xref: /netbsd-src/sys/arch/mips/mips/cache_r5k.c (revision f86ae8229690c251a562e5bd34efd02d230c471d)
1 /*	$NetBSD: cache_r5k.c,v 1.21 2020/06/14 15:12:56 tsutsui Exp $	*/
2 
3 /*
4  * Copyright 2001 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: cache_r5k.c,v 1.21 2020/06/14 15:12:56 tsutsui Exp $");
40 
41 #include <sys/param.h>
42 
43 #include <mips/cache.h>
44 #include <mips/cache_r4k.h>
45 #include <mips/cache_r5k.h>
46 #include <mips/locore.h>
47 
48 /*
49  * Cache operations for R5000-style caches:
50  *
51  *	- 2-way set-associative
52  *	- Write-back
53  *	- Virtually indexed, physically tagged
54  *
55  * Since the R4600 is so similar (2-way set-associative, 32b/l),
56  * we handle that here, too.  Note for R4600, we have to work
57  * around some chip bugs.  From the v1.7 errata:
58  *
59  *  18. The CACHE instructions Hit_Writeback_Invalidate_D, Hit_Writeback_D,
60  *      Hit_Invalidate_D and Create_Dirty_Excl_D should only be
61  *      executed if there is no other dcache activity. If the dcache is
62  *      accessed for another instruction immeidately preceding when these
63  *      cache instructions are executing, it is possible that the dcache
64  *      tag match outputs used by these cache instructions will be
65  *      incorrect. These cache instructions should be preceded by at least
66  *      four instructions that are not any kind of load or store
67  *      instruction.
68  *
69  * ...and from the v2.0 errata:
70  *
71  *   The CACHE instructions Hit_Writeback_Inv_D, Hit_Writeback_D,
72  *   Hit_Invalidate_D and Create_Dirty_Exclusive_D will only operate
73  *   correctly if the internal data cache refill buffer is empty.  These
74  *   CACHE instructions should be separated from any potential data cache
75  *   miss by a load instruction to an uncached address to empty the response
76  *   buffer.
77  *
78  * XXX Does not handle split secondary caches.
79  */
80 
81 #define	round_line16(x)		round_line(x, 16)
82 #define	trunc_line16(x)		trunc_line(x, 16)
83 #define	round_line32(x)		round_line(x, 32)
84 #define	trunc_line32(x)		trunc_line(x, 32)
85 #define	round_line(x,n)		(((x) + (register_t)(n) - 1) & -(register_t)(n))
86 #define	trunc_line(x,n)		((x) & -(register_t)(n))
87 
88 __asm(".set mips3");
89 
90 void
r5k_picache_sync_all(void)91 r5k_picache_sync_all(void)
92 {
93         struct mips_cache_info * const mci = &mips_cache_info;
94 
95         /*
96          * Since we're hitting the whole thing, we don't have to
97          * worry about the N different "ways".
98          */
99         mips_intern_dcache_sync_all();
100 	__asm volatile("sync");
101         mips_intern_icache_sync_range_index(MIPS_KSEG0_START,
102             mci->mci_picache_size);
103 }
104 
105 void
r5k_picache_sync_range(register_t va,vsize_t size)106 r5k_picache_sync_range(register_t va, vsize_t size)
107 {
108 
109 	mips_intern_dcache_sync_range(va, size);
110 	mips_intern_icache_sync_range(va, size);
111 }
112 
113 void
r5k_picache_sync_range_index(vaddr_t va,vsize_t size)114 r5k_picache_sync_range_index(vaddr_t va, vsize_t size)
115 {
116 	struct mips_cache_info * const mci = &mips_cache_info;
117 	const size_t ways = mci->mci_picache_ways;
118 	const size_t line_size = mci->mci_picache_line_size;
119 	const size_t way_size = mci->mci_picache_way_size;
120 	const size_t way_mask = way_size - 1;
121 	vaddr_t eva;
122 
123 	/*
124 	 * Since we're doing Index ops, we expect to not be able
125 	 * to access the address we've been given.  So, get the
126 	 * bits that determine the cache index, and make a KSEG0
127 	 * address out of them.
