xref: /netbsd-src/external/apache2/llvm/dist/llvm/tools/llvm-objcopy/ELF/Object.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- Object.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Object.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/StringRef.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/ADT/iterator_range.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/MC/MCTargetOptions.h"
17 #include "llvm/Object/ELF.h"
18 #include "llvm/Object/ELFObjectFile.h"
19 #include "llvm/Support/Compression.h"
20 #include "llvm/Support/Endian.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/FileOutputBuffer.h"
23 #include "llvm/Support/Path.h"
24 #include <algorithm>
25 #include <cstddef>
26 #include <cstdint>
27 #include <iterator>
28 #include <unordered_set>
29 #include <utility>
30 #include <vector>
31 
32 namespace llvm {
33 namespace objcopy {
34 namespace elf {
35 
36 using namespace object;
37 using namespace ELF;
38 
writePhdr(const Segment & Seg)39 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
40   uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) +
41                Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
42   Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
43   Phdr.p_type = Seg.Type;
44   Phdr.p_flags = Seg.Flags;
45   Phdr.p_offset = Seg.Offset;
46   Phdr.p_vaddr = Seg.VAddr;
47   Phdr.p_paddr = Seg.PAddr;
48   Phdr.p_filesz = Seg.FileSize;
49   Phdr.p_memsz = Seg.MemSize;
50   Phdr.p_align = Seg.Align;
51 }
52 
removeSectionReferences(bool,function_ref<bool (const SectionBase *)>)53 Error SectionBase::removeSectionReferences(
54     bool, function_ref<bool(const SectionBase *)>) {
55   return Error::success();
56 }
57 
removeSymbols(function_ref<bool (const Symbol &)>)58 Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) {
59   return Error::success();
60 }
61 
initialize(SectionTableRef)62 Error SectionBase::initialize(SectionTableRef) { return Error::success(); }
finalize()63 void SectionBase::finalize() {}
markSymbols()64 void SectionBase::markSymbols() {}
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > &)65 void SectionBase::replaceSectionReferences(
66     const DenseMap<SectionBase *, SectionBase *> &) {}
onRemove()67 void SectionBase::onRemove() {}
68 
writeShdr(const SectionBase & Sec)69 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
70   uint8_t *B =
71       reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset;
72   Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
73   Shdr.sh_name = Sec.NameIndex;
74   Shdr.sh_type = Sec.Type;
75   Shdr.sh_flags = Sec.Flags;
76   Shdr.sh_addr = Sec.Addr;
77   Shdr.sh_offset = Sec.Offset;
78   Shdr.sh_size = Sec.Size;
79   Shdr.sh_link = Sec.Link;
80   Shdr.sh_info = Sec.Info;
81   Shdr.sh_addralign = Sec.Align;
82   Shdr.sh_entsize = Sec.EntrySize;
83 }
84 
visit(Section &)85 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) {
86   return Error::success();
87 }
88 
visit(OwnedDataSection &)89 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) {
90   return Error::success();
91 }
92 
visit(StringTableSection &)93 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) {
94   return Error::success();
95 }
96 
97 template <class ELFT>
visit(DynamicRelocationSection &)98 Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) {
99   return Error::success();
100 }
101 
102 template <class ELFT>
visit(SymbolTableSection & Sec)103 Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
104   Sec.EntrySize = sizeof(Elf_Sym);
105   Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
106   // Align to the largest field in Elf_Sym.
107   Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
108   return Error::success();
109 }
110 
111 template <class ELFT>
visit(RelocationSection & Sec)112 Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
113   Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
114   Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
115   // Align to the largest field in Elf_Rel(a).
116   Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
117   return Error::success();
118 }
119 
120 template <class ELFT>
visit(GnuDebugLinkSection &)121 Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) {
122   return Error::success();
123 }
124 
visit(GroupSection & Sec)125 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {
126   Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word);
127   return Error::success();
128 }
129 
130 template <class ELFT>
visit(SectionIndexSection &)131 Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) {
132   return Error::success();
133 }
134 
visit(CompressedSection &)135 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) {
136   return Error::success();
137 }
138 
139 template <class ELFT>
visit(DecompressedSection &)140 Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) {
141   return Error::success();
142 }
143 
visit(const SectionIndexSection & Sec)144 Error BinarySectionWriter::visit(const SectionIndexSection &Sec) {
145   return createStringError(errc::operation_not_permitted,
146                            "cannot write symbol section index table '" +
147                                Sec.Name + "' ");
148 }
149 
visit(const SymbolTableSection & Sec)150 Error BinarySectionWriter::visit(const SymbolTableSection &Sec) {
151   return createStringError(errc::operation_not_permitted,
152                            "cannot write symbol table '" + Sec.Name +
153                                "' out to binary");
154 }
155 
visit(const RelocationSection & Sec)156 Error BinarySectionWriter::visit(const RelocationSection &Sec) {
157   return createStringError(errc::operation_not_permitted,
158                            "cannot write relocation section '" + Sec.Name +
159                                "' out to binary");
160 }
161 
visit(const GnuDebugLinkSection & Sec)162 Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
163   return createStringError(errc::operation_not_permitted,
164                            "cannot write '" + Sec.Name + "' out to binary");
165 }
166 
visit(const GroupSection & Sec)167 Error BinarySectionWriter::visit(const GroupSection &Sec) {
168   return createStringError(errc::operation_not_permitted,
169                            "cannot write '" + Sec.Name + "' out to binary");
170 }
171 
visit(const Section & Sec)172 Error SectionWriter::visit(const Section &Sec) {
173   if (Sec.Type != SHT_NOBITS)
174     llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
175 
176   return Error::success();
177 }
178 
addressOverflows32bit(uint64_t Addr)179 static bool addressOverflows32bit(uint64_t Addr) {
180   // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
181   return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
182 }
183 
checkedGetHex(StringRef S)184 template <class T> static T checkedGetHex(StringRef S) {
185   T Value;
186   bool Fail = S.getAsInteger(16, Value);
187   assert(!Fail);
188   (void)Fail;
189   return Value;
190 }
191 
192 // Fills exactly Len bytes of buffer with hexadecimal characters
193 // representing value 'X'
194 template <class T, class Iterator>
utohexstr(T X,Iterator It,size_t Len)195 static Iterator utohexstr(T X, Iterator It, size_t Len) {
196   // Fill range with '0'
197   std::fill(It, It + Len, '0');
198 
199   for (long I = Len - 1; I >= 0; --I) {
200     unsigned char Mod = static_cast<unsigned char>(X) & 15;
201     *(It + I) = hexdigit(Mod, false);
202     X >>= 4;
203   }
204   assert(X == 0);
205   return It + Len;
206 }
207 
getChecksum(StringRef S)208 uint8_t IHexRecord::getChecksum(StringRef S) {
209   assert((S.size() & 1) == 0);
210   uint8_t Checksum = 0;
211   while (!S.empty()) {
212     Checksum += checkedGetHex<uint8_t>(S.take_front(2));
213     S = S.drop_front(2);
214   }
215   return -Checksum;
216 }
217 
getLine(uint8_t Type,uint16_t Addr,ArrayRef<uint8_t> Data)218 IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
219                                  ArrayRef<uint8_t> Data) {
220   IHexLineData Line(getLineLength(Data.size()));
221   assert(Line.size());
222   auto Iter = Line.begin();
223   *Iter++ = ':';
224   Iter = utohexstr(Data.size(), Iter, 2);
225   Iter = utohexstr(Addr, Iter, 4);
226   Iter = utohexstr(Type, Iter, 2);
227   for (uint8_t X : Data)
228     Iter = utohexstr(X, Iter, 2);
229   StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
230   Iter = utohexstr(getChecksum(S), Iter, 2);
231   *Iter++ = '\r';
232   *Iter++ = '\n';
233   assert(Iter == Line.end());
234   return Line;
235 }
236 
checkRecord(const IHexRecord & R)237 static Error checkRecord(const IHexRecord &R) {
238   switch (R.Type) {
239   case IHexRecord::Data:
240     if (R.HexData.size() == 0)
241       return createStringError(
242           errc::invalid_argument,
243           "zero data length is not allowed for data records");
244     break;
245   case IHexRecord::EndOfFile:
246     break;
247   case IHexRecord::SegmentAddr:
248     // 20-bit segment address. Data length must be 2 bytes
249     // (4 bytes in hex)
250     if (R.HexData.size() != 4)
251       return createStringError(
252           errc::invalid_argument,
253           "segment address data should be 2 bytes in size");
254     break;
255   case IHexRecord::StartAddr80x86:
256   case IHexRecord::StartAddr:
257     if (R.HexData.size() != 8)
258       return createStringError(errc::invalid_argument,
259                                "start address data should be 4 bytes in size");
260     // According to Intel HEX specification '03' record
261     // only specifies the code address within the 20-bit
262     // segmented address space of the 8086/80186. This
263     // means 12 high order bits should be zeroes.
264     if (R.Type == IHexRecord::StartAddr80x86 &&
265         R.HexData.take_front(3) != "000")
266       return createStringError(errc::invalid_argument,
267                                "start address exceeds 20 bit for 80x86");
268     break;
269   case IHexRecord::ExtendedAddr:
270     // 16-31 bits of linear base address
271     if (R.HexData.size() != 4)
272       return createStringError(
273           errc::invalid_argument,
274           "extended address data should be 2 bytes in size");
275     break;
276   default:
277     // Unknown record type
278     return createStringError(errc::invalid_argument, "unknown record type: %u",
279                              static_cast<unsigned>(R.Type));
280   }
281   return Error::success();
282 }
283 
284 // Checks that IHEX line contains valid characters.
285 // This allows converting hexadecimal data to integers
286 // without extra verification.
checkChars(StringRef Line)287 static Error checkChars(StringRef Line) {
288   assert(!Line.empty());
289   if (Line[0] != ':')
290     return createStringError(errc::invalid_argument,
291                              "missing ':' in the beginning of line.");
292 
293   for (size_t Pos = 1; Pos < Line.size(); ++Pos)
294     if (hexDigitValue(Line[Pos]) == -1U)
295       return createStringError(errc::invalid_argument,
296                                "invalid character at position %zu.", Pos + 1);
297   return Error::success();
298 }
299 
parse(StringRef Line)300 Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
301   assert(!Line.empty());
302 
303   // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
304   if (Line.size() < 11)
305     return createStringError(errc::invalid_argument,
306                              "line is too short: %zu chars.", Line.size());
307 
308   if (Error E = checkChars(Line))
309     return std::move(E);
310 
311   IHexRecord Rec;
312   size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
313   if (Line.size() != getLength(DataLen))
314     return createStringError(errc::invalid_argument,
315                              "invalid line length %zu (should be %zu)",
316                              Line.size(), getLength(DataLen));
317 
318   Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
319   Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
320   Rec.HexData = Line.substr(9, DataLen * 2);
321 
322   if (getChecksum(Line.drop_front(1)) != 0)
323     return createStringError(errc::invalid_argument, "incorrect checksum.");
324   if (Error E = checkRecord(Rec))
325     return std::move(E);
326   return Rec;
327 }
328 
sectionPhysicalAddr(const SectionBase * Sec)329 static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
330   Segment *Seg = Sec->ParentSegment;
331   if (Seg && Seg->Type != ELF::PT_LOAD)
332     Seg = nullptr;
333   return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
334              : Sec->Addr;
335 }
336 
writeSection(const SectionBase * Sec,ArrayRef<uint8_t> Data)337 void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
338                                          ArrayRef<uint8_t> Data) {
339   assert(Data.size() == Sec->Size);
340   const uint32_t ChunkSize = 16;
341   uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
342   while (!Data.empty()) {
343     uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
344     if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
345       if (Addr > 0xFFFFFU) {
346         // Write extended address record, zeroing segment address
347         // if needed.
348         if (SegmentAddr != 0)
349           SegmentAddr = writeSegmentAddr(0U);
350         BaseAddr = writeBaseAddr(Addr);
351       } else {
352         // We can still remain 16-bit
353         SegmentAddr = writeSegmentAddr(Addr);
354       }
355     }
356     uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
357     assert(SegOffset <= 0xFFFFU);
358     DataSize = std::min(DataSize, 0x10000U - SegOffset);
359     writeData(0, SegOffset, Data.take_front(DataSize));
360     Addr += DataSize;
361     Data = Data.drop_front(DataSize);
362   }
363 }
364 
writeSegmentAddr(uint64_t Addr)365 uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
366   assert(Addr <= 0xFFFFFU);
367   uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
368   writeData(2, 0, Data);
369   return Addr & 0xF0000U;
370 }
371 
writeBaseAddr(uint64_t Addr)372 uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
373   assert(Addr <= 0xFFFFFFFFU);
374   uint64_t Base = Addr & 0xFFFF0000U;
375   uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
376                     static_cast<uint8_t>((Base >> 16) & 0xFF)};
377   writeData(4, 0, Data);
378   return Base;
379 }
380 
writeData(uint8_t,uint16_t,ArrayRef<uint8_t> Data)381 void IHexSectionWriterBase::writeData(uint8_t, uint16_t,
382                                       ArrayRef<uint8_t> Data) {
383   Offset += IHexRecord::getLineLength(Data.size());
384 }
385 
visit(const Section & Sec)386 Error IHexSectionWriterBase::visit(const Section &Sec) {
387   writeSection(&Sec, Sec.Contents);
388   return Error::success();
389 }
390 
visit(const OwnedDataSection & Sec)391 Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
392   writeSection(&Sec, Sec.Data);
393   return Error::success();
394 }
395 
visit(const StringTableSection & Sec)396 Error IHexSectionWriterBase::visit(const StringTableSection &Sec) {
397   // Check that sizer has already done its work
398   assert(Sec.Size == Sec.StrTabBuilder.getSize());
399   // We are free to pass an invalid pointer to writeSection as long
400   // as we don't actually write any data. The real writer class has
401   // to override this method .
402   writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
403   return Error::success();
404 }
405 
visit(const DynamicRelocationSection & Sec)406 Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
407   writeSection(&Sec, Sec.Contents);
408   return Error::success();
409 }
410 
writeData(uint8_t Type,uint16_t Addr,ArrayRef<uint8_t> Data)411 void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
412                                   ArrayRef<uint8_t> Data) {
413   IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
414   memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
415   Offset += HexData.size();
416 }
417 
visit(const StringTableSection & Sec)418 Error IHexSectionWriter::visit(const StringTableSection &Sec) {
419   assert(Sec.Size == Sec.StrTabBuilder.getSize());
420   std::vector<uint8_t> Data(Sec.Size);
421   Sec.StrTabBuilder.write(Data.data());
422   writeSection(&Sec, Data);
423   return Error::success();
424 }
425 
accept(SectionVisitor & Visitor) const426 Error Section::accept(SectionVisitor &Visitor) const {
427   return Visitor.visit(*this);
428 }
429 
accept(MutableSectionVisitor & Visitor)430 Error Section::accept(MutableSectionVisitor &Visitor) {
431   return Visitor.visit(*this);
432 }
433 
visit(const OwnedDataSection & Sec)434 Error SectionWriter::visit(const OwnedDataSection &Sec) {
435   llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
436   return Error::success();
437 }
438 
439 static constexpr std::array<uint8_t, 4> ZlibGnuMagic = {{'Z', 'L', 'I', 'B'}};
440 
isDataGnuCompressed(ArrayRef<uint8_t> Data)441 static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) {
442   return Data.size() > ZlibGnuMagic.size() &&
443          std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data());
444 }
445 
446 template <class ELFT>
447 static std::tuple<uint64_t, uint64_t>
getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data)448 getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) {
449   const bool IsGnuDebug = isDataGnuCompressed(Data);
450   const uint64_t DecompressedSize =
451       IsGnuDebug
452           ? support::endian::read64be(Data.data() + ZlibGnuMagic.size())
453           : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size;
454   const uint64_t DecompressedAlign =
455       IsGnuDebug ? 1
456                  : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())
457                        ->ch_addralign;
458 
459   return std::make_tuple(DecompressedSize, DecompressedAlign);
460 }
461 
462 template <class ELFT>
visit(const DecompressedSection & Sec)463 Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
464   const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData)
465                                 ? (ZlibGnuMagic.size() + sizeof(Sec.Size))
466                                 : sizeof(Elf_Chdr_Impl<ELFT>);
467 
468   StringRef CompressedContent(
469       reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset,
470       Sec.OriginalData.size() - DataOffset);
471 
472   SmallVector<char, 128> DecompressedContent;
473   if (Error Err = zlib::uncompress(CompressedContent, DecompressedContent,
474                                    static_cast<size_t>(Sec.Size)))
475     return createStringError(errc::invalid_argument,
476                              "'" + Sec.Name + "': " + toString(std::move(Err)));
477 
478   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
479   std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
480 
481   return Error::success();
482 }
483 
visit(const DecompressedSection & Sec)484 Error BinarySectionWriter::visit(const DecompressedSection &Sec) {
485   return createStringError(errc::operation_not_permitted,
486                            "cannot write compressed section '" + Sec.Name +
487                                "' ");
488 }
489 
accept(SectionVisitor & Visitor) const490 Error DecompressedSection::accept(SectionVisitor &Visitor) const {
491   return Visitor.visit(*this);
492 }
493 
accept(MutableSectionVisitor & Visitor)494 Error DecompressedSection::accept(MutableSectionVisitor &Visitor) {
495   return Visitor.visit(*this);
496 }
497 
accept(SectionVisitor & Visitor) const498 Error OwnedDataSection::accept(SectionVisitor &Visitor) const {
499   return Visitor.visit(*this);
500 }
501 
accept(MutableSectionVisitor & Visitor)502 Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
503   return Visitor.visit(*this);
504 }
505 
appendHexData(StringRef HexData)506 void OwnedDataSection::appendHexData(StringRef HexData) {
507   assert((HexData.size() & 1) == 0);
508   while (!HexData.empty()) {
509     Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
510     HexData = HexData.drop_front(2);
511   }
512   Size = Data.size();
513 }
514 
visit(const CompressedSection & Sec)515 Error BinarySectionWriter::visit(const CompressedSection &Sec) {
516   return createStringError(errc::operation_not_permitted,
517                            "cannot write compressed section '" + Sec.Name +
518                                "' ");
519 }
520 
521 template <class ELFT>
visit(const CompressedSection & Sec)522 Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
523   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
524   if (Sec.CompressionType == DebugCompressionType::None) {
525     std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
526     return Error::success();
527   }
528 
529   if (Sec.CompressionType == DebugCompressionType::GNU) {
530     const char *Magic = "ZLIB";
531     memcpy(Buf, Magic, strlen(Magic));
532     Buf += strlen(Magic);
533     const uint64_t DecompressedSize =
534         support::endian::read64be(&Sec.DecompressedSize);
535     memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize));
536     Buf += sizeof(DecompressedSize);
537   } else {
538     Elf_Chdr_Impl<ELFT> Chdr;
539     Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
540     Chdr.ch_size = Sec.DecompressedSize;
541     Chdr.ch_addralign = Sec.DecompressedAlign;
542     memcpy(Buf, &Chdr, sizeof(Chdr));
543     Buf += sizeof(Chdr);
544   }
545 
546   std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
547   return Error::success();
548 }
549 
550 Expected<CompressedSection>
create(const SectionBase & Sec,DebugCompressionType CompressionType)551 CompressedSection::create(const SectionBase &Sec,
552                           DebugCompressionType CompressionType) {
553   Error Err = Error::success();
554   CompressedSection Section(Sec, CompressionType, Err);
555 
556   if (Err)
557     return std::move(Err);
558 
559   return Section;
560 }
561 Expected<CompressedSection>
create(ArrayRef<uint8_t> CompressedData,uint64_t DecompressedSize,uint64_t DecompressedAlign)562 CompressedSection::create(ArrayRef<uint8_t> CompressedData,
563                           uint64_t DecompressedSize,
564                           uint64_t DecompressedAlign) {
565   return CompressedSection(CompressedData, DecompressedSize, DecompressedAlign);
566 }
567 
CompressedSection(const SectionBase & Sec,DebugCompressionType CompressionType,Error & OutErr)568 CompressedSection::CompressedSection(const SectionBase &Sec,
569                                      DebugCompressionType CompressionType,
570                                      Error &OutErr)
571     : SectionBase(Sec), CompressionType(CompressionType),
572       DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
573   ErrorAsOutParameter EAO(&OutErr);
574 
575   if (Error Err = zlib::compress(
576           StringRef(reinterpret_cast<const char *>(OriginalData.data()),
577                     OriginalData.size()),
578           CompressedData)) {
579     OutErr = createStringError(llvm::errc::invalid_argument,
580                                "'" + Name + "': " + toString(std::move(Err)));
581     return;
582   }
583 
584   size_t ChdrSize;
585   if (CompressionType == DebugCompressionType::GNU) {
586     Name = ".z" + Sec.Name.substr(1);
587     ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t);
588   } else {
589     Flags |= ELF::SHF_COMPRESSED;
590     ChdrSize =
591         std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
592                           sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
593                  std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
594                           sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
595   }
596   Size = ChdrSize + CompressedData.size();
597   Align = 8;
598 }
599 
CompressedSection(ArrayRef<uint8_t> CompressedData,uint64_t DecompressedSize,uint64_t DecompressedAlign)600 CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
601                                      uint64_t DecompressedSize,
602                                      uint64_t DecompressedAlign)
603     : CompressionType(DebugCompressionType::None),
604       DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
605   OriginalData = CompressedData;
606 }
607 
accept(SectionVisitor & Visitor) const608 Error CompressedSection::accept(SectionVisitor &Visitor) const {
609   return Visitor.visit(*this);
610 }
611 
accept(MutableSectionVisitor & Visitor)612 Error CompressedSection::accept(MutableSectionVisitor &Visitor) {
613   return Visitor.visit(*this);
614 }
615 
addString(StringRef Name)616 void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
617 
findIndex(StringRef Name) const618 uint32_t StringTableSection::findIndex(StringRef Name) const {
619   return StrTabBuilder.getOffset(Name);
620 }
621 
prepareForLayout()622 void StringTableSection::prepareForLayout() {
623   StrTabBuilder.finalize();
624   Size = StrTabBuilder.getSize();
625 }
626 
visit(const StringTableSection & Sec)627 Error SectionWriter::visit(const StringTableSection &Sec) {
628   Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) +
629                           Sec.Offset);
630   return Error::success();
631 }
632 
accept(SectionVisitor & Visitor) const633 Error StringTableSection::accept(SectionVisitor &Visitor) const {
634   return Visitor.visit(*this);
635 }
636 
accept(MutableSectionVisitor & Visitor)637 Error StringTableSection::accept(MutableSectionVisitor &Visitor) {
638   return Visitor.visit(*this);
639 }
640 
641 template <class ELFT>
visit(const SectionIndexSection & Sec)642 Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
643   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
644   llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
645   return Error::success();
646 }
647 
initialize(SectionTableRef SecTable)648 Error SectionIndexSection::initialize(SectionTableRef SecTable) {
649   Size = 0;
650   Expected<SymbolTableSection *> Sec =
651       SecTable.getSectionOfType<SymbolTableSection>(
652           Link,
653           "Link field value " + Twine(Link) + " in section " + Name +
654               " is invalid",
655           "Link field value " + Twine(Link) + " in section " + Name +
656               " is not a symbol table");
657   if (!Sec)
658     return Sec.takeError();
659 
660   setSymTab(*Sec);
661   Symbols->setShndxTable(this);
662   return Error::success();
663 }
664 
finalize()665 void SectionIndexSection::finalize() { Link = Symbols->Index; }
666 
accept(SectionVisitor & Visitor) const667 Error SectionIndexSection::accept(SectionVisitor &Visitor) const {
668   return Visitor.visit(*this);
669 }
670 
accept(MutableSectionVisitor & Visitor)671 Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
672   return Visitor.visit(*this);
673 }
674 
isValidReservedSectionIndex(uint16_t Index,uint16_t Machine)675 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
676   switch (Index) {
677   case SHN_ABS:
678   case SHN_COMMON:
679     return true;
680   }
681 
682   if (Machine == EM_AMDGPU) {
683     return Index == SHN_AMDGPU_LDS;
684   }
685 
686   if (Machine == EM_HEXAGON) {
687     switch (Index) {
688     case SHN_HEXAGON_SCOMMON:
689     case SHN_HEXAGON_SCOMMON_1:
690     case SHN_HEXAGON_SCOMMON_2:
691     case SHN_HEXAGON_SCOMMON_4:
692     case SHN_HEXAGON_SCOMMON_8:
693       return true;
694     }
695   }
696   return false;
697 }
698 
699 // Large indexes force us to clarify exactly what this function should do. This
700 // function should return the value that will appear in st_shndx when written
701 // out.
getShndx() const702 uint16_t Symbol::getShndx() const {
703   if (DefinedIn != nullptr) {
704     if (DefinedIn->Index >= SHN_LORESERVE)
705       return SHN_XINDEX;
706     return DefinedIn->Index;
707   }
708 
709   if (ShndxType == SYMBOL_SIMPLE_INDEX) {
710     // This means that we don't have a defined section but we do need to
711     // output a legitimate section index.
712     return SHN_UNDEF;
713   }
714 
715   assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
716          (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
717          (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
718   return static_cast<uint16_t>(ShndxType);
719 }
720 
isCommon() const721 bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
722 
assignIndices()723 void SymbolTableSection::assignIndices() {
724   uint32_t Index = 0;
725   for (auto &Sym : Symbols)
726     Sym->Index = Index++;
727 }
728 
addSymbol(Twine Name,uint8_t Bind,uint8_t Type,SectionBase * DefinedIn,uint64_t Value,uint8_t Visibility,uint16_t Shndx,uint64_t SymbolSize)729 void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
730                                    SectionBase *DefinedIn, uint64_t Value,
731                                    uint8_t Visibility, uint16_t Shndx,
732                                    uint64_t SymbolSize) {
733   Symbol Sym;
734   Sym.Name = Name.str();
735   Sym.Binding = Bind;
736   Sym.Type = Type;
737   Sym.DefinedIn = DefinedIn;
738   if (DefinedIn != nullptr)
739     DefinedIn->HasSymbol = true;
740   if (DefinedIn == nullptr) {
741     if (Shndx >= SHN_LORESERVE)
742       Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
743     else
744       Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
745   }
746   Sym.Value = Value;
747   Sym.Visibility = Visibility;
748   Sym.Size = SymbolSize;
749   Sym.Index = Symbols.size();
750   Symbols.emplace_back(std::make_unique<Symbol>(Sym));
751   Size += this->EntrySize;
752 }
753 
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)754 Error SymbolTableSection::removeSectionReferences(
755     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
756   if (ToRemove(SectionIndexTable))
757     SectionIndexTable = nullptr;
758   if (ToRemove(SymbolNames)) {
759     if (!AllowBrokenLinks)
760       return createStringError(
761           llvm::errc::invalid_argument,
762           "string table '%s' cannot be removed because it is "
763           "referenced by the symbol table '%s'",
764           SymbolNames->Name.data(), this->Name.data());
765     SymbolNames = nullptr;
766   }
767   return removeSymbols(
768       [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
769 }
770 
updateSymbols(function_ref<void (Symbol &)> Callable)771 void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
772   std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
773                 [Callable](SymPtr &Sym) { Callable(*Sym); });
774   std::stable_partition(
775       std::begin(Symbols), std::end(Symbols),
776       [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
777   assignIndices();
778 }
779 
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)780 Error SymbolTableSection::removeSymbols(
781     function_ref<bool(const Symbol &)> ToRemove) {
782   Symbols.erase(
783       std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
784                      [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
785       std::end(Symbols));
786   Size = Symbols.size() * EntrySize;
787   assignIndices();
788   return Error::success();
789 }
790 
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > & FromTo)791 void SymbolTableSection::replaceSectionReferences(
792     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
793   for (std::unique_ptr<Symbol> &Sym : Symbols)
794     if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
795       Sym->DefinedIn = To;
796 }
797 
initialize(SectionTableRef SecTable)798 Error SymbolTableSection::initialize(SectionTableRef SecTable) {
799   Size = 0;
800   Expected<StringTableSection *> Sec =
801       SecTable.getSectionOfType<StringTableSection>(
802           Link,
803           "Symbol table has link index of " + Twine(Link) +
804               " which is not a valid index",
805           "Symbol table has link index of " + Twine(Link) +
806               " which is not a string table");
807   if (!Sec)
808     return Sec.takeError();
809 
810   setStrTab(*Sec);
811   return Error::success();
812 }
813 
finalize()814 void SymbolTableSection::finalize() {
815   uint32_t MaxLocalIndex = 0;
816   for (std::unique_ptr<Symbol> &Sym : Symbols) {
817     Sym->NameIndex =
818         SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
819     if (Sym->Binding == STB_LOCAL)
820       MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
821   }
822   // Now we need to set the Link and Info fields.
823   Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
824   Info = MaxLocalIndex + 1;
825 }
826 
prepareForLayout()827 void SymbolTableSection::prepareForLayout() {
828   // Reserve proper amount of space in section index table, so we can
829   // layout sections correctly. We will fill the table with correct
830   // indexes later in fillShdnxTable.
831   if (SectionIndexTable)
832     SectionIndexTable->reserve(Symbols.size());
833 
834   // Add all of our strings to SymbolNames so that SymbolNames has the right
835   // size before layout is decided.
836   // If the symbol names section has been removed, don't try to add strings to
837   // the table.
838   if (SymbolNames != nullptr)
839     for (std::unique_ptr<Symbol> &Sym : Symbols)
840       SymbolNames->addString(Sym->Name);
841 }
842 
fillShndxTable()843 void SymbolTableSection::fillShndxTable() {
844   if (SectionIndexTable == nullptr)
845     return;
846   // Fill section index table with real section indexes. This function must
847   // be called after assignOffsets.
848   for (const std::unique_ptr<Symbol> &Sym : Symbols) {
849     if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
850       SectionIndexTable->addIndex(Sym->DefinedIn->Index);
851     else
852       SectionIndexTable->addIndex(SHN_UNDEF);
853   }
854 }
855 
856 Expected<const Symbol *>
getSymbolByIndex(uint32_t Index) const857 SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
858   if (Symbols.size() <= Index)
859     return createStringError(errc::invalid_argument,
860                              "invalid symbol index: " + Twine(Index));
861   return Symbols[Index].get();
862 }
863 
getSymbolByIndex(uint32_t Index)864 Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) {
865   Expected<const Symbol *> Sym =
866       static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index);
867   if (!Sym)
868     return Sym.takeError();
869 
870   return const_cast<Symbol *>(*Sym);
871 }
872 
873 template <class ELFT>
visit(const SymbolTableSection & Sec)874 Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
875   Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
876   // Loop though symbols setting each entry of the symbol table.
877   for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
878     Sym->st_name = Symbol->NameIndex;
879     Sym->st_value = Symbol->Value;
880     Sym->st_size = Symbol->Size;
881     Sym->st_other = Symbol->Visibility;
882     Sym->setBinding(Symbol->Binding);
883     Sym->setType(Symbol->Type);
884     Sym->st_shndx = Symbol->getShndx();
885     ++Sym;
886   }
887   return Error::success();
888 }
889 
accept(SectionVisitor & Visitor) const890 Error SymbolTableSection::accept(SectionVisitor &Visitor) const {
891   return Visitor.visit(*this);
892 }
893 
accept(MutableSectionVisitor & Visitor)894 Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
895   return Visitor.visit(*this);
896 }
897 
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)898 Error RelocationSection::removeSectionReferences(
899     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
900   if (ToRemove(Symbols)) {
901     if (!AllowBrokenLinks)
902       return createStringError(
903           llvm::errc::invalid_argument,
904           "symbol table '%s' cannot be removed because it is "
905           "referenced by the relocation section '%s'",
906           Symbols->Name.data(), this->Name.data());
907     Symbols = nullptr;
908   }
909 
910   for (const Relocation &R : Relocations) {
911     if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
912         !ToRemove(R.RelocSymbol->DefinedIn))
913       continue;
914     return createStringError(llvm::errc::invalid_argument,
915                              "section '%s' cannot be removed: (%s+0x%" PRIx64
916                              ") has relocation against symbol '%s'",
917                              R.RelocSymbol->DefinedIn->Name.data(),
918                              SecToApplyRel->Name.data(), R.Offset,
919                              R.RelocSymbol->Name.c_str());
920   }
921 
922   return Error::success();
923 }
924 
925 template <class SymTabType>
initialize(SectionTableRef SecTable)926 Error RelocSectionWithSymtabBase<SymTabType>::initialize(
927     SectionTableRef SecTable) {
928   if (Link != SHN_UNDEF) {
929     Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>(
930         Link,
931         "Link field value " + Twine(Link) + " in section " + Name +
932             " is invalid",
933         "Link field value " + Twine(Link) + " in section " + Name +
934             " is not a symbol table");
935     if (!Sec)
936       return Sec.takeError();
937 
938     setSymTab(*Sec);
939   }
940 
941   if (Info != SHN_UNDEF) {
942     Expected<SectionBase *> Sec =
943         SecTable.getSection(Info, "Info field value " + Twine(Info) +
944                                       " in section " + Name + " is invalid");
945     if (!Sec)
946       return Sec.takeError();
947 
948     setSection(*Sec);
949   } else
950     setSection(nullptr);
951 
952   return Error::success();
953 }
954 
955 template <class SymTabType>
finalize()956 void RelocSectionWithSymtabBase<SymTabType>::finalize() {
957   this->Link = Symbols ? Symbols->Index : 0;
958 
959   if (SecToApplyRel != nullptr)
960     this->Info = SecToApplyRel->Index;
961 }
962 
963 template <class ELFT>
setAddend(Elf_Rel_Impl<ELFT,false> &,uint64_t)964 static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {}
965 
966 template <class ELFT>
setAddend(Elf_Rel_Impl<ELFT,true> & Rela,uint64_t Addend)967 static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
968   Rela.r_addend = Addend;
969 }
970 
971 template <class RelRange, class T>
writeRel(const RelRange & Relocations,T * Buf)972 static void writeRel(const RelRange &Relocations, T *Buf) {
973   for (const auto &Reloc : Relocations) {
974     Buf->r_offset = Reloc.Offset;
975     setAddend(*Buf, Reloc.Addend);
976     Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
977                           Reloc.Type, false);
978     ++Buf;
979   }
980 }
981 
982 template <class ELFT>
visit(const RelocationSection & Sec)983 Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
984   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
985   if (Sec.Type == SHT_REL)
986     writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
987   else
988     writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
989   return Error::success();
990 }
991 
accept(SectionVisitor & Visitor) const992 Error RelocationSection::accept(SectionVisitor &Visitor) const {
993   return Visitor.visit(*this);
994 }
995 
accept(MutableSectionVisitor & Visitor)996 Error RelocationSection::accept(MutableSectionVisitor &Visitor) {
997   return Visitor.visit(*this);
998 }
999 
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)1000 Error RelocationSection::removeSymbols(
1001     function_ref<bool(const Symbol &)> ToRemove) {
1002   for (const Relocation &Reloc : Relocations)
1003     if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
1004       return createStringError(
1005           llvm::errc::invalid_argument,
1006           "not stripping symbol '%s' because it is named in a relocation",
1007           Reloc.RelocSymbol->Name.data());
1008   return Error::success();
1009 }
1010 
markSymbols()1011 void RelocationSection::markSymbols() {
1012   for (const Relocation &Reloc : Relocations)
1013     if (Reloc.RelocSymbol)
1014       Reloc.RelocSymbol->Referenced = true;
1015 }
1016 
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > & FromTo)1017 void RelocationSection::replaceSectionReferences(
1018     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
1019   // Update the target section if it was replaced.
1020   if (SectionBase *To = FromTo.lookup(SecToApplyRel))
1021     SecToApplyRel = To;
1022 }
1023 
visit(const DynamicRelocationSection & Sec)1024 Error SectionWriter::visit(const DynamicRelocationSection &Sec) {
1025   llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
1026   return Error::success();
1027 }
1028 
accept(SectionVisitor & Visitor) const1029 Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
1030   return Visitor.visit(*this);
1031 }
1032 
accept(MutableSectionVisitor & Visitor)1033 Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
1034   return Visitor.visit(*this);
1035 }
1036 
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)1037 Error DynamicRelocationSection::removeSectionReferences(
1038     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1039   if (ToRemove(Symbols)) {
1040     if (!AllowBrokenLinks)
1041       return createStringError(
1042           llvm::errc::invalid_argument,
1043           "symbol table '%s' cannot be removed because it is "
1044           "referenced by the relocation section '%s'",
1045           Symbols->Name.data(), this->Name.data());
1046     Symbols = nullptr;
1047   }
1048 
1049   // SecToApplyRel contains a section referenced by sh_info field. It keeps
1050   // a section to which the relocation section applies. When we remove any
1051   // sections we also remove their relocation sections. Since we do that much
1052   // earlier, this assert should never be triggered.
1053   assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
1054   return Error::success();
1055 }
1056 
removeSectionReferences(bool AllowBrokenDependency,function_ref<bool (const SectionBase *)> ToRemove)1057 Error Section::removeSectionReferences(
1058     bool AllowBrokenDependency,
1059     function_ref<bool(const SectionBase *)> ToRemove) {
1060   if (ToRemove(LinkSection)) {
1061     if (!AllowBrokenDependency)
1062       return createStringError(llvm::errc::invalid_argument,
1063                                "section '%s' cannot be removed because it is "
1064                                "referenced by the section '%s'",
1065                                LinkSection->Name.data(), this->Name.data());
1066     LinkSection = nullptr;
1067   }
1068   return Error::success();
1069 }
1070 
finalize()1071 void GroupSection::finalize() {
1072   this->Info = Sym ? Sym->Index : 0;
1073   this->Link = SymTab ? SymTab->Index : 0;
1074 }
1075 
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)1076 Error GroupSection::removeSectionReferences(
1077     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1078   if (ToRemove(SymTab)) {
1079     if (!AllowBrokenLinks)
1080       return createStringError(
1081           llvm::errc::invalid_argument,
1082           "section '.symtab' cannot be removed because it is "
1083           "referenced by the group section '%s'",
1084           this->Name.data());
1085     SymTab = nullptr;
1086     Sym = nullptr;
1087   }
1088   llvm::erase_if(GroupMembers, ToRemove);
1089   return Error::success();
1090 }
1091 
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)1092 Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
1093   if (ToRemove(*Sym))
1094     return createStringError(llvm::errc::invalid_argument,
1095                              "symbol '%s' cannot be removed because it is "
1096                              "referenced by the section '%s[%d]'",
1097                              Sym->Name.data(), this->Name.data(), this->Index);
1098   return Error::success();
1099 }
1100 
markSymbols()1101 void GroupSection::markSymbols() {
1102   if (Sym)
1103     Sym->Referenced = true;
1104 }
1105 
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > & FromTo)1106 void GroupSection::replaceSectionReferences(
1107     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
1108   for (SectionBase *&Sec : GroupMembers)
1109     if (SectionBase *To = FromTo.lookup(Sec))
1110       Sec = To;
1111 }
1112 
onRemove()1113 void GroupSection::onRemove() {
1114   // As the header section of the group is removed, drop the Group flag in its
1115   // former members.
1116   for (SectionBase *Sec : GroupMembers)
1117     Sec->Flags &= ~SHF_GROUP;
1118 }
1119 
initialize(SectionTableRef SecTable)1120 Error Section::initialize(SectionTableRef SecTable) {
1121   if (Link == ELF::SHN_UNDEF)
1122     return Error::success();
1123 
1124   Expected<SectionBase *> Sec =
1125       SecTable.getSection(Link, "Link field value " + Twine(Link) +
1126                                     " in section " + Name + " is invalid");
1127   if (!Sec)
1128     return Sec.takeError();
1129 
1130   LinkSection = *Sec;
1131 
1132   if (LinkSection->Type == ELF::SHT_SYMTAB)
1133     LinkSection = nullptr;
1134 
1135   return Error::success();
1136 }
1137 
finalize()1138 void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
1139 
init(StringRef File)1140 void GnuDebugLinkSection::init(StringRef File) {
1141   FileName = sys::path::filename(File);
1142   // The format for the .gnu_debuglink starts with the file name and is
1143   // followed by a null terminator and then the CRC32 of the file. The CRC32
1144   // should be 4 byte aligned. So we add the FileName size, a 1 for the null
1145   // byte, and then finally push the size to alignment and add 4.
1146   Size = alignTo(FileName.size() + 1, 4) + 4;
1147   // The CRC32 will only be aligned if we align the whole section.
1148   Align = 4;
1149   Type = OriginalType = ELF::SHT_PROGBITS;
1150   Name = ".gnu_debuglink";
1151   // For sections not found in segments, OriginalOffset is only used to
1152   // establish the order that sections should go in. By using the maximum
1153   // possible offset we cause this section to wind up at the end.
1154   OriginalOffset = std::numeric_limits<uint64_t>::max();
1155 }
1156 
GnuDebugLinkSection(StringRef File,uint32_t PrecomputedCRC)1157 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
1158                                          uint32_t PrecomputedCRC)
1159     : FileName(File), CRC32(PrecomputedCRC) {
1160   init(File);
1161 }
1162 
1163 template <class ELFT>
visit(const GnuDebugLinkSection & Sec)1164 Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
1165   unsigned char *Buf =
1166       reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
1167   Elf_Word *CRC =
1168       reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
1169   *CRC = Sec.CRC32;
1170   llvm::copy(Sec.FileName, Buf);
1171   return Error::success();
1172 }
1173 
accept(SectionVisitor & Visitor) const1174 Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
1175   return Visitor.visit(*this);
1176 }
1177 
accept(MutableSectionVisitor & Visitor)1178 Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
1179   return Visitor.visit(*this);
1180 }
1181 
1182 template <class ELFT>
visit(const GroupSection & Sec)1183 Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
1184   ELF::Elf32_Word *Buf =
1185       reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
1186   *Buf++ = Sec.FlagWord;
1187   for (SectionBase *S : Sec.GroupMembers)
1188     support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
1189   return Error::success();
1190 }
1191 
accept(SectionVisitor & Visitor) const1192 Error GroupSection::accept(SectionVisitor &Visitor) const {
1193   return Visitor.visit(*this);
1194 }
1195 
accept(MutableSectionVisitor & Visitor)1196 Error GroupSection::accept(MutableSectionVisitor &Visitor) {
1197   return Visitor.visit(*this);
1198 }
1199 
1200 // Returns true IFF a section is wholly inside the range of a segment
sectionWithinSegment(const SectionBase & Sec,const Segment & Seg)1201 static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
1202   // If a section is empty it should be treated like it has a size of 1. This is
1203   // to clarify the case when an empty section lies on a boundary between two
1204   // segments and ensures that the section "belongs" to the second segment and
1205   // not the first.
1206   uint64_t SecSize = Sec.Size ? Sec.Size : 1;
1207 
1208   // Ignore just added sections.
1209   if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max())
1210     return false;
1211 
1212   if (Sec.Type == SHT_NOBITS) {
1213     if (!(Sec.Flags & SHF_ALLOC))
1214       return false;
1215 
1216     bool SectionIsTLS = Sec.Flags & SHF_TLS;
1217     bool SegmentIsTLS = Seg.Type == PT_TLS;
1218     if (SectionIsTLS != SegmentIsTLS)
1219       return false;
1220 
1221     return Seg.VAddr <= Sec.Addr &&
1222            Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
1223   }
1224 
1225   return Seg.Offset <= Sec.OriginalOffset &&
1226          Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
1227 }
1228 
1229 // Returns true IFF a segment's original offset is inside of another segment's
1230 // range.
segmentOverlapsSegment(const Segment & Child,const Segment & Parent)1231 static bool segmentOverlapsSegment(const Segment &Child,
1232                                    const Segment &Parent) {
1233 
1234   return Parent.OriginalOffset <= Child.OriginalOffset &&
1235          Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
1236 }
1237 
compareSegmentsByOffset(const Segment * A,const Segment * B)1238 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
1239   // Any segment without a parent segment should come before a segment
1240   // that has a parent segment.
1241   if (A->OriginalOffset < B->OriginalOffset)
1242     return true;
1243   if (A->OriginalOffset > B->OriginalOffset)
1244     return false;
1245   return A->Index < B->Index;
1246 }
1247 
initFileHeader()1248 void BasicELFBuilder::initFileHeader() {
1249   Obj->Flags = 0x0;
1250   Obj->Type = ET_REL;
1251   Obj->OSABI = ELFOSABI_NONE;
1252   Obj->ABIVersion = 0;
1253   Obj->Entry = 0x0;
1254   Obj->Machine = EM_NONE;
1255   Obj->Version = 1;
1256 }
1257 
initHeaderSegment()1258 void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
1259 
addStrTab()1260 StringTableSection *BasicELFBuilder::addStrTab() {
1261   auto &StrTab = Obj->addSection<StringTableSection>();
1262   StrTab.Name = ".strtab";
1263 
1264   Obj->SectionNames = &StrTab;
1265   return &StrTab;
1266 }
1267 
addSymTab(StringTableSection * StrTab)1268 SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
1269   auto &SymTab = Obj->addSection<SymbolTableSection>();
1270 
1271   SymTab.Name = ".symtab";
1272   SymTab.Link = StrTab->Index;
1273 
1274   // The symbol table always needs a null symbol
1275   SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
1276 
1277   Obj->SymbolTable = &SymTab;
1278   return &SymTab;
1279 }
1280 
initSections()1281 Error BasicELFBuilder::initSections() {
1282   for (SectionBase &Sec : Obj->sections())
1283     if (Error Err = Sec.initialize(Obj->sections()))
1284       return Err;
1285 
1286   return Error::success();
1287 }
1288 
addData(SymbolTableSection * SymTab)1289 void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
1290   auto Data = ArrayRef<uint8_t>(
1291       reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
1292       MemBuf->getBufferSize());
1293   auto &DataSection = Obj->addSection<Section>(Data);
1294   DataSection.Name = ".data";
1295   DataSection.Type = ELF::SHT_PROGBITS;
1296   DataSection.Size = Data.size();
1297   DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1298 
1299   std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
1300   std::replace_if(
1301       std::begin(SanitizedFilename), std::end(SanitizedFilename),
1302       [](char C) { return !isAlnum(C); }, '_');
1303   Twine Prefix = Twine("_binary_") + SanitizedFilename;
1304 
1305   SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
1306                     /*Value=*/0, NewSymbolVisibility, 0, 0);
1307   SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
1308                     /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
1309   SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
1310                     /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
1311                     0);
1312 }
1313 
build()1314 Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() {
1315   initFileHeader();
1316   initHeaderSegment();
1317 
1318   SymbolTableSection *SymTab = addSymTab(addStrTab());
1319   if (Error Err = initSections())
1320     return std::move(Err);
1321   addData(SymTab);
1322 
1323   return std::move(Obj);
1324 }
1325 
1326 // Adds sections from IHEX data file. Data should have been
1327 // fully validated by this time.
addDataSections()1328 void IHexELFBuilder::addDataSections() {
1329   OwnedDataSection *Section = nullptr;
1330   uint64_t SegmentAddr = 0, BaseAddr = 0;
1331   uint32_t SecNo = 1;
1332 
1333   for (const IHexRecord &R : Records) {
1334     uint64_t RecAddr;
1335     switch (R.Type) {
1336     case IHexRecord::Data:
1337       // Ignore empty data records
1338       if (R.HexData.empty())
1339         continue;
1340       RecAddr = R.Addr + SegmentAddr + BaseAddr;
1341       if (!Section || Section->Addr + Section->Size != RecAddr)
1342         // OriginalOffset field is only used to sort section properly, so
1343         // instead of keeping track of real offset in IHEX file, we use
1344         // section number.
1345         Section = &Obj->addSection<OwnedDataSection>(
1346             ".sec" + std::to_string(SecNo++), RecAddr,
1347             ELF::SHF_ALLOC | ELF::SHF_WRITE, SecNo);
1348       Section->appendHexData(R.HexData);
1349       break;
1350     case IHexRecord::EndOfFile:
1351       break;
1352     case IHexRecord::SegmentAddr:
1353       // 20-bit segment address.
1354       SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
1355       break;
1356     case IHexRecord::StartAddr80x86:
1357     case IHexRecord::StartAddr:
1358       Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
1359       assert(Obj->Entry <= 0xFFFFFU);
1360       break;
1361     case IHexRecord::ExtendedAddr:
1362       // 16-31 bits of linear base address
1363       BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
1364       break;
1365     default:
1366       llvm_unreachable("unknown record type");
1367     }
1368   }
1369 }
1370 
build()1371 Expected<std::unique_ptr<Object>> IHexELFBuilder::build() {
1372   initFileHeader();
1373   initHeaderSegment();
1374   StringTableSection *StrTab = addStrTab();
1375   addSymTab(StrTab);
1376   if (Error Err = initSections())
1377     return std::move(Err);
1378   addDataSections();
1379 
1380   return std::move(Obj);
1381 }
1382 
setParentSegment(Segment & Child)1383 template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
1384   for (Segment &Parent : Obj.segments()) {
1385     // Every segment will overlap with itself but we don't want a segment to
1386     // be its own parent so we avoid that situation.
1387     if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
1388       // We want a canonical "most parental" segment but this requires
1389       // inspecting the ParentSegment.
1390       if (compareSegmentsByOffset(&Parent, &Child))
1391         if (Child.ParentSegment == nullptr ||
1392             compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
1393           Child.ParentSegment = &Parent;
1394         }
1395     }
1396   }
1397 }
1398 
findEhdrOffset()1399 template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() {
1400   if (!ExtractPartition)
1401     return Error::success();
1402 
1403   for (const SectionBase &Sec : Obj.sections()) {
1404     if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
1405       EhdrOffset = Sec.Offset;
1406       return Error::success();
1407     }
1408   }
1409   return createStringError(errc::invalid_argument,
1410                            "could not find partition named '" +
1411                                *ExtractPartition + "'");
1412 }
1413 
1414 template <class ELFT>
readProgramHeaders(const ELFFile<ELFT> & HeadersFile)1415 Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
1416   uint32_t Index = 0;
1417 
1418   Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers =
1419       HeadersFile.program_headers();
1420   if (!Headers)
1421     return Headers.takeError();
1422 
1423   for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) {
1424     if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
1425       return createStringError(
1426           errc::invalid_argument,
1427           "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
1428               " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
1429               " goes past the end of the file");
1430 
1431     ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
1432                            (size_t)Phdr.p_filesz};
1433     Segment &Seg = Obj.addSegment(Data);
1434     Seg.Type = Phdr.p_type;
1435     Seg.Flags = Phdr.p_flags;
1436     Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
1437     Seg.Offset = Phdr.p_offset + EhdrOffset;
1438     Seg.VAddr = Phdr.p_vaddr;
1439     Seg.PAddr = Phdr.p_paddr;
1440     Seg.FileSize = Phdr.p_filesz;
1441     Seg.MemSize = Phdr.p_memsz;
1442     Seg.Align = Phdr.p_align;
1443     Seg.Index = Index++;
1444     for (SectionBase &Sec : Obj.sections())
1445       if (sectionWithinSegment(Sec, Seg)) {
1446         Seg.addSection(&Sec);
1447         if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
1448           Sec.ParentSegment = &Seg;
1449       }
1450   }
1451 
1452   auto &ElfHdr = Obj.ElfHdrSegment;
1453   ElfHdr.Index = Index++;
1454   ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
1455 
1456   const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader();
1457   auto &PrHdr = Obj.ProgramHdrSegment;
1458   PrHdr.Type = PT_PHDR;
1459   PrHdr.Flags = 0;
1460   // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
1461   // Whereas this works automatically for ElfHdr, here OriginalOffset is
1462   // always non-zero and to ensure the equation we assign the same value to
1463   // VAddr as well.
1464   PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
1465   PrHdr.PAddr = 0;
1466   PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
1467   // The spec requires us to naturally align all the fields.
1468   PrHdr.Align = sizeof(Elf_Addr);
1469   PrHdr.Index = Index++;
1470 
1471   // Now we do an O(n^2) loop through the segments in order to match up
1472   // segments.
1473   for (Segment &Child : Obj.segments())
1474     setParentSegment(Child);
1475   setParentSegment(ElfHdr);
1476   setParentSegment(PrHdr);
1477 
1478   return Error::success();
1479 }
1480 
1481 template <class ELFT>
initGroupSection(GroupSection * GroupSec)1482 Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
1483   if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
1484     return createStringError(errc::invalid_argument,
1485                              "invalid alignment " + Twine(GroupSec->Align) +
1486                                  " of group section '" + GroupSec->Name + "'");
1487   SectionTableRef SecTable = Obj.sections();
1488   if (GroupSec->Link != SHN_UNDEF) {
1489     auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
1490         GroupSec->Link,
1491         "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1492             GroupSec->Name + "' is invalid",
1493         "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1494             GroupSec->Name + "' is not a symbol table");
1495     if (!SymTab)
1496       return SymTab.takeError();
1497 
1498     Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info);
1499     if (!Sym)
1500       return createStringError(errc::invalid_argument,
1501                                "info field value '" + Twine(GroupSec->Info) +
1502                                    "' in section '" + GroupSec->Name +
1503                                    "' is not a valid symbol index");
1504     GroupSec->setSymTab(*SymTab);
1505     GroupSec->setSymbol(*Sym);
1506   }
1507   if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
1508       GroupSec->Contents.empty())
1509     return createStringError(errc::invalid_argument,
1510                              "the content of the section " + GroupSec->Name +
1511                                  " is malformed");
1512   const ELF::Elf32_Word *Word =
1513       reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
1514   const ELF::Elf32_Word *End =
1515       Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
1516   GroupSec->setFlagWord(*Word++);
1517   for (; Word != End; ++Word) {
1518     uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
1519     Expected<SectionBase *> Sec = SecTable.getSection(
1520         Index, "group member index " + Twine(Index) + " in section '" +
1521                    GroupSec->Name + "' is invalid");
1522     if (!Sec)
1523       return Sec.takeError();
1524 
1525     GroupSec->addMember(*Sec);
1526   }
1527 
1528   return Error::success();
1529 }
1530 
1531 template <class ELFT>
initSymbolTable(SymbolTableSection * SymTab)1532 Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
1533   Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index);
1534   if (!Shdr)
1535     return Shdr.takeError();
1536 
1537   Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr);
1538   if (!StrTabData)
1539     return StrTabData.takeError();
1540 
1541   ArrayRef<Elf_Word> ShndxData;
1542 
1543   Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols =
1544       ElfFile.symbols(*Shdr);
1545   if (!Symbols)
1546     return Symbols.takeError();
1547 
1548   for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) {
1549     SectionBase *DefSection = nullptr;
1550 
1551     Expected<StringRef> Name = Sym.getName(*StrTabData);
1552     if (!Name)
1553       return Name.takeError();
1554 
1555     if (Sym.st_shndx == SHN_XINDEX) {
1556       if (SymTab->getShndxTable() == nullptr)
1557         return createStringError(errc::invalid_argument,
1558                                  "symbol '" + *Name +
1559                                      "' has index SHN_XINDEX but no "
1560                                      "SHT_SYMTAB_SHNDX section exists");
1561       if (ShndxData.data() == nullptr) {
1562         Expected<const Elf_Shdr *> ShndxSec =
1563             ElfFile.getSection(SymTab->getShndxTable()->Index);
1564         if (!ShndxSec)
1565           return ShndxSec.takeError();
1566 
1567         Expected<ArrayRef<Elf_Word>> Data =
1568             ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec);
1569         if (!Data)
1570           return Data.takeError();
1571 
1572         ShndxData = *Data;
1573         if (ShndxData.size() != Symbols->size())
1574           return createStringError(
1575               errc::invalid_argument,
1576               "symbol section index table does not have the same number of "
1577               "entries as the symbol table");
1578       }
1579       Elf_Word Index = ShndxData[&Sym - Symbols->begin()];
1580       Expected<SectionBase *> Sec = Obj.sections().getSection(
1581           Index,
1582           "symbol '" + *Name + "' has invalid section index " + Twine(Index));
1583       if (!Sec)
1584         return Sec.takeError();
1585 
1586       DefSection = *Sec;
1587     } else if (Sym.st_shndx >= SHN_LORESERVE) {
1588       if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
1589         return createStringError(
1590             errc::invalid_argument,
1591             "symbol '" + *Name +
1592                 "' has unsupported value greater than or equal "
1593                 "to SHN_LORESERVE: " +
1594                 Twine(Sym.st_shndx));
1595       }
1596     } else if (Sym.st_shndx != SHN_UNDEF) {
1597       Expected<SectionBase *> Sec = Obj.sections().getSection(
1598           Sym.st_shndx, "symbol '" + *Name +
1599                             "' is defined has invalid section index " +
1600                             Twine(Sym.st_shndx));
1601       if (!Sec)
1602         return Sec.takeError();
1603 
1604       DefSection = *Sec;
1605     }
1606 
1607     SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection,
1608                       Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
1609   }
1610 
1611   return Error::success();
1612 }
1613 
1614 template <class ELFT>
getAddend(uint64_t &,const Elf_Rel_Impl<ELFT,false> &)1615 static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {}
1616 
1617 template <class ELFT>
getAddend(uint64_t & ToSet,const Elf_Rel_Impl<ELFT,true> & Rela)1618 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
1619   ToSet = Rela.r_addend;
1620 }
1621 
1622 template <class T>
initRelocations(RelocationSection * Relocs,SymbolTableSection * SymbolTable,T RelRange)1623 static Error initRelocations(RelocationSection *Relocs,
1624                              SymbolTableSection *SymbolTable, T RelRange) {
1625   for (const auto &Rel : RelRange) {
1626     Relocation ToAdd;
1627     ToAdd.Offset = Rel.r_offset;
1628     getAddend(ToAdd.Addend, Rel);
1629     ToAdd.Type = Rel.getType(false);
1630 
1631     if (uint32_t Sym = Rel.getSymbol(false)) {
1632       if (!SymbolTable)
1633         return createStringError(
1634             errc::invalid_argument,
1635             "'" + Relocs->Name + "': relocation references symbol with index " +
1636                 Twine(Sym) + ", but there is no symbol table");
1637       Expected<Symbol *> SymByIndex = SymbolTable->getSymbolByIndex(Sym);
1638       if (!SymByIndex)
1639         return SymByIndex.takeError();
1640 
1641       ToAdd.RelocSymbol = *SymByIndex;
1642     }
1643 
1644     Relocs->addRelocation(ToAdd);
1645   }
1646 
1647   return Error::success();
1648 }
1649 
getSection(uint32_t Index,Twine ErrMsg)1650 Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index,
1651                                                     Twine ErrMsg) {
1652   if (Index == SHN_UNDEF || Index > Sections.size())
1653     return createStringError(errc::invalid_argument, ErrMsg);
1654   return Sections[Index - 1].get();
1655 }
1656 
1657 template <class T>
getSectionOfType(uint32_t Index,Twine IndexErrMsg,Twine TypeErrMsg)1658 Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index,
1659                                                 Twine IndexErrMsg,
1660                                                 Twine TypeErrMsg) {
1661   Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg);
1662   if (!BaseSec)
1663     return BaseSec.takeError();
1664 
1665   if (T *Sec = dyn_cast<T>(*BaseSec))
1666     return Sec;
1667 
1668   return createStringError(errc::invalid_argument, TypeErrMsg);
1669 }
1670 
1671 template <class ELFT>
makeSection(const Elf_Shdr & Shdr)1672 Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
1673   switch (Shdr.sh_type) {
1674   case SHT_REL:
1675   case SHT_RELA:
1676     if (Shdr.sh_flags & SHF_ALLOC) {
1677       if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1678         return Obj.addSection<DynamicRelocationSection>(*Data);
1679       else
1680         return Data.takeError();
1681     }
1682     return Obj.addSection<RelocationSection>();
1683   case SHT_STRTAB:
1684     // If a string table is allocated we don't want to mess with it. That would
1685     // mean altering the memory image. There are no special link types or
1686     // anything so we can just use a Section.
1687     if (Shdr.sh_flags & SHF_ALLOC) {
1688       if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1689         return Obj.addSection<Section>(*Data);
1690       else
1691         return Data.takeError();
1692     }
1693     return Obj.addSection<StringTableSection>();
1694   case SHT_HASH:
1695   case SHT_GNU_HASH:
1696     // Hash tables should refer to SHT_DYNSYM which we're not going to change.
1697     // Because of this we don't need to mess with the hash tables either.
1698     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1699       return Obj.addSection<Section>(*Data);
1700     else
1701       return Data.takeError();
1702   case SHT_GROUP:
1703     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1704       return Obj.addSection<GroupSection>(*Data);
1705     else
1706       return Data.takeError();
1707   case SHT_DYNSYM:
1708     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1709       return Obj.addSection<DynamicSymbolTableSection>(*Data);
1710     else
1711       return Data.takeError();
1712   case SHT_DYNAMIC:
1713     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1714       return Obj.addSection<DynamicSection>(*Data);
1715     else
1716       return Data.takeError();
1717   case SHT_SYMTAB: {
1718     auto &SymTab = Obj.addSection<SymbolTableSection>();
1719     Obj.SymbolTable = &SymTab;
1720     return SymTab;
1721   }
1722   case SHT_SYMTAB_SHNDX: {
1723     auto &ShndxSection = Obj.addSection<SectionIndexSection>();
1724     Obj.SectionIndexTable = &ShndxSection;
1725     return ShndxSection;
1726   }
1727   case SHT_NOBITS:
1728     return Obj.addSection<Section>(ArrayRef<uint8_t>());
1729   default: {
1730     Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr);
1731     if (!Data)
1732       return Data.takeError();
1733 
1734     Expected<StringRef> Name = ElfFile.getSectionName(Shdr);
1735     if (!Name)
1736       return Name.takeError();
1737 
1738     if (Name->startswith(".zdebug") || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) {
1739       uint64_t DecompressedSize, DecompressedAlign;
1740       std::tie(DecompressedSize, DecompressedAlign) =
1741           getDecompressedSizeAndAlignment<ELFT>(*Data);
1742       Expected<CompressedSection> NewSection =
1743           CompressedSection::create(*Data, DecompressedSize, DecompressedAlign);
1744       if (!NewSection)
1745         return NewSection.takeError();
1746 
1747       return Obj.addSection<CompressedSection>(std::move(*NewSection));
1748     }
1749 
1750     return Obj.addSection<Section>(*Data);
1751   }
1752   }
1753 }
1754 
readSectionHeaders()1755 template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() {
1756   uint32_t Index = 0;
1757   Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1758       ElfFile.sections();
1759   if (!Sections)
1760     return Sections.takeError();
1761 
1762   for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) {
1763     if (Index == 0) {
1764       ++Index;
1765       continue;
1766     }
1767     Expected<SectionBase &> Sec = makeSection(Shdr);
1768     if (!Sec)
1769       return Sec.takeError();
1770 
1771     Expected<StringRef> SecName = ElfFile.getSectionName(Shdr);
1772     if (!SecName)
1773       return SecName.takeError();
1774     Sec->Name = SecName->str();
1775     Sec->Type = Sec->OriginalType = Shdr.sh_type;
1776     Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags;
1777     Sec->Addr = Shdr.sh_addr;
1778     Sec->Offset = Shdr.sh_offset;
1779     Sec->OriginalOffset = Shdr.sh_offset;
1780     Sec->Size = Shdr.sh_size;
1781     Sec->Link = Shdr.sh_link;
1782     Sec->Info = Shdr.sh_info;
1783     Sec->Align = Shdr.sh_addralign;
1784     Sec->EntrySize = Shdr.sh_entsize;
1785     Sec->Index = Index++;
1786     Sec->OriginalIndex = Sec->Index;
1787     Sec->OriginalData =
1788         ArrayRef<uint8_t>(ElfFile.base() + Shdr.sh_offset,
1789                           (Shdr.sh_type == SHT_NOBITS) ? 0 : Shdr.sh_size);
1790   }
1791 
1792   return Error::success();
1793 }
1794 
readSections(bool EnsureSymtab)1795 template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
1796   uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx;
1797   if (ShstrIndex == SHN_XINDEX) {
1798     Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0);
1799     if (!Sec)
1800       return Sec.takeError();
1801 
1802     ShstrIndex = (*Sec)->sh_link;
1803   }
1804 
1805   if (ShstrIndex == SHN_UNDEF)
1806     Obj.HadShdrs = false;
1807   else {
1808     Expected<StringTableSection *> Sec =
1809         Obj.sections().template getSectionOfType<StringTableSection>(
1810             ShstrIndex,
1811             "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1812                 " is invalid",
1813             "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1814                 " does not reference a string table");
1815     if (!Sec)
1816       return Sec.takeError();
1817 
1818     Obj.SectionNames = *Sec;
1819   }
1820 
1821   // If a section index table exists we'll need to initialize it before we
1822   // initialize the symbol table because the symbol table might need to
1823   // reference it.
1824   if (Obj.SectionIndexTable)
1825     if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections()))
1826       return Err;
1827 
1828   // Now that all of the sections have been added we can fill out some extra
1829   // details about symbol tables. We need the symbol table filled out before
1830   // any relocations.
1831   if (Obj.SymbolTable) {
1832     if (Error Err = Obj.SymbolTable->initialize(Obj.sections()))
1833       return Err;
1834     if (Error Err = initSymbolTable(Obj.SymbolTable))
1835       return Err;
1836   } else if (EnsureSymtab) {
1837     if (Error Err = Obj.addNewSymbolTable())
1838       return Err;
1839   }
1840 
1841   // Now that all sections and symbols have been added we can add
1842   // relocations that reference symbols and set the link and info fields for
1843   // relocation sections.
1844   for (SectionBase &Sec : Obj.sections()) {
1845     if (&Sec == Obj.SymbolTable)
1846       continue;
1847     if (Error Err = Sec.initialize(Obj.sections()))
1848       return Err;
1849     if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
1850       Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1851           ElfFile.sections();
1852       if (!Sections)
1853         return Sections.takeError();
1854 
1855       const typename ELFFile<ELFT>::Elf_Shdr *Shdr =
1856           Sections->begin() + RelSec->Index;
1857       if (RelSec->Type == SHT_REL) {
1858         Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels =
1859             ElfFile.rels(*Shdr);
1860         if (!Rels)
1861           return Rels.takeError();
1862 
1863         if (Error Err = initRelocations(RelSec, Obj.SymbolTable, *Rels))
1864           return Err;
1865       } else {
1866         Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas =
1867             ElfFile.relas(*Shdr);
1868         if (!Relas)
1869           return Relas.takeError();
1870 
1871         if (Error Err = initRelocations(RelSec, Obj.SymbolTable, *Relas))
1872           return Err;
1873       }
1874     } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
1875       if (Error Err = initGroupSection(GroupSec))
1876         return Err;
1877     }
1878   }
1879 
1880   return Error::success();
1881 }
1882 
build(bool EnsureSymtab)1883 template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) {
1884   if (Error E = readSectionHeaders())
1885     return E;
1886   if (Error E = findEhdrOffset())
1887     return E;
1888 
1889   // The ELFFile whose ELF headers and program headers are copied into the
1890   // output file. Normally the same as ElfFile, but if we're extracting a
1891   // loadable partition it will point to the partition's headers.
1892   Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef(
1893       {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset}));
1894   if (!HeadersFile)
1895     return HeadersFile.takeError();
1896 
1897   const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader();
1898   Obj.OSABI = Ehdr.e_ident[EI_OSABI];
1899   Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
1900   Obj.Type = Ehdr.e_type;
1901   Obj.Machine = Ehdr.e_machine;
1902   Obj.Version = Ehdr.e_version;
1903   Obj.Entry = Ehdr.e_entry;
1904   Obj.Flags = Ehdr.e_flags;
1905 
1906   if (Error E = readSections(EnsureSymtab))
1907     return E;
1908   return readProgramHeaders(*HeadersFile);
1909 }
1910 
~Writer()1911 Writer::~Writer() {}
1912 
~Reader()1913 Reader::~Reader() {}
1914 
1915 Expected<std::unique_ptr<Object>>
create(bool) const1916 BinaryReader::create(bool /*EnsureSymtab*/) const {
1917   return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
1918 }
1919 
parse() const1920 Expected<std::vector<IHexRecord>> IHexReader::parse() const {
1921   SmallVector<StringRef, 16> Lines;
1922   std::vector<IHexRecord> Records;
1923   bool HasSections = false;
1924 
1925   MemBuf->getBuffer().split(Lines, '\n');
1926   Records.reserve(Lines.size());
1927   for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
1928     StringRef Line = Lines[LineNo - 1].trim();
1929     if (Line.empty())
1930       continue;
1931 
1932     Expected<IHexRecord> R = IHexRecord::parse(Line);
1933     if (!R)
1934       return parseError(LineNo, R.takeError());
1935     if (R->Type == IHexRecord::EndOfFile)
1936       break;
1937     HasSections |= (R->Type == IHexRecord::Data);
1938     Records.push_back(*R);
1939   }
1940   if (!HasSections)
1941     return parseError(-1U, "no sections");
1942 
1943   return std::move(Records);
1944 }
1945 
1946 Expected<std::unique_ptr<Object>>
create(bool) const1947 IHexReader::create(bool /*EnsureSymtab*/) const {
1948   Expected<std::vector<IHexRecord>> Records = parse();
1949   if (!Records)
1950     return Records.takeError();
1951 
1952   return IHexELFBuilder(*Records).build();
1953 }
1954 
create(bool EnsureSymtab) const1955 Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const {
1956   auto Obj = std::make_unique<Object>();
1957   if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
1958     ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
1959     if (Error Err = Builder.build(EnsureSymtab))
1960       return std::move(Err);
1961     return std::move(Obj);
1962   } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
1963     ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
1964     if (Error Err = Builder.build(EnsureSymtab))
1965       return std::move(Err);
1966     return std::move(Obj);
1967   } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
1968     ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
1969     if (Error Err = Builder.build(EnsureSymtab))
1970       return std::move(Err);
1971     return std::move(Obj);
1972   } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
1973     ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
1974     if (Error Err = Builder.build(EnsureSymtab))
1975       return std::move(Err);
1976     return std::move(Obj);
1977   }
1978   return createStringError(errc::invalid_argument, "invalid file type");
1979 }
1980 
writeEhdr()1981 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
1982   Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart());
1983   std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
1984   Ehdr.e_ident[EI_MAG0] = 0x7f;
1985   Ehdr.e_ident[EI_MAG1] = 'E';
1986   Ehdr.e_ident[EI_MAG2] = 'L';
1987   Ehdr.e_ident[EI_MAG3] = 'F';
1988   Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
1989   Ehdr.e_ident[EI_DATA] =
1990       ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
1991   Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
1992   Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
1993   Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
1994 
1995   Ehdr.e_type = Obj.Type;
1996   Ehdr.e_machine = Obj.Machine;
1997   Ehdr.e_version = Obj.Version;
1998   Ehdr.e_entry = Obj.Entry;
1999   // We have to use the fully-qualified name llvm::size
2000   // since some compilers complain on ambiguous resolution.
2001   Ehdr.e_phnum = llvm::size(Obj.segments());
2002   Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
2003   Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
2004   Ehdr.e_flags = Obj.Flags;
2005   Ehdr.e_ehsize = sizeof(Elf_Ehdr);
2006   if (WriteSectionHeaders && Obj.sections().size() != 0) {
2007     Ehdr.e_shentsize = sizeof(Elf_Shdr);
2008     Ehdr.e_shoff = Obj.SHOff;
2009     // """
2010     // If the number of sections is greater than or equal to
2011     // SHN_LORESERVE (0xff00), this member has the value zero and the actual
2012     // number of section header table entries is contained in the sh_size field
2013     // of the section header at index 0.
2014     // """
2015     auto Shnum = Obj.sections().size() + 1;
2016     if (Shnum >= SHN_LORESERVE)
2017       Ehdr.e_shnum = 0;
2018     else
2019       Ehdr.e_shnum = Shnum;
2020     // """
2021     // If the section name string table section index is greater than or equal
2022     // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
2023     // and the actual index of the section name string table section is
2024     // contained in the sh_link field of the section header at index 0.
2025     // """
2026     if (Obj.SectionNames->Index >= SHN_LORESERVE)
2027       Ehdr.e_shstrndx = SHN_XINDEX;
2028     else
2029       Ehdr.e_shstrndx = Obj.SectionNames->Index;
2030   } else {
2031     Ehdr.e_shentsize = 0;
2032     Ehdr.e_shoff = 0;
2033     Ehdr.e_shnum = 0;
2034     Ehdr.e_shstrndx = 0;
2035   }
2036 }
2037 
writePhdrs()2038 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
2039   for (auto &Seg : Obj.segments())
2040     writePhdr(Seg);
2041 }
2042 
writeShdrs()2043 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
2044   // This reference serves to write the dummy section header at the begining
2045   // of the file. It is not used for anything else
2046   Elf_Shdr &Shdr =
2047       *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff);
2048   Shdr.sh_name = 0;
2049   Shdr.sh_type = SHT_NULL;
2050   Shdr.sh_flags = 0;
2051   Shdr.sh_addr = 0;
2052   Shdr.sh_offset = 0;
2053   // See writeEhdr for why we do this.
2054   uint64_t Shnum = Obj.sections().size() + 1;
2055   if (Shnum >= SHN_LORESERVE)
2056     Shdr.sh_size = Shnum;
2057   else
2058     Shdr.sh_size = 0;
2059   // See writeEhdr for why we do this.
2060   if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
2061     Shdr.sh_link = Obj.SectionNames->Index;
2062   else
2063     Shdr.sh_link = 0;
2064   Shdr.sh_info = 0;
2065   Shdr.sh_addralign = 0;
2066   Shdr.sh_entsize = 0;
2067 
2068   for (SectionBase &Sec : Obj.sections())
2069     writeShdr(Sec);
2070 }
2071 
writeSectionData()2072 template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() {
2073   for (SectionBase &Sec : Obj.sections())
2074     // Segments are responsible for writing their contents, so only write the
2075     // section data if the section is not in a segment. Note that this renders
2076     // sections in segments effectively immutable.
2077     if (Sec.ParentSegment == nullptr)
2078       if (Error Err = Sec.accept(*SecWriter))
2079         return Err;
2080 
2081   return Error::success();
2082 }
2083 
writeSegmentData()2084 template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
2085   for (Segment &Seg : Obj.segments()) {
2086     size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size());
2087     std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(),
2088                 Size);
2089   }
2090 
2091   // Iterate over removed sections and overwrite their old data with zeroes.
2092   for (auto &Sec : Obj.removedSections()) {
2093     Segment *Parent = Sec.ParentSegment;
2094     if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
2095       continue;
2096     uint64_t Offset =
2097         Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2098     std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size);
2099   }
2100 }
2101 
2102 template <class ELFT>
ELFWriter(Object & Obj,raw_ostream & Buf,bool WSH,bool OnlyKeepDebug)2103 ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH,
2104                            bool OnlyKeepDebug)
2105     : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs),
2106       OnlyKeepDebug(OnlyKeepDebug) {}
2107 
removeSections(bool AllowBrokenLinks,std::function<bool (const SectionBase &)> ToRemove)2108 Error Object::removeSections(
2109     bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) {
2110 
2111   auto Iter = std::stable_partition(
2112       std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
2113         if (ToRemove(*Sec))
2114           return false;
2115         if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
2116           if (auto ToRelSec = RelSec->getSection())
2117             return !ToRemove(*ToRelSec);
2118         }
2119         return true;
2120       });
2121   if (SymbolTable != nullptr && ToRemove(*SymbolTable))
2122     SymbolTable = nullptr;
2123   if (SectionNames != nullptr && ToRemove(*SectionNames))
2124     SectionNames = nullptr;
2125   if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
2126     SectionIndexTable = nullptr;
2127   // Now make sure there are no remaining references to the sections that will
2128   // be removed. Sometimes it is impossible to remove a reference so we emit
2129   // an error here instead.
2130   std::unordered_set<const SectionBase *> RemoveSections;
2131   RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
2132   for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
2133     for (auto &Segment : Segments)
2134       Segment->removeSection(RemoveSec.get());
2135     RemoveSec->onRemove();
2136     RemoveSections.insert(RemoveSec.get());
2137   }
2138 
2139   // For each section that remains alive, we want to remove the dead references.
2140   // This either might update the content of the section (e.g. remove symbols
2141   // from symbol table that belongs to removed section) or trigger an error if
2142   // a live section critically depends on a section being removed somehow
2143   // (e.g. the removed section is referenced by a relocation).
2144   for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
2145     if (Error E = KeepSec->removeSectionReferences(
2146             AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) {
2147               return RemoveSections.find(Sec) != RemoveSections.end();
2148             }))
2149       return E;
2150   }
2151 
2152   // Transfer removed sections into the Object RemovedSections container for use
2153   // later.
2154   std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
2155   // Now finally get rid of them all together.
2156   Sections.erase(Iter, std::end(Sections));
2157   return Error::success();
2158 }
2159 
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)2160 Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
2161   if (SymbolTable)
2162     for (const SecPtr &Sec : Sections)
2163       if (Error E = Sec->removeSymbols(ToRemove))
2164         return E;
2165   return Error::success();
2166 }
2167 
addNewSymbolTable()2168 Error Object::addNewSymbolTable() {
2169   assert(!SymbolTable && "Object must not has a SymbolTable.");
2170 
2171   // Reuse an existing SHT_STRTAB section if it exists.
2172   StringTableSection *StrTab = nullptr;
2173   for (SectionBase &Sec : sections()) {
2174     if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
2175       StrTab = static_cast<StringTableSection *>(&Sec);
2176 
2177       // Prefer a string table that is not the section header string table, if
2178       // such a table exists.
2179       if (SectionNames != &Sec)
2180         break;
2181     }
2182   }
2183   if (!StrTab)
2184     StrTab = &addSection<StringTableSection>();
2185 
2186   SymbolTableSection &SymTab = addSection<SymbolTableSection>();
2187   SymTab.Name = ".symtab";
2188   SymTab.Link = StrTab->Index;
2189   if (Error Err = SymTab.initialize(sections()))
2190     return Err;
2191   SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
2192 
2193   SymbolTable = &SymTab;
2194 
2195   return Error::success();
2196 }
2197 
sortSections()2198 void Object::sortSections() {
2199   // Use stable_sort to maintain the original ordering as closely as possible.
2200   llvm::stable_sort(Sections, [](const SecPtr &A, const SecPtr &B) {
2201     // Put SHT_GROUP sections first, since group section headers must come
2202     // before the sections they contain. This also matches what GNU objcopy
2203     // does.
2204     if (A->Type != B->Type &&
2205         (A->Type == ELF::SHT_GROUP || B->Type == ELF::SHT_GROUP))
2206       return A->Type == ELF::SHT_GROUP;
2207     // For all other sections, sort by offset order.
2208     return A->OriginalOffset < B->OriginalOffset;
2209   });
2210 }
2211 
2212 // Orders segments such that if x = y->ParentSegment then y comes before x.
orderSegments(std::vector<Segment * > & Segments)2213 static void orderSegments(std::vector<Segment *> &Segments) {
2214   llvm::stable_sort(Segments, compareSegmentsByOffset);
2215 }
2216 
2217 // This function finds a consistent layout for a list of segments starting from
2218 // an Offset. It assumes that Segments have been sorted by orderSegments and
2219 // returns an Offset one past the end of the last segment.
layoutSegments(std::vector<Segment * > & Segments,uint64_t Offset)2220 static uint64_t layoutSegments(std::vector<Segment *> &Segments,
2221                                uint64_t Offset) {
2222   assert(llvm::is_sorted(Segments, compareSegmentsByOffset));
2223   // The only way a segment should move is if a section was between two
2224   // segments and that section was removed. If that section isn't in a segment
2225   // then it's acceptable, but not ideal, to simply move it to after the
2226   // segments. So we can simply layout segments one after the other accounting
2227   // for alignment.
2228   for (Segment *Seg : Segments) {
2229     // We assume that segments have been ordered by OriginalOffset and Index
2230     // such that a parent segment will always come before a child segment in
2231     // OrderedSegments. This means that the Offset of the ParentSegment should
2232     // already be set and we can set our offset relative to it.
2233     if (Seg->ParentSegment != nullptr) {
2234       Segment *Parent = Seg->ParentSegment;
2235       Seg->Offset =
2236           Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
2237     } else {
2238       Seg->Offset =
2239           alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
2240     }
2241     Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
2242   }
2243   return Offset;
2244 }
2245 
2246 // This function finds a consistent layout for a list of sections. It assumes
2247 // that the ->ParentSegment of each section has already been laid out. The
2248 // supplied starting Offset is used for the starting offset of any section that
2249 // does not have a ParentSegment. It returns either the offset given if all
2250 // sections had a ParentSegment or an offset one past the last section if there
2251 // was a section that didn't have a ParentSegment.
2252 template <class Range>
layoutSections(Range Sections,uint64_t Offset)2253 static uint64_t layoutSections(Range Sections, uint64_t Offset) {
2254   // Now the offset of every segment has been set we can assign the offsets
2255   // of each section. For sections that are covered by a segment we should use
2256   // the segment's original offset and the section's original offset to compute
2257   // the offset from the start of the segment. Using the offset from the start
2258   // of the segment we can assign a new offset to the section. For sections not
2259   // covered by segments we can just bump Offset to the next valid location.
2260   uint32_t Index = 1;
2261   for (auto &Sec : Sections) {
2262     Sec.Index = Index++;
2263     if (Sec.ParentSegment != nullptr) {
2264       auto Segment = *Sec.ParentSegment;
2265       Sec.Offset =
2266           Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
2267     } else {
2268       Offset = alignTo(Offset, Sec.Align == 0 ? 1 : Sec.Align);
2269       Sec.Offset = Offset;
2270       if (Sec.Type != SHT_NOBITS)
2271         Offset += Sec.Size;
2272     }
2273   }
2274   return Offset;
2275 }
2276 
2277 // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
2278 // occupy no space in the file.
layoutSectionsForOnlyKeepDebug(Object & Obj,uint64_t Off)2279 static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) {
2280   uint32_t Index = 1;
2281   for (auto &Sec : Obj.sections()) {
2282     Sec.Index = Index++;
2283 
2284     auto *FirstSec = Sec.ParentSegment && Sec.ParentSegment->Type == PT_LOAD
2285                          ? Sec.ParentSegment->firstSection()
2286                          : nullptr;
2287 
2288     // The first section in a PT_LOAD has to have congruent offset and address
2289     // modulo the alignment, which usually equals the maximum page size.
2290     if (FirstSec && FirstSec == &Sec)
2291       Off = alignTo(Off, Sec.ParentSegment->Align, Sec.Addr);
2292 
2293     // sh_offset is not significant for SHT_NOBITS sections, but the congruence
2294     // rule must be followed if it is the first section in a PT_LOAD. Do not
2295     // advance Off.
2296     if (Sec.Type == SHT_NOBITS) {
2297       Sec.Offset = Off;
2298       continue;
2299     }
2300 
2301     if (!FirstSec) {
2302       // FirstSec being nullptr generally means that Sec does not have the
2303       // SHF_ALLOC flag.
2304       Off = Sec.Align ? alignTo(Off, Sec.Align) : Off;
2305     } else if (FirstSec != &Sec) {
2306       // The offset is relative to the first section in the PT_LOAD segment. Use
2307       // sh_offset for non-SHF_ALLOC sections.
2308       Off = Sec.OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset;
2309     }
2310     Sec.Offset = Off;
2311     Off += Sec.Size;
2312   }
2313   return Off;
2314 }
2315 
2316 // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values
2317 // have been updated.
layoutSegmentsForOnlyKeepDebug(std::vector<Segment * > & Segments,uint64_t HdrEnd)2318 static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments,
2319                                                uint64_t HdrEnd) {
2320   uint64_t MaxOffset = 0;
2321   for (Segment *Seg : Segments) {
2322     if (Seg->Type == PT_PHDR)
2323       continue;
2324 
2325     // The segment offset is generally the offset of the first section.
2326     //
2327     // For a segment containing no section (see sectionWithinSegment), if it has
2328     // a parent segment, copy the parent segment's offset field. This works for
2329     // empty PT_TLS. If no parent segment, use 0: the segment is not useful for
2330     // debugging anyway.
2331     const SectionBase *FirstSec = Seg->firstSection();
2332     uint64_t Offset =
2333         FirstSec ? FirstSec->Offset
2334                  : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0);
2335     uint64_t FileSize = 0;
2336     for (const SectionBase *Sec : Seg->Sections) {
2337       uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size;
2338       if (Sec->Offset + Size > Offset)
2339         FileSize = std::max(FileSize, Sec->Offset + Size - Offset);
2340     }
2341 
2342     // If the segment includes EHDR and program headers, don't make it smaller
2343     // than the headers.
2344     if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) {
2345       FileSize += Offset - Seg->Offset;
2346       Offset = Seg->Offset;
2347       FileSize = std::max(FileSize, HdrEnd - Offset);
2348     }
2349 
2350     Seg->Offset = Offset;
2351     Seg->FileSize = FileSize;
2352     MaxOffset = std::max(MaxOffset, Offset + FileSize);
2353   }
2354   return MaxOffset;
2355 }
2356 
initEhdrSegment()2357 template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
2358   Segment &ElfHdr = Obj.ElfHdrSegment;
2359   ElfHdr.Type = PT_PHDR;
2360   ElfHdr.Flags = 0;
2361   ElfHdr.VAddr = 0;
2362   ElfHdr.PAddr = 0;
2363   ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
2364   ElfHdr.Align = 0;
2365 }
2366 
assignOffsets()2367 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
2368   // We need a temporary list of segments that has a special order to it
2369   // so that we know that anytime ->ParentSegment is set that segment has
2370   // already had its offset properly set.
2371   std::vector<Segment *> OrderedSegments;
2372   for (Segment &Segment : Obj.segments())
2373     OrderedSegments.push_back(&Segment);
2374   OrderedSegments.push_back(&Obj.ElfHdrSegment);
2375   OrderedSegments.push_back(&Obj.ProgramHdrSegment);
2376   orderSegments(OrderedSegments);
2377 
2378   uint64_t Offset;
2379   if (OnlyKeepDebug) {
2380     // For --only-keep-debug, the sections that did not preserve contents were
2381     // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
2382     // then rewrite p_offset/p_filesz of program headers.
2383     uint64_t HdrEnd =
2384         sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr);
2385     Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd);
2386     Offset = std::max(Offset,
2387                       layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd));
2388   } else {
2389     // Offset is used as the start offset of the first segment to be laid out.
2390     // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
2391     // we start at offset 0.
2392     Offset = layoutSegments(OrderedSegments, 0);
2393     Offset = layoutSections(Obj.sections(), Offset);
2394   }
2395   // If we need to write the section header table out then we need to align the
2396   // Offset so that SHOffset is valid.
2397   if (WriteSectionHeaders)
2398     Offset = alignTo(Offset, sizeof(Elf_Addr));
2399   Obj.SHOff = Offset;
2400 }
2401 
totalSize() const2402 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
2403   // We already have the section header offset so we can calculate the total
2404   // size by just adding up the size of each section header.
2405   if (!WriteSectionHeaders)
2406     return Obj.SHOff;
2407   size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
2408   return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
2409 }
2410 
write()2411 template <class ELFT> Error ELFWriter<ELFT>::write() {
2412   // Segment data must be written first, so that the ELF header and program
2413   // header tables can overwrite it, if covered by a segment.
