xref: /netbsd-src/sys/uvm/pmap/pmap.c (revision fbd0dae415553fc073345e3acf518445edd67324)
1 /*	$NetBSD: pmap.c,v 1.80 2024/05/06 07:18:19 skrll Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center and by Chris G. Demetriou.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1992, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * the Systems Programming Group of the University of Utah Computer
39  * Science Department and Ralph Campbell.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)pmap.c	8.4 (Berkeley) 1/26/94
66  */
67 
68 #include <sys/cdefs.h>
69 
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.80 2024/05/06 07:18:19 skrll Exp $");
71 
72 /*
73  *	Manages physical address maps.
74  *
75  *	In addition to hardware address maps, this
76  *	module is called upon to provide software-use-only
77  *	maps which may or may not be stored in the same
78  *	form as hardware maps.  These pseudo-maps are
79  *	used to store intermediate results from copy
80  *	operations to and from address spaces.
81  *
82  *	Since the information managed by this module is
83  *	also stored by the logical address mapping module,
84  *	this module may throw away valid virtual-to-physical
85  *	mappings at almost any time.  However, invalidations
86  *	of virtual-to-physical mappings must be done as
87  *	requested.
88  *
89  *	In order to cope with hardware architectures which
90  *	make virtual-to-physical map invalidates expensive,
91  *	this module may delay invalidate or reduced protection
92  *	operations until such time as they are actually
93  *	necessary.  This module is given full information as
94  *	to which processors are currently using which maps,
95  *	and to when physical maps must be made correct.
96  */
97 
98 #include "opt_ddb.h"
99 #include "opt_efi.h"
100 #include "opt_modular.h"
101 #include "opt_multiprocessor.h"
102 #include "opt_sysv.h"
103 #include "opt_uvmhist.h"
104 
105 #define __PMAP_PRIVATE
106 
107 #include <sys/param.h>
108 
109 #include <sys/asan.h>
110 #include <sys/atomic.h>
111 #include <sys/buf.h>
112 #include <sys/cpu.h>
113 #include <sys/mutex.h>
114 #include <sys/pool.h>
115 
116 #include <uvm/uvm.h>
117 #include <uvm/uvm_physseg.h>
118 #include <uvm/pmap/pmap_pvt.h>
119 
120 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
121     && !defined(PMAP_NO_PV_UNCACHED)
122 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
123  PMAP_NO_PV_UNCACHED to be defined
124 #endif
125 
126 #if defined(PMAP_PV_TRACK_ONLY_STUBS)
127 #undef	__HAVE_PMAP_PV_TRACK
128 #endif
129 
130 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
131 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
132 PMAP_COUNTER(remove_user_calls, "remove user calls");
133 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
134 PMAP_COUNTER(remove_flushes, "remove cache flushes");
135 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
136 PMAP_COUNTER(remove_pvfirst, "remove pv first");
137 PMAP_COUNTER(remove_pvsearch, "remove pv search");
138 
139 PMAP_COUNTER(prefer_requests, "prefer requests");
140 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
141 
142 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
143 
144 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
145 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
146 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
147 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
148 
149 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
150 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
151 
152 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
153 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
154 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
155 PMAP_COUNTER(user_mappings, "user pages mapped");
156 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
157 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
158 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
159 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
160 PMAP_COUNTER(pvtracked_mappings, "pv-tracked unmanaged pages mapped");
