or(InsertedValue); 930 931 // FIXME: should we handle chain-terminating undef base operand? 932 } 933 934 // Was that sufficient to deduce the full initializer for the aggregate? 935 if (!KnowAllElts()) 936 return nullptr; // Give up then. 937 938 // We now want to find the source[s] of the aggregate elements we've found. 939 // And with "source" we mean the original aggregate[s] from which 940 // the inserted elements were extracted. This may require PHI translation. 941 942 enum class AggregateDescription { 943 /// When analyzing the value that was inserted into an aggregate, we did 944 /// not manage to find defining `extractvalue` instruction to analyze. 945 NotFound, 946 /// When analyzing the value that was inserted into an aggregate, we did 947 /// manage to find defining `extractvalue` instruction[s], and everything 948 /// matched perfectly - aggregate type, element insertion/extraction index. 949 Found, 950 /// When analyzing the value that was inserted into an aggregate, we did 951 /// manage to find defining `extractvalue` instruction, but there was 952 /// a mismatch: either the source type from which the extraction was didn't 953 /// match the aggregate type into which the insertion was, 954 /// or the extraction/insertion channels mismatched, 955 /// or different elements had different source aggregates. 956 FoundMismatch 957 }; 958 auto Describe = [](std::optional<Value *> SourceAggregate) { 959 if (SourceAggregate == NotFound) 960 return AggregateDescription::NotFound; 961 if (*SourceAggregate == FoundMismatch) 962 return AggregateDescription::FoundMismatch; 963 return AggregateDescription::Found; 964 }; 965 966 // If an aggregate element is defined in UseBB, we can't use it in PredBB. 967 bool EltDefinedInUseBB = false; 968 969 // Given the value \p Elt that was being inserted into element \p EltIdx of an 970 // aggregate AggTy, see if \p Elt was originally defined by an 971 // appropriate extractvalue (same element index, same aggregate type). 972 // If found, return the source aggregate from which the extraction was. 973 // If \p PredBB is provided, does PHI translation of an \p Elt first. 974 auto FindSourceAggregate = 975 [&](Instruction *Elt, unsigned EltIdx, std::optional<BasicBlock *> UseBB, 976 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> { 977 // For now(?), only deal with, at most, a single level of PHI indirection. 978 if (UseBB && PredBB) { 979 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 980 if (Elt && Elt->getParent() == *UseBB) 981 EltDefinedInUseBB = true; 982 } 983 // FIXME: deal with multiple levels of PHI indirection? 984 985 // Did we find an extraction? 986 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 987 if (!EVI) 988 return NotFound; 989 990 Value *SourceAggregate = EVI->getAggregateOperand(); 991 992 // Is the extraction from the same type into which the insertion was? 993 if (SourceAggregate->getType() != AggTy) 994 return FoundMismatch; 995 // And the element index doesn't change between extraction and insertion? 996 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 997 return FoundMismatch; 998 999 return SourceAggregate; // AggregateDescription::Found 1000 }; 1001 1002 // Given elements AggElts that were constructing an aggregate OrigIVI, 1003 // see if we can find appropriate source aggregate for each of the elements, 1004 // and see it's the same aggregate for each element. If so, return it. 1005 auto FindCommonSourceAggregate = 1006 [&](std::optional<BasicBlock *> UseBB, 1007 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> { 1008 std::optional<Value *> SourceAggregate; 1009 1010 for (auto I : enumerate(AggElts)) { 1011 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 1012 "We don't store nullptr in SourceAggregate!"); 1013 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 1014 (I.index() != 0) && 1015 "SourceAggregate should be valid after the first element,"); 1016 1017 // For this element, is there a plausible source aggregate? 1018 // FIXME: we could special-case undef element, IFF we know that in the 1019 // source aggregate said element isn't poison. 1020 std::optional<Value *> SourceAggregateForElement = 1021 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 1022 1023 // Okay, what have we found? Does that correlate with previous findings? 1024 1025 // Regardless of whether or not we have previously found source 1026 // aggregate for previous elements (if any), if we didn't find one for 1027 // this element, passthrough whatever we have just found. 1028 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 1029 return SourceAggregateForElement; 1030 1031 // Okay, we have found source aggregate for this element. 1032 // Let's see what we already know from previous elements, if any. 1033 switch (Describe(SourceAggregate)) { 1034 case AggregateDescription::NotFound: 1035 // This is apparently the first element that we have examined. 1036 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 1037 continue; // Great, now look at next element. 1038 case AggregateDescription::Found: 1039 // We have previously already successfully examined other elements. 1040 // Is this the same source aggregate we've found for other elements? 1041 if (*SourceAggregateForElement != *SourceAggregate) 1042 return FoundMismatch; 1043 continue; // Still the same aggregate, look at next element. 1044 case AggregateDescription::FoundMismatch: 1045 llvm_unreachable("Can't happen. We would have early-exited then."); 1046 }; 1047 } 1048 1049 assert(Describe(SourceAggregate) == AggregateDescription::Found && 1050 "Must be a valid Value"); 1051 return *SourceAggregate; 1052 }; 1053 1054 std::optional<Value *> SourceAggregate; 1055 1056 // Can we find the source aggregate without looking at predecessors? 1057 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/std::nullopt, 1058 /*PredBB=*/std::nullopt); 1059 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 1060 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 1061 return nullptr; // Conflicting source aggregates! 1062 ++NumAggregateReconstructionsSimplified; 1063 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 1064 } 1065 1066 // Okay, apparently we need to look at predecessors. 1067 1068 // We should be smart about picking the "use" basic block, which will be the 1069 // merge point for aggregate, where we'll insert the final PHI that will be 1070 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 1071 // We should look in which blocks each of the AggElts is being defined, 1072 // they all should be defined in the same basic block. 1073 BasicBlock *UseBB = nullptr; 1074 1075 for (const std::optional<Instruction *> &I : AggElts) { 1076 BasicBlock *BB = (*I)->getParent(); 1077 // If it's the first instruction we've encountered, record the basic block. 1078 if (!UseBB) { 1079 UseBB = BB; 1080 continue; 1081 } 1082 // Otherwise, this must be the same basic block we've seen previously. 1083 if (UseBB != BB) 1084 return nullptr; 1085 } 1086 1087 // If *all* of the elements are basic-block-independent, meaning they are 1088 // either function arguments, or constant expressions, then if we didn't 1089 // handle them without predecessor-aware handling, we won't handle them now. 1090 if (!UseBB) 1091 return nullptr; 1092 1093 // If we didn't manage to find source aggregate without looking at 1094 // predecessors, and there are no predecessors to look at, then we're done. 1095 if (pred_empty(UseBB)) 1096 return nullptr; 1097 1098 // Arbitrary predecessor count limit. 1099 static const int PredCountLimit = 64; 1100 1101 // Cache the (non-uniqified!) list of predecessors in a vector, 1102 // checking the limit at the same time for efficiency. 1103 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1104 for (BasicBlock *Pred : predecessors(UseBB)) { 1105 // Don't bother if there are too many predecessors. 1106 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1107 return nullptr; 1108 Preds.emplace_back(Pred); 1109 } 1110 1111 // For each predecessor, what is the source aggregate, 1112 // from which all the elements were originally extracted from? 1113 // Note that we want for the map to have stable iteration order! 1114 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1115 bool FoundSrcAgg = false; 1116 for (BasicBlock *Pred : Preds) { 1117 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1118 SourceAggregates.insert({Pred, nullptr}); 1119 // Did we already evaluate this predecessor? 1120 if (!IV.second) 1121 continue; 1122 1123 // Let's hope that when coming from predecessor Pred, all elements of the 1124 // aggregate produced by OrigIVI must have been originally extracted from 1125 // the same aggregate. Is that so? Can we find said original aggregate? 1126 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1127 if (Describe(SourceAggregate) == AggregateDescription::Found) { 1128 FoundSrcAgg = true; 1129 IV.first->second = *SourceAggregate; 1130 } else { 1131 // If UseBB is the single successor of Pred, we can add InsertValue to 1132 // Pred. 1133 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 1134 if (!BI || !BI->isUnconditional()) 1135 return nullptr; 1136 } 1137 } 1138 1139 if (!FoundSrcAgg) 1140 return nullptr; 1141 1142 // Do some sanity check if we need to add insertvalue into predecessors. 1143 auto OrigBB = OrigIVI.getParent(); 1144 for (auto &It : SourceAggregates) { 1145 if (Describe(It.second) == AggregateDescription::Found) 1146 continue; 1147 1148 // Element is defined in UseBB, so it can't be used in predecessors. 1149 if (EltDefinedInUseBB) 1150 return nullptr; 1151 1152 // Do this transformation cross loop boundary may cause dead loop. So we 1153 // should avoid this situation. But LoopInfo is not generally available, we 1154 // must be conservative here. 1155 // If OrigIVI is in UseBB and it's the only successor of PredBB, PredBB 1156 // can't be in inner loop. 1157 if (UseBB != OrigBB) 1158 return nullptr; 1159 1160 // Avoid constructing constant aggregate because constant value may expose 1161 // more optimizations. 1162 bool ConstAgg = true; 1163 for (auto Val : AggElts) { 1164 Value *Elt = (*Val)->DoPHITranslation(UseBB, It.first); 1165 if (!isa<Constant>(Elt)) { 1166 ConstAgg = false; 1167 break; 1168 } 1169 } 1170 if (ConstAgg) 1171 return nullptr; 1172 } 1173 1174 // For predecessors without appropriate source aggregate, create one in the 1175 // predecessor. 1176 for (auto &It : SourceAggregates) { 1177 if (Describe(It.second) == AggregateDescription::Found) 1178 continue; 1179 1180 BasicBlock *Pred = It.first; 1181 Builder.SetInsertPoint(Pred->getTerminator()); 1182 Value *V = PoisonValue::get(AggTy); 1183 for (auto [Idx, Val] : enumerate(AggElts)) { 1184 Value *Elt = (*Val)->DoPHITranslation(UseBB, Pred); 1185 V = Builder.CreateInsertValue(V, Elt, Idx); 1186 } 1187 1188 It.second = V; 1189 } 1190 1191 // All good! Now we just need to thread the source aggregates here. 1192 // Note that we have to insert the new PHI here, ourselves, because we can't 1193 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1194 // Note that the same block can be a predecessor more than once, 1195 // and we need to preserve that invariant for the PHI node. 1196 BuilderTy::InsertPointGuard Guard(Builder); 1197 Builder.SetInsertPoint(UseBB, UseBB->getFirstNonPHIIt()); 1198 auto *PHI = 1199 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1200 for (BasicBlock *Pred : Preds) 1201 PHI->addIncoming(SourceAggregates[Pred], Pred); 1202 1203 ++NumAggregateReconstructionsSimplified; 1204 return replaceInstUsesWith(OrigIVI, PHI); 1205 } 1206 1207 /// Try to find redundant insertvalue instructions, like the following ones: 1208 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1209 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1210 /// Here the second instruction inserts values at the same indices, as the 1211 /// first one, making the first one redundant. 1212 /// It should be transformed to: 1213 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1214 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1215 if (Value *V = simplifyInsertValueInst( 1216 I.getAggregateOperand(), I.getInsertedValueOperand(), I.getIndices(), 1217 SQ.getWithInstruction(&I))) 1218 return replaceInstUsesWith(I, V); 1219 1220 bool IsRedundant = false; 1221 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1222 1223 // If there is a chain of insertvalue instructions (each of them except the 1224 // last one has only one use and it's another insertvalue insn from this 1225 // chain), check if any of the 'children' uses the same indices as the first 1226 // instruction. In this case, the first one is redundant. 1227 Value *V = &I; 1228 unsigned Depth = 0; 1229 while (V->hasOneUse() && Depth < 10) { 1230 User *U = V->user_back(); 1231 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1232 if (!UserInsInst || U->getOperand(0) != V) 1233 break; 1234 if (UserInsInst->getIndices() == FirstIndices) { 1235 IsRedundant = true; 1236 break; 1237 } 1238 V = UserInsInst; 1239 Depth++; 1240 } 1241 1242 if (IsRedundant) 1243 return replaceInstUsesWith(I, I.getOperand(0)); 1244 1245 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1246 return NewI; 1247 1248 return nullptr; 1249 } 1250 1251 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1252 // Can not analyze scalable type, the number of elements is not a compile-time 1253 // constant. 1254 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1255 return false; 1256 1257 int MaskSize = Shuf.getShuffleMask().size(); 1258 int VecSize = 1259 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1260 1261 // A vector select does not change the size of the operands. 1262 if (MaskSize != VecSize) 1263 return false; 1264 1265 // Each mask element must be undefined or choose a vector element from one of 1266 // the source operands without crossing vector lanes. 1267 for (int i = 0; i != MaskSize; ++i) { 1268 int Elt = Shuf.getMaskValue(i); 1269 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1270 return false; 1271 } 1272 1273 return true; 1274 } 1275 1276 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1277 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1278 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1279 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1280 // We are interested in the last insert in a chain. So if this insert has a 1281 // single user and that user is an insert, bail. 1282 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1283 return nullptr; 1284 1285 VectorType *VecTy = InsElt.getType(); 1286 // Can not handle scalable type, the number of elements is not a compile-time 1287 // constant. 1288 if (isa<ScalableVectorType>(VecTy)) 1289 return nullptr; 1290 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1291 1292 // Do not try to do this for a one-element vector, since that's a nop, 1293 // and will cause an inf-loop. 1294 if (NumElements == 1) 1295 return nullptr; 1296 1297 Value *SplatVal = InsElt.getOperand(1); 1298 InsertElementInst *CurrIE = &InsElt; 1299 SmallBitVector ElementPresent(NumElements, false); 1300 InsertElementInst *FirstIE = nullptr; 1301 1302 // Walk the chain backwards, keeping track of which indices we inserted into, 1303 // until we hit something that isn't an insert of the splatted value. 1304 while (CurrIE) { 1305 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1306 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1307 return nullptr; 1308 1309 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1310 // Check none of the intermediate steps have any additional uses, except 1311 // for the root insertelement instruction, which can be re-used, if it 1312 // inserts at position 0. 1313 if (CurrIE != &InsElt && 1314 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1315 return nullptr; 1316 1317 ElementPresent[Idx->getZExtValue()] = true; 1318 FirstIE = CurrIE; 1319 CurrIE = NextIE; 1320 } 1321 1322 // If this is just a single insertelement (not a sequence), we are done. 1323 if (FirstIE == &InsElt) 1324 return nullptr; 1325 1326 // If we are not inserting into a poison vector, make sure we've seen an 1327 // insert into every element. 1328 // TODO: If the base vector is not undef, it might be better to create a splat 1329 // and then a select-shuffle (blend) with the base vector. 1330 if (!match(FirstIE->getOperand(0), m_Poison())) 1331 if (!ElementPresent.all()) 1332 return nullptr; 1333 1334 // Create the insert + shuffle. 1335 Type *Int64Ty = Type::getInt64Ty(InsElt.getContext()); 1336 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1337 Constant *Zero = ConstantInt::get(Int64Ty, 0); 1338 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1339 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", 1340 InsElt.getIterator()); 1341 1342 // Splat from element 0, but replace absent elements with poison in the mask. 1343 SmallVector<int, 16> Mask(NumElements, 0); 1344 for (unsigned i = 0; i != NumElements; ++i) 1345 if (!ElementPresent[i]) 1346 Mask[i] = -1; 1347 1348 return new ShuffleVectorInst(FirstIE, Mask); 1349 } 1350 1351 /// Try to fold an insert element into an existing splat shuffle by changing 1352 /// the shuffle's mask to include the index of this insert element. 1353 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1354 // Check if the vector operand of this insert is a canonical splat shuffle. 1355 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1356 if (!Shuf || !Shuf->isZeroEltSplat()) 1357 return nullptr; 1358 1359 // Bail out early if shuffle is scalable type. The number of elements in 1360 // shuffle mask is unknown at compile-time. 1361 if (isa<ScalableVectorType>(Shuf->getType())) 1362 return nullptr; 1363 1364 // Check for a constant insertion index. 1365 uint64_t IdxC; 1366 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1367 return nullptr; 1368 1369 // Check if the splat shuffle's input is the same as this insert's scalar op. 1370 Value *X = InsElt.getOperand(1); 1371 Value *Op0 = Shuf->getOperand(0); 1372 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1373 return nullptr; 1374 1375 // Replace the shuffle mask element at the index of this insert with a zero. 1376 // For example: 1377 // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1 1378 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef> 1379 unsigned NumMaskElts = 1380 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1381 SmallVector<int, 16> NewMask(NumMaskElts); 1382 for (unsigned i = 0; i != NumMaskElts; ++i) 1383 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1384 1385 return new ShuffleVectorInst(Op0, NewMask); 1386 } 1387 1388 /// Try to fold an extract+insert element into an existing identity shuffle by 1389 /// changing the shuffle's mask to include the index of this insert element. 1390 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1391 // Check if the vector operand of this insert is an identity shuffle. 1392 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1393 if (!Shuf || !match(Shuf->getOperand(1), m_Poison()) || 1394 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1395 return nullptr; 1396 1397 // Bail out early if shuffle is scalable type. The number of elements in 1398 // shuffle mask is unknown at compile-time. 1399 if (isa<ScalableVectorType>(Shuf->getType())) 1400 return nullptr; 1401 1402 // Check for a constant insertion index. 1403 uint64_t IdxC; 1404 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1405 return nullptr; 1406 1407 // Check if this insert's scalar op is extracted from the identity shuffle's 1408 // input vector. 1409 Value *Scalar = InsElt.getOperand(1); 1410 Value *X = Shuf->getOperand(0); 1411 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1412 return nullptr; 1413 1414 // Replace the shuffle mask element at the index of this extract+insert with 1415 // that same index value. 1416 // For example: 1417 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1418 unsigned NumMaskElts = 1419 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1420 SmallVector<int, 16> NewMask(NumMaskElts); 1421 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1422 for (unsigned i = 0; i != NumMaskElts; ++i) { 1423 if (i != IdxC) { 1424 // All mask elements besides the inserted element remain the same. 1425 NewMask[i] = OldMask[i]; 1426 } else if (OldMask[i] == (int)IdxC) { 1427 // If the mask element was already set, there's nothing to do 1428 // (demanded elements analysis may unset it later). 1429 return nullptr; 1430 } else { 1431 assert(OldMask[i] == PoisonMaskElem && 1432 "Unexpected shuffle mask element for identity shuffle"); 1433 NewMask[i] = IdxC; 1434 } 1435 } 1436 1437 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1438 } 1439 1440 /// If we have an insertelement instruction feeding into another insertelement 1441 /// and the 2nd is inserting a constant into the vector, canonicalize that 1442 /// constant insertion before the insertion of a variable: 1443 /// 1444 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1445 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1446 /// 1447 /// This has the potential of eliminating the 2nd insertelement instruction 1448 /// via constant folding of the scalar constant into a vector constant. 1449 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1450 InstCombiner::BuilderTy &Builder) { 1451 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1452 if (!InsElt1 || !InsElt1->hasOneUse()) 1453 return nullptr; 1454 1455 Value *X, *Y; 1456 Constant *ScalarC; 1457 ConstantInt *IdxC1, *IdxC2; 1458 if (match(InsElt1->getOperand(0), m_Value(X)) && 1459 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1460 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1461 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1462 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1463 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1464 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1465 } 1466 1467 return nullptr; 1468 } 1469 1470 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1471 /// --> shufflevector X, CVec', Mask' 1472 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1473 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1474 // Bail out if the parent has more than one use. In that case, we'd be 1475 // replacing the insertelt with a shuffle, and that's not a clear win. 1476 if (!Inst || !Inst->hasOneUse()) 1477 return nullptr; 1478 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1479 // The shuffle must have a constant vector operand. The insertelt must have 1480 // a constant scalar being inserted at a constant position in the vector. 1481 Constant *ShufConstVec, *InsEltScalar; 1482 uint64_t InsEltIndex; 1483 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1484 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1485 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1486 return nullptr; 1487 1488 // Adding an element to an arbitrary shuffle could be expensive, but a 1489 // shuffle that selects elements from vectors without crossing lanes is 1490 // assumed cheap. 1491 // If we're just adding a constant into that shuffle, it will still be 1492 // cheap. 1493 if (!isShuffleEquivalentToSelect(*Shuf)) 1494 return nullptr; 1495 1496 // From the above 'select' check, we know that the mask has the same number 1497 // of elements as the vector input operands. We also know that each constant 1498 // input element is used in its lane and can not be used more than once by 1499 // the shuffle. Therefore, replace the constant in the shuffle's constant 1500 // vector with the insertelt constant. Replace the constant in the shuffle's 1501 // mask vector with the insertelt index plus the length of the vector 1502 // (because the constant vector operand of a shuffle is always the 2nd 1503 // operand). 1504 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1505 unsigned NumElts = Mask.size(); 1506 SmallVector<Constant *, 16> NewShufElts(NumElts); 1507 SmallVector<int, 16> NewMaskElts(NumElts); 1508 for (unsigned I = 0; I != NumElts; ++I) { 1509 if (I == InsEltIndex) { 1510 NewShufElts[I] = InsEltScalar; 1511 NewMaskElts[I] = InsEltIndex + NumElts; 1512 } else { 1513 // Copy over the existing values. 1514 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1515 NewMaskElts[I] = Mask[I]; 1516 } 1517 1518 // Bail if we failed to find an element. 1519 if (!NewShufElts[I]) 1520 return nullptr; 1521 } 1522 1523 // Create new operands for a shuffle that includes the constant of the 1524 // original insertelt. The old shuffle will be dead now. 1525 return new ShuffleVectorInst(Shuf->getOperand(0), 1526 ConstantVector::get(NewShufElts), NewMaskElts); 1527 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1528 // Transform sequences of insertelements ops with constant data/indexes into 1529 // a single shuffle op. 1530 // Can not handle scalable type, the number of elements needed to create 1531 // shuffle mask is not a compile-time constant. 1532 if (isa<ScalableVectorType>(InsElt.getType())) 1533 return nullptr; 1534 unsigned NumElts = 1535 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1536 1537 uint64_t InsertIdx[2]; 1538 Constant *Val[2]; 1539 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1540 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1541 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1542 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1543 return nullptr; 1544 SmallVector<Constant *, 16> Values(NumElts); 1545 SmallVector<int, 16> Mask(NumElts); 1546 auto ValI = std::begin(Val); 1547 // Generate new constant vector and mask. 1548 // We have 2 values/masks from the insertelements instructions. Insert them 1549 // into new value/mask vectors. 1550 for (uint64_t I : InsertIdx) { 1551 if (!Values[I]) { 1552 Values[I] = *ValI; 1553 Mask[I] = NumElts + I; 1554 } 1555 ++ValI; 1556 } 1557 // Remaining values are filled with 'poison' values. 1558 for (unsigned I = 0; I < NumElts; ++I) { 1559 if (!Values[I]) { 1560 Values[I] = PoisonValue::get(InsElt.getType()->getElementType()); 1561 Mask[I] = I; 1562 } 1563 } 1564 // Create new operands for a shuffle that includes the constant of the 1565 // original insertelt. 1566 return new ShuffleVectorInst(IEI->getOperand(0), 1567 ConstantVector::get(Values), Mask); 1568 } 1569 return nullptr; 1570 } 1571 1572 /// If both the base vector and the inserted element are extended from the same 1573 /// type, do the insert element in the narrow source type followed by extend. 1574 /// TODO: This can be extended to include other cast opcodes, but particularly 1575 /// if we create a wider insertelement, make sure codegen is not harmed. 1576 static Instruction *narrowInsElt(InsertElementInst &InsElt, 1577 InstCombiner::BuilderTy &Builder) { 1578 // We are creating a vector extend. If the original vector extend has another 1579 // use, that would mean we end up with 2 vector extends, so avoid that. 1580 // TODO: We could ease the use-clause to "if at least one op has one use" 1581 // (assuming that the source types match - see next TODO comment). 1582 Value *Vec = InsElt.getOperand(0); 1583 if (!Vec->hasOneUse()) 1584 return nullptr; 1585 1586 Value *Scalar = InsElt.getOperand(1); 1587 Value *X, *Y; 1588 CastInst::CastOps CastOpcode; 1589 if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) 1590 CastOpcode = Instruction::FPExt; 1591 else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) 1592 CastOpcode = Instruction::SExt; 1593 else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) 1594 CastOpcode = Instruction::ZExt; 1595 else 1596 return nullptr; 1597 1598 // TODO: We can allow mismatched types by creating an intermediate cast. 1599 if (X->getType()->getScalarType() != Y->getType()) 1600 return nullptr; 1601 1602 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) 1603 Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); 1604 return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); 1605 } 1606 1607 /// If we are inserting 2 halves of a value into adjacent elements of a vector, 1608 /// try to convert to a single insert with appropriate bitcasts. 1609 static Instruction *foldTruncInsEltPair(InsertElementInst &InsElt, 1610 bool IsBigEndian, 1611 InstCombiner::BuilderTy &Builder) { 1612 Value *VecOp = InsElt.getOperand(0); 1613 Value *ScalarOp = InsElt.getOperand(1); 1614 Value *IndexOp = InsElt.getOperand(2); 1615 1616 // Pattern depends on endian because we expect lower index is inserted first. 1617 // Big endian: 1618 // inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1 1619 // Little endian: 1620 // inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1 1621 // Note: It is not safe to do this transform with an arbitrary base vector 1622 // because the bitcast of that vector to fewer/larger elements could 1623 // allow poison to spill into an element that was not poison before. 1624 // TODO: Detect smaller fractions of the scalar. 1625 // TODO: One-use checks are conservative. 1626 auto *VTy = dyn_cast<FixedVectorType>(InsElt.getType()); 1627 Value *Scalar0, *BaseVec; 1628 uint64_t Index0, Index1; 1629 if (!VTy || (VTy->getNumElements() & 1) || 1630 !match(IndexOp, m_ConstantInt(Index1)) || 1631 !match(VecOp, m_InsertElt(m_Value(BaseVec), m_Value(Scalar0), 1632 m_ConstantInt(Index0))) || 1633 !match(BaseVec, m_Undef())) 1634 return nullptr; 1635 1636 // The first insert must be to the index one less than this one, and 1637 // the first insert must be to an even index. 1638 if (Index0 + 1 != Index1 || Index0 & 1) 1639 return nullptr; 1640 1641 // For big endian, the high half of the value should be inserted first. 1642 // For little endian, the low half of the value should be inserted first. 1643 Value *X; 1644 uint64_t ShAmt; 1645 if (IsBigEndian) { 1646 if (!match(ScalarOp, m_Trunc(m_Value(X))) || 1647 !match(Scalar0, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt))))) 1648 return nullptr; 1649 } else { 1650 if (!match(Scalar0, m_Trunc(m_Value(X))) || 1651 !match(ScalarOp, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt))))) 1652 return nullptr; 1653 } 1654 1655 Type *SrcTy = X->getType(); 1656 unsigned ScalarWidth = SrcTy->getScalarSizeInBits(); 1657 unsigned VecEltWidth = VTy->getScalarSizeInBits(); 1658 if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth) 1659 return nullptr; 1660 1661 // Bitcast the base vector to a vector type with the source element type. 1662 Type *CastTy = FixedVectorType::get(SrcTy, VTy->getNumElements() / 2); 1663 Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy); 1664 1665 // Scale the insert index for a vector with half as many elements. 1666 // bitcast (inselt (bitcast BaseVec), X, NewIndex) 1667 uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2; 1668 Value *NewInsert = Builder.CreateInsertElement(CastBaseVec, X, NewIndex); 1669 return new BitCastInst(NewInsert, VTy); 1670 } 1671 1672 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1673 Value *VecOp = IE.getOperand(0); 1674 Value *ScalarOp = IE.getOperand(1); 1675 Value *IdxOp = IE.getOperand(2); 1676 1677 if (auto *V = simplifyInsertElementInst( 1678 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1679 return replaceInstUsesWith(IE, V); 1680 1681 // Canonicalize type of constant indices to i64 to simplify CSE 1682 if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) { 1683 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 1684 return replaceOperand(IE, 2, NewIdx); 1685 1686 Value *BaseVec, *OtherScalar; 1687 uint64_t OtherIndexVal; 1688 if (match(VecOp, m_OneUse(m_InsertElt(m_Value(BaseVec), 1689 m_Value(OtherScalar), 1690 m_ConstantInt(OtherIndexVal)))) && 1691 !isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) { 1692 Value *NewIns = Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp); 1693 return InsertElementInst::Create(NewIns, OtherScalar, 1694 Builder.getInt64(OtherIndexVal)); 1695 } 1696 } 1697 1698 // If the scalar is bitcast and inserted into undef, do the insert in the 1699 // source type followed by bitcast. 1700 // TODO: Generalize for insert into any constant, not just undef? 1701 Value *ScalarSrc; 1702 if (match(VecOp, m_Undef()) && 1703 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1704 (ScalarSrc->getType()->isIntegerTy() || 1705 ScalarSrc->getType()->isFloatingPointTy())) { 1706 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1707 // bitcast (inselt undef, ScalarSrc, IdxOp) 1708 Type *ScalarTy = ScalarSrc->getType(); 1709 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1710 Constant *NewUndef = isa<PoisonValue>(VecOp) ? PoisonValue::get(VecTy) 1711 : UndefValue::get(VecTy); 1712 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1713 return new BitCastInst(NewInsElt, IE.getType()); 1714 } 1715 1716 // If the vector and scalar are both bitcast from the same element type, do 1717 // the insert in that source type followed by bitcast. 1718 Value *VecSrc; 1719 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1720 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1721 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1722 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1723 cast<VectorType>(VecSrc->getType())->getElementType() == 1724 ScalarSrc->getType()) { 1725 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1726 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1727 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1728 return new BitCastInst(NewInsElt, IE.getType()); 1729 } 1730 1731 // If the inserted element was extracted from some other fixed-length vector 1732 // and both indexes are valid constants, try to turn this into a shuffle. 1733 // Can not handle scalable vector type, the number of elements needed to 1734 // create shuffle mask is not a compile-time constant. 1735 uint64_t InsertedIdx, ExtractedIdx; 1736 Value *ExtVecOp; 1737 if (isa<FixedVectorType>(IE.getType()) && 1738 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1739 match(ScalarOp, 1740 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1741 isa<FixedVectorType>(ExtVecOp->getType()) && 1742 ExtractedIdx < 1743 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1744 // TODO: Looking at the user(s) to determine if this insert is a 1745 // fold-to-shuffle opportunity does not match the usual instcombine 1746 // constraints. We should decide if the transform is worthy based only 1747 // on this instruction and its operands, but that may not work currently. 1748 // 1749 // Here, we are trying to avoid creating shuffles before reaching 1750 // the end of a chain of extract-insert pairs. This is complicated because 1751 // we do not generally form arbitrary shuffle masks in instcombine 1752 // (because those may codegen poorly), but collectShuffleElements() does 1753 // exactly that. 1754 // 1755 // The rules for determining what is an acceptable target-independent 1756 // shuffle mask are fuzzy because they evolve based on the backend's 1757 // capabilities and real-world impact. 1758 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1759 if (!Insert.hasOneUse()) 1760 return true; 1761 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1762 if (!InsertUser) 1763 return true; 1764 return false; 1765 }; 1766 1767 // Try to form a shuffle from a chain of extract-insert ops. 1768 if (isShuffleRootCandidate(IE)) { 1769 bool Rerun = true; 1770 while (Rerun) { 1771 Rerun = false; 1772 1773 SmallVector<int, 16> Mask; 1774 ShuffleOps LR = 1775 collectShuffleElements(&IE, Mask, nullptr, *this, Rerun); 1776 1777 // The proposed shuffle may be trivial, in which case we shouldn't 1778 // perform the combine. 1779 if (LR.first != &IE && LR.second != &IE) { 1780 // We now have a shuffle of LHS, RHS, Mask. 1781 if (LR.second == nullptr) 1782 LR.second = PoisonValue::get(LR.first->getType()); 1783 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1784 } 1785 } 1786 } 1787 } 1788 1789 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1790 unsigned VWidth = VecTy->getNumElements(); 1791 APInt PoisonElts(VWidth, 0); 1792 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1793 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, 1794 PoisonElts)) { 1795 if (V != &IE) 1796 return replaceInstUsesWith(IE, V); 1797 return &IE; 1798 } 1799 } 1800 1801 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1802 return Shuf; 1803 1804 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1805 return NewInsElt; 1806 1807 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1808 return Broadcast; 1809 1810 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1811 return Splat; 1812 1813 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1814 return IdentityShuf; 1815 1816 if (Instruction *Ext = narrowInsElt(IE, Builder)) 1817 return Ext; 1818 1819 if (Instruction *Ext = foldTruncInsEltPair(IE, DL.isBigEndian(), Builder)) 1820 return Ext; 1821 1822 return nullptr; 1823 } 1824 1825 /// Return true if we can evaluate the specified expression tree if the vector 1826 /// elements were shuffled in a different order. 1827 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1828 unsigned Depth = 5) { 1829 // We can always reorder the elements of a constant. 1830 if (isa<Constant>(V)) 1831 return true; 1832 1833 // We won't reorder vector arguments. No IPO here. 1834 Instruction *I = dyn_cast<Instruction>(V); 1835 if (!I) return false; 1836 1837 // Two users may expect different orders of the elements. Don't try it. 1838 if (!I->hasOneUse()) 1839 return false; 1840 1841 if (Depth == 0) return false; 1842 1843 switch (I->getOpcode()) { 1844 case Instruction::UDiv: 1845 case Instruction::SDiv: 1846 case Instruction::URem: 1847 case Instruction::SRem: 1848 // Propagating an undefined shuffle mask element to integer div/rem is not 1849 // allowed because those opcodes can create immediate undefined behavior 1850 // from an undefined element in an operand. 1851 if (llvm::is_contained(Mask, -1)) 1852 return false; 1853 [[fallthrough]]; 1854 case Instruction::Add: 1855 case Instruction::FAdd: 1856 case Instruction::Sub: 1857 case Instruction::FSub: 1858 case Instruction::Mul: 1859 case Instruction::FMul: 1860 case Instruction::FDiv: 1861 case Instruction::FRem: 1862 case Instruction::Shl: 1863 case Instruction::LShr: 1864 case Instruction::AShr: 1865 case Instruction::And: 1866 case Instruction::Or: 1867 case Instruction::Xor: 1868 case Instruction::ICmp: 1869 case Instruction::FCmp: 1870 case Instruction::Trunc: 1871 case Instruction::ZExt: 1872 case Instruction::SExt: 1873 case Instruction::FPToUI: 1874 case Instruction::FPToSI: 1875 case Instruction::UIToFP: 1876 case Instruction::SIToFP: 1877 case Instruction::FPTrunc: 1878 case Instruction::FPExt: 1879 case Instruction::GetElementPtr: { 1880 // Bail out if we would create longer vector ops. We could allow creating 1881 // longer vector ops, but that may result in more expensive codegen. 1882 Type *ITy = I->getType(); 1883 if (ITy->isVectorTy() && 1884 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1885 return false; 1886 for (Value *Operand : I->operands()) { 1887 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1888 return false; 1889 } 1890 return true; 1891 } 1892 case Instruction::InsertElement: { 1893 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1894 if (!CI) return false; 1895 int ElementNumber = CI->getLimitedValue(); 1896 1897 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1898 // can't put an element into multiple indices. 1899 bool SeenOnce = false; 1900 for (int I : Mask) { 1901 if (I == ElementNumber) { 1902 if (SeenOnce) 1903 return false; 1904 SeenOnce = true; 1905 } 1906 } 1907 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1908 } 1909 } 1910 return false; 1911 } 1912 1913 /// Rebuild a new instruction just like 'I' but with the new operands given. 1914 /// In the event of type mismatch, the type of the operands is correct. 1915 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps, 1916 IRBuilderBase &Builder) { 1917 Builder.SetInsertPoint(I); 1918 switch (I->getOpcode()) { 1919 case Instruction::Add: 1920 case Instruction::FAdd: 1921 case Instruction::Sub: 1922 case Instruction::FSub: 1923 case Instruction::Mul: 1924 case Instruction::FMul: 1925 case Instruction::UDiv: 1926 case Instruction::SDiv: 1927 case Instruction::FDiv: 1928 case Instruction::URem: 1929 case Instruction::SRem: 1930 case Instruction::FRem: 1931 case Instruction::Shl: 1932 case Instruction::LShr: 1933 case Instruction::AShr: 1934 case Instruction::And: 1935 case Instruction::Or: 1936 case Instruction::Xor: { 1937 BinaryOperator *BO = cast<BinaryOperator>(I); 1938 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1939 Value *New = Builder.CreateBinOp(cast<BinaryOperator>(I)->getOpcode(), 1940 NewOps[0], NewOps[1]); 1941 if (auto *NewI = dyn_cast<Instruction>(New)) { 1942 if (isa<OverflowingBinaryOperator>(BO)) { 1943 NewI->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1944 NewI->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1945 } 1946 if (isa<PossiblyExactOperator>(BO)) { 1947 NewI->setIsExact(BO->isExact()); 1948 } 1949 if (isa<FPMathOperator>(BO)) 1950 NewI->copyFastMathFlags(I); 1951 } 1952 return New; 1953 } 1954 case Instruction::ICmp: 1955 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1956 return Builder.CreateICmp(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 1957 NewOps[1]); 1958 case Instruction::FCmp: 1959 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1960 return Builder.CreateFCmp(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 1961 NewOps[1]); 1962 case Instruction::Trunc: 1963 case Instruction::ZExt: 1964 case Instruction::SExt: 1965 case Instruction::FPToUI: 1966 case Instruction::FPToSI: 1967 case Instruction::UIToFP: 1968 case Instruction::SIToFP: 1969 case Instruction::FPTrunc: 1970 case Instruction::FPExt: { 1971 // It's possible that the mask has a different number of elements from 1972 // the original cast. We recompute the destination type to match the mask. 1973 Type *DestTy = VectorType::get( 1974 I->getType()->getScalarType(), 1975 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1976 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1977 return Builder.CreateCast(cast<CastInst>(I)->getOpcode(), NewOps[0], 1978 DestTy); 1979 } 1980 case Instruction::GetElementPtr: { 1981 Value *Ptr = NewOps[0]; 1982 ArrayRef<Value*> Idx = NewOps.slice(1); 1983 return Builder.CreateGEP(cast<GEPOperator>(I)->getSourceElementType(), 1984 Ptr, Idx, "", 1985 cast<GEPOperator>(I)->isInBounds()); 1986 } 1987 } 1988 llvm_unreachable("failed to rebuild vector instructions"); 1989 } 1990 1991 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask, 1992 IRBuilderBase &Builder) { 1993 // Mask.size() does not need to be equal to the number of vector elements. 1994 1995 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1996 Type *EltTy = V->getType()->getScalarType(); 1997 1998 if (isa<PoisonValue>(V)) 1999 return PoisonValue::get(FixedVectorType::get(EltTy, Mask.size())); 2000 2001 if (match(V, m_Undef())) 2002 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 2003 2004 if (isa<ConstantAggregateZero>(V)) 2005 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 2006 2007 if (Constant *C = dyn_cast<Constant>(V)) 2008 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 2009 Mask); 2010 2011 Instruction *I = cast<Instruction>(V); 2012 switch (I->getOpcode()) { 2013 case Instruction::Add: 2014 case Instruction::FAdd: 2015 case Instruction::Sub: 2016 case Instruction::FSub: 2017 case Instruction::Mul: 2018 case Instruction::FMul: 2019 case Instruction::UDiv: 2020 case Instruction::SDiv: 2021 case Instruction::FDiv: 2022 case Instruction::URem: 2023 case Instruction::SRem: 2024 case Instruction::FRem: 2025 case Instruction::Shl: 2026 case Instruction::LShr: 2027 case Instruction::AShr: 2028 case Instruction::And: 2029 case Instruction::Or: 2030 case Instruction::Xor: 2031 case Instruction::ICmp: 2032 case Instruction::FCmp: 2033 case Instruction::Trunc: 2034 case Instruction::ZExt: 2035 case Instruction::SExt: 2036 case Instruction::FPToUI: 2037 case Instruction::FPToSI: 2038 case Instruction::UIToFP: 2039 case Instruction::SIToFP: 2040 case Instruction::FPTrunc: 2041 case Instruction::FPExt: 2042 case Instruction::Select: 2043 case Instruction::GetElementPtr: { 2044 SmallVector<Value*, 8> NewOps; 2045 bool NeedsRebuild = 2046 (Mask.size() != 2047 cast<FixedVectorType>(I->getType())->getNumElements()); 2048 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 2049 Value *V; 2050 // Recursively call evaluateInDifferentElementOrder on vector arguments 2051 // as well. E.g. GetElementPtr may have scalar operands even if the 2052 // return value is a vector, so we need to examine the operand type. 2053 if (I->getOperand(i)->getType()->isVectorTy()) 2054 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask, Builder); 2055 else 2056 V = I->getOperand(i); 2057 NewOps.push_back(V); 2058 NeedsRebuild |= (V != I->getOperand(i)); 2059 } 2060 if (NeedsRebuild) 2061 return buildNew(I, NewOps, Builder); 2062 return I; 2063 } 2064 case Instruction::InsertElement: { 2065 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 2066 2067 // The insertelement was inserting at Element. Figure out which element 2068 // that becomes after shuffling. The answer is guaranteed to be unique 2069 // by CanEvaluateShuffled. 2070 bool Found = false; 2071 int Index = 0; 2072 for (int e = Mask.size(); Index != e; ++Index) { 2073 if (Mask[Index] == Element) { 2074 Found = true; 2075 break; 2076 } 2077 } 2078 2079 // If element is not in Mask, no need to handle the operand 1 (element to 2080 // be inserted). Just evaluate values in operand 0 according to Mask. 2081 if (!Found) 2082 return evaluateInDifferentElementOrder(I->getOperand(0), Mask, Builder); 2083 2084 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask, 2085 Builder); 2086 Builder.SetInsertPoint(I); 2087 return Builder.CreateInsertElement(V, I->getOperand(1), Index); 2088 } 2089 } 2090 llvm_unreachable("failed to reorder elements of vector instruction!"); 2091 } 2092 2093 // Returns true if the shuffle is extracting a contiguous range of values from 2094 // LHS, for example: 2095 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2096 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 2097 // Shuffles to: |EE|FF|GG|HH| 2098 // +--+--+--+--+ 2099 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 2100 ArrayRef<int> Mask) { 2101 unsigned LHSElems = 2102 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 2103 unsigned MaskElems = Mask.size(); 2104 unsigned BegIdx = Mask.front(); 2105 unsigned EndIdx = Mask.back(); 2106 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 2107 return false; 2108 for (unsigned I = 0; I != MaskElems; ++I) 2109 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 2110 return false; 2111 return true; 2112 } 2113 2114 /// These are the ingredients in an alternate form binary operator as described 2115 /// below. 2116 struct BinopElts { 2117 BinaryOperator::BinaryOps Opcode; 2118 Value *Op0; 2119 Value *Op1; 2120 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 2121 Value *V0 = nullptr, Value *V1 = nullptr) : 2122 Opcode(Opc), Op0(V0), Op1(V1) {} 2123 operator bool() const { return Opcode != 0; } 2124 }; 2125 2126 /// Binops may be transformed into binops with different opcodes and operands. 2127 /// Reverse the usual canonicalization to enable folds with the non-canonical 2128 /// form of the binop. If a transform is possible, return the elements of the 2129 /// new binop. If not, return invalid elements. 2130 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 2131 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 2132 Type *Ty = BO->getType(); 2133 switch (BO->getOpcode()) { 2134 case Instruction::Shl: { 2135 // shl X, C --> mul X, (1 << C) 2136 Constant *C; 2137 if (match(BO1, m_ImmConstant(C))) { 2138 Constant *ShlOne = ConstantFoldBinaryOpOperands( 2139 Instruction::Shl, ConstantInt::get(Ty, 1), C, DL); 2140 assert(ShlOne && "Constant folding of immediate constants failed"); 2141 return {Instruction::Mul, BO0, ShlOne}; 2142 } 2143 break; 2144 } 2145 case Instruction::Or: { 2146 // or disjoin X, C --> add X, C 2147 if (cast<PossiblyDisjointInst>(BO)->isDisjoint()) 2148 return {Instruction::Add, BO0, BO1}; 2149 break; 2150 } 2151 case Instruction::Sub: 2152 // sub 0, X --> mul X, -1 2153 if (match(BO0, m_ZeroInt())) 2154 return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)}; 2155 break; 2156 default: 2157 break; 2158 } 2159 return {}; 2160 } 2161 2162 /// A select shuffle of a select shuffle with a shared operand can be reduced 2163 /// to a single select shuffle. This is an obvious improvement in IR, and the 2164 /// backend is expected to lower select shuffles efficiently. 2165 static Instruction *foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf) { 2166 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 2167 2168 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2169 SmallVector<int, 16> Mask; 2170 Shuf.getShuffleMask(Mask); 2171 unsigned NumElts = Mask.size(); 2172 2173 // Canonicalize a select shuffle with common operand as Op1. 2174 auto *ShufOp = dyn_cast<ShuffleVectorInst>(Op0); 2175 if (ShufOp && ShufOp->isSelect() && 2176 (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) { 2177 std::swap(Op0, Op1); 2178 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2179 } 2180 2181 ShufOp = dyn_cast<ShuffleVectorInst>(Op1); 2182 if (!ShufOp || !ShufOp->isSelect() || 2183 (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0)) 2184 return nullptr; 2185 2186 Value *X = ShufOp->getOperand(0), *Y = ShufOp->getOperand(1); 2187 SmallVector<int, 16> Mask1; 2188 ShufOp->getShuffleMask(Mask1); 2189 assert(Mask1.size() == NumElts && "Vector size changed with select shuffle"); 2190 2191 // Canonicalize common operand (Op0) as X (first operand of first shuffle). 2192 if (Y == Op0) { 2193 std::swap(X, Y); 2194 ShuffleVectorInst::commuteShuffleMask(Mask1, NumElts); 2195 } 2196 2197 // If the mask chooses from X (operand 0), it stays the same. 2198 // If the mask chooses from the earlier shuffle, the other mask value is 2199 // transferred to the combined select shuffle: 2200 // shuf X, (shuf X, Y, M1), M --> shuf X, Y, M' 2201 SmallVector<int, 16> NewMask(NumElts); 2202 for (unsigned i = 0; i != NumElts; ++i) 2203 NewMask[i] = Mask[i] < (signed)NumElts ? Mask[i] : Mask1[i]; 2204 2205 // A select mask with undef elements might look like an identity mask. 2206 assert((ShuffleVectorInst::isSelectMask(NewMask, NumElts) || 2207 ShuffleVectorInst::isIdentityMask(NewMask, NumElts)) && 2208 "Unexpected shuffle mask"); 2209 return new ShuffleVectorInst(X, Y, NewMask); 2210 } 2211 2212 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf, 2213 const SimplifyQuery &SQ) { 2214 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 2215 2216 // Are we shuffling together some value and that same value after it has been 2217 // modified by a binop with a constant? 2218 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2219 Constant *C; 2220 bool Op0IsBinop; 2221 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 2222 Op0IsBinop = true; 2223 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 2224 Op0IsBinop = false; 2225 else 2226 return nullptr; 2227 2228 // The identity constant for a binop leaves a variable operand unchanged. For 2229 // a vector, this is a splat of something like 0, -1, or 1. 2230 // If there's no identity constant for this binop, we're done. 2231 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 2232 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 2233 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 2234 if (!IdC) 2235 return nullptr; 2236 2237 Value *X = Op0IsBinop ? Op1 : Op0; 2238 2239 // Prevent folding in the case the non-binop operand might have NaN values. 2240 // If X can have NaN elements then we have that the floating point math 2241 // operation in the transformed code may not preserve the exact NaN 2242 // bit-pattern -- e.g. `fadd sNaN, 0.0 -> qNaN`. 2243 // This makes the transformation incorrect since the original program would 2244 // have preserved the exact NaN bit-pattern. 2245 // Avoid the folding if X can have NaN elements. 2246 if (Shuf.getType()->getElementType()->isFloatingPointTy() && 2247 !isKnownNeverNaN(X, 0, SQ)) 2248 return nullptr; 2249 2250 // Shuffle identity constants into the lanes that return the original value. 2251 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 2252 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 2253 // The existing binop constant vector remains in the same operand position. 2254 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2255 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 2256 ConstantExpr::getShuffleVector(IdC, C, Mask); 2257 2258 bool MightCreatePoisonOrUB = 2259 is_contained(Mask, PoisonMaskElem) && 2260 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 2261 if (MightCreatePoisonOrUB) 2262 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 2263 2264 // shuf (bop X, C), X, M --> bop X, C' 2265 // shuf X, (bop X, C), M --> bop X, C' 2266 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 2267 NewBO->copyIRFlags(BO); 2268 2269 // An undef shuffle mask element may propagate as an undef constant element in 2270 // the new binop. That would produce poison where the original code might not. 2271 // If we already made a safe constant, then there's no danger. 2272 if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB) 2273 NewBO->dropPoisonGeneratingFlags(); 2274 return NewBO; 2275 } 2276 2277 /// If we have an insert of a scalar to a non-zero element of an undefined 2278 /// vector and then shuffle that value, that's the same as inserting to the zero 2279 /// element and shuffling. Splatting from the zero element is recognized as the 2280 /// canonical form of splat. 2281 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 2282 InstCombiner::BuilderTy &Builder) { 2283 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2284 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2285 Value *X; 2286 uint64_t IndexC; 2287 2288 // Match a shuffle that is a splat to a non-zero element. 2289 if (!match(Op0, m_OneUse(m_InsertElt(m_Poison(), m_Value(X), 2290 m_ConstantInt(IndexC)))) || 2291 !match(Op1, m_Poison()) || match(Mask, m_ZeroMask()) || IndexC == 0) 2292 return nullptr; 2293 2294 // Insert into element 0 of a poison vector. 2295 PoisonValue *PoisonVec = PoisonValue::get(Shuf.getType()); 2296 Value *NewIns = Builder.CreateInsertElement(PoisonVec, X, (uint64_t)0); 2297 2298 // Splat from element 0. Any mask element that is poison remains poison. 2299 // For example: 2300 // shuf (inselt poison, X, 2), _, <2,2,undef> 2301 // --> shuf (inselt poison, X, 0), poison, <0,0,undef> 2302 unsigned NumMaskElts = 2303 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2304 SmallVector<int, 16> NewMask(NumMaskElts, 0); 2305 for (unsigned i = 0; i != NumMaskElts; ++i) 2306 if (Mask[i] == PoisonMaskElem) 2307 NewMask[i] = Mask[i]; 2308 2309 return new ShuffleVectorInst(NewIns, NewMask); 2310 } 2311 2312 /// Try to fold shuffles that are the equivalent of a vector select. 2313 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) { 2314 if (!Shuf.isSelect()) 2315 return nullptr; 2316 2317 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 2318 // Commuting undef to operand 0 conflicts with another canonicalization. 2319 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2320 if (!match(Shuf.getOperand(1), m_Undef()) && 2321 Shuf.getMaskValue(0) >= (int)NumElts) { 2322 // TODO: Can we assert that both operands of a shuffle-select are not undef 2323 // (otherwise, it would have been folded by instsimplify? 2324 Shuf.commute(); 2325 return &Shuf; 2326 } 2327 2328 if (Instruction *I = foldSelectShuffleOfSelectShuffle(Shuf)) 2329 return I; 2330 2331 if (Instruction *I = foldSelectShuffleWith1Binop( 2332 Shuf, getSimplifyQuery().getWithInstruction(&Shuf))) 2333 return I; 2334 2335 BinaryOperator *B0, *B1; 2336 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 2337 !match(Shuf.getOperand(1), m_BinOp(B1))) 2338 return nullptr; 2339 2340 // If one operand is "0 - X", allow that to be viewed as "X * -1" 2341 // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired 2342 // with a multiply, we will exit because C0/C1 will not be set. 2343 Value *X, *Y; 2344 Constant *C0 = nullptr, *C1 = nullptr; 2345 bool ConstantsAreOp1; 2346 if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 2347 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 2348 ConstantsAreOp1 = false; 2349 else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)), 2350 m_Neg(m_Value(X)))) && 2351 match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)), 2352 m_Neg(m_Value(Y))))) 2353 ConstantsAreOp1 = true; 2354 else 2355 return nullptr; 2356 2357 // We need matching binops to fold the lanes together. 2358 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 2359 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 2360 bool DropNSW = false; 2361 if (ConstantsAreOp1 && Opc0 != Opc1) { 2362 // TODO: We drop "nsw" if shift is converted into multiply because it may 2363 // not be correct when the shift amount is BitWidth - 1. We could examine 2364 // each vector element to determine if it is safe to keep that flag. 2365 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 2366 DropNSW = true; 2367 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 2368 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 2369 Opc0 = AltB0.Opcode; 2370 C0 = cast<Constant>(AltB0.Op1); 2371 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 2372 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 2373 Opc1 = AltB1.Opcode; 2374 C1 = cast<Constant>(AltB1.Op1); 2375 } 2376 } 2377 2378 if (Opc0 != Opc1 || !C0 || !C1) 2379 return nullptr; 2380 2381 // The opcodes must be the same. Use a new name to make that clear. 2382 BinaryOperator::BinaryOps BOpc = Opc0; 2383 2384 // Select the constant elements needed for the single binop. 2385 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2386 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2387 2388 // We are moving a binop after a shuffle. When a shuffle has an undefined 2389 // mask element, the result is undefined, but it is not poison or undefined 2390 // behavior. That is not necessarily true for div/rem/shift. 2391 bool MightCreatePoisonOrUB = 2392 is_contained(Mask, PoisonMaskElem) && 2393 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2394 if (MightCreatePoisonOrUB) 2395 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2396 ConstantsAreOp1); 2397 2398 Value *V; 2399 if (X == Y) { 2400 // Remove a binop and the shuffle by rearranging the constant: 2401 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2402 // shuffle (op C0, V), (op C1, V), M --> op C', V 2403 V = X; 2404 } else { 2405 // If there are 2 different variable operands, we must create a new shuffle 2406 // (select) first, so check uses to ensure that we don't end up with more 2407 // instructions than we started with. 2408 if (!B0->hasOneUse() && !B1->hasOneUse()) 2409 return nullptr; 2410 2411 // If we use the original shuffle mask and op1 is *variable*, we would be 2412 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2413 // poison. We do not have to guard against UB when *constants* are op1 2414 // because safe constants guarantee that we do not overflow sdiv/srem (and 2415 // there's no danger for other opcodes). 2416 // TODO: To allow this case, create a new shuffle mask with no undefs. 2417 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2418 return nullptr; 2419 2420 // Note: In general, we do not create new shuffles in InstCombine because we 2421 // do not know if a target can lower an arbitrary shuffle optimally. In this 2422 // case, the shuffle uses the existing mask, so there is no additional risk. 2423 2424 // Select the variable vectors first, then perform the binop: 2425 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2426 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2427 V = Builder.CreateShuffleVector(X, Y, Mask); 2428 } 2429 2430 Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) : 2431 Builder.CreateBinOp(BOpc, NewC, V); 2432 2433 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2434 // 1. If we changed an opcode, poison conditions might have changed. 2435 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2436 // where the original code did not. But if we already made a safe constant, 2437 // then there's no danger. 2438 if (auto *NewI = dyn_cast<Instruction>(NewBO)) { 2439 NewI->copyIRFlags(B0); 2440 NewI->andIRFlags(B1); 2441 if (DropNSW) 2442 NewI->setHasNoSignedWrap(false); 2443 if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB) 2444 NewI->dropPoisonGeneratingFlags(); 2445 } 2446 return replaceInstUsesWith(Shuf, NewBO); 2447 } 2448 2449 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2450 /// Example (little endian): 2451 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2452 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2453 bool IsBigEndian) { 2454 // This must be a bitcasted shuffle of 1 vector integer operand. 2455 Type *DestType = Shuf.getType(); 2456 Value *X; 2457 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2458 !match(Shuf.getOperand(1), m_Poison()) || !DestType->isIntOrIntVectorTy()) 2459 return nullptr; 2460 2461 // The source type must have the same number of elements as the shuffle, 2462 // and the source element type must be larger than the shuffle element type. 2463 Type *SrcType = X->getType(); 2464 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2465 cast<FixedVectorType>(SrcType)->getNumElements() != 2466 cast<FixedVectorType>(DestType)->getNumElements() || 2467 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2468 return nullptr; 2469 2470 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2471 "Expected a shuffle that decreases length"); 2472 2473 // Last, check that the mask chooses the correct low bits for each narrow 2474 // element in the result. 2475 uint64_t TruncRatio = 2476 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2477 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2478 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2479 if (Mask[i] == PoisonMaskElem) 2480 continue; 2481 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2482 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2483 if (Mask[i] != (int)LSBIndex) 2484 return nullptr; 2485 } 2486 2487 return new TruncInst(X, DestType); 2488 } 2489 2490 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2491 /// narrowing (concatenating with poison and extracting back to the original 2492 /// length). This allows replacing the wide select with a narrow select. 2493 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2494 InstCombiner::BuilderTy &Builder) { 2495 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2496 // of the 1st vector operand of a shuffle. 2497 if (!match(Shuf.getOperand(1), m_Poison()) || !Shuf.isIdentityWithExtract()) 2498 return nullptr; 2499 2500 // The vector being shuffled must be a vector select that we can eliminate. 2501 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2502 Value *Cond, *X, *Y; 2503 if (!match(Shuf.getOperand(0), 2504 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2505 return nullptr; 2506 2507 // We need a narrow condition value. It must be extended with poison elements 2508 // and have the same number of elements as this shuffle. 2509 unsigned NarrowNumElts = 2510 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2511 Value *NarrowCond; 2512 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Poison()))) || 2513 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2514 NarrowNumElts || 2515 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2516 return nullptr; 2517 2518 // shuf (sel (shuf NarrowCond, poison, WideMask), X, Y), poison, NarrowMask) 2519 // --> 2520 // sel NarrowCond, (shuf X, poison, NarrowMask), (shuf Y, poison, NarrowMask) 2521 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2522 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2523 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2524 } 2525 2526 /// Canonicalize FP negate/abs after shuffle. 2527 static Instruction *foldShuffleOfUnaryOps(ShuffleVectorInst &Shuf, 2528 InstCombiner::BuilderTy &Builder) { 2529 auto *S0 = dyn_cast<Instruction>(Shuf.getOperand(0)); 2530 Value *X; 2531 if (!S0 || !match(S0, m_CombineOr(m_FNeg(m_Value(X)), m_FAbs(m_Value(X))))) 2532 return nullptr; 2533 2534 bool IsFNeg = S0->getOpcode() == Instruction::FNeg; 2535 2536 // Match 1-input (unary) shuffle. 2537 // shuffle (fneg/fabs X), Mask --> fneg/fabs (shuffle X, Mask) 2538 if (S0->hasOneUse() && match(Shuf.getOperand(1), m_Poison())) { 2539 Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2540 if (IsFNeg) 2541 return UnaryOperator::CreateFNegFMF(NewShuf, S0); 2542 2543 Function *FAbs = Intrinsic::getOrInsertDeclaration( 2544 Shuf.getModule(), Intrinsic::fabs, Shuf.getType()); 2545 CallInst *NewF = CallInst::Create(FAbs, {NewShuf}); 2546 NewF->setFastMathFlags(S0->getFastMathFlags()); 2547 return NewF; 2548 } 2549 2550 // Match 2-input (binary) shuffle. 2551 auto *S1 = dyn_cast<Instruction>(Shuf.getOperand(1)); 2552 Value *Y; 2553 if (!S1 || !match(S1, m_CombineOr(m_FNeg(m_Value(Y)), m_FAbs(m_Value(Y)))) || 2554 S0->getOpcode() != S1->getOpcode() || 2555 (!S0->hasOneUse() && !S1->hasOneUse())) 2556 return nullptr; 2557 2558 // shuf (fneg/fabs X), (fneg/fabs Y), Mask --> fneg/fabs (shuf X, Y, Mask) 2559 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); 2560 Instruction *NewF; 2561 if (IsFNeg) { 2562 NewF = UnaryOperator::CreateFNeg(NewShuf); 2563 } else { 2564 Function *FAbs = Intrinsic::getOrInsertDeclaration( 2565 Shuf.getModule(), Intrinsic::fabs, Shuf.getType()); 2566 NewF = CallInst::Create(FAbs, {NewShuf}); 2567 } 2568 NewF->copyIRFlags(S0); 2569 NewF->andIRFlags(S1); 2570 return NewF; 2571 } 2572 2573 /// Canonicalize casts after shuffle. 2574 static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf, 2575 InstCombiner::BuilderTy &Builder) { 2576 // Do we have 2 matching cast operands? 2577 auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0)); 2578 auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1)); 2579 if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() || 2580 Cast0->getSrcTy() != Cast1->getSrcTy()) 2581 return nullptr; 2582 2583 // TODO: Allow other opcodes? That would require easing the type restrictions 2584 // below here. 2585 CastInst::CastOps CastOpcode = Cast0->getOpcode(); 2586 switch (CastOpcode) { 2587 case Instruction::FPToSI: 2588 case Instruction::FPToUI: 2589 case Instruction::SIToFP: 2590 case Instruction::UIToFP: 2591 break; 2592 default: 2593 return nullptr; 2594 } 2595 2596 VectorType *ShufTy = Shuf.getType(); 2597 VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType()); 2598 VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy()); 2599 2600 // TODO: Allow length-increasing shuffles? 2601 if (ShufTy->getElementCount().getKnownMinValue() > 2602 ShufOpTy->getElementCount().getKnownMinValue()) 2603 return nullptr; 2604 2605 // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)? 2606 assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) && 2607 "Expected fixed vector operands for casts and binary shuffle"); 2608 if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits()) 2609 return nullptr; 2610 2611 // At least one of the operands must have only one use (the shuffle). 2612 if (!Cast0->hasOneUse() && !Cast1->hasOneUse()) 2613 return nullptr; 2614 2615 // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask) 2616 Value *X = Cast0->getOperand(0); 2617 Value *Y = Cast1->getOperand(0); 2618 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); 2619 return CastInst::Create(CastOpcode, NewShuf, ShufTy); 2620 } 2621 2622 /// Try to fold an extract subvector operation. 2623 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2624 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2625 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Poison())) 2626 return nullptr; 2627 2628 // Check if we are extracting all bits of an inserted scalar: 2629 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2630 Value *X; 2631 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2632 X->getType()->getPrimitiveSizeInBits() == 2633 Shuf.getType()->getPrimitiveSizeInBits()) 2634 return new BitCastInst(X, Shuf.getType()); 2635 2636 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2637 Value *Y; 2638 ArrayRef<int> Mask; 2639 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2640 return nullptr; 2641 2642 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2643 // then combining may result in worse codegen. 2644 if (!Op0->hasOneUse()) 2645 return nullptr; 2646 2647 // We are extracting a subvector from a shuffle. Remove excess elements from 2648 // the 1st shuffle mask to eliminate the extract. 2649 // 2650 // This transform is conservatively limited to identity extracts because we do 2651 // not allow arbitrary shuffle mask creation as a target-independent transform 2652 // (because we can't guarantee that will lower efficiently). 2653 // 2654 // If the extracting shuffle has an poison mask element, it transfers to the 2655 // new shuffle mask. Otherwise, copy the original mask element. Example: 2656 // shuf (shuf X, Y, <C0, C1, C2, poison, C4>), poison, <0, poison, 2, 3> --> 2657 // shuf X, Y, <C0, poison, C2, poison> 2658 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2659 SmallVector<int, 16> NewMask(NumElts); 2660 assert(NumElts < Mask.size() && 2661 "Identity with extract must have less elements than its inputs"); 2662 2663 for (unsigned i = 0; i != NumElts; ++i) { 2664 int ExtractMaskElt = Shuf.getMaskValue(i); 2665 int MaskElt = Mask[i]; 2666 NewMask[i] = ExtractMaskElt == PoisonMaskElem ? ExtractMaskElt : MaskElt; 2667 } 2668 return new ShuffleVectorInst(X, Y, NewMask); 2669 } 2670 2671 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2672 /// operand with the operand of an insertelement. 2673 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2674 InstCombinerImpl &IC) { 2675 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2676 SmallVector<int, 16> Mask; 2677 Shuf.getShuffleMask(Mask); 2678 2679 int NumElts = Mask.size(); 2680 int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements(); 2681 2682 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2683 // not be able to handle it there if the insertelement has >1 use. 2684 // If the shuffle has an insertelement operand but does not choose the 2685 // inserted scalar element from that value, then we can replace that shuffle 2686 // operand with the source vector of the insertelement. 2687 Value *X; 2688 uint64_t IdxC; 2689 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2690 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2691 if (!is_contained(Mask, (int)IdxC)) 2692 return IC.replaceOperand(Shuf, 0, X); 2693 } 2694 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2695 // Offset the index constant by the vector width because we are checking for 2696 // accesses to the 2nd vector input of the shuffle. 2697 IdxC += InpNumElts; 2698 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2699 if (!is_contained(Mask, (int)IdxC)) 2700 return IC.replaceOperand(Shuf, 1, X); 2701 } 2702 // For the rest of the transform, the shuffle must not change vector sizes. 2703 // TODO: This restriction could be removed if the insert has only one use 2704 // (because the transform would require a new length-changing shuffle). 2705 if (NumElts != InpNumElts) 2706 return nullptr; 2707 2708 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2709 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2710 // We need an insertelement with a constant index. 2711 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2712 m_ConstantInt(IndexC)))) 2713 return false; 2714 2715 // Test the shuffle mask to see if it splices the inserted scalar into the 2716 // operand 1 vector of the shuffle. 2717 int NewInsIndex = -1; 2718 for (int i = 0; i != NumElts; ++i) { 2719 // Ignore undef mask elements. 2720 if (Mask[i] == -1) 2721 continue; 2722 2723 // The shuffle takes elements of operand 1 without lane changes. 2724 if (Mask[i] == NumElts + i) 2725 continue; 2726 2727 // The shuffle must choose the inserted scalar exactly once. 2728 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2729 return false; 2730 2731 // The shuffle is placing the inserted scalar into element i. 2732 NewInsIndex = i; 2733 } 2734 2735 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2736 2737 // Index is updated to the potentially translated insertion lane. 2738 IndexC = ConstantInt::get(IndexC->getIntegerType(), NewInsIndex); 2739 return true; 2740 }; 2741 2742 // If the shuffle is unnecessary, insert the scalar operand directly into 2743 // operand 1 of the shuffle. Example: 2744 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2745 Value *Scalar; 2746 ConstantInt *IndexC; 2747 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2748 return InsertElementInst::Create(V1, Scalar, IndexC); 2749 2750 // Try again after commuting shuffle. Example: 2751 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2752 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2753 std::swap(V0, V1); 2754 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2755 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2756 return InsertElementInst::Create(V1, Scalar, IndexC); 2757 2758 return nullptr; 2759 } 2760 2761 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2762 // Match the operands as identity with padding (also known as concatenation 2763 // with undef) shuffles of the same source type. The backend is expected to 2764 // recreate these concatenations from a shuffle of narrow operands. 2765 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2766 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2767 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2768 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2769 return nullptr; 2770 2771 // We limit this transform to power-of-2 types because we expect that the 2772 // backend can convert the simplified IR patterns to identical nodes as the 2773 // original IR. 2774 // TODO: If we can verify the same behavior for arbitrary types, the 2775 // power-of-2 checks can be removed. 2776 Value *X = Shuffle0->getOperand(0); 2777 Value *Y = Shuffle1->getOperand(0); 2778 if (X->getType() != Y->getType() || 2779 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2780 !isPowerOf2_32( 2781 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2782 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2783 match(X, m_Undef()) || match(Y, m_Undef())) 2784 return nullptr; 2785 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2786 match(Shuffle1->getOperand(1), m_Undef()) && 2787 "Unexpected operand for identity shuffle"); 2788 2789 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2790 // operands directly by adjusting the shuffle mask to account for the narrower 2791 // types: 2792 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2793 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2794 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2795 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2796 2797 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2798 SmallVector<int, 16> NewMask(Mask.size(), -1); 2799 for (int i = 0, e = Mask.size(); i != e; ++i) { 2800 if (Mask[i] == -1) 2801 continue; 2802 2803 // If this shuffle is choosing an undef element from 1 of the sources, that 2804 // element is undef. 2805 if (Mask[i] < WideElts) { 2806 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2807 continue; 2808 } else { 2809 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2810 continue; 2811 } 2812 2813 // If this shuffle is choosing from the 1st narrow op, the mask element is 2814 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2815 // element is offset down to adjust for the narrow vector widths. 2816 if (Mask[i] < WideElts) { 2817 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2818 NewMask[i] = Mask[i]; 2819 } else { 2820 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2821 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2822 } 2823 } 2824 return new ShuffleVectorInst(X, Y, NewMask); 2825 } 2826 2827 // Splatting the first element of the result of a BinOp, where any of the 2828 // BinOp's operands are the result of a first element splat can be simplified to 2829 // splatting the first element of the result of the BinOp 2830 Instruction *InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst &SVI) { 2831 if (!match(SVI.getOperand(1), m_Poison()) || 2832 !match(SVI.getShuffleMask(), m_ZeroMask()) || 2833 !SVI.getOperand(0)->hasOneUse()) 2834 return nullptr; 2835 2836 Value *Op0 = SVI.getOperand(0); 2837 Value *X, *Y; 2838 if (!match(Op0, m_BinOp(m_Shuffle(m_Value(X), m_Poison(), m_ZeroMask()), 2839 m_Value(Y))) && 2840 !match(Op0, m_BinOp(m_Value(X), 2841 m_Shuffle(m_Value(Y), m_Poison(), m_ZeroMask())))) 2842 return nullptr; 2843 if (X->getType() != Y->getType()) 2844 return nullptr; 2845 2846 auto *BinOp = cast<BinaryOperator>(Op0); 2847 if (!isSafeToSpeculativelyExecuteWithVariableReplaced(BinOp)) 2848 return nullptr; 2849 2850 Value *NewBO = Builder.CreateBinOp(BinOp->getOpcode(), X, Y); 2851 if (auto NewBOI = dyn_cast<Instruction>(NewBO)) 2852 NewBOI->copyIRFlags(BinOp); 2853 2854 return new ShuffleVectorInst(NewBO, SVI.getShuffleMask()); 2855 } 2856 2857 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2858 Value *LHS = SVI.getOperand(0); 2859 Value *RHS = SVI.getOperand(1); 2860 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2861 if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2862 SVI.getType(), ShufQuery)) 2863 return replaceInstUsesWith(SVI, V); 2864 2865 if (Instruction *I = simplifyBinOpSplats(SVI)) 2866 return I; 2867 2868 // Canonicalize splat shuffle to use poison RHS. Handle this explicitly in 2869 // order to support scalable vectors. 2870 if (match(SVI.getShuffleMask(), m_ZeroMask()) && !isa<PoisonValue>(RHS)) 2871 return replaceOperand(SVI, 1, PoisonValue::get(RHS->getType())); 2872 2873 if (isa<ScalableVectorType>(LHS->getType())) 2874 return nullptr; 2875 2876 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2877 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2878 2879 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2880 // 2881 // if X and Y are of the same (vector) type, and the element size is not 2882 // changed by the bitcasts, we can distribute the bitcasts through the 2883 // shuffle, hopefully reducing the number of instructions. We make sure that 2884 // at least one bitcast only has one use, so we don't *increase* the number of 2885 // instructions here. 2886 Value *X, *Y; 2887 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2888 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2889 X->getType()->getScalarSizeInBits() == 2890 SVI.getType()->getScalarSizeInBits() && 2891 (LHS->hasOneUse() || RHS->hasOneUse())) { 2892 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2893 SVI.getName() + ".uncasted"); 2894 return new BitCastInst(V, SVI.getType()); 2895 } 2896 2897 ArrayRef<int> Mask = SVI.getShuffleMask(); 2898 2899 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2900 // simulated shuffle can simplify, then this shuffle is unnecessary: 2901 // shuf (bitcast X), undef, Mask --> bitcast X' 2902 // TODO: This could be extended to allow length-changing shuffles. 2903 // The transform might also be obsoleted if we allowed canonicalization 2904 // of bitcasted shuffles. 2905 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2906 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2907 // Try to create a scaled mask constant. 2908 auto *XType = cast<FixedVectorType>(X->getType()); 2909 unsigned XNumElts = XType->getNumElements(); 2910 SmallVector<int, 16> ScaledMask; 2911 if (scaleShuffleMaskElts(XNumElts, Mask, ScaledMask)) { 2912 // If the shuffled source vector simplifies, cast that value to this 2913 // shuffle's type. 2914 if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType), 2915 ScaledMask, XType, ShufQuery)) 2916 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2917 } 2918 } 2919 2920 // shuffle x, x, mask --> shuffle x, undef, mask' 2921 if (LHS == RHS) { 2922 assert(!match(RHS, m_Undef()) && 2923 "Shuffle with 2 undef ops not simplified?"); 2924 return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth)); 2925 } 2926 2927 // shuffle undef, x, mask --> shuffle x, undef, mask' 2928 if (match(LHS, m_Undef())) { 2929 SVI.commute(); 2930 return &SVI; 2931 } 2932 2933 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2934 return I; 2935 2936 if (Instruction *I = foldSelectShuffle(SVI)) 2937 return I; 2938 2939 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2940 return I; 2941 2942 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2943 return I; 2944 2945 if (Instruction *I = foldShuffleOfUnaryOps(SVI, Builder)) 2946 return I; 2947 2948 if (Instruction *I = foldCastShuffle(SVI, Builder)) 2949 return I; 2950 2951 APInt PoisonElts(VWidth, 0); 2952 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2953 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, PoisonElts)) { 2954 if (V != &SVI) 2955 return replaceInstUsesWith(SVI, V); 2956 return &SVI; 2957 } 2958 2959 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2960 return I; 2961 2962 // These transforms have the potential to lose undef knowledge, so they are 2963 // intentionally placed after SimplifyDemandedVectorElts(). 