2414   writeSegmentData();
2415   writeEhdr();
2416   writePhdrs();
2417   if (Error E = writeSectionData())
2418     return E;
2419   if (WriteSectionHeaders)
2420     writeShdrs();
2421 
2422   // TODO: Implement direct writing to the output stream (without intermediate
2423   // memory buffer Buf).
2424   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2425   return Error::success();
2426 }
2427 
removeUnneededSections(Object & Obj)2428 static Error removeUnneededSections(Object &Obj) {
2429   // We can remove an empty symbol table from non-relocatable objects.
2430   // Relocatable objects typically have relocation sections whose
2431   // sh_link field points to .symtab, so we can't remove .symtab
2432   // even if it is empty.
2433   if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
2434       !Obj.SymbolTable->empty())
2435     return Error::success();
2436 
2437   // .strtab can be used for section names. In such a case we shouldn't
2438   // remove it.
2439   auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
2440                      ? nullptr
2441                      : Obj.SymbolTable->getStrTab();
2442   return Obj.removeSections(false, [&](const SectionBase &Sec) {
2443     return &Sec == Obj.SymbolTable || &Sec == StrTab;
2444   });
2445 }
2446 
finalize()2447 template <class ELFT> Error ELFWriter<ELFT>::finalize() {
2448   // It could happen that SectionNames has been removed and yet the user wants
2449   // a section header table output. We need to throw an error if a user tries
2450   // to do that.
2451   if (Obj.SectionNames == nullptr && WriteSectionHeaders)
2452     return createStringError(llvm::errc::invalid_argument,
2453                              "cannot write section header table because "
2454                              "section header string table was removed");
2455 
2456   if (Error E = removeUnneededSections(Obj))
2457     return E;
2458   Obj.sortSections();
2459 
2460   // We need to assign indexes before we perform layout because we need to know
2461   // if we need large indexes or not. We can assign indexes first and check as
2462   // we go to see if we will actully need large indexes.
2463   bool NeedsLargeIndexes = false;
2464   if (Obj.sections().size() >= SHN_LORESERVE) {
2465     SectionTableRef Sections = Obj.sections();
2466     // Sections doesn't include the null section header, so account for this
2467     // when skipping the first N sections.
2468     NeedsLargeIndexes =
2469         any_of(drop_begin(Sections, SHN_LORESERVE - 1),
2470                [](const SectionBase &Sec) { return Sec.HasSymbol; });
2471     // TODO: handle case where only one section needs the large index table but
2472     // only needs it because the large index table hasn't been removed yet.
2473   }
2474 
2475   if (NeedsLargeIndexes) {
2476     // This means we definitely need to have a section index table but if we
2477     // already have one then we should use it instead of making a new one.
2478     if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
2479       // Addition of a section to the end does not invalidate the indexes of
2480       // other sections and assigns the correct index to the new section.
2481       auto &Shndx = Obj.addSection<SectionIndexSection>();
2482       Obj.SymbolTable->setShndxTable(&Shndx);
2483       Shndx.setSymTab(Obj.SymbolTable);
2484     }
2485   } else {
2486     // Since we don't need SectionIndexTable we should remove it and all
2487     // references to it.
2488     if (Obj.SectionIndexTable != nullptr) {
2489       // We do not support sections referring to the section index table.
2490       if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
2491                                        [this](const SectionBase &Sec) {
2492                                          return &Sec == Obj.SectionIndexTable;
2493                                        }))
2494         return E;
2495     }
2496   }
2497 
2498   // Make sure we add the names of all the sections. Importantly this must be
2499   // done after we decide to add or remove SectionIndexes.
2500   if (Obj.SectionNames != nullptr)
2501     for (const SectionBase &Sec : Obj.sections())
2502       Obj.SectionNames->addString(Sec.Name);
2503 
2504   initEhdrSegment();
2505 
2506   // Before we can prepare for layout the indexes need to be finalized.
2507   // Also, the output arch may not be the same as the input arch, so fix up
2508   // size-related fields before doing layout calculations.
2509   uint64_t Index = 0;
2510   auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
2511   for (SectionBase &Sec : Obj.sections()) {
2512     Sec.Index = Index++;
2513     if (Error Err = Sec.accept(*SecSizer))
2514       return Err;
2515   }
2516 
2517   // The symbol table does not update all other sections on update. For
2518   // instance, symbol names are not added as new symbols are added. This means
2519   // that some sections, like .strtab, don't yet have their final size.
2520   if (Obj.SymbolTable != nullptr)
2521     Obj.SymbolTable->prepareForLayout();
2522 
2523   // Now that all strings are added we want to finalize string table builders,
2524   // because that affects section sizes which in turn affects section offsets.
2525   for (SectionBase &Sec : Obj.sections())
2526     if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
2527       StrTab->prepareForLayout();
2528 
2529   assignOffsets();
2530 
2531   // layoutSections could have modified section indexes, so we need
2532   // to fill the index table after assignOffsets.
2533   if (Obj.SymbolTable != nullptr)
2534     Obj.SymbolTable->fillShndxTable();
2535 
2536   // Finally now that all offsets and indexes have been set we can finalize any
2537   // remaining issues.
2538   uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
2539   for (SectionBase &Sec : Obj.sections()) {
2540     Sec.HeaderOffset = Offset;
2541     Offset += sizeof(Elf_Shdr);
2542     if (WriteSectionHeaders)
2543       Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
2544     Sec.finalize();
2545   }
2546 
2547   size_t TotalSize = totalSize();
2548   Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2549   if (!Buf)
2550     return createStringError(errc::not_enough_memory,
2551                              "failed to allocate memory buffer of " +
2552                                  Twine::utohexstr(TotalSize) + " bytes");
2553 
2554   SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf);
2555   return Error::success();
2556 }
2557 
write()2558 Error BinaryWriter::write() {
2559   for (const SectionBase &Sec : Obj.allocSections())
2560     if (Error Err = Sec.accept(*SecWriter))
2561       return Err;
2562 
2563   // TODO: Implement direct writing to the output stream (without intermediate
2564   // memory buffer Buf).
2565   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2566   return Error::success();
2567 }
2568 
finalize()2569 Error BinaryWriter::finalize() {
2570   // Compute the section LMA based on its sh_offset and the containing segment's
2571   // p_offset and p_paddr. Also compute the minimum LMA of all non-empty
2572   // sections as MinAddr. In the output, the contents between address 0 and
2573   // MinAddr will be skipped.
2574   uint64_t MinAddr = UINT64_MAX;
2575   for (SectionBase &Sec : Obj.allocSections()) {
2576     if (Sec.ParentSegment != nullptr)
2577       Sec.Addr =
2578           Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr;
2579     if (Sec.Type != SHT_NOBITS && Sec.Size > 0)
2580       MinAddr = std::min(MinAddr, Sec.Addr);
2581   }
2582 
2583   // Now that every section has been laid out we just need to compute the total
2584   // file size. This might not be the same as the offset returned by
2585   // layoutSections, because we want to truncate the last segment to the end of
2586   // its last non-empty section, to match GNU objcopy's behaviour.
2587   TotalSize = 0;
2588   for (SectionBase &Sec : Obj.allocSections())
2589     if (Sec.Type != SHT_NOBITS && Sec.Size > 0) {
2590       Sec.Offset = Sec.Addr - MinAddr;
2591       TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
2592     }
2593 
2594   Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2595   if (!Buf)
2596     return createStringError(errc::not_enough_memory,
2597                              "failed to allocate memory buffer of " +
2598                                  Twine::utohexstr(TotalSize) + " bytes");
2599   SecWriter = std::make_unique<BinarySectionWriter>(*Buf);
2600   return Error::success();
2601 }
2602 
operator ()(const SectionBase * Lhs,const SectionBase * Rhs) const2603 bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
2604                                             const SectionBase *Rhs) const {
2605   return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
2606          (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
2607 }
2608 
writeEntryPointRecord(uint8_t * Buf)2609 uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
2610   IHexLineData HexData;
2611   uint8_t Data[4] = {};
2612   // We don't write entry point record if entry is zero.
2613   if (Obj.Entry == 0)
2614     return 0;
2615 
2616   if (Obj.Entry <= 0xFFFFFU) {
2617     Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
2618     support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
2619                            support::big);
2620     HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
2621   } else {
2622     support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
2623                            support::big);
2624     HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
2625   }
2626   memcpy(Buf, HexData.data(), HexData.size());
2627   return HexData.size();
2628 }
2629 
writeEndOfFileRecord(uint8_t * Buf)2630 uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
2631   IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
2632   memcpy(Buf, HexData.data(), HexData.size());
2633   return HexData.size();
2634 }
2635 
write()2636 Error IHexWriter::write() {
2637   IHexSectionWriter Writer(*Buf);
2638   // Write sections.
2639   for (const SectionBase *Sec : Sections)
2640     if (Error Err = Sec->accept(Writer))
2641       return Err;
2642 
2643   uint64_t Offset = Writer.getBufferOffset();
2644   // Write entry point address.
2645   Offset += writeEntryPointRecord(
2646       reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2647   // Write EOF.
2648   Offset += writeEndOfFileRecord(
2649       reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2650   assert(Offset == TotalSize);
2651 
2652   // TODO: Implement direct writing to the output stream (without intermediate
2653   // memory buffer Buf).
2654   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2655   return Error::success();
2656 }
2657 
checkSection(const SectionBase & Sec)2658 Error IHexWriter::checkSection(const SectionBase &Sec) {
2659   uint64_t Addr = sectionPhysicalAddr(&Sec);
2660   if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
2661     return createStringError(
2662         errc::invalid_argument,
2663         "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit",
2664         Sec.Name.c_str(), Addr, Addr + Sec.Size - 1);
2665   return Error::success();
2666 }
2667 
finalize()2668 Error IHexWriter::finalize() {
2669   bool UseSegments = false;
2670   auto ShouldWrite = [](const SectionBase &Sec) {
2671     return (Sec.Flags & ELF::SHF_ALLOC) && (Sec.Type != ELF::SHT_NOBITS);
2672   };
2673   auto IsInPtLoad = [](const SectionBase &Sec) {
2674     return Sec.ParentSegment && Sec.ParentSegment->Type == ELF::PT_LOAD;
2675   };
2676 
2677   // We can't write 64-bit addresses.
2678   if (addressOverflows32bit(Obj.Entry))
2679     return createStringError(errc::invalid_argument,
2680                              "Entry point address 0x%llx overflows 32 bits",
2681                              Obj.Entry);
2682 
2683   // If any section we're to write has segment then we
2684   // switch to using physical addresses. Otherwise we
2685   // use section virtual address.
2686   for (const SectionBase &Sec : Obj.sections())
2687     if (ShouldWrite(Sec) && IsInPtLoad(Sec)) {
2688       UseSegments = true;
2689       break;
2690     }
2691 
2692   for (const SectionBase &Sec : Obj.sections())
2693     if (ShouldWrite(Sec) && (!UseSegments || IsInPtLoad(Sec))) {
2694       if (Error E = checkSection(Sec))
2695         return E;
2696       Sections.insert(&Sec);
2697     }
2698 
2699   std::unique_ptr<WritableMemoryBuffer> EmptyBuffer =
2700       WritableMemoryBuffer::getNewMemBuffer(0);
2701   if (!EmptyBuffer)
2702     return createStringError(errc::not_enough_memory,
2703                              "failed to allocate memory buffer of 0 bytes");
2704 
2705   IHexSectionWriterBase LengthCalc(*EmptyBuffer);
2706   for (const SectionBase *Sec : Sections)
2707     if (Error Err = Sec->accept(LengthCalc))
2708       return Err;
2709 
2710   // We need space to write section records + StartAddress record
2711   // (if start adress is not zero) + EndOfFile record.
2712   TotalSize = LengthCalc.getBufferOffset() +
2713               (Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
2714               IHexRecord::getLineLength(0);
2715 
2716   Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2717   if (!Buf)
2718     return createStringError(errc::not_enough_memory,
2719                              "failed to allocate memory buffer of " +
2720                                  Twine::utohexstr(TotalSize) + " bytes");
2721 
2722   return Error::success();
2723 }
2724 
2725 template class ELFBuilder<ELF64LE>;
2726 template class ELFBuilder<ELF64BE>;
2727 template class ELFBuilder<ELF32LE>;
2728 template class ELFBuilder<ELF32BE>;
2729 
2730 template class ELFWriter<ELF64LE>;
2731 template class ELFWriter<ELF64BE>;
2732 template class ELFWriter<ELF32LE>;
2733 template class ELFWriter<ELF32BE>;
2734 
2735 } // end namespace elf
2736 } // end namespace objcopy
2737 } // end namespace llvm
2738