161 PMAP_COUNTER(efirt_mappings, "EFI RT pages mapped");
162 PMAP_COUNTER(managed_mappings, "managed pages mapped");
163 PMAP_COUNTER(mappings, "pages mapped");
164 PMAP_COUNTER(remappings, "pages remapped");
165 PMAP_COUNTER(unmappings, "pages unmapped");
166 PMAP_COUNTER(primary_mappings, "page initial mappings");
167 PMAP_COUNTER(primary_unmappings, "page final unmappings");
168 PMAP_COUNTER(tlb_hit, "page mapping");
169 
170 PMAP_COUNTER(exec_mappings, "exec pages mapped");
171 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
172 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
173 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
174 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
175 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
176 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
177 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
178 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
179 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
180 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
181 
182 PMAP_COUNTER(create, "creates");
183 PMAP_COUNTER(reference, "references");
184 PMAP_COUNTER(dereference, "dereferences");
185 PMAP_COUNTER(destroy, "destroyed");
186 PMAP_COUNTER(activate, "activations");
187 PMAP_COUNTER(deactivate, "deactivations");
188 PMAP_COUNTER(update, "updates");
189 #ifdef MULTIPROCESSOR
190 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
191 #endif
192 PMAP_COUNTER(unwire, "unwires");
193 PMAP_COUNTER(copy, "copies");
194 PMAP_COUNTER(clear_modify, "clear_modifies");
195 PMAP_COUNTER(protect, "protects");
196 PMAP_COUNTER(page_protect, "page_protects");
197 
198 #define PMAP_ASID_RESERVED 0
199 CTASSERT(PMAP_ASID_RESERVED == 0);
200 
201 #ifdef PMAP_HWPAGEWALKER
202 #ifndef PMAP_PDETAB_ALIGN
203 #define PMAP_PDETAB_ALIGN	/* nothing */
204 #endif
205 
206 #ifdef _LP64
207 pmap_pdetab_t	pmap_kstart_pdetab PMAP_PDETAB_ALIGN; /* first mid-level pdetab for kernel */
208 #endif
209 pmap_pdetab_t	pmap_kern_pdetab PMAP_PDETAB_ALIGN;
210 #endif
211 
212 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
213 #ifndef PMAP_SEGTAB_ALIGN
214 #define PMAP_SEGTAB_ALIGN	/* nothing */
215 #endif
216 #ifdef _LP64
217 pmap_segtab_t	pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
218 #endif
219 pmap_segtab_t	pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
220 #ifdef _LP64
221 	.seg_seg[(VM_MIN_KERNEL_ADDRESS >> XSEGSHIFT) & (NSEGPG - 1)] = &pmap_kstart_segtab,
222 #endif
223 };
224 #endif
225 
226 struct pmap_kernel kernel_pmap_store = {
227 	.kernel_pmap = {
228 		.pm_refcnt = 1,
229 #ifdef PMAP_HWPAGEWALKER
230 		.pm_pdetab = PMAP_INVALID_PDETAB_ADDRESS,
231 #endif
232 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
233 		.pm_segtab = &pmap_kern_segtab,
234 #endif
235 		.pm_minaddr = VM_MIN_KERNEL_ADDRESS,
236 		.pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
237 	},
238 };
239 
240 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
241 
242 #if defined(EFI_RUNTIME)
243 static struct pmap efirt_pmap;
244 
245 pmap_t
pmap_efirt(void)246 pmap_efirt(void)
247 {
248 	return &efirt_pmap;
249 }
250 #else
251 static inline pt_entry_t
pte_make_enter_efirt(paddr_t pa,vm_prot_t prot,u_int flags)252 pte_make_enter_efirt(paddr_t pa, vm_prot_t prot, u_int flags)
253 {
254 	panic("not supported");
255 }
256 #endif
257 
258 /* The current top of kernel VM - gets updated by pmap_growkernel */
259 vaddr_t pmap_curmaxkvaddr;
260 
261 struct pmap_limits pmap_limits = {	/* VA and PA limits */
262 	.virtual_start = VM_MIN_KERNEL_ADDRESS,
263 	.virtual_end = VM_MAX_KERNEL_ADDRESS,
264 };
265 
266 #ifdef UVMHIST
267 static struct kern_history_ent pmapexechistbuf[10000];
268 static struct kern_history_ent pmaphistbuf[10000];
269 static struct kern_history_ent pmapxtabhistbuf[5000];
270 UVMHIST_DEFINE(pmapexechist) = UVMHIST_INITIALIZER(pmapexechist, pmapexechistbuf);
271 UVMHIST_DEFINE(pmaphist) = UVMHIST_INITIALIZER(pmaphist, pmaphistbuf);
272 UVMHIST_DEFINE(pmapxtabhist) = UVMHIