1 /* Gimple ranger SSA cache implementation.
2 Copyright (C) 2017-2022 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "gimple-range.h"
31 #include "tree-cfg.h"
32 #include "target.h"
33 #include "attribs.h"
34 #include "gimple-iterator.h"
35 #include "gimple-walk.h"
36 #include "cfganal.h"
37
38 #define DEBUG_RANGE_CACHE (dump_file \
39 && (param_ranger_debug & RANGER_DEBUG_CACHE))
40
41 // During contructor, allocate the vector of ssa_names.
42
non_null_ref()43 non_null_ref::non_null_ref ()
44 {
45 m_nn.create (num_ssa_names);
46 m_nn.quick_grow_cleared (num_ssa_names);
47 bitmap_obstack_initialize (&m_bitmaps);
48 }
49
50 // Free any bitmaps which were allocated,a swell as the vector itself.
51
~non_null_ref()52 non_null_ref::~non_null_ref ()
53 {
54 bitmap_obstack_release (&m_bitmaps);
55 m_nn.release ();
56 }
57
58 // This routine will update NAME in BB to be nonnull if it is not already.
59 // return TRUE if the update happens.
60
61 bool
set_nonnull(basic_block bb,tree name)62 non_null_ref::set_nonnull (basic_block bb, tree name)
63 {
64 gcc_checking_assert (gimple_range_ssa_p (name)
65 && POINTER_TYPE_P (TREE_TYPE (name)));
66 // Only process when its not already set.
67 if (non_null_deref_p (name, bb, false))
68 return false;
69 bitmap_set_bit (m_nn[SSA_NAME_VERSION (name)], bb->index);
70 return true;
71 }
72
73 // Return true if NAME has a non-null dereference in block bb. If this is the
74 // first query for NAME, calculate the summary first.
75 // If SEARCH_DOM is true, the search the dominator tree as well.
76
77 bool
non_null_deref_p(tree name,basic_block bb,bool search_dom)78 non_null_ref::non_null_deref_p (tree name, basic_block bb, bool search_dom)
79 {
80 if (!POINTER_TYPE_P (TREE_TYPE (name)))
81 return false;
82
83 unsigned v = SSA_NAME_VERSION (name);
84 if (v >= m_nn.length ())
85 m_nn.safe_grow_cleared (num_ssa_names + 1);
86
87 if (!m_nn[v])
88 process_name (name);
89
90 if (bitmap_bit_p (m_nn[v], bb->index))
91 return true;
92
93 // See if any dominator has set non-zero.
94 if (search_dom && dom_info_available_p (CDI_DOMINATORS))
95 {
96 // Search back to the Def block, or the top, whichever is closer.
97 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
98 basic_block def_dom = def_bb
99 ? get_immediate_dominator (CDI_DOMINATORS, def_bb)
100 : NULL;
101 for ( ;
102 bb && bb != def_dom;
103 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
104 if (bitmap_bit_p (m_nn[v], bb->index))
105 return true;
106 }
107 return false;
108 }
109
110 // Allocate an populate the bitmap for NAME. An ON bit for a block
111 // index indicates there is a non-null reference in that block. In
112 // order to populate the bitmap, a quick run of all the immediate uses
113 // are made and the statement checked to see if a non-null dereference
114 // is made on that statement.
115
116 void
process_name(tree name)117 non_null_ref::process_name (tree name)
118 {
119 unsigned v = SSA_NAME_VERSION (name);
120 use_operand_p use_p;
121 imm_use_iterator iter;
122 bitmap b;
123
124 // Only tracked for pointers.
125 if (!POINTER_TYPE_P (TREE_TYPE (name)))
126 return;
127
128 // Already processed if a bitmap has been allocated.
129 if (m_nn[v])
130 return;
131
132 b = BITMAP_ALLOC (&m_bitmaps);
133
134 // Loop over each immediate use and see if it implies a non-null value.
135 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
136 {
137 gimple *s = USE_STMT (use_p);
138 unsigned index = gimple_bb (s)->index;
139
140 // If bit is already set for this block, dont bother looking again.
141 if (bitmap_bit_p (b, index))
142 continue;
143
144 // If we can infer a nonnull range, then set the bit for this BB
145 if (!SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name)
146 && infer_nonnull_range (s, name))
147 bitmap_set_bit (b, index);
148 }
149
150 m_nn[v] = b;
151 }
152
153 // -------------------------------------------------------------------------
154
155 // This class represents the API into a cache of ranges for an SSA_NAME.
156 // Routines must be implemented to set, get, and query if a value is set.
157
158 class ssa_block_ranges
159 {
160 public:
161 virtual bool set_bb_range (const_basic_block bb, const irange &r) = 0;
162 virtual bool get_bb_range (irange &r, const_basic_block bb) = 0;
163 virtual bool bb_range_p (const_basic_block bb) = 0;
164
165 void dump(FILE *f);
166 };
167
168 // Print the list of known ranges for file F in a nice format.
169
170 void
dump(FILE * f)171 ssa_block_ranges::dump (FILE *f)
172 {
173 basic_block bb;
174 int_range_max r;
175
176 FOR_EACH_BB_FN (bb, cfun)
177 if (get_bb_range (r, bb))
178 {
179 fprintf (f, "BB%d -> ", bb->index);
180 r.dump (f);
181 fprintf (f, "\n");
182 }
183 }
184
185 // This class implements the range cache as a linear vector, indexed by BB.
186 // It caches a varying and undefined range which are used instead of
187 // allocating new ones each time.
188
189 class sbr_vector : public ssa_block_ranges
190 {
191 public:
192 sbr_vector (tree t, irange_allocator *allocator);
193
194 virtual bool set_bb_range (const_basic_block bb, const irange &r) OVERRIDE;
195 virtual bool get_bb_range (irange &r, const_basic_block bb) OVERRIDE;
196 virtual bool bb_range_p (const_basic_block bb) OVERRIDE;
197 protected:
198 irange **m_tab; // Non growing vector.
199 int m_tab_size;
200 int_range<2> m_varying;
201 int_range<2> m_undefined;
202 tree m_type;
203 irange_allocator *m_irange_allocator;
204 void grow ();
205 };
206
207
208 // Initialize a block cache for an ssa_name of type T.
209
sbr_vector(tree t,irange_allocator * allocator)210 sbr_vector::sbr_vector (tree t, irange_allocator *allocator)
211 {
212 gcc_checking_assert (TYPE_P (t));
213 m_type = t;
214 m_irange_allocator = allocator;
215 m_tab_size = last_basic_block_for_fn (cfun) + 1;
216 m_tab = (irange **)allocator->get_memory (m_tab_size * sizeof (irange *));
217 memset (m_tab, 0, m_tab_size * sizeof (irange *));
218
219 // Create the cached type range.
220 m_varying.set_varying (t);
221 m_undefined.set_undefined ();
222 }
223
224 // Grow the vector when the CFG has increased in size.
225
226 void
grow()227 sbr_vector::grow ()
228 {
229 int curr_bb_size = last_basic_block_for_fn (cfun);
230 gcc_checking_assert (curr_bb_size > m_tab_size);
231
232 // Increase the max of a)128, b)needed increase * 2, c)10% of current_size.
233 int inc = MAX ((curr_bb_size - m_tab_size) * 2, 128);
234 inc = MAX (inc, curr_bb_size / 10);
235 int new_size = inc + curr_bb_size;
236
237 // Allocate new memory, copy the old vector and clear the new space.
238 irange **t = (irange **)m_irange_allocator->get_memory (new_size
239 * sizeof (irange *));
240 memcpy (t, m_tab, m_tab_size * sizeof (irange *));
241 memset (t + m_tab_size, 0, (new_size - m_tab_size) * sizeof (irange *));
242
243 m_tab = t;
244 m_tab_size = new_size;
245 }
246
247 // Set the range for block BB to be R.
248
249 bool
set_bb_range(const_basic_block bb,const irange & r)250 sbr_vector::set_bb_range (const_basic_block bb, const irange &r)
251 {
252 irange *m;
253 if (bb->index >= m_tab_size)
254 grow ();
255 if (r.varying_p ())
256 m = &m_varying;
257 else if (r.undefined_p ())
258 m = &m_undefined;
259 else
260 m = m_irange_allocator->allocate (r);
261 m_tab[bb->index] = m;
262 return true;
263 }
264
265 // Return the range associated with block BB in R. Return false if
266 // there is no range.
267
268 bool
get_bb_range(irange & r,const_basic_block bb)269 sbr_vector::get_bb_range (irange &r, const_basic_block bb)
270 {
271 if (bb->index >= m_tab_size)
272 return false;
273 irange *m = m_tab[bb->index];
274 if (m)
275 {
276 r = *m;
277 return true;
278 }
279 return false;
280 }
281
282 // Return true if a range is present.
283
284 bool
bb_range_p(const_basic_block bb)285 sbr_vector::bb_range_p (const_basic_block bb)
286 {
287 if (bb->index < m_tab_size)
288 return m_tab[bb->index] != NULL;
289 return false;
290 }
291
292 // This class implements the on entry cache via a sparse bitmap.
293 // It uses the quad bit routines to access 4 bits at a time.
294 // A value of 0 (the default) means there is no entry, and a value of
295 // 1 thru SBR_NUM represents an element in the m_range vector.
296 // Varying is given the first value (1) and pre-cached.
297 // SBR_NUM + 1 represents the value of UNDEFINED, and is never stored.
298 // SBR_NUM is the number of values that can be cached.
299 // Indexes are 1..SBR_NUM and are stored locally at m_range[0..SBR_NUM-1]
300
301 #define SBR_NUM 14
302 #define SBR_UNDEF SBR_NUM + 1
303 #define SBR_VARYING 1
304
305 class sbr_sparse_bitmap : public ssa_block_ranges
306 {
307 public:
308 sbr_sparse_bitmap (tree t, irange_allocator *allocator, bitmap_obstack *bm);
309 virtual bool set_bb_range (const_basic_block bb, const irange &r) OVERRIDE;
310 virtual bool get_bb_range (irange &r, const_basic_block bb) OVERRIDE;
311 virtual bool bb_range_p (const_basic_block bb) OVERRIDE;
312 private:
313 void bitmap_set_quad (bitmap head, int quad, int quad_value);
314 int bitmap_get_quad (const_bitmap head, int quad);
315 irange_allocator *m_irange_allocator;
316 irange *m_range[SBR_NUM];
317 bitmap_head bitvec;
318 tree m_type;
319 };
320
321 // Initialize a block cache for an ssa_name of type T.
322
sbr_sparse_bitmap(tree t,irange_allocator * allocator,bitmap_obstack * bm)323 sbr_sparse_bitmap::sbr_sparse_bitmap (tree t, irange_allocator *allocator,
324 bitmap_obstack *bm)
325 {
326 gcc_checking_assert (TYPE_P (t));
327 m_type = t;
328 bitmap_initialize (&bitvec, bm);
329 bitmap_tree_view (&bitvec);
330 m_irange_allocator = allocator;
331 // Pre-cache varying.
332 m_range[0] = m_irange_allocator->allocate (2);
333 m_range[0]->set_varying (t);
334 // Pre-cache zero and non-zero values for pointers.
335 if (POINTER_TYPE_P (t))
336 {
337 m_range[1] = m_irange_allocator->allocate (2);
338 m_range[1]->set_nonzero (t);
339 m_range[2] = m_irange_allocator->allocate (2);
340 m_range[2]->set_zero (t);
341 }
342 else
343 m_range[1] = m_range[2] = NULL;
344 // Clear SBR_NUM entries.
345 for (int x = 3; x < SBR_NUM; x++)
346 m_range[x] = 0;
347 }
348
349 // Set 4 bit values in a sparse bitmap. This allows a bitmap to
350 // function as a sparse array of 4 bit values.
351 // QUAD is the index, QUAD_VALUE is the 4 bit value to set.
352
353 inline void
bitmap_set_quad(bitmap head,int quad,int quad_value)354 sbr_sparse_bitmap::bitmap_set_quad (bitmap head, int quad, int quad_value)
355 {
356 bitmap_set_aligned_chunk (head, quad, 4, (BITMAP_WORD) quad_value);
357 }
358
359 // Get a 4 bit value from a sparse bitmap. This allows a bitmap to
360 // function as a sparse array of 4 bit values.
361 // QUAD is the index.
362 inline int
bitmap_get_quad(const_bitmap head,int quad)363 sbr_sparse_bitmap::bitmap_get_quad (const_bitmap head, int quad)
364 {
365 return (int) bitmap_get_aligned_chunk (head, quad, 4);
366 }
367
368 // Set the range on entry to basic block BB to R.
369
370 bool
set_bb_range(const_basic_block bb,const irange & r)371 sbr_sparse_bitmap::set_bb_range (const_basic_block bb, const irange &r)
372 {
373 if (r.undefined_p ())
374 {
375 bitmap_set_quad (&bitvec, bb->index, SBR_UNDEF);
376 return true;
377 }
378
379 // Loop thru the values to see if R is already present.
380 for (int x = 0; x < SBR_NUM; x++)
381 if (!m_range[x] || r == *(m_range[x]))
382 {
383 if (!m_range[x])
384 m_range[x] = m_irange_allocator->allocate (r);
385 bitmap_set_quad (&bitvec, bb->index, x + 1);
386 return true;
387 }
388 // All values are taken, default to VARYING.
389 bitmap_set_quad (&bitvec, bb->index, SBR_VARYING);
390 return false;
391 }
392
393 // Return the range associated with block BB in R. Return false if
394 // there is no range.
395
396 bool
get_bb_range(irange & r,const_basic_block bb)397 sbr_sparse_bitmap::get_bb_range (irange &r, const_basic_block bb)
398 {
399 int value = bitmap_get_quad (&bitvec, bb->index);
400
401 if (!value)
402 return false;
403
404 gcc_checking_assert (value <= SBR_UNDEF);
405 if (value == SBR_UNDEF)
406 r.set_undefined ();
407 else
408 r = *(m_range[value - 1]);
409 return true;
410 }
411
412 // Return true if a range is present.
413
414 bool
bb_range_p(const_basic_block bb)415 sbr_sparse_bitmap::bb_range_p (const_basic_block bb)
416 {
417 return (bitmap_get_quad (&bitvec, bb->index) != 0);
418 }
419
420 // -------------------------------------------------------------------------
421
422 // Initialize the block cache.
423
block_range_cache()424 block_range_cache::block_range_cache ()
425 {
426 bitmap_obstack_initialize (&m_bitmaps);
427 m_ssa_ranges.create (0);
428 m_ssa_ranges.safe_grow_cleared (num_ssa_names);
429 m_irange_allocator = new irange_allocator;
430 }
431
432 // Remove any m_block_caches which have been created.
433
~block_range_cache()434 block_range_cache::~block_range_cache ()
435 {
436 delete m_irange_allocator;
437 // Release the vector itself.
438 m_ssa_ranges.release ();
439 bitmap_obstack_release (&m_bitmaps);
440 }
441
442 // Set the range for NAME on entry to block BB to R.
443 // If it has not been accessed yet, allocate it first.
444
445 bool
set_bb_range(tree name,const_basic_block bb,const irange & r)446 block_range_cache::set_bb_range (tree name, const_basic_block bb,
447 const irange &r)
448 {
449 unsigned v = SSA_NAME_VERSION (name);
450 if (v >= m_ssa_ranges.length ())
451 m_ssa_ranges.safe_grow_cleared (num_ssa_names);
452
453 if (!m_ssa_ranges[v])
454 {
455 // Use sparse representation if there are too many basic blocks.
456 if (last_basic_block_for_fn (cfun) > param_evrp_sparse_threshold)
457 {
458 void *r = m_irange_allocator->get_memory (sizeof (sbr_sparse_bitmap));
459 m_ssa_ranges[v] = new (r) sbr_sparse_bitmap (TREE_TYPE (name),
460 m_irange_allocator,
461 &m_bitmaps);
462 }
463 else
464 {
465 // Otherwise use the default vector implemntation.
466 void *r = m_irange_allocator->get_memory (sizeof (sbr_vector));
467 m_ssa_ranges[v] = new (r) sbr_vector (TREE_TYPE (name),
468 m_irange_allocator);
469 }
470 }
471 return m_ssa_ranges[v]->set_bb_range (bb, r);
472 }
473
474
475 // Return a pointer to the ssa_block_cache for NAME. If it has not been
476 // accessed yet, return NULL.
477
478 inline ssa_block_ranges *
query_block_ranges(tree name)479 block_range_cache::query_block_ranges (tree name)
480 {
481 unsigned v = SSA_NAME_VERSION (name);
482 if (v >= m_ssa_ranges.length () || !m_ssa_ranges[v])
483 return NULL;
484 return m_ssa_ranges[v];
485 }
486
487
488
489 // Return the range for NAME on entry to BB in R. Return true if there
490 // is one.
491
492 bool
get_bb_range(irange & r,tree name,const_basic_block bb)493 block_range_cache::get_bb_range (irange &r, tree name, const_basic_block bb)
494 {
495 ssa_block_ranges *ptr = query_block_ranges (name);
496 if (ptr)
497 return ptr->get_bb_range (r, bb);
498 return false;
499 }
500
501 // Return true if NAME has a range set in block BB.
502
503 bool
bb_range_p(tree name,const_basic_block bb)504 block_range_cache::bb_range_p (tree name, const_basic_block bb)
505 {
506 ssa_block_ranges *ptr = query_block_ranges (name);
507 if (ptr)
508 return ptr->bb_range_p (bb);
509 return false;
510 }
511
512 // Print all known block caches to file F.
513
514 void
dump(FILE * f)515 block_range_cache::dump (FILE *f)
516 {
517 unsigned x;
518 for (x = 1; x < m_ssa_ranges.length (); ++x)
519 {
520 if (m_ssa_ranges[x])
521 {
522 fprintf (f, " Ranges for ");
523 print_generic_expr (f, ssa_name (x), TDF_NONE);
524 fprintf (f, ":\n");
525 m_ssa_ranges[x]->dump (f);
526 fprintf (f, "\n");
527 }
528 }
529 }
530
531 // Print all known ranges on entry to blobk BB to file F.
532
533 void
dump(FILE * f,basic_block bb,bool print_varying)534 block_range_cache::dump (FILE *f, basic_block bb, bool print_varying)
535 {
536 unsigned x;
537 int_range_max r;
538 bool summarize_varying = false;
539 for (x = 1; x < m_ssa_ranges.length (); ++x)
540 {
541 if (!m_ssa_ranges[x])
542 continue;
543
544 if (!gimple_range_ssa_p (ssa_name (x)))
545 continue;
546 if (m_ssa_ranges[x]->get_bb_range (r, bb))
547 {
548 if (!print_varying && r.varying_p ())
549 {
550 summarize_varying = true;
551 continue;
552 }
553 print_generic_expr (f, ssa_name (x), TDF_NONE);
554 fprintf (f, "\t");
555 r.dump(f);
556 fprintf (f, "\n");
557 }
558 }
559 // If there were any varying entries, lump them all together.
560 if (summarize_varying)
561 {
562 fprintf (f, "VARYING_P on entry : ");
563 for (x = 1; x < m_ssa_ranges.length (); ++x)
564 {
565 if (!m_ssa_ranges[x])
566 continue;
567
568 if (!gimple_range_ssa_p (ssa_name (x)))
569 continue;
570 if (m_ssa_ranges[x]->get_bb_range (r, bb))
571 {
572 if (r.varying_p ())
573 {
574 print_generic_expr (f, ssa_name (x), TDF_NONE);
575 fprintf (f, " ");
576 }
577 }
578 }
579 fprintf (f, "\n");
580 }
581 }
582
583 // -------------------------------------------------------------------------
584
585 // Initialize a global cache.
586
ssa_global_cache()587 ssa_global_cache::ssa_global_cache ()
588 {
589 m_tab.create (0);
590 m_irange_allocator = new irange_allocator;
591 }
592
593 // Deconstruct a global cache.
594
~ssa_global_cache()595 ssa_global_cache::~ssa_global_cache ()
596 {
597 m_tab.release ();
598 delete m_irange_allocator;
599 }
600
601 // Retrieve the global range of NAME from cache memory if it exists.
602 // Return the value in R.
603
604 bool
get_global_range(irange & r,tree name) const605 ssa_global_cache::get_global_range (irange &r, tree name) const
606 {
607 unsigned v = SSA_NAME_VERSION (name);
608 if (v >= m_tab.length ())
609 return false;
610
611 irange *stow = m_tab[v];
612 if (!stow)
613 return false;
614 r = *stow;
615 return true;
616 }
617
618 // Set the range for NAME to R in the global cache.
619 // Return TRUE if there was already a range set, otherwise false.
620
621 bool
set_global_range(tree name,const irange & r)622 ssa_global_cache::set_global_range (tree name, const irange &r)
623 {
624 unsigned v = SSA_NAME_VERSION (name);
625 if (v >= m_tab.length ())
626 m_tab.safe_grow_cleared (num_ssa_names + 1);
627
628 irange *m = m_tab[v];
629 if (m && m->fits_p (r))
630 *m = r;
631 else
632 m_tab[v] = m_irange_allocator->allocate (r);
633 return m != NULL;
634 }
635
636 // Set the range for NAME to R in the glonbal cache.
637
638 void
clear_global_range(tree name)639 ssa_global_cache::clear_global_range (tree name)
640 {
641 unsigned v = SSA_NAME_VERSION (name);
642 if (v >= m_tab.length ())
643 m_tab.safe_grow_cleared (num_ssa_names + 1);
644 m_tab[v] = NULL;
645 }
646
647 // Clear the global cache.
648
649 void
clear()650 ssa_global_cache::clear ()
651 {
652 if (m_tab.address ())
653 memset (m_tab.address(), 0, m_tab.length () * sizeof (irange *));
654 }
655
656 // Dump the contents of the global cache to F.
657
658 void
dump(FILE * f)659 ssa_global_cache::dump (FILE *f)
660 {
661 /* Cleared after the table header has been printed. */
662 bool print_header = true;
663 for (unsigned x = 1; x < num_ssa_names; x++)
664 {
665 int_range_max r;
666 if (gimple_range_ssa_p (ssa_name (x)) &&
667 get_global_range (r, ssa_name (x)) && !r.varying_p ())
668 {
669 if (print_header)
670 {
671 /* Print the header only when there's something else
672 to print below. */
673 fprintf (f, "Non-varying global ranges:\n");
674 fprintf (f, "=========================:\n");
675 print_header = false;
676 }
677
678 print_generic_expr (f, ssa_name (x), TDF_NONE);
679 fprintf (f, " : ");
680 r.dump (f);
681 fprintf (f, "\n");
682 }
683 }
684
685 if (!print_header)
686 fputc ('\n', f);
687 }
688
689 // --------------------------------------------------------------------------
690
691
692 // This class will manage the timestamps for each ssa_name.
693 // When a value is calculated, the timestamp is set to the current time.
694 // Current time is then incremented. Any dependencies will already have
695 // been calculated, and will thus have older timestamps.
696 // If one of those values is ever calculated again, it will get a newer
697 // timestamp, and the "current_p" check will fail.
698
699 class temporal_cache
700 {
701 public:
702 temporal_cache ();
703 ~temporal_cache ();
704 bool current_p (tree name, tree dep1, tree dep2) const;
705 void set_timestamp (tree name);
706 void set_always_current (tree name);
707 private:
708 unsigned temporal_value (unsigned ssa) const;
709
710 unsigned m_current_time;
711 vec <unsigned> m_timestamp;
712 };
713
714 inline
temporal_cache()715 temporal_cache::temporal_cache ()
716 {
717 m_current_time = 1;
718 m_timestamp.create (0);
719 m_timestamp.safe_grow_cleared (num_ssa_names);
720 }
721
722 inline
~temporal_cache()723 temporal_cache::~temporal_cache ()
724 {
725 m_timestamp.release ();
726 }
727
728 // Return the timestamp value for SSA, or 0 if there isnt one.
729
730 inline unsigned
temporal_value(unsigned ssa) const731 temporal_cache::temporal_value (unsigned ssa) const
732 {
733 if (ssa >= m_timestamp.length ())
734 return 0;
735 return m_timestamp[ssa];
736 }
737
738 // Return TRUE if the timestampe for NAME is newer than any of its dependents.
739 // Up to 2 dependencies can be checked.
740
741 bool
current_p(tree name,tree dep1,tree dep2) const742 temporal_cache::current_p (tree name, tree dep1, tree dep2) const
743 {
744 unsigned ts = temporal_value (SSA_NAME_VERSION (name));
745 if (ts == 0)
746 return true;
747
748 // Any non-registered dependencies will have a value of 0 and thus be older.
749 // Return true if time is newer than either dependent.
750
751 if (dep1 && ts < temporal_value (SSA_NAME_VERSION (dep1)))
752 return false;
753 if (dep2 && ts < temporal_value (SSA_NAME_VERSION (dep2)))
754 return false;
755
756 return true;
757 }
758
759 // This increments the global timer and sets the timestamp for NAME.
760
761 inline void
set_timestamp(tree name)762 temporal_cache::set_timestamp (tree name)
763 {
764 unsigned v = SSA_NAME_VERSION (name);
765 if (v >= m_timestamp.length ())
766 m_timestamp.safe_grow_cleared (num_ssa_names + 20);
767 m_timestamp[v] = ++m_current_time;
768 }
769
770 // Set the timestamp to 0, marking it as "always up to date".
771
772 inline void
set_always_current(tree name)773 temporal_cache::set_always_current (tree name)
774 {
775 unsigned v = SSA_NAME_VERSION (name);
776 if (v >= m_timestamp.length ())
777 m_timestamp.safe_grow_cleared (num_ssa_names + 20);
778 m_timestamp[v] = 0;
779 }
780
781 // --------------------------------------------------------------------------
782
783 // This class provides an abstraction of a list of blocks to be updated
784 // by the cache. It is currently a stack but could be changed. It also
785 // maintains a list of blocks which have failed propagation, and does not
786 // enter any of those blocks into the list.
787
788 // A vector over the BBs is maintained, and an entry of 0 means it is not in
789 // a list. Otherwise, the entry is the next block in the list. -1 terminates
790 // the list. m_head points to the top of the list, -1 if the list is empty.
791
792 class update_list
793 {
794 public:
795 update_list ();
796 ~update_list ();
797 void add (basic_block bb);
798 basic_block pop ();
empty_p()799 inline bool empty_p () { return m_update_head == -1; }
clear_failures()800 inline void clear_failures () { bitmap_clear (m_propfail); }
propagation_failed(basic_block bb)801 inline void propagation_failed (basic_block bb)
802 { bitmap_set_bit (m_propfail, bb->index); }
803 private:
804 vec<int> m_update_list;
805 int m_update_head;
806 bitmap m_propfail;
807 };
808
809 // Create an update list.
810
update_list()811 update_list::update_list ()
812 {
813 m_update_list.create (0);
814 m_update_list.safe_grow_cleared (last_basic_block_for_fn (cfun) + 64);
815 m_update_head = -1;
816 m_propfail = BITMAP_ALLOC (NULL);
817 }
818
819 // Destroy an update list.
820
~update_list()821 update_list::~update_list ()
822 {
823 m_update_list.release ();
824 BITMAP_FREE (m_propfail);
825 }
826
827 // Add BB to the list of blocks to update, unless it's already in the list.
828
829 void
add(basic_block bb)830 update_list::add (basic_block bb)
831 {
832 int i = bb->index;
833 // If propagation has failed for BB, or its already in the list, don't
834 // add it again.
835 if ((unsigned)i >= m_update_list.length ())
836 m_update_list.safe_grow_cleared (i + 64);
837 if (!m_update_list[i] && !bitmap_bit_p (m_propfail, i))
838 {
839 if (empty_p ())
840 {
841 m_update_head = i;
842 m_update_list[i] = -1;
843 }
844 else
845 {
846 gcc_checking_assert (m_update_head > 0);
847 m_update_list[i] = m_update_head;
848 m_update_head = i;
849 }
850 }
851 }
852
853 // Remove a block from the list.
854
855 basic_block
pop()856 update_list::pop ()
857 {
858 gcc_checking_assert (!empty_p ());
859 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, m_update_head);
860 int pop = m_update_head;
861 m_update_head = m_update_list[pop];
862 m_update_list[pop] = 0;
863 return bb;
864 }
865
866 // --------------------------------------------------------------------------
867
ranger_cache(int not_executable_flag)868 ranger_cache::ranger_cache (int not_executable_flag)
869 : m_gori (not_executable_flag)
870 {
871 m_workback.create (0);
872 m_workback.safe_grow_cleared (last_basic_block_for_fn (cfun));
873 m_temporal = new temporal_cache;
874 // If DOM info is available, spawn an oracle as well.
875 if (dom_info_available_p (CDI_DOMINATORS))
876 m_oracle = new dom_oracle ();
877 else
878 m_oracle = NULL;
879
880 unsigned x, lim = last_basic_block_for_fn (cfun);
881 // Calculate outgoing range info upfront. This will fully populate the
882 // m_maybe_variant bitmap which will help eliminate processing of names
883 // which never have their ranges adjusted.
884 for (x = 0; x < lim ; x++)
885 {
886 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, x);
887 if (bb)
888 m_gori.exports (bb);
889 }
890 m_update = new update_list ();
891 }
892
~ranger_cache()893 ranger_cache::~ranger_cache ()
894 {
895 delete m_update;
896 if (m_oracle)
897 delete m_oracle;
898 delete m_temporal;
899 m_workback.release ();
900 }
901
902 // Dump the global caches to file F. if GORI_DUMP is true, dump the
903 // gori map as well.
904
905 void
dump(FILE * f)906 ranger_cache::dump (FILE *f)
907 {
908 m_globals.dump (f);
909 fprintf (f, "\n");
910 }
911
912 // Dump the caches for basic block BB to file F.
913
914 void
dump_bb(FILE * f,basic_block bb)915 ranger_cache::dump_bb (FILE *f, basic_block bb)
916 {
917 m_gori.gori_map::dump (f, bb, false);
918 m_on_entry.dump (f, bb);
919 if (m_oracle)
920 m_oracle->dump (f, bb);
921 }
922
923 // Get the global range for NAME, and return in R. Return false if the
924 // global range is not set, and return the legacy global value in R.
925
926 bool
get_global_range(irange & r,tree name) const927 ranger_cache::get_global_range (irange &r, tree name) const
928 {
929 if (m_globals.get_global_range (r, name))
930 return true;
931 r = gimple_range_global (name);
932 return false;
933 }
934
935 // Get the global range for NAME, and return in R. Return false if the
936 // global range is not set, and R will contain the legacy global value.
937 // CURRENT_P is set to true if the value was in cache and not stale.
938 // Otherwise, set CURRENT_P to false and mark as it always current.
939 // If the global cache did not have a value, initialize it as well.
940 // After this call, the global cache will have a value.
941
942 bool
get_global_range(irange & r,tree name,bool & current_p)943 ranger_cache::get_global_range (irange &r, tree name, bool ¤t_p)
944 {
945 bool had_global = get_global_range (r, name);
946
947 // If there was a global value, set current flag, otherwise set a value.
948 current_p = false;
949 if (had_global)
950 current_p = r.singleton_p ()
951 || m_temporal->current_p (name, m_gori.depend1 (name),
952 m_gori.depend2 (name));
953 else
954 m_globals.set_global_range (name, r);
955
956 // If the existing value was not current, mark it as always current.
957 if (!current_p)
958 m_temporal->set_always_current (name);
959 return current_p;
960 }
961
962 // Set the global range of NAME to R and give it a timestamp.
963
964 void
set_global_range(tree name,const irange & r)965 ranger_cache::set_global_range (tree name, const irange &r)
966 {
967 if (m_globals.set_global_range (name, r))
968 {
969 // If there was already a range set, propagate the new value.
970 basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (name));
971 if (!bb)
972 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
973
974 if (DEBUG_RANGE_CACHE)
975 fprintf (dump_file, " GLOBAL :");
976
977 propagate_updated_value (name, bb);
978 }
979 // Constants no longer need to tracked. Any further refinement has to be
980 // undefined. Propagation works better with constants. PR 100512.
981 // Pointers which resolve to non-zero also do not need
982 // tracking in the cache as they will never change. See PR 98866.
983 // Timestamp must always be updated, or dependent calculations may
984 // not include this latest value. PR 100774.
985
986 if (r.singleton_p ()
987 || (POINTER_TYPE_P (TREE_TYPE (name)) && r.nonzero_p ()))
988 m_gori.set_range_invariant (name);
989 m_temporal->set_timestamp (name);
990 }
991
992 // Provide lookup for the gori-computes class to access the best known range
993 // of an ssa_name in any given basic block. Note, this does no additonal
994 // lookups, just accesses the data that is already known.
995
996 // Get the range of NAME when the def occurs in block BB. If BB is NULL
997 // get the best global value available.
998
999 void
range_of_def(irange & r,tree name,basic_block bb)1000 ranger_cache::range_of_def (irange &r, tree name, basic_block bb)
1001 {
1002 gcc_checking_assert (gimple_range_ssa_p (name));
1003 gcc_checking_assert (!bb || bb == gimple_bb (SSA_NAME_DEF_STMT (name)));
1004
1005 // Pick up the best global range available.
1006 if (!m_globals.get_global_range (r, name))
1007 {
1008 // If that fails, try to calculate the range using just global values.
1009 gimple *s = SSA_NAME_DEF_STMT (name);
1010 if (gimple_get_lhs (s) == name)
1011 fold_range (r, s, get_global_range_query ());
1012 else
1013 r = gimple_range_global (name);
1014 }
1015 }
1016
1017 // Get the range of NAME as it occurs on entry to block BB.
1018
1019 void
entry_range(irange & r,tree name,basic_block bb)1020 ranger_cache::entry_range (irange &r, tree name, basic_block bb)
1021 {
1022 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1023 {
1024 r = gimple_range_global (name);
1025 return;
1026 }
1027
1028 // Look for the on-entry value of name in BB from the cache.
1029 // Otherwise pick up the best available global value.
1030 if (!m_on_entry.get_bb_range (r, name, bb))
1031 range_of_def (r, name);
1032 }
1033
1034 // Get the range of NAME as it occurs on exit from block BB.
1035
1036 void
exit_range(irange & r,tree name,basic_block bb)1037 ranger_cache::exit_range (irange &r, tree name, basic_block bb)
1038 {
1039 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1040 {
1041 r = gimple_range_global (name);
1042 return;
1043 }
1044
1045 gimple *s = SSA_NAME_DEF_STMT (name);
1046 basic_block def_bb = gimple_bb (s);
1047 if (def_bb == bb)
1048 range_of_def (r, name, bb);
1049 else
1050 entry_range (r, name, bb);
1051 }
1052
1053
1054 // Implement range_of_expr.
1055
1056 bool
range_of_expr(irange & r,tree name,gimple * stmt)1057 ranger_cache::range_of_expr (irange &r, tree name, gimple *stmt)
1058 {
1059 if (!gimple_range_ssa_p (name))
1060 {
1061 get_tree_range (r, name, stmt);
1062 return true;
1063 }
1064
1065 basic_block bb = gimple_bb (stmt);
1066 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1067 basic_block def_bb = gimple_bb (def_stmt);
1068
1069 if (bb == def_bb)
1070 range_of_def (r, name, bb);
1071 else
1072 entry_range (r, name, bb);
1073 return true;
1074 }
1075
1076
1077 // Implement range_on_edge. Always return the best available range.
1078
1079 bool
range_on_edge(irange & r,edge e,tree expr)1080 ranger_cache::range_on_edge (irange &r, edge e, tree expr)
1081 {
1082 if (gimple_range_ssa_p (expr))
1083 {
1084 exit_range (r, expr, e->src);
1085 // If this is not an abnormal edge, check for a non-null exit.
1086 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0)
1087 m_non_null.adjust_range (r, expr, e->src, false);
1088 int_range_max edge_range;
1089 if (m_gori.outgoing_edge_range_p (edge_range, e, expr, *this))
1090 r.intersect (edge_range);
1091 return true;
1092 }
1093
1094 return get_tree_range (r, expr, NULL);
1095 }
1096
1097
1098 // Return a static range for NAME on entry to basic block BB in R. If
1099 // calc is true, fill any cache entries required between BB and the
1100 // def block for NAME. Otherwise, return false if the cache is empty.
1101
1102 bool
block_range(irange & r,basic_block bb,tree name,bool calc)1103 ranger_cache::block_range (irange &r, basic_block bb, tree name, bool calc)
1104 {
1105 gcc_checking_assert (gimple_range_ssa_p (name));
1106
1107 // If there are no range calculations anywhere in the IL, global range
1108 // applies everywhere, so don't bother caching it.
1109 if (!m_gori.has_edge_range_p (name))
1110 return false;
1111
1112 if (calc)
1113 {
1114 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1115 basic_block def_bb = NULL;
1116 if (def_stmt)
1117 def_bb = gimple_bb (def_stmt);;
1118 if (!def_bb)
1119 {
1120 // If we get to the entry block, this better be a default def
1121 // or range_on_entry was called for a block not dominated by
1122 // the def.
1123 gcc_checking_assert (SSA_NAME_IS_DEFAULT_DEF (name));
1124 def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1125 }
1126
1127 // There is no range on entry for the definition block.
1128 if (def_bb == bb)
1129 return false;
1130
1131 // Otherwise, go figure out what is known in predecessor blocks.
1132 fill_block_cache (name, bb, def_bb);
1133 gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
1134 }
1135 return m_on_entry.get_bb_range (r, name, bb);
1136 }
1137
1138 // If there is anything in the propagation update_list, continue
1139 // processing NAME until the list of blocks is empty.
1140
1141 void
propagate_cache(tree name)1142 ranger_cache::propagate_cache (tree name)
1143 {
1144 basic_block bb;
1145 edge_iterator ei;
1146 edge e;
1147 int_range_max new_range;
1148 int_range_max current_range;
1149 int_range_max e_range;
1150
1151 // Process each block by seeing if its calculated range on entry is
1152 // the same as its cached value. If there is a difference, update
1153 // the cache to reflect the new value, and check to see if any
1154 // successors have cache entries which may need to be checked for
1155 // updates.
1156
1157 while (!m_update->empty_p ())
1158 {
1159 bb = m_update->pop ();
1160 gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
1161 m_on_entry.get_bb_range (current_range, name, bb);
1162
1163 if (DEBUG_RANGE_CACHE)
1164 {
1165 fprintf (dump_file, "FWD visiting block %d for ", bb->index);
1166 print_generic_expr (dump_file, name, TDF_SLIM);
1167 fprintf (dump_file, " starting range : ");
1168 current_range.dump (dump_file);
1169 fprintf (dump_file, "\n");
1170 }
1171
1172 // Calculate the "new" range on entry by unioning the pred edges.
1173 new_range.set_undefined ();
1174 FOR_EACH_EDGE (e, ei, bb->preds)
1175 {
1176 range_on_edge (e_range, e, name);
1177 if (DEBUG_RANGE_CACHE)
1178 {
1179 fprintf (dump_file, " edge %d->%d :", e->src->index, bb->index);
1180 e_range.dump (dump_file);
1181 fprintf (dump_file, "\n");
1182 }
1183 new_range.union_ (e_range);
1184 if (new_range.varying_p ())
1185 break;
1186 }
1187
1188 // If the range on entry has changed, update it.
1189 if (new_range != current_range)
1190 {
1191 bool ok_p = m_on_entry.set_bb_range (name, bb, new_range);
1192 // If the cache couldn't set the value, mark it as failed.
1193 if (!ok_p)
1194 m_update->propagation_failed (bb);
1195 if (DEBUG_RANGE_CACHE)
1196 {
1197 if (!ok_p)
1198 {
1199 fprintf (dump_file, " Cache failure to store value:");
1200 print_generic_expr (dump_file, name, TDF_SLIM);
1201 fprintf (dump_file, " ");
1202 }
1203 else
1204 {
1205 fprintf (dump_file, " Updating range to ");
1206 new_range.dump (dump_file);
1207 }
1208 fprintf (dump_file, "\n Updating blocks :");
1209 }
1210 // Mark each successor that has a range to re-check its range
1211 FOR_EACH_EDGE (e, ei, bb->succs)
1212 if (m_on_entry.bb_range_p (name, e->dest))
1213 {
1214 if (DEBUG_RANGE_CACHE)
1215 fprintf (dump_file, " bb%d",e->dest->index);
1216 m_update->add (e->dest);
1217 }
1218 if (DEBUG_RANGE_CACHE)
1219 fprintf (dump_file, "\n");
1220 }
1221 }
1222 if (DEBUG_RANGE_CACHE)
1223 {
1224 fprintf (dump_file, "DONE visiting blocks for ");
1225 print_generic_expr (dump_file, name, TDF_SLIM);
1226 fprintf (dump_file, "\n");
1227 }
1228 m_update->clear_failures ();
1229 }
1230
1231 // Check to see if an update to the value for NAME in BB has any effect
1232 // on values already in the on-entry cache for successor blocks.
1233 // If it does, update them. Don't visit any blocks which dont have a cache
1234 // entry.
1235
1236 void
propagate_updated_value(tree name,basic_block bb)1237 ranger_cache::propagate_updated_value (tree name, basic_block bb)
1238 {
1239 edge e;
1240 edge_iterator ei;
1241
1242 // The update work list should be empty at this point.
1243 gcc_checking_assert (m_update->empty_p ());
1244 gcc_checking_assert (bb);
1245
1246 if (DEBUG_RANGE_CACHE)
1247 {
1248 fprintf (dump_file, " UPDATE cache for ");
1249 print_generic_expr (dump_file, name, TDF_SLIM);
1250 fprintf (dump_file, " in BB %d : successors : ", bb->index);
1251 }
1252 FOR_EACH_EDGE (e, ei, bb->succs)
1253 {
1254 // Only update active cache entries.
1255 if (m_on_entry.bb_range_p (name, e->dest))
1256 {
1257 m_update->add (e->dest);
1258 if (DEBUG_RANGE_CACHE)
1259 fprintf (dump_file, " UPDATE: bb%d", e->dest->index);
1260 }
1261 }
1262 if (!m_update->empty_p ())
1263 {
1264 if (DEBUG_RANGE_CACHE)
1265 fprintf (dump_file, "\n");
1266 propagate_cache (name);
1267 }
1268 else
1269 {
1270 if (DEBUG_RANGE_CACHE)
1271 fprintf (dump_file, " : No updates!\n");
1272 }
1273 }
1274
1275 // Make sure that the range-on-entry cache for NAME is set for block BB.
1276 // Work back through the CFG to DEF_BB ensuring the range is calculated
1277 // on the block/edges leading back to that point.
1278
1279 void
fill_block_cache(tree name,basic_block bb,basic_block def_bb)1280 ranger_cache::fill_block_cache (tree name, basic_block bb, basic_block def_bb)
1281 {
1282 edge_iterator ei;
1283 edge e;
1284 int_range_max block_result;
1285 int_range_max undefined;
1286
1287 // At this point we shouldn't be looking at the def, entry or exit block.
1288 gcc_checking_assert (bb != def_bb && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) &&
1289 bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
1290
1291 // If the block cache is set, then we've already visited this block.
1292 if (m_on_entry.bb_range_p (name, bb))
1293 return;
1294
1295 // Visit each block back to the DEF. Initialize each one to UNDEFINED.
1296 // m_visited at the end will contain all the blocks that we needed to set
1297 // the range_on_entry cache for.
1298 m_workback.truncate (0);
1299 m_workback.quick_push (bb);
1300 undefined.set_undefined ();
1301 m_on_entry.set_bb_range (name, bb, undefined);
1302 gcc_checking_assert (m_update->empty_p ());
1303
1304 if (DEBUG_RANGE_CACHE)
1305 {
1306 fprintf (dump_file, "\n");
1307 print_generic_expr (dump_file, name, TDF_SLIM);
1308 fprintf (dump_file, " : ");
1309 }
1310
1311 // If there are dominators, check if a dominators can supply the range.
1312 if (dom_info_available_p (CDI_DOMINATORS)
1313 && range_from_dom (block_result, name, bb))
1314 {
1315 m_on_entry.set_bb_range (name, bb, block_result);
1316 if (DEBUG_RANGE_CACHE)
1317 {
1318 fprintf (dump_file, "Filled from dominator! : ");
1319 block_result.dump (dump_file);
1320 fprintf (dump_file, "\n");
1321 }
1322 return;
1323 }
1324
1325 while (m_workback.length () > 0)
1326 {
1327 basic_block node = m_workback.pop ();
1328 if (DEBUG_RANGE_CACHE)
1329 {
1330 fprintf (dump_file, "BACK visiting block %d for ", node->index);
1331 print_generic_expr (dump_file, name, TDF_SLIM);
1332 fprintf (dump_file, "\n");
1333 }
1334
1335 FOR_EACH_EDGE (e, ei, node->preds)
1336 {
1337 basic_block pred = e->src;
1338 int_range_max r;
1339
1340 if (DEBUG_RANGE_CACHE)
1341 fprintf (dump_file, " %d->%d ",e->src->index, e->dest->index);
1342
1343 // If the pred block is the def block add this BB to update list.
1344 if (pred == def_bb)
1345 {
1346 m_update->add (node);
1347 continue;
1348 }
1349
1350 // If the pred is entry but NOT def, then it is used before
1351 // defined, it'll get set to [] and no need to update it.
1352 if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1353 {
1354 if (DEBUG_RANGE_CACHE)
1355 fprintf (dump_file, "entry: bail.");
1356 continue;
1357 }
1358
1359 // Regardless of whether we have visited pred or not, if the
1360 // pred has a non-null reference, revisit this block.
1361 // Don't search the DOM tree.
1362 if (m_non_null.non_null_deref_p (name, pred, false))
1363 {
1364 if (DEBUG_RANGE_CACHE)
1365 fprintf (dump_file, "nonnull: update ");
1366 m_update->add (node);
1367 }
1368
1369 // If the pred block already has a range, or if it can contribute
1370 // something new. Ie, the edge generates a range of some sort.
1371 if (m_on_entry.get_bb_range (r, name, pred))
1372 {
1373 if (DEBUG_RANGE_CACHE)
1374 {
1375 fprintf (dump_file, "has cache, ");
1376 r.dump (dump_file);
1377 fprintf (dump_file, ", ");
1378 }
1379 if (!r.undefined_p () || m_gori.has_edge_range_p (name, e))
1380 {
1381 m_update->add (node);
1382 if (DEBUG_RANGE_CACHE)
1383 fprintf (dump_file, "update. ");
1384 }
1385 continue;
1386 }
1387
1388 if (DEBUG_RANGE_CACHE)
1389 fprintf (dump_file, "pushing undefined pred block.\n");
1390 // If the pred hasn't been visited (has no range), add it to
1391 // the list.
1392 gcc_checking_assert (!m_on_entry.bb_range_p (name, pred));
1393 m_on_entry.set_bb_range (name, pred, undefined);
1394 m_workback.quick_push (pred);
1395 }
1396 }
1397
1398 if (DEBUG_RANGE_CACHE)
1399 fprintf (dump_file, "\n");
1400
1401 // Now fill in the marked blocks with values.
1402 propagate_cache (name);
1403 if (DEBUG_RANGE_CACHE)
1404 fprintf (dump_file, " Propagation update done.\n");
1405 }
1406
1407
1408 // Get the range of NAME from dominators of BB and return it in R.
1409
1410 bool
range_from_dom(irange & r,tree name,basic_block start_bb)1411 ranger_cache::range_from_dom (irange &r, tree name, basic_block start_bb)
1412 {
1413 if (!dom_info_available_p (CDI_DOMINATORS))
1414 return false;
1415
1416 // Search back to the definition block or entry block.
1417 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
1418 if (def_bb == NULL)
1419 def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1420
1421 basic_block bb;
1422 basic_block prev_bb = start_bb;
1423 // Flag if we encounter a block with non-null set.
1424 bool non_null = false;
1425
1426 // Range on entry to the DEF block should not be queried.
1427 gcc_checking_assert (start_bb != def_bb);
1428 m_workback.truncate (0);
1429
1430 // Default value is global range.
1431 get_global_range (r, name);
1432
1433 // Search until a value is found, pushing outgoing edges encountered.
1434 for (bb = get_immediate_dominator (CDI_DOMINATORS, start_bb);
1435 bb;
1436 prev_bb = bb, bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1437 {
1438 if (!non_null)
1439 non_null |= m_non_null.non_null_deref_p (name, bb, false);
1440
1441 // This block has an outgoing range.
1442 if (m_gori.has_edge_range_p (name, bb))
1443 {
1444 // Only outgoing ranges to single_pred blocks are dominated by
1445 // outgoing edge ranges, so only those need to be considered.
1446 edge e = find_edge (bb, prev_bb);
1447 if (e && single_pred_p (prev_bb))
1448 m_workback.quick_push (prev_bb);
1449 }
1450
1451 if (def_bb == bb)
1452 break;
1453
1454 if (m_on_entry.get_bb_range (r, name, bb))
1455 break;
1456 }
1457
1458 if (DEBUG_RANGE_CACHE)
1459 {
1460 fprintf (dump_file, "CACHE: BB %d DOM query, found ", start_bb->index);
1461 r.dump (dump_file);
1462 if (bb)
1463 fprintf (dump_file, " at BB%d\n", bb->index);
1464 else
1465 fprintf (dump_file, " at function top\n");
1466 }
1467
1468 // Now process any outgoing edges that we seen along the way.
1469 while (m_workback.length () > 0)
1470 {
1471 int_range_max edge_range;
1472 prev_bb = m_workback.pop ();
1473 edge e = single_pred_edge (prev_bb);
1474 bb = e->src;
1475
1476 if (m_gori.outgoing_edge_range_p (edge_range, e, name, *this))
1477 {
1478 r.intersect (edge_range);
1479 if (r.varying_p () && ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0))
1480 {
1481 if (m_non_null.non_null_deref_p (name, bb, false))
1482 {
1483 gcc_checking_assert (POINTER_TYPE_P (TREE_TYPE (name)));
1484 r.set_nonzero (TREE_TYPE (name));
1485 }
1486 }
1487 if (DEBUG_RANGE_CACHE)
1488 {
1489 fprintf (dump_file, "CACHE: Adjusted edge range for %d->%d : ",
1490 bb->index, prev_bb->index);
1491 r.dump (dump_file);
1492 fprintf (dump_file, "\n");
1493 }
1494 }
1495 }
1496
1497 // Apply non-null if appropriate.
1498 if (non_null && r.varying_p ()
1499 && !has_abnormal_call_or_eh_pred_edge_p (start_bb))
1500 {
1501 gcc_checking_assert (POINTER_TYPE_P (TREE_TYPE (name)));
1502 r.set_nonzero (TREE_TYPE (name));
1503 }
1504 if (DEBUG_RANGE_CACHE)
1505 {
1506 fprintf (dump_file, "CACHE: Range for DOM returns : ");
1507 r.dump (dump_file);
1508 fprintf (dump_file, "\n");
1509 }
1510 return true;
1511 }
1512
1513 // This routine will update NAME in block BB to the nonnull state.
1514 // It will then update the on-entry cache for this block to be non-null
1515 // if it isn't already.
1516
1517 void
update_to_nonnull(basic_block bb,tree name)1518 ranger_cache::update_to_nonnull (basic_block bb, tree name)
1519 {
1520 tree type = TREE_TYPE (name);
1521 if (gimple_range_ssa_p (name) && POINTER_TYPE_P (type))
1522 {
1523 m_non_null.set_nonnull (bb, name);
1524 // Update the on-entry cache for BB to be non-zero. Note this can set
1525 // the on entry value in the DEF block, which can override the def.
1526 int_range_max r;
1527 exit_range (r, name, bb);
1528 if (r.varying_p ())
1529 {
1530 r.set_nonzero (type);
1531 m_on_entry.set_bb_range (name, bb, r);
1532 }
1533 }
1534 }
1535
1536 // Adapted from infer_nonnull_range_by_dereference and check_loadstore
1537 // to process nonnull ssa_name OP in S. DATA contains the ranger_cache.
1538
1539 static bool
non_null_loadstore(gimple * s,tree op,tree,void * data)1540 non_null_loadstore (gimple *s, tree op, tree, void *data)
1541 {
1542 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
1543 {
1544 /* Some address spaces may legitimately dereference zero. */
1545 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
1546 if (!targetm.addr_space.zero_address_valid (as))
1547 {
1548 tree ssa = TREE_OPERAND (op, 0);
1549 basic_block bb = gimple_bb (s);
1550 ((ranger_cache *)data)->update_to_nonnull (bb, ssa);
1551 }
1552 }
1553 return false;
1554 }
1555
1556 // This routine is used during a block walk to move the state of non-null for
1557 // any operands on stmt S to nonnull.
1558
1559 void
block_apply_nonnull(gimple * s)1560 ranger_cache::block_apply_nonnull (gimple *s)
1561 {
1562 if (!flag_delete_null_pointer_checks)
1563 return;
1564 if (is_a<gphi *> (s))
1565 return;
1566 if (gimple_code (s) == GIMPLE_ASM || gimple_clobber_p (s))
1567 return;
1568 if (is_a<gcall *> (s))
1569 {
1570 tree fntype = gimple_call_fntype (s);
1571 bitmap nonnullargs = get_nonnull_args (fntype);
1572 // Process any non-null arguments
1573 if (nonnullargs)
1574 {
1575 basic_block bb = gimple_bb (s);
1576 for (unsigned i = 0; i < gimple_call_num_args (s); i++)
1577 {
1578 if (bitmap_empty_p (nonnullargs) || bitmap_bit_p (nonnullargs, i))
1579 {
1580 tree op = gimple_call_arg (s, i);
1581 update_to_nonnull (bb, op);
1582 }
1583 }
1584 BITMAP_FREE (nonnullargs);
1585 }
1586 // Fallthru and walk load/store ops now.
1587 }
1588 walk_stmt_load_store_ops (s, (void *)this, non_null_loadstore,
1589 non_null_loadstore);
1590 }
1591