xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/i915/gt/intel_ggtt.c (revision da301012dd073ce7910d54c5eb29634169bd709d)
1 /*	$NetBSD: intel_ggtt.c,v 1.19 2025/01/26 18:23:56 riastradh Exp $	*/
2 
3 // SPDX-License-Identifier: MIT
4 /*
5  * Copyright © 2020 Intel Corporation
6  */
7 
8 #include <sys/cdefs.h>
9 __KERNEL_RCSID(0, "$NetBSD: intel_ggtt.c,v 1.19 2025/01/26 18:23:56 riastradh Exp $");
10 
11 #include <linux/stop_machine.h>
12 
13 #include <asm/set_memory.h>
14 #include <asm/smp.h>
15 
16 #ifdef __NetBSD__
17 #include <drm/io-mapping.h>
18 #endif
19 
20 #include "intel_gt.h"
21 #include "i915_drv.h"
22 #include "i915_scatterlist.h"
23 #include "i915_vgpu.h"
24 
25 #include "intel_gtt.h"
26 
27 #include <linux/nbsd-namespace.h>
28 
29 static int
30 i915_get_ggtt_vma_pages(struct i915_vma *vma);
31 
32 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
33 				   unsigned long color,
34 				   u64 *start,
35 				   u64 *end)
36 {
37 	if (i915_node_color_differs(node, color))
38 		*start += I915_GTT_PAGE_SIZE;
39 
40 	/*
41 	 * Also leave a space between the unallocated reserved node after the
42 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
43 	 * to insert a guard page to prevent prefetches crossing over the
44 	 * GTT boundary.
45 	 */
46 	node = list_next_entry(node, node_list);
47 	if (node->color != color)
48 		*end -= I915_GTT_PAGE_SIZE;
49 }
50 
51 static int ggtt_init_hw(struct i915_ggtt *ggtt)
52 {
53 	struct drm_i915_private *i915 = ggtt->vm.i915;
54 
55 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
56 
57 	ggtt->vm.is_ggtt = true;
58 
59 	/* Only VLV supports read-only GGTT mappings */
60 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
61 
62 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
63 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
64 
65 	if (ggtt->mappable_end) {
66 #ifdef __NetBSD__
67 		if (!drm_io_mapping_init_wc(&i915->drm, &ggtt->iomap,
68 			ggtt->gmadr.start, ggtt->mappable_end)) {
69 			ggtt->vm.cleanup(&ggtt->vm);
70 			return -EIO;
71 		}
72 		/*
73 		 * Note: mappable_end is the size, not end paddr, of
74 		 * the aperture.
75 		 */
76 		pmap_pv_track(ggtt->gmadr.start, ggtt->mappable_end);
77 #else
78 		if (!io_mapping_init_wc(&ggtt->iomap,
79 					ggtt->gmadr.start,
80 					ggtt->mappable_end)) {
81 			ggtt->vm.cleanup(&ggtt->vm);
82 			return -EIO;
83 		}
84 #endif
85 
86 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
87 					      ggtt->mappable_end);
88 	}
89 
90 	i915_ggtt_init_fences(ggtt);
91 
92 	return 0;
93 }
94 
95 /**
96  * i915_ggtt_init_hw - Initialize GGTT hardware
97  * @i915: i915 device
98  */
99 int i915_ggtt_init_hw(struct drm_i915_private *i915)
100 {
101 	int ret;
102 
103 #ifndef __NetBSD__
104 	stash_init(&i915->mm.wc_stash);
105 #endif
106 
107 	/*
108 	 * Note that we use page colouring to enforce a guard page at the
109 	 * end of the address space. This is required as the CS may prefetch
110 	 * beyond the end of the batch buffer, across the page boundary,
111 	 * and beyond the end of the GTT if we do not provide a guard.
112 	 */
113 	ret = ggtt_init_hw(&i915->ggtt);
114 	if (ret)
115 		return ret;
116 
117 	return 0;
118 }
119 
120 /*
121  * Certain Gen5 chipsets require require idling the GPU before
122  * unmapping anything from the GTT when VT-d is enabled.
123  */
124 static bool needs_idle_maps(struct drm_i915_private *i915)
125 {
126 	/*
127 	 * Query intel_iommu to see if we need the workaround. Presumably that
128 	 * was loaded first.
129 	 */
130 	return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active();
131 }
132 
133 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
134 {
135 	struct drm_i915_private *i915 = ggtt->vm.i915;
136 
137 	/*
138 	 * Don't bother messing with faults pre GEN6 as we have little
139 	 * documentation supporting that it's a good idea.
140 	 */
141 	if (INTEL_GEN(i915) < 6)
142 		return;
143 
144 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
145 
146 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
147 
148 	ggtt->invalidate(ggtt);
149 }
150 
151 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
152 {
153 	ggtt_suspend_mappings(&i915->ggtt);
154 }
155 
156 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
157 {
158 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
159 
160 	spin_lock_irq(&uncore->lock);
161 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
162 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
163 	spin_unlock_irq(&uncore->lock);
164 }
165 
166 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
167 {
168 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
169 
170 	/*
171 	 * Note that as an uncached mmio write, this will flush the
172 	 * WCB of the writes into the GGTT before it triggers the invalidate.
173 	 */
174 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
175 }
176 
177 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
178 {
179 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
180 	struct drm_i915_private *i915 = ggtt->vm.i915;
181 
182 	gen8_ggtt_invalidate(ggtt);
183 
184 	if (INTEL_GEN(i915) >= 12)
185 		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
186 				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
187 	else
188 		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
189 }
190 
191 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
192 {
193 	intel_gtt_chipset_flush();
194 }
195 
196 #ifdef __NetBSD__
197 static inline void
198 gen8_set_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i,
199     gen8_pte_t pte)
200 {
201         CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
202         CTASSERT(sizeof(gen8_pte_t) == 8);
203 #ifdef _LP64                    /* XXX How to detect bus_space_write_8?  */
204         bus_space_write_8(bst, bsh, 8*i, pte);
205 #else
206         bus_space_write_4(bst, bsh, 8*i, (uint32_t)pte);
207         bus_space_write_4(bst, bsh, 8*i + 4, (uint32_t)(pte >> 32));
208 #endif
209 }
210 #else
211 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
212 {
213 	writeq(pte, addr);
214 }
215 #endif
216 
217 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
218 				  dma_addr_t addr,
219 				  u64 offset,
220 				  enum i915_cache_level level,
221 				  u32 unused)
222 {
223 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
224 #ifndef __NetBSD__
225 	gen8_pte_t __iomem *pte =
226 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
227 #endif
228 
229 #ifdef __NetBSD__
230 	gen8_set_pte(ggtt->gsmt, ggtt->gsmh, offset / I915_GTT_PAGE_SIZE,
231 	    gen8_pte_encode(addr, level, 0));
232 #else
233 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
234 #endif
235 
236 	ggtt->invalidate(ggtt);
237 }
238 
239 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
240 				     struct i915_vma *vma,
241 				     enum i915_cache_level level,
242 				     u32 flags)
243 {
244 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
245 #ifdef __NetBSD__
246 	bus_dmamap_t map = vma->pages->sgl[0].sg_dmamap;
247 	unsigned seg;
248 	unsigned pgno;
249 #else
250 	struct sgt_iter sgt_iter;
251 	gen8_pte_t __iomem *gtt_entries;
252 #endif
253 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
254 	dma_addr_t addr;
255 
256 	/*
257 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
258 	 * not to allow the user to override access to a read only page.