128 	 */
129 	va = MIPS_PHYS_TO_KSEG0(va & way_mask);
130 
131 	eva = round_line(va + size, line_size);
132 	va = trunc_line(va, line_size);
133 	size = eva - va;
134 
135 	/*
136 	 * If we are going to flush more than is in a way (or the stride
137 	 * needed for that way), we are flushing everything.
138 	 */
139 	if (size >= way_size) {
140 		r5k_picache_sync_all();
141 		return;
142 	}
143 
144 	for (size_t way = 0; way < ways; way++) {
145 		mips_intern_dcache_sync_range_index(va, size);
146 		mips_intern_icache_sync_range_index(va, size);
147 		va += way_size;
148 		eva += way_size;
149 	}
150 }
151 
152 void
r5k_pdcache_wbinv_all(void)153 r5k_pdcache_wbinv_all(void)
154 {
155 	struct mips_cache_info * const mci = &mips_cache_info;
156 
157 	/*
158 	 * Since we're hitting the whole thing, we don't have to
159 	 * worry about the N different "ways".
160 	 */
161 	mips_intern_pdcache_wbinv_range_index(MIPS_KSEG0_START,
162 	    mci->mci_pdcache_size);
163 }
164 
165 void
r5k_pdcache_wbinv_range_index(vaddr_t va,vsize_t size)166 r5k_pdcache_wbinv_range_index(vaddr_t va, vsize_t size)
167 {
168 	struct mips_cache_info * const mci = &mips_cache_info;
169 	const size_t ways = mci->mci_pdcache_ways;
170 	const size_t line_size = mci->mci_pdcache_line_size;
171 	const vaddr_t way_size = mci->mci_pdcache_way_size;
172 	const vaddr_t way_mask = way_size - 1;
173 	vaddr_t eva;
174 
175 	/*
176 	 * Since we're doing Index ops, we expect to not be able
177 	 * to access the address we've been given.  So, get the
178 	 * bits that determine the cache index, and make a KSEG0
179 	 * address out of them.
180 	 */
181 	va = MIPS_PHYS_TO_KSEG0(va & way_mask);
182 	eva = round_line(va + size, line_size);
183 	va = trunc_line(va, line_size);
184 	size = eva - va;
185 
186 	/*
187 	 * If we are going to flush more than is in a way, we are flushing
188 	 * everything.
189 	 */
190 	if (size >= way_size) {
191 		mips_intern_pdcache_wbinv_range_index(MIPS_KSEG0_START,
192 		    mci->mci_pdcache_size);
193 		return;
194 	}
195 
196 	/*
197 	 * Invalidate each way.  If the address range wraps past the end of
198 	 * the way, we will be invalidating in two ways but eventually things
199 	 * work out since the last way will wrap into the first way.
200 	 */
201 	for (size_t way = 0; way < ways; way++) {
202 		mips_intern_pdcache_wbinv_range_index(va, size);
203 		va += way_size;
204 		eva += way_size;
205 	}
206 }
207 
208 void
r4600v1_pdcache_wbinv_range_32(register_t va,vsize_t size)209 r4600v1_pdcache_wbinv_range_32(register_t va, vsize_t size)
210 {
211 	const register_t eva = round_line32(va + size);
212 
213 	/*
214 	 * This is pathetically slow, but the chip bug is pretty
215 	 * nasty, and we hope that not too many v1.x R4600s are
216 	 * around.
217 	 */
218 
219 	va = trunc_line32(va);
220 
221 	/*
222 	 * To make this a little less painful, just hit the entire
223 	 * cache if we have a range >= the cache size.