2964 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2965 return I; 2966 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2967 return I; 2968 2969 if (match(RHS, m_Constant())) { 2970 if (auto *SI = dyn_cast<SelectInst>(LHS)) { 2971 // We cannot do this fold for elementwise select since ShuffleVector is 2972 // not elementwise. 2973 if (SI->getCondition()->getType()->isIntegerTy() && 2974 (isa<PoisonValue>(RHS) || 2975 isGuaranteedNotToBePoison(SI->getCondition()))) { 2976 if (Instruction *I = FoldOpIntoSelect(SVI, SI)) 2977 return I; 2978 } 2979 } 2980 if (auto *PN = dyn_cast<PHINode>(LHS)) { 2981 if (Instruction *I = foldOpIntoPhi(SVI, PN, /*AllowMultipleUses=*/true)) 2982 return I; 2983 } 2984 } 2985 2986 if (match(RHS, m_Poison()) && canEvaluateShuffled(LHS, Mask)) { 2987 Value *V = evaluateInDifferentElementOrder(LHS, Mask, Builder); 2988 return replaceInstUsesWith(SVI, V); 2989 } 2990 2991 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2992 // a non-vector type. We can instead bitcast the original vector followed by 2993 // an extract of the desired element: 2994 // 2995 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2996 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2997 // %1 = bitcast <4 x i8> %sroa to i32 2998 // Becomes: 2999 // %bc = bitcast <16 x i8> %in to <4 x i32> 3000 // %ext = extractelement <4 x i32> %bc, i32 0 3001 // 3002 // If the shuffle is extracting a contiguous range of values from the input 3003 // vector then each use which is a bitcast of the extracted size can be 3004 // replaced. This will work if the vector types are compatible, and the begin 3005 // index is aligned to a value in the casted vector type. If the begin index 3006 // isn't aligned then we can shuffle the original vector (keeping the same 3007 // vector type) before extracting. 3008 // 3009 // This code will bail out if the target type is fundamentally incompatible 3010 // with vectors of the source type. 3011 // 3012 // Example of <16 x i8>, target type i32: 3013 // Index range [4,8): v-----------v Will work. 3014 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 3015 // <16 x i8>: | | | | | | | | | | | | | | | | | 3016 // <4 x i32>: | | | | | 3017 // +-----------+-----------+-----------+-----------+ 3018 // Index range [6,10): ^-----------^ Needs an extra shuffle. 3019 // Target type i40: ^--------------^ Won't work, bail. 3020 bool MadeChange = false; 3021 if (isShuffleExtractingFromLHS(SVI, Mask)) { 3022 Value *V = LHS; 3023 unsigned MaskElems = Mask.size(); 3024 auto *SrcTy = cast<FixedVectorType>(V->getType()); 3025 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedValue(); 3026 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 3027 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 3028 unsigned SrcNumElems = SrcTy->getNumElements(); 3029 SmallVector<BitCastInst *, 8> BCs; 3030 DenseMap<Type *, Value *> NewBCs; 3031 for (User *U : SVI.users()) 3032 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 3033 if (!BC->use_empty()) 3034 // Only visit bitcasts that weren't previously handled. 3035 BCs.push_back(BC); 3036 for (BitCastInst *BC : BCs) { 3037 unsigned BegIdx = Mask.front(); 3038 Type *TgtTy = BC->getDestTy(); 3039 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 3040 if (!TgtElemBitWidth) 3041 continue; 3042 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 3043 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 3044 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 3045 if (!VecBitWidthsEqual) 3046 continue; 3047 if (!VectorType::isValidElementType(TgtTy)) 3048 continue; 3049 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 3050 if (!BegIsAligned) { 3051 // Shuffle the input so [0,NumElements) contains the output, and 3052 // [NumElems,SrcNumElems) is undef. 3053 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 3054 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 3055 ShuffleMask[I] = Idx; 3056 V = Builder.CreateShuffleVector(V, ShuffleMask, 3057 SVI.getName() + ".extract"); 3058 BegIdx = 0; 3059 } 3060 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 3061 assert(SrcElemsPerTgtElem); 3062 BegIdx /= SrcElemsPerTgtElem; 3063 auto [It, Inserted] = NewBCs.try_emplace(CastSrcTy); 3064 if (Inserted) 3065 It->second = Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 3066 auto *Ext = Builder.CreateExtractElement(It->second, BegIdx, 3067 SVI.getName() + ".extract"); 3068 // The shufflevector isn't being replaced: the bitcast that used it 3069 // is. InstCombine will visit the newly-created instructions. 3070 replaceInstUsesWith(*BC, Ext); 3071 MadeChange = true; 3072 } 3073 } 3074 3075 // If the LHS is a shufflevector itself, see if we can combine it with this 3076 // one without producing an unusual shuffle. 3077 // Cases that might be simplified: 3078 // 1. 3079 // x1=shuffle(v1,v2,mask1) 3080 // x=shuffle(x1,undef,mask) 3081 // ==> 3082 // x=shuffle(v1,undef,newMask) 3083 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 3084 // 2. 3085 // x1=shuffle(v1,undef,mask1) 3086 // x=shuffle(x1,x2,mask) 3087 // where v1.size() == mask1.size() 3088 // ==> 3089 // x=shuffle(v1,x2,newMask) 3090 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 3091 // 3. 3092 // x2=shuffle(v2,undef,mask2) 3093 // x=shuffle(x1,x2,mask) 3094 // where v2.size() == mask2.size() 3095 // ==> 3096 // x=shuffle(x1,v2,newMask) 3097 // newMask[i] = (mask[i] < x1.size()) 3098 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 3099 // 4. 3100 // x1=shuffle(v1,undef,mask1) 3101 // x2=shuffle(v2,undef,mask2) 3102 // x=shuffle(x1,x2,mask) 3103 // where v1.size() == v2.size() 3104 // ==> 3105 // x=shuffle(v1,v2,newMask) 3106 // newMask[i] = (mask[i] < x1.size()) 3107 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 3108 // 3109 // Here we are really conservative: 3110 // we are absolutely afraid of producing a shuffle mask not in the input 3111 // program, because the code gen may not be smart enough to turn a merged 3112 // shuffle into two specific shuffles: it may produce worse code. As such, 3113 // we only merge two shuffles if the result is either a splat or one of the 3114 // input shuffle masks. In this case, merging the shuffles just removes 3115 // one instruction, which we know is safe. This is good for things like 3116 // turning: (splat(splat)) -> splat, or 3117 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 3118 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 3119 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 3120 if (LHSShuffle) 3121 if (!match(LHSShuffle->getOperand(1), m_Poison()) && 3122 !match(RHS, m_Poison())) 3123 LHSShuffle = nullptr; 3124 if (RHSShuffle) 3125 if (!match(RHSShuffle->getOperand(1), m_Poison())) 3126 RHSShuffle = nullptr; 3127 if (!LHSShuffle && !RHSShuffle) 3128 return MadeChange ? &SVI : nullptr; 3129 3130 Value* LHSOp0 = nullptr; 3131 Value* LHSOp1 = nullptr; 3132 Value* RHSOp0 = nullptr; 3133 unsigned LHSOp0Width = 0; 3134 unsigned RHSOp0Width = 0; 3135 if (LHSShuffle) { 3136 LHSOp0 = LHSShuffle->getOperand(0); 3137 LHSOp1 = LHSShuffle->getOperand(1); 3138 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 3139 } 3140 if (RHSShuffle) { 3141 RHSOp0 = RHSShuffle->getOperand(0); 3142 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 3143 } 3144 Value* newLHS = LHS; 3145 Value* newRHS = RHS; 3146 if (LHSShuffle) { 3147 // case 1 3148 if (match(RHS, m_Poison())) { 3149 newLHS = LHSOp0; 3150 newRHS = LHSOp1; 3151 } 3152 // case 2 or 4 3153 else if (LHSOp0Width == LHSWidth) { 3154 newLHS = LHSOp0; 3155 } 3156 } 3157 // case 3 or 4 3158 if (RHSShuffle && RHSOp0Width == LHSWidth) { 3159 newRHS = RHSOp0; 3160 } 3161 // case 4 3162 if (LHSOp0 == RHSOp0) { 3163 newLHS = LHSOp0; 3164 newRHS = nullptr; 3165 } 3166 3167 if (newLHS == LHS && newRHS == RHS) 3168 return MadeChange ? &SVI : nullptr; 3169 3170 ArrayRef<int> LHSMask; 3171 ArrayRef<int> RHSMask; 3172 if (newLHS != LHS) 3173 LHSMask = LHSShuffle->getShuffleMask(); 3174 if (RHSShuffle && newRHS != RHS) 3175 RHSMask = RHSShuffle->getShuffleMask(); 3176 3177 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 3178 SmallVector<int, 16> newMask; 3179 bool isSplat = true; 3180 int SplatElt = -1; 3181 // Create a new mask for the new ShuffleVectorInst so that the new 3182 // ShuffleVectorInst is equivalent to the original one. 3183 for (unsigned i = 0; i < VWidth; ++i) { 3184 int eltMask; 3185 if (Mask[i] < 0) { 3186 // This element is a poison value. 3187 eltMask = -1; 3188 } else if (Mask[i] < (int)LHSWidth) { 3189 // This element is from left hand side vector operand. 3190 // 3191 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 3192 // new mask value for the element. 3193 if (newLHS != LHS) { 3194 eltMask = LHSMask[Mask[i]]; 3195 // If the value selected is an poison value, explicitly specify it 3196 // with a -1 mask value. 3197 if (eltMask >= (int)LHSOp0Width && isa<PoisonValue>(LHSOp1)) 3198 eltMask = -1; 3199 } else 3200 eltMask = Mask[i]; 3201 } else { 3202 // This element is from right hand side vector operand 3203 // 3204 // If the value selected is a poison value, explicitly specify it 3205 // with a -1 mask value. (case 1) 3206 if (match(RHS, m_Poison())) 3207 eltMask = -1; 3208 // If RHS is going to be replaced (case 3 or 4), calculate the 3209 // new mask value for the element. 3210 else if (newRHS != RHS) { 3211 eltMask = RHSMask[Mask[i]-LHSWidth]; 3212 // If the value selected is an poison value, explicitly specify it 3213 // with a -1 mask value. 3214 if (eltMask >= (int)RHSOp0Width) { 3215 assert(match(RHSShuffle->getOperand(1), m_Poison()) && 3216 "should have been check above"); 3217 eltMask = -1; 3218 } 3219 } else 3220 eltMask = Mask[i]-LHSWidth; 3221 3222 // If LHS's width is changed, shift the mask value accordingly. 3223 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 3224 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 3225 // If newRHS == newLHS, we want to remap any references from newRHS to 3226 // newLHS so that we can properly identify splats that may occur due to 3227 // obfuscation across the two vectors. 3228 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 3229 eltMask += newLHSWidth; 3230 } 3231 3232 // Check if this could still be a splat. 3233 if (eltMask >= 0) { 3234 if (SplatElt >= 0 && SplatElt != eltMask) 3235 isSplat = false; 3236 SplatElt = eltMask; 3237 } 3238 3239 newMask.push_back(eltMask); 3240 } 3241 3242 // If the result mask is equal to one of the original shuffle masks, 3243 // or is a splat, do the replacement. 3244 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 3245 if (!newRHS) 3246 newRHS = PoisonValue::get(newLHS->getType()); 3247 return new ShuffleVectorInst(newLHS, newRHS, newMask); 3248 } 3249 3250 return MadeChange ? &SVI : nullptr; 3251 } 3252