259 	 */
260 
261 #ifdef __NetBSD__
262 	pgno = vma->node.start / I915_GTT_PAGE_SIZE;
263 	for (seg = 0; seg < map->dm_nsegs; seg++) {
264 		addr = map->dm_segs[seg].ds_addr;
265 		bus_size_t len = map->dm_segs[seg].ds_len;
266 		KASSERT((addr % I915_GTT_PAGE_SIZE) == 0);
267 		KASSERT((len % I915_GTT_PAGE_SIZE) == 0);
268 		for (;
269 		     len >= I915_GTT_PAGE_SIZE;
270 		     addr += I915_GTT_PAGE_SIZE, len -= I915_GTT_PAGE_SIZE) {
271 			gen8_set_pte(ggtt->gsmt, ggtt->gsmh, pgno++,
272 			    pte_encode | addr);
273 		}
274 		KASSERT(len == 0);
275 	}
276 #else
277 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
278 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
279 	for_each_sgt_daddr(addr, sgt_iter, vma->pages)
280 		gen8_set_pte(gtt_entries++, pte_encode | addr);
281 #endif
282 
283 	/*
284 	 * We want to flush the TLBs only after we're certain all the PTE
285 	 * updates have finished.
286 	 */
287 	ggtt->invalidate(ggtt);
288 }
289 
290 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
291 				  dma_addr_t addr,
292 				  u64 offset,
293 				  enum i915_cache_level level,
294 				  u32 flags)
295 {
296 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
297 #ifndef __NetBSD__
298 	gen6_pte_t __iomem *pte =
299 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
300 #endif
301 
302 #ifdef __NetBSD__
303 	CTASSERT(sizeof(gen6_pte_t) == 4);
304 	bus_space_write_4(ggtt->gsmt, ggtt->gsmh,
305 	    sizeof(gen6_pte_t) * (offset / I915_GTT_PAGE_SIZE),
306 	    vm->pte_encode(addr, level, flags));
307 #else
308 	iowrite32(vm->pte_encode(addr, level, flags), pte);
309 #endif
310 
311 	ggtt->invalidate(ggtt);
312 }
313 
314 /*
315  * Binds an object into the global gtt with the specified cache level.
316  * The object will be accessible to the GPU via commands whose operands
317  * reference offsets within the global GTT as well as accessible by the GPU
318  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
319  */
320 
321 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
322 				     struct i915_vma *vma,
323 				     enum i915_cache_level level,
324 				     u32 flags)
325 {
326 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
327 #ifdef __NetBSD__
328 	bus_dmamap_t map = vma->pages->sgl[0].sg_dmamap;
329 	unsigned seg;
330 	unsigned pgno;
331 #else
332 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
333 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
334 	struct sgt_iter iter;
335 #endif
336 	dma_addr_t addr;
337 
338 #ifdef __NetBSD__
339 	pgno = vma->node.start >> PAGE_SHIFT;
340 	for (seg = 0; seg < map->dm_nsegs; seg++) {
341 		addr = map->dm_segs[seg].ds_addr;
342 		bus_size_t len = map->dm_segs[seg].ds_len;
343 		KASSERT((addr % I915_GTT_PAGE_SIZE) == 0);
344 		KASSERT((len % I915_GTT_PAGE_SIZE) == 0);
345 		for (;
346 		     len >= I915_GTT_PAGE_SIZE;
347 		     addr += I915_GTT_PAGE_SIZE, len -= I915_GTT_PAGE_SIZE) {
348 			/* XXX KASSERT(pgno < ...)?  */
349 			CTASSERT(sizeof(gen6_pte_t) == 4);
350 			bus_space_write_4(ggtt->gsmt, ggtt->gsmh,
351 			    sizeof(gen6_pte_t) * pgno++,
352 			    vm->pte_encode(addr, level, flags));
353 		}
354 		KASSERT(len == 0);
355 		/* XXX KASSERT(pgno <= ...)?  */
356 	}
357 #else
358 	for_each_sgt_daddr(addr, iter, vma->pages)
359 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
360 #endif
361 
362 	/*
363 	 * We want to flush the TLBs only after we're certain all the PTE
364 	 * updates have finished.
365 	 */
366 	ggtt->invalidate(ggtt);
367 }
368 
369 static void nop_clear_range(struct i915_address_space *vm,
370 			    u64 start, u64 length)
371 {
372 }
373 
374 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
375 				  u64 start, u64 length)
376 {
377 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
378 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
379 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
380 	const gen8_pte_t scratch_pte = vm->scratch[0].encode;
381 #ifndef __NetBSD__
382 	gen8_pte_t __iomem *gtt_base =
383 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
384 #endif
385 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
386 	int i;
387 
388 	if (WARN(num_entries > max_entries,
389 		 "First entry = %d; Num entries = %d (max=%d)\n",
390 		 first_entry, num_entries, max_entries))
391 		num_entries = max_entries;
392 
393 #ifdef __NetBSD__
394 	for (i = 0; i < num_entries; i++)
395 		gen8_set_pte(ggtt->gsmt, ggtt->gsmh, first_entry + i,
396 		    scratch_pte);
397 #else
398 	for (i = 0; i < num_entries; i++)
399 		gen8_set_pte(&gtt_base[i], scratch_pte);
400 #endif
401 }
402 
403 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
404 {
405 	/*
406 	 * Make sure the internal GAM fifo has been cleared of all GTT
407 	 * writes before exiting stop_machine(). This guarantees that
408 	 * any aperture accesses waiting to start in another process
409 	 * cannot back up behind the GTT writes causing a hang.
410 	 * The register can be any arbitrary GAM register.
411 	 */
412 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
413 }
414 
415 struct insert_page {
416 	struct i915_address_space *vm;
417 	dma_addr_t addr;
418 	u64 offset;
419 	enum i915_cache_level level;
420 };
421 
422 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
423 {
424 	struct insert_page *arg = _arg;
425 
426 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
427 	bxt_vtd_ggtt_wa(arg->vm);
428 
429 	return 0;
430 }
431 
432 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
433 					  dma_addr_t addr,
434 					  u64 offset,
435 					  enum i915_cache_level level,
436 					  u32 unused)
437 {
438 	struct insert_page arg = { vm, addr, offset, level };
439 
440 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
441 }
442 
443 struct insert_entries {
444 	struct i915_address_space *vm;
445 	struct i915_vma *vma;
446 	enum i915_cache_level level;
447 	u32 flags;
448 };
449 
450 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
451 {
452 	struct insert_entries *arg = _arg;
453 
454 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
455 	bxt_vtd_ggtt_wa(arg->vm);
456 
457 	return 0;
458 }
459 
460 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
461 					     struct i915_vma *vma,
462 					     enum i915_cache_level level,
463 					     u32 flags)
464 {
465 	struct insert_entries arg = { vm, vma, level, flags };
466 
467 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
468 }
469 
470 struct clear_range {
471 	struct i915_address_space *vm;
472 	u64 start;
473 	u64 length;
474 };
475 
476 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
477 {
478 	struct clear_range *arg = _arg;
479 
480 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
481 	bxt_vtd_ggtt_wa(arg->vm);
482 
483 	return 0;
484 }
485 
486 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
487 					  u64 start,
488 					  u64 length)
489 {
490 	struct clear_range arg = { vm, start, length };
491 
492 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
493 }
494 
495 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
496 				  u64 start, u64 length)
497 {
498 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
499 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
500 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
501 #ifdef __NetBSD__
502 	gen6_pte_t scratch_pte;
503 #else
504 	gen6_pte_t scratch_pte, __iomem *gtt_base =
505 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
506 #endif
507 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
508 	int i;
509 
510 	if (WARN(num_entries > max_entries,
511 		 "First entry = %d; Num entries = %d (max=%d)\n",
512 		 first_entry, num_entries, max_entries))
513 		num_entries = max_entries;
514 
515 	scratch_pte = vm->scratch[0].encode;
516 #ifdef __NetBSD__
517         CTASSERT(sizeof(gen6_pte_t) == 4);
518         for (i = 0; i < num_entries; i++)
519 		bus_space_write_4(ggtt->gsmt, ggtt->gsmh,
520 		    sizeof(gen6_pte_t) * (first_entry + i),
521 		    scratch_pte);
522 #else
523 	for (i = 0; i < num_entries; i++)
524 		iowrite32(scratch_pte, &gtt_base[i]);
525 #endif
526 }
527 
528 static void i915_ggtt_insert_page(struct i915_address_space *vm,
529 				  dma_addr_t addr,
530 				  u64 offset,
531 				  enum i915_cache_level cache_level,
532 				  u32 unused)
533 {
534 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
535 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
536 
537 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
538 }
539 
540 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
541 				     struct i915_vma *vma,
542 				     enum i915_cache_level cache_level,
543 				     u32 unused)
544 {
545 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
546 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
547 
548 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
549 				    flags);
550 }
551 
552 static void i915_ggtt_clear_range(struct i915_address_space *vm,
553 				  u64 start, u64 length)
554 {
555 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
556 }
557 
558 static int ggtt_bind_vma(struct i915_vma *vma,
559 			 enum i915_cache_level cache_level,
560 			 u32 flags)
561 {
562 	struct drm_i915_gem_object *obj = vma->obj;
563 	u32 pte_flags;
564 
565 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
566 	pte_flags = 0;
567 	if (i915_gem_object_is_readonly(obj))
568 		pte_flags |= PTE_READ_ONLY;
569 
570 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
571 
572 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
573 
574 	/*
575 	 * Without aliasing PPGTT there's no difference between
576 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
577 	 * upgrade to both bound if we bind either to avoid double-binding.
578 	 */
579 	atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
580 
581 	return 0;
582 }
583 
584 static void ggtt_unbind_vma(struct i915_vma *vma)
585 {
586 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
587 }
588 
589 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
590 {
591 	u64 size;
592 	int ret;
593 
594 	if (!USES_GUC(ggtt->vm.i915))
595 		return 0;
596 
597 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
598 	size = ggtt->vm.total - GUC_GGTT_TOP;
599 
600 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
601 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
602 				   PIN_NOEVICT);
603 	if (ret)
604 		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
605 
606 	return ret;
607 }
608 
609 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
610 {
611 	if (drm_mm_node_allocated(&ggtt->uc_fw))
612 		drm_mm_remove_node(&ggtt->uc_fw);
613 }
614 
615 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
616 {
617 	ggtt_release_guc_top(ggtt);
618 	if (drm_mm_node_allocated(&ggtt->error_capture))
619 		drm_mm_remove_node(&ggtt->error_capture);
620 	mutex_destroy(&ggtt->error_mutex);
621 }
622 
623 static int init_ggtt(struct i915_ggtt *ggtt)
624 {
625 	/*
626 	 * Let GEM Manage all of the aperture.
627 	 *
628 	 * However, leave one page at the end still bound to the scratch page.
629 	 * There are a number of places where the hardware apparently prefetches
630 	 * past the end of the object, and we've seen multiple hangs with the
631 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
632 	 * aperture.  One page should be enough to keep any prefetching inside
633 	 * of the aperture.
634 	 */
635 	unsigned long hole_start, hole_end;
636 	struct drm_mm_node *entry;
637 	int ret;
638 
639 	/*
640 	 * GuC requires all resources that we're sharing with it to be placed in
641 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
642 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
643 	 * why.
644 	 */
645 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
646 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
647 
648 	ret = intel_vgt_balloon(ggtt);
649 	if (ret)
650 		return ret;
651 
652 	mutex_init(&ggtt->error_mutex);
653 	if (ggtt->mappable_end) {
654 		/* Reserve a mappable slot for our lockless error capture */
655 		ret = drm_mm_insert_node_in_range(&ggtt->vm.mm,
656 						  &ggtt->error_capture,
657 						  PAGE_SIZE, 0,
658 						  I915_COLOR_UNEVICTABLE,
659 						  0, ggtt->mappable_end,
660 						  DRM_MM_INSERT_LOW);
661 		if (ret)
662 			return ret;
663 	}
664 
665 	/*
666 	 * The upper portion of the GuC address space has a sizeable hole
667 	 * (several MB) that is inaccessible by GuC. Reserve this range within
668 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
669 	 */
670 	ret = ggtt_reserve_guc_top(ggtt);
671 	if (ret)
672 		goto err;
673 
674 	/* Clear any non-preallocated blocks */
675 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
676 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
677 			      hole_start, hole_end);
678 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
679 				     hole_end - hole_start);
680 	}
681 
682 	/* And finally clear the reserved guard page */
683 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
684 
685 	return 0;
686 
687 err:
688 	cleanup_init_ggtt(ggtt);
689 	return ret;
690 }
691 
692 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
693 				 enum i915_cache_level cache_level,
694 				 u32 flags)
695 {
696 	u32 pte_flags;
697 	int ret;
698 
699 	/* Currently applicable only to VLV */
700 	pte_flags = 0;
701 	if (i915_gem_object_is_readonly(vma->obj))
702 		pte_flags |= PTE_READ_ONLY;
703 
704 	if (flags & I915_VMA_LOCAL_BIND) {
705 		struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
706 
707 		if (flags & I915_VMA_ALLOC) {
708 			ret = alias->vm.allocate_va_range(&alias->vm,
709 							  vma->node.start,
710 							  vma->size);
711 			if (ret)
712 				return ret;
713 
714 			set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
715 		}
716 
717 		GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
718 				     __i915_vma_flags(vma)));
719 		alias->vm.insert_entries(&alias->vm, vma,
720 					 cache_level, pte_flags);
721 	}
722 
723 	if (flags & I915_VMA_GLOBAL_BIND)
724 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
725 
726 	return 0;
727 }
728 
729 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
730 {
731 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
732 		struct i915_address_space *vm = vma->vm;
733 
734 		vm->clear_range(vm, vma->node.start, vma->size);
735 	}
736 
737 	if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
738 		struct i915_address_space *vm =
739 			&i915_vm_to_ggtt(vma->vm)->alias->vm;
740 
741 		vm->clear_range(vm, vma->node.start, vma->size);
742 	}
743 }
744 
745 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
746 {
747 	struct i915_ppgtt *ppgtt;
748 	int err;
749 
750 	ppgtt = i915_ppgtt_create(ggtt->vm.gt);
751 	if (IS_ERR(ppgtt))
752 		return PTR_ERR(ppgtt);
753 
754 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
755 		err = -ENODEV;
756 		goto err_ppgtt;
757 	}
758 
759 	/*
760 	 * Note we only pre-allocate as far as the end of the global
761 	 * GTT. On 48b / 4-level page-tables, the difference is very,
762 	 * very significant! We have to preallocate as GVT/vgpu does
763 	 * not like the page directory disappearing.
764 	 */
765 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
766 	if (err)
767 		goto err_ppgtt;
768 
769 	ggtt->alias = ppgtt;
770 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
771 
772 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
773 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
774 
775 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
776 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
777 
778 	return 0;
779 
780 err_ppgtt:
781 	i915_vm_put(&ppgtt->vm);
782 	return err;
783 }
784 
785 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
786 {
787 	struct i915_ppgtt *ppgtt;
788 
789 	ppgtt = fetch_and_zero(&ggtt->alias);
790 	if (!ppgtt)
791 		return;
792 
793 	i915_vm_put(&ppgtt->vm);
794 
795 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
796 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
797 }
798 
799 int i915_init_ggtt(struct drm_i915_private *i915)
800 {
801 	int ret;
802 
803 	ret = init_ggtt(&i915->ggtt);
804 	if (ret)
805 		return ret;
806 
807 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
808 		ret = init_aliasing_ppgtt(&i915->ggtt);
809 		if (ret)
810 			cleanup_init_ggtt(&i915->ggtt);
811 	}
812 
813 	return 0;
814 }
815 
816 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
817 {
818 	struct i915_vma *vma, *vn;
819 
820 	atomic_set(&ggtt->vm.open, 0);
821 
822 	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
823 	flush_workqueue(ggtt->vm.i915->wq);
824 
825 	mutex_lock(&ggtt->vm.mutex);
826 
827 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
828 		WARN_ON(__i915_vma_unbind(vma));
829 
830 	if (drm_mm_node_allocated(&ggtt->error_capture))
831 		drm_mm_remove_node(&ggtt->error_capture);
832 	mutex_destroy(&ggtt->error_mutex);
833 
834 	ggtt_release_guc_top(ggtt);
835 	intel_vgt_deballoon(ggtt);
836 
837 	ggtt->vm.cleanup(&ggtt->vm);
838 
839 	mutex_unlock(&ggtt->vm.mutex);
840 	i915_address_space_fini(&ggtt->vm);
841 
842 #ifdef __NetBSD__
843 	if (ggtt->mappable_end)
844 		pmap_pv_untrack(ggtt->gmadr.start, ggtt->mappable_end);
845 #endif
846 
847 	arch_phys_wc_del(ggtt->mtrr);
848 
849 	if (ggtt->iomap.size)
850 		io_mapping_fini(&ggtt->iomap);
851 }
852 
853 /**
854  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
855  * @i915: i915 device
856  */
857 void i915_ggtt_driver_release(struct drm_i915_private *i915)
858 {
859 #ifndef __NetBSD__
860 	struct pagevec *pvec;
861 #endif
862 
863 	fini_aliasing_ppgtt(&i915->ggtt);
864 
865 	ggtt_cleanup_hw(&i915->ggtt);
866 
867 #ifndef __NetBSD__
868 	pvec = &i915->mm.wc_stash.pvec;
869 	if (pvec->nr) {
870 		set_pages_array_wb(pvec->pages, pvec->nr);
871 		__pagevec_release(pvec);
872 	}
873 #endif
874 }
875 
876 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
877 {
878 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
879 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
880 	return snb_gmch_ctl << 20;
881 }
882 
883 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
884 {
885 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
886 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
887 	if (bdw_gmch_ctl)
888 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
889 
890 #ifdef CONFIG_X86_32
891 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
892 	if (bdw_gmch_ctl > 4)
893 		bdw_gmch_ctl = 4;
894 #endif
895 
896 	return bdw_gmch_ctl << 20;
897 }
898 
899 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
900 {
901 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
902 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
903 
904 	if (gmch_ctrl)
905 		return 1 << (20 + gmch_ctrl);
906 
907 	return 0;
908 }
909 
910 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
911 {
912 	struct drm_i915_private *i915 = ggtt->vm.i915;
913 	struct pci_dev *pdev = i915->drm.pdev;
914 	phys_addr_t phys_addr;
915 	int ret;
916 
917 	/* For Modern GENs the PTEs and register space are split in the BAR */
918 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
919 
920 	/*
921 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
922 	 * will be dropped. For WC mappings in general we have 64 byte burst
923 	 * writes when the WC buffer is flushed, so we can't use it, but have to
924 	 * resort to an uncached mapping. The WC issue is easily caught by the
925 	 * readback check when writing GTT PTE entries.