224 	 */
225 	if (eva - va >= mips_cache_info.mci_pdcache_size) {
226 		r5k_pdcache_wbinv_all();
227 		return;
228 	}
229 
230 	const uint32_t ostatus = mips_cp0_status_read();
231 
232 	mips_cp0_status_write(ostatus & ~MIPS_SR_INT_IE);
233 
234 	while (va < eva) {
235 		__asm volatile("nop; nop; nop; nop");
236 		cache_op_r4k_line(va, CACHE_R4K_D|CACHEOP_R4K_HIT_WB_INV);
237 		va += 32;
238 	}
239 
240 	mips_cp0_status_write(ostatus);
241 }
242 
243 void
r4600v2_pdcache_wbinv_range_32(register_t va,vsize_t size)244 r4600v2_pdcache_wbinv_range_32(register_t va, vsize_t size)
245 {
246 	const register_t eva = round_line32(va + size);
247 
248 	va = trunc_line32(va);
249 
250 	const uint32_t ostatus = mips_cp0_status_read();
251 
252 	mips_cp0_status_write(ostatus & ~MIPS_SR_INT_IE);
253 
254 	for (; (eva - va) >= (32 * 32); va += (32 * 32)) {
255 		(void) *(volatile int *)MIPS_PHYS_TO_KSEG1(0);
256 		cache_r4k_op_32lines_32(va, CACHE_R4K_D|CACHEOP_R4K_HIT_WB_INV);
257 	}
258 
259 	(void) *(volatile int *)MIPS_PHYS_TO_KSEG1(0);
260 	for (; va < eva; va += 32) {
261 		cache_op_r4k_line(va, CACHE_R4K_D|CACHEOP_R4K_HIT_WB_INV);
262 
263 	}
264 
265 	mips_cp0_status_write(ostatus);
266 }
267 
268 void
vr4131v1_pdcache_wbinv_range_16(register_t va,vsize_t size)269 vr4131v1_pdcache_wbinv_range_16(register_t va, vsize_t size)
270 {
271 	register_t eva = round_line16(va + size);
272 
273 	va = trunc_line16(va);
274 
275 	for (; (eva - va) >= (32 * 16); va += (32 * 16)) {
276 		cache_r4k_op_32lines_16(va, CACHE_R4K_D|CACHEOP_R4K_HIT_WB);
277 		cache_r4k_op_32lines_16(va, CACHE_R4K_D|CACHEOP_R4K_HIT_INV);
278 
279 	}
280 
281 	for (; va < eva; va += 16) {
282 		cache_op_r4k_line(va, CACHE_R4K_D|CACHEOP_R4K_HIT_WB);
283 		cache_op_r4k_line(va, CACHE_R4K_D|CACHEOP_R4K_HIT_INV);
284 	}
285 }
286 
287 void
r4600v1_pdcache_inv_range_32(register_t va,vsize_t size)288 r4600v1_pdcache_inv_range_32(register_t va, vsize_t size)
289 {
290 	const register_t eva = round_line32(va + size);
291 
292 	/*
293 	 * This is pathetically slow, but the chip bug is pretty
294 	 * nasty, and we hope that not too many v1.x R4600s are
295 	 * around.
296 	 */
297 
298 	va = trunc_line32(va);
299 
300 	const uint32_t ostatus = mips_cp0_status_read();
301 
302 	mips_cp0_status_write(ostatus & ~MIPS_SR_INT_IE);
303 
304 	for (; va < eva; va += 32) {
305 		__asm volatile("nop; nop; nop; nop;");
306 		cache_op_r4k_line(va, CACHE_R4K_D|CACHEOP_R4K_HIT_INV);
307 
308 	}
309 
310 	mips_cp0_status_write(ostatus);
311 }
312 
313 void
r4600v2_pdcache_inv_range_32(register_t va,vsize_t size)314 r4600v2_pdcache_inv_range_32(register_t va, vsize_t size)
315 {
316 	const register_t eva = round_line32(va + size);
317 
318 	va = trunc_line32(va);
319 
320 	const uint32_t ostatus = mips_cp0_status_read();
321 
322 	mips_cp0_status_write(ostatus & ~MIPS_SR_INT_IE);
323 
324 	/*
325 	 * Between blasts of big cache chunks, give interrupts
326 	 * a chance to get though.
327 	 */
328 	for (; (eva - va) >= (32 * 32); va += (32 * 32)) {
329 		(void) *(volatile int *)MIPS_PHYS_TO_KSEG1(0);
330 		cache_r4k_op_32lines_32(va, CACHE_R4K_D|CACHEOP_R4K_HIT_INV);
331 
332 	}
333 
334 	(void) *(volatile int *)MIPS_PHYS_TO_KSEG1(0);
335 	for (; va < eva; va += 32) {
336 		cache_op_r4k_line(va, CACHE_R4K_D|CACHEOP_R4K_HIT_INV);
337 
338 	}
339 
340 	mips_cp0_status_write(ostatus);
341 }
342 
343 void
r4600v1_pdcache_wb_range_32(register_t va,vsize_t size)344 r4600v1_pdcache_wb_range_32(register_t va, vsize_t size)
345 {
346 	const register_t eva = round_line32(va + size);
347 
348 	/*
349 	 * This is pathetically slow, but the chip bug is pretty
350 	 * nasty, and we hope that not too many v1.x R4600s are
351 	 * around.
352 	 */
353 
354 	va = trunc_line32(va);
355 
356 	const uint32_t ostatus = mips_cp0_status_read();
357 
358 	mips_cp0_status_write(ostatus & ~MIPS_SR_INT_IE);
359 
360 	for (; va < eva; va += 32) {
361 		__asm volatile("nop; nop; nop; nop;");
362 		cache_op_r4k_line(va, CACHE_R4K_D|CACHEOP_R4K_HIT_WB);
363 
364 	}
365 
366 	mips_cp0_status_write(ostatus);
367 }
368 
369 void
r4600v2_pdcache_wb_range_32(register_t va,vsize_t size)370 r4600v2_pdcache_wb_range_32(register_t va, vsize_t size)
371 {
372 	const register_t eva = round_line32(va + size);
373 
374 	va = trunc_line32(va);
375 
376 	const uint32_t ostatus = mips_cp0_status_read();
377 
378 	mips_cp0_status_write(ostatus & ~MIPS_SR_INT_IE);
379 
380 	/*
381 	 * Between blasts of big cache chunks, give interrupts
382 	 * a chance to get though.
383 	 */
384 	for (; (eva - va) >= (32 * 32); va += (32 * 32)) {
385 		(void) *(volatile int *)MIPS_PHYS_TO_KSEG1(0);
386 		cache_r4k_op_32lines_32(va, CACHE_R4K_D|CACHEOP_R4K_HIT_WB);
387 
388 	}
389 
390 	(void) *(volatile int *)MIPS_PHYS_TO_KSEG1(0);
391 	for (; va < eva; va += 32) {
392 		cache_op_r4k_line(va, CACHE_R4K_D|CACHEOP_R4K_HIT_WB);
393 	}
394 
395 	mips_cp0_status_write(ostatus);
396 }
397 
398 /*
399  * Cache operations for R5000-style secondary caches:
400  *
401  *	- Direct-mapped
402  *	- Write-through
403  *	- Physically indexed, physically tagged
404  *
405  */
406 
407 
408 __asm(".set mips3");
409 
410 void
r5k_sdcache_wbinv_all(void)411 r5k_sdcache_wbinv_all(void)
412 {
413 
414 	r5k_sdcache_wbinv_range(MIPS_PHYS_TO_KSEG0(0), mips_cache_info.mci_sdcache_size);
415 }
416 
417 void
r5k_sdcache_wbinv_range_index(vaddr_t va,vsize_t size)418 r5k_sdcache_wbinv_range_index(vaddr_t va, vsize_t size)
419 {
420 
421 	/*
422 	 * Since we're doing Index ops, we expect to not be able
423 	 * to access the address we've been given.  So, get the
424 	 * bits that determine the cache index, and make a KSEG0
425 	 * address out of them.
426 	 */
427 	va = MIPS_PHYS_TO_KSEG0(va & (mips_cache_info.mci_sdcache_size - 1));
428 	r5k_sdcache_wbinv_range((intptr_t)va, size);
429 }
430 
431 void
r5k_sdcache_wbinv_range(register_t va,vsize_t size)432 r5k_sdcache_wbinv_range(register_t va, vsize_t size)
433 {
434 	uint32_t ostatus, taglo;
435 	register_t eva = mips_r5k_round_page(va + size);
436 
437 	va = mips_r5k_trunc_page(va);
438 
439 	ostatus = mips_cp0_status_read();
440 	mips_cp0_status_write(ostatus & ~MIPS_SR_INT_IE);
441 
442 	__asm volatile("mfc0 %0, $28" : "=r"(taglo));
443 	__asm volatile("mtc0 $0, $28");
444 
445 	for (; va < eva; va += R5K_SC_PAGESIZE) {
446 		cache_op_r4k_line(va, CACHEOP_R5K_Page_Invalidate_S);
447 	}
448 
449 	mips_cp0_status_write(ostatus);
450 	__asm volatile("mtc0 %0, $28; nop" :: "r"(taglo));
451 }
452