926 	 */
927 #ifdef __NetBSD__
928     {
929 	int flags;
930 	if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
931 		flags = 0;
932 	else
933 		flags = BUS_SPACE_MAP_PREFETCHABLE;
934 	ggtt->gsmt = i915->drm.pdev->pd_pa.pa_memt;
935 	/* XXX errno NetBSD->Linux */
936 	ret = -bus_space_map(ggtt->gsmt, phys_addr, size, flags, &ggtt->gsmh);
937 	if (ret) {
938 		DRM_ERROR("Failed to map the ggtt page table: %d\n", ret);
939 		return ret;
940 	}
941 	ggtt->gsmsz = size;
942     }
943 #else
944 	if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
945 		ggtt->gsm = ioremap(phys_addr, size);
946 	else
947 		ggtt->gsm = ioremap_wc(phys_addr, size);
948 	if (!ggtt->gsm) {
949 		DRM_ERROR("Failed to map the ggtt page table\n");
950 		return -ENOMEM;
951 	}
952 #endif
953 
954 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
955 	if (ret) {
956 		DRM_ERROR("Scratch setup failed\n");
957 		/* iounmap will also get called at remove, but meh */
958 #ifdef __NetBSD__
959 		KASSERT(ggtt->gsmsz == size);
960 		bus_space_unmap(ggtt->gsmt, ggtt->gsmh, ggtt->gsmsz);
961 		ggtt->gsmsz = 0;
962 #else
963 		iounmap(ggtt->gsm);
964 #endif
965 		return ret;
966 	}
967 
968 	ggtt->vm.scratch[0].encode =
969 		ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
970 				    I915_CACHE_NONE, 0);
971 
972 	return 0;
973 }
974 
975 int ggtt_set_pages(struct i915_vma *vma)
976 {
977 	int ret;
978 
979 	GEM_BUG_ON(vma->pages);
980 
981 	ret = i915_get_ggtt_vma_pages(vma);
982 	if (ret)
983 		return ret;
984 
985 	vma->page_sizes = vma->obj->mm.page_sizes;
986 
987 	return 0;
988 }
989 
990 static void gen6_gmch_remove(struct i915_address_space *vm)
991 {
992 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
993 
994 #ifdef __NetBSD__
995 	if (ggtt->gsmsz) {
996 		bus_space_unmap(ggtt->gsmt, ggtt->gsmh, ggtt->gsmsz);
997 		ggtt->gsmsz = 0;
998 	}
999 #else
1000 	iounmap(ggtt->gsm);
1001 #endif
1002 	cleanup_scratch_page(vm);
1003 }
1004 
1005 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1006 {
1007 	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1008 					       pci_resource_len(pdev, bar));
1009 }
1010 
1011 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1012 {
1013 	struct drm_i915_private *i915 = ggtt->vm.i915;
1014 	struct pci_dev *pdev = i915->drm.pdev;
1015 	unsigned int size;
1016 	u16 snb_gmch_ctl;
1017 	int err;
1018 
1019 	/* TODO: We're not aware of mappable constraints on gen8 yet */
1020 	if (!IS_DGFX(i915)) {
1021 		ggtt->gmadr = pci_resource(pdev, 2);
1022 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
1023 	}
1024 
1025 #ifdef __NetBSD__
1026 	__USE(err);
1027 	ggtt->max_paddr = DMA_BIT_MASK(39);
1028 #else
1029 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
1030 	if (!err)
1031 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
1032 	if (err)
1033 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
1034 #endif
1035 
1036 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1037 	if (IS_CHERRYVIEW(i915))
1038 		size = chv_get_total_gtt_size(snb_gmch_ctl);
1039 	else
1040 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
1041 
1042 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1043 	ggtt->vm.cleanup = gen6_gmch_remove;
1044 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
1045 	ggtt->vm.clear_range = nop_clear_range;
1046 	if (intel_scanout_needs_vtd_wa(i915))
1047 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
1048 
1049 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1050 
1051 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
1052 	if (intel_ggtt_update_needs_vtd_wa(i915) ||
1053 	    IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) {
1054 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1055 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
1056 		if (ggtt->vm.clear_range != nop_clear_range)
1057 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
1058 	}
1059 
1060 	ggtt->invalidate = gen8_ggtt_invalidate;
1061 
1062 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1063 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1064 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1065 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1066 
1067 	ggtt->vm.pte_encode = gen8_pte_encode;
1068 
1069 	setup_private_pat(ggtt->vm.gt->uncore);
1070 
1071 	return ggtt_probe_common(ggtt, size);
1072 }
1073 
1074 static u64 snb_pte_encode(dma_addr_t addr,
1075 			  enum i915_cache_level level,
1076 			  u32 flags)
1077 {
1078 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1079 
1080 	switch (level) {
1081 	case I915_CACHE_L3_LLC:
1082 	case I915_CACHE_LLC:
1083 		pte |= GEN6_PTE_CACHE_LLC;
1084 		break;
1085 	case I915_CACHE_NONE:
1086 		pte |= GEN6_PTE_UNCACHED;
1087 		break;
1088 	default:
1089 		MISSING_CASE(level);
1090 	}
1091 
1092 	return pte;
1093 }
1094 
1095 static u64 ivb_pte_encode(dma_addr_t addr,
1096 			  enum i915_cache_level level,
1097 			  u32 flags)
1098 {
1099 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1100 
1101 	switch (level) {
1102 	case I915_CACHE_L3_LLC:
1103 		pte |= GEN7_PTE_CACHE_L3_LLC;
1104 		break;
1105 	case I915_CACHE_LLC:
1106 		pte |= GEN6_PTE_CACHE_LLC;
1107 		break;
1108 	case I915_CACHE_NONE:
1109 		pte |= GEN6_PTE_UNCACHED;
1110 		break;
1111 	default:
1112 		MISSING_CASE(level);
1113 	}
1114 
1115 	return pte;
1116 }
1117 
1118 static u64 byt_pte_encode(dma_addr_t addr,
1119 			  enum i915_cache_level level,
1120 			  u32 flags)
1121 {
1122 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1123 
1124 	if (!(flags & PTE_READ_ONLY))
1125 		pte |= BYT_PTE_WRITEABLE;
1126 
1127 	if (level != I915_CACHE_NONE)
1128 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1129 
1130 	return pte;
1131 }
1132 
1133 static u64 hsw_pte_encode(dma_addr_t addr,
1134 			  enum i915_cache_level level,
1135 			  u32 flags)
1136 {
1137 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1138 
1139 	if (level != I915_CACHE_NONE)
1140 		pte |= HSW_WB_LLC_AGE3;
1141 
1142 	return pte;
1143 }
1144 
1145 static u64 iris_pte_encode(dma_addr_t addr,
1146 			   enum i915_cache_level level,
1147 			   u32 flags)
1148 {
1149 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1150 
1151 	switch (level) {
1152 	case I915_CACHE_NONE:
1153 		break;
1154 	case I915_CACHE_WT:
1155 		pte |= HSW_WT_ELLC_LLC_AGE3;
1156 		break;
1157 	default:
1158 		pte |= HSW_WB_ELLC_LLC_AGE3;
1159 		break;
1160 	}
1161 
1162 	return pte;
1163 }
1164 
1165 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1166 {
1167 	struct drm_i915_private *i915 = ggtt->vm.i915;
1168 	struct pci_dev *pdev = i915->drm.pdev;
1169 	unsigned int size;
1170 	u16 snb_gmch_ctl;
1171 	int err;
1172 
1173 	ggtt->gmadr = pci_resource(pdev, 2);
1174 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1175 
1176 	/*
1177 	 * 64/512MB is the current min/max we actually know of, but this is
1178 	 * just a coarse sanity check.
1179 	 */
1180 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
1181 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
1182 		return -ENXIO;
1183 	}
1184 
1185 #ifdef __NetBSD__
1186 	__USE(err);
1187 	ggtt->max_paddr = DMA_BIT_MASK(40);
1188 #else
1189 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
1190 	if (!err)
1191 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
1192 	if (err)
1193 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
1194 #endif
1195 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1196 
1197 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1198 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1199 
1200 	ggtt->vm.clear_range = nop_clear_range;
1201 	if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1202 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1203 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1204 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1205 	ggtt->vm.cleanup = gen6_gmch_remove;
1206 
1207 	ggtt->invalidate = gen6_ggtt_invalidate;
1208 
1209 	if (HAS_EDRAM(i915))
1210 		ggtt->vm.pte_encode = iris_pte_encode;
1211 	else if (IS_HASWELL(i915))
1212 		ggtt->vm.pte_encode = hsw_pte_encode;
1213 	else if (IS_VALLEYVIEW(i915))
1214 		ggtt->vm.pte_encode = byt_pte_encode;
1215 	else if (INTEL_GEN(i915) >= 7)
1216 		ggtt->vm.pte_encode = ivb_pte_encode;
1217 	else
1218 		ggtt->vm.pte_encode = snb_pte_encode;
1219 
1220 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1221 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1222 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1223 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1224 
1225 	return ggtt_probe_common(ggtt, size);
1226 }
1227 
1228 static void i915_gmch_remove(struct i915_address_space *vm)
1229 {
1230 	intel_gmch_remove();
1231 }
1232 
1233 static int i915_gmch_probe(struct i915_ggtt *ggtt)
1234 {
1235 	struct drm_i915_private *i915 = ggtt->vm.i915;
1236 	phys_addr_t gmadr_base;
1237 	int ret;
1238 
1239 	ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL);
1240 	if (!ret) {
1241 		DRM_ERROR("failed to set up gmch\n");
1242 		return -EIO;
1243 	}
1244 
1245 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
1246 
1247 	ggtt->gmadr =
1248 		(struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
1249 
1250 #ifdef __NetBSD__
1251 	/* Based on i915_drv.c, i915_driver_hw_probe.  */
1252 	if (IS_GEN(i915, 2))
1253 		ggtt->max_paddr = DMA_BIT_MASK(30);
1254 	else if (IS_I965G(i915) || IS_I965GM(i915))
1255 		ggtt->max_paddr = DMA_BIT_MASK(32);
1256 	else
1257 		ggtt->max_paddr = DMA_BIT_MASK(40);
1258 #endif
1259 
1260 	ggtt->do_idle_maps = needs_idle_maps(i915);
1261 	ggtt->vm.insert_page = i915_ggtt_insert_page;
1262 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
1263 	ggtt->vm.clear_range = i915_ggtt_clear_range;
1264 	ggtt->vm.cleanup = i915_gmch_remove;
1265 
1266 	ggtt->invalidate = gmch_ggtt_invalidate;
1267 
1268 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1269 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1270 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1271 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1272 
1273 	if (unlikely(ggtt->do_idle_maps))
1274 		dev_notice(i915->drm.dev,
1275 			   "Applying Ironlake quirks for intel_iommu\n");
1276 
1277 	return 0;
1278 }
1279 
1280 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1281 {
1282 	struct drm_i915_private *i915 = gt->i915;
1283 	int ret;
1284 
1285 	ggtt->vm.gt = gt;
1286 	ggtt->vm.i915 = i915;
1287 #ifdef __NetBSD__
1288 	ggtt->vm.dmat = i915->drm.dmat;
1289 #else
1290 	ggtt->vm.dma = &i915->drm.pdev->dev;
1291 #endif
1292 
1293 	if (INTEL_GEN(i915) <= 5)
1294 		ret = i915_gmch_probe(ggtt);
1295 	else if (INTEL_GEN(i915) < 8)
1296 		ret = gen6_gmch_probe(ggtt);
1297 	else
1298 		ret = gen8_gmch_probe(ggtt);
1299 	if (ret)
1300 		return ret;
1301 
1302 #ifdef __NetBSD__
1303 	ggtt->pgfl = x86_select_freelist(ggtt->max_paddr);
1304 	ret = drm_limit_dma_space(&i915->drm, 0, ggtt->max_paddr);
1305 	if (ret) {
1306 		DRM_ERROR("Unable to limit DMA paddr allocations: %d\n", ret);
1307 		i915_ggtt_driver_release(i915);
1308 		return ret;
1309 	}
1310 #endif
1311 
1312 	if ((ggtt->vm.total - 1) >> 32) {
1313 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
1314 			  " of address space! Found %"PRId64"M!\n",
1315 			  ggtt->vm.total >> 20);
1316 		ggtt->vm.total = 1ULL << 32;
1317 		ggtt->mappable_end =
1318 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1319 	}
1320 
1321 	if (ggtt->mappable_end > ggtt->vm.total) {
1322 		DRM_ERROR("mappable aperture extends past end of GGTT,"
1323 			  " aperture=%pa, total=%"PRIx64"\n",
1324 			  &ggtt->mappable_end, ggtt->vm.total);
1325 		ggtt->mappable_end = ggtt->vm.total;
1326 	}
1327 
1328 	/* GMADR is the PCI mmio aperture into the global GTT. */
1329 	DRM_DEBUG_DRIVER("GGTT size = %"PRIu64"M\n", ggtt->vm.total >> 20);
1330 	DRM_DEBUG_DRIVER("GMADR size = %"PRIu64"M\n", (u64)ggtt->mappable_end >> 20);
1331 	DRM_DEBUG_DRIVER("DSM size = %"PRIu64"M\n",
1332 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1333 
1334 	return 0;
1335 }
1336 
1337 /**
1338  * i915_ggtt_probe_hw - Probe GGTT hardware location
1339  * @i915: i915 device
1340  */
1341 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1342 {
1343 	int ret;
1344 
1345 	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
1346 	if (ret)
1347 		return ret;
1348 
1349 	if (intel_vtd_active())
1350 		dev_info(i915->drm.dev, "VT-d active for gfx access\n");
1351 
1352 	return 0;
1353 }
1354 
1355 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1356 {
1357 	if (INTEL_GEN(i915) < 6 && !intel_enable_gtt())
1358 		return -EIO;
1359 
1360 	return 0;
1361 }
1362 
1363 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1364 {
1365 	GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1366 
1367 	ggtt->invalidate = guc_ggtt_invalidate;
1368 
1369 	ggtt->invalidate(ggtt);
1370 }
1371 
1372 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1373 {
1374 	/* XXX Temporary pardon for error unload */
1375 	if (ggtt->invalidate == gen8_ggtt_invalidate)
1376 		return;
1377 
1378 	/* We should only be called after i915_ggtt_enable_guc() */
1379 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1380 
1381 	ggtt->invalidate = gen8_ggtt_invalidate;
1382 
1383 	ggtt->invalidate(ggtt);
1384 }
1385 
1386 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
1387 {
1388 	struct i915_vma *vma;
1389 	bool flush = false;
1390 	int open;
1391 
1392 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
1393 
1394 	mutex_lock(&ggtt->vm.mutex);
1395 
1396 	/* First fill our portion of the GTT with scratch pages */
1397 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
1398 
1399 	/* Skip rewriting PTE on VMA unbind. */
1400 	open = atomic_xchg(&ggtt->vm.open, 0);
1401 
1402 	/* clflush objects bound into the GGTT and rebind them. */
1403 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
1404 		struct drm_i915_gem_object *obj = vma->obj;
1405 
1406 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
1407 			continue;
1408 
1409 		clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
1410 		WARN_ON(i915_vma_bind(vma,
1411 				      obj ? obj->cache_level : 0,
1412 				      PIN_GLOBAL, NULL));
1413 		if (obj) { /* only used during resume => exclusive access */
1414 			flush |= fetch_and_zero(&obj->write_domain);
1415 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1416 		}
1417 	}
1418 
1419 	atomic_set(&ggtt->vm.open, open);
1420 	ggtt->invalidate(ggtt);
1421 
1422 	mutex_unlock(&ggtt->vm.mutex);
1423 
1424 	if (flush)
1425 		wbinvd_on_all_cpus();
1426 }
1427 
1428 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
1429 {
1430 	struct i915_ggtt *ggtt = &i915->ggtt;
1431 
1432 	ggtt_restore_mappings(ggtt);
1433 
1434 	if (INTEL_GEN(i915) >= 8)
1435 		setup_private_pat(ggtt->vm.gt->uncore);
1436 }
1437 
1438 #ifndef __NetBSD__
1439 
1440 static struct scatterlist *
1441 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1442 	     unsigned int width, unsigned int height,
1443 	     unsigned int stride,
1444 	     struct sg_table *st, struct scatterlist *sg)
1445 {
1446 	unsigned int column, row;
1447 	unsigned int src_idx;
1448 
1449 	for (column = 0; column < width; column++) {
1450 		src_idx = stride * (height - 1) + column + offset;
1451 		for (row = 0; row < height; row++) {
1452 			st->nents++;
1453 			/*
1454 			 * We don't need the pages, but need to initialize
1455 			 * the entries so the sg list can be happily traversed.
1456 			 * The only thing we need are DMA addresses.
1457 			 */
1458 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
1459 			sg_dma_address(sg) =
1460 				i915_gem_object_get_dma_address(obj, src_idx);
1461 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
1462 			sg = sg_next(sg);
1463 			src_idx -= stride;
1464 		}
1465 	}
1466 
1467 	return sg;
1468 }
1469 
1470 static noinline struct sg_table *
1471 intel_rotate_pages(struct intel_rotation_info *rot_info,
1472 		   struct drm_i915_gem_object *obj)
1473 {
1474 	unsigned int size = intel_rotation_info_size(rot_info);
1475 	struct sg_table *st;
1476 	struct scatterlist *sg;
1477 	int ret = -ENOMEM;
1478 	int i;
1479 
1480 	/* Allocate target SG list. */
1481 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1482 	if (!st)
1483 		goto err_st_alloc;
1484 
1485 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1486 	if (ret)
1487 		goto err_sg_alloc;
1488 
1489 	st->nents = 0;
1490 	sg = st->sgl;
1491 
1492 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
1493 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1494 				  rot_info->plane[i].width, rot_info->plane[i].height,
1495 				  rot_info->plane[i].stride, st, sg);
1496 	}
1497 
1498 	return st;
1499 
1500 err_sg_alloc:
1501 	kfree(st);
1502 err_st_alloc:
1503 
1504 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1505 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
1506 
1507 	return ERR_PTR(ret);
1508 }
1509 
1510 static struct scatterlist *
1511 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1512 	    unsigned int width, unsigned int height,
1513 	    unsigned int stride,
1514 	    struct sg_table *st, struct scatterlist *sg)
1515 {
1516 	unsigned int row;
1517 
1518 	for (row = 0; row < height; row++) {
1519 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1520 
1521 		while (left) {
1522 			dma_addr_t addr;
1523 			unsigned int length;
1524 
1525 			/*
1526 			 * We don't need the pages, but need to initialize
1527 			 * the entries so the sg list can be happily traversed.
1528 			 * The only thing we need are DMA addresses.
1529 			 */
1530 
1531 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1532 
1533 			length = min(left, length);
1534 
1535 			st->nents++;
1536 
1537 			sg_set_page(sg, NULL, length, 0);
1538 			sg_dma_address(sg) = addr;
1539 			sg_dma_len(sg) = length;
1540 			sg = sg_next(sg);
1541 
1542 			offset += length / I915_GTT_PAGE_SIZE;
1543 			left -= length;
1544 		}
1545 
1546 		offset += stride - width;
1547 	}
1548 
1549 	return sg;
1550 }
1551 
1552 static noinline struct sg_table *
1553 intel_remap_pages(struct intel_remapped_info *rem_info,
1554 		  struct drm_i915_gem_object *obj)
1555 {
1556 	unsigned int size = intel_remapped_info_size(rem_info);
1557 	struct sg_table *st;
1558 	struct scatterlist *sg;
1559 	int ret = -ENOMEM;
1560 	int i;
1561 
1562 	/* Allocate target SG list. */
1563 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1564 	if (!st)
1565 		goto err_st_alloc;
1566 
1567 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1568 	if (ret)
1569 		goto err_sg_alloc;
1570 
1571 	st->nents = 0;
1572 	sg = st->sgl;
1573 
1574 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
1575 		sg = remap_pages(obj, rem_info->plane[i].offset,
1576 				 rem_info->plane[i].width, rem_info->plane[i].height,
1577 				 rem_info->plane[i].stride, st, sg);
1578 	}
1579 
1580 	i915_sg_trim(st);
1581 
1582 	return st;
1583 
1584 err_sg_alloc:
1585 	kfree(st);
1586 err_st_alloc:
1587 
1588 	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1589 			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
1590 
1591 	return ERR_PTR(ret);
1592 }
1593 
1594 #endif	/* __NetBSD__ */
1595 
1596 static noinline struct sg_table *
1597 intel_partial_pages(const struct i915_ggtt_view *view,
1598 		    struct drm_i915_gem_object *obj)
1599 {
1600 #ifdef __NetBSD__
1601 	struct sg_table *st = NULL;
1602 	int ret = -ENOMEM;
1603 
1604 	KASSERTMSG(view->partial.offset <= obj->base.size >> PAGE_SHIFT,
1605 	    "obj=%p size=0x%zx; view offset=0x%zx size=0x%zx",
1606 	    obj,
1607 	    (size_t)obj->base.size >> PAGE_SHIFT,
1608 	    (size_t)view->partial.offset,
1609 	    (size_t)view->partial.size);
1610 	KASSERTMSG((view->partial.size <=
1611 		(obj->base.size >> PAGE_SHIFT) - view->partial.offset),
1612 	    "obj=%p size=0x%zx; view offset=0x%zx size=0x%zx",
1613 	    obj,
1614 	    (size_t)obj->base.size >> PAGE_SHIFT,
1615 	    (size_t)view->partial.offset,
1616 	    (size_t)view->partial.size);
1617 	KASSERTMSG(view->partial.size <= INT_MAX, "view size=0x%zx",
1618 	    (size_t)view->partial.size);
1619 
1620 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1621 	if (st == NULL)
1622 		goto fail;
1623 	ret = sg_alloc_table(st, view->partial.size, GFP_KERNEL);
1624 	if (ret) {
1625 		kfree(st);
1626 		st = NULL;
1627 		goto fail;
1628 	}
1629 
1630 	/* XXX errno NetBSD->Linux */
1631 	if (obj->mm.pages->sgl->sg_dmamap) { /* XXX KASSERT?  */
1632 		ret = -bus_dmamap_create(obj->base.dev->dmat,
1633 		    (bus_size_t)view->partial.size << PAGE_SHIFT,
1634 		    view->partial.size, PAGE_SIZE, 0, BUS_DMA_NOWAIT,
1635 		    &st->sgl->sg_dmamap);
1636 		if (ret) {
1637 			st->sgl->sg_dmamap = NULL;
1638 			goto fail;
1639 		}
1640 		st->sgl->sg_dmat = obj->base.dev->dmat;
1641 	}
1642 
1643 	/*
1644 	 * Copy over the pages.  The view's offset and size are in
1645 	 * units of pages already.
1646 	 */
1647 	KASSERT(st->sgl->sg_npgs == view->partial.size);
1648 	memcpy(st->sgl->sg_pgs,
1649 	    obj->mm.pages->sgl->sg_pgs + view->partial.offset,
1650 	    sizeof(st->sgl->sg_pgs[0]) * view->partial.size);
1651 
1652 	/*
1653 	 * Copy over the DMA addresses.  For simplicity, we don't do
1654 	 * anything to compress contiguous pages into larger segments.
1655 	 */
1656 	if (obj->mm.pages->sgl->sg_dmamap) {
1657 		bus_size_t offset = (bus_size_t)view->partial.offset
1658 		    << PAGE_SHIFT;
1659 		unsigned i, j, k;
1660 
1661 		st->sgl->sg_dmamap->dm_nsegs = view->partial.size;
1662 		for (i = j = 0; i < view->partial.size; j++) {
1663 			KASSERT(j < obj->mm.pages->sgl->sg_dmamap->dm_nsegs);
1664 			const bus_dma_segment_t *iseg =
1665 			    &obj->mm.pages->sgl->sg_dmamap->dm_segs[j];
1666 
1667 			KASSERT(iseg->ds_len % PAGE_SIZE == 0);
1668 
1669 			/* Skip segments prior to the start offset.  */
1670 			if (offset >= iseg->ds_len) {
1671 				offset -= iseg->ds_len;
1672 				continue;
1673 			}
1674 			for (k = 0;
1675 			     (i < view->partial.size &&
1676 				 k < iseg->ds_len >> PAGE_SHIFT);
1677 			     k++) {
1678 				KASSERT(i < view->partial.size);
1679 				bus_dma_segment_t *oseg =
1680 				    &st->sgl->sg_dmamap->dm_segs[i++];
1681 				oseg->ds_addr = iseg->ds_addr + offset +
1682 				    k*PAGE_SIZE;
1683 				oseg->ds_len = PAGE_SIZE;
1684 			}
1685 
1686 			/*
1687 			 * After the first segment which we possibly
1688 			 * use only a suffix of, the remainder we will
1689 			 * take from the beginning.
1690 			 */
1691 			offset = 0;
1692 		}
1693 	}
1694 
1695 	/* Success!  */
1696 	return st;
1697 
1698 fail:	if (st) {
1699 		sg_free_table(st);
1700 		kfree(st);
1701 	}
1702 	return ERR_PTR(ret);
1703 #else
1704 	struct sg_table *st;
1705 	struct scatterlist *sg, *iter;
1706 	unsigned int count = view->partial.size;
1707 	unsigned int offset;
1708 	int ret;
1709 
1710 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1711 	if (!st) {
1712 		ret = -ENOMEM;
1713 		goto err_st_alloc;
1714 	}
1715 
1716 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1717 	if (ret)
1718 		goto err_sg_alloc;
1719 
1720 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
1721 	GEM_BUG_ON(!iter);
1722 
1723 	sg = st->sgl;
1724 	st->nents = 0;
1725 	do {
1726 		unsigned int len;
1727 
1728 		len = min(iter->length - (offset << PAGE_SHIFT),
1729 			  count << PAGE_SHIFT);
1730 		sg_set_page(sg, NULL, len, 0);
1731 		sg_dma_address(sg) =
1732 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1733 		sg_dma_len(sg) = len;
1734 
1735 		st->nents++;
1736 		count -= len >> PAGE_SHIFT;
1737 		if (count == 0) {
1738 			sg_mark_end(sg);
1739 			i915_sg_trim(st); /* Drop any unused tail entries. */
1740 
1741 			return st;
1742 		}
1743 
1744 		sg = __sg_next(sg);
1745 		iter = __sg_next(iter);
1746 		offset = 0;
1747 	} while (1);
1748 
1749 err_sg_alloc:
1750 	kfree(st);
1751 err_st_alloc:
1752 	return ERR_PTR(ret);
1753 #endif	/* __NetBSD__ */
1754 }
1755 
1756 static int
1757 i915_get_ggtt_vma_pages(struct i915_vma *vma)
1758 {
1759 	int ret;
1760 
1761 	/*
1762 	 * The vma->pages are only valid within the lifespan of the borrowed
1763 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1764 	 * must be the vma->pages. A simple rule is that vma->pages must only
1765 	 * be accessed when the obj->mm.pages are pinned.
1766 	 */
1767 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1768 
1769 	switch (vma->ggtt_view.type) {
1770 	default:
1771 		GEM_BUG_ON(vma->ggtt_view.type);
1772 		/* fall through */
1773 	case I915_GGTT_VIEW_NORMAL:
1774 		vma->pages = vma->obj->mm.pages;
1775 		return 0;
1776 
1777 	case I915_GGTT_VIEW_ROTATED:
1778 #ifdef __NetBSD__
1779 		vma->pages = ERR_PTR(-ENODEV);
1780 #else
1781 		vma->pages =
1782 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1783 #endif
1784 		break;
1785 
1786 	case I915_GGTT_VIEW_REMAPPED:
1787 #ifdef __NetBSD__
1788 		vma->pages = ERR_PTR(-ENODEV);
1789 #else
1790 		vma->pages =
1791 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1792 #endif
1793 		break;
1794 
1795 	case I915_GGTT_VIEW_PARTIAL:
1796 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1797 		break;
1798 	}
1799 
1800 	ret = 0;
1801 	if (IS_ERR(vma->pages)) {
1802 		ret = PTR_ERR(vma->pages);
1803 		vma->pages = NULL;
1804 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
1805 			  vma->ggtt_view.type, ret);
1806 	}
1807 	return ret;
1808 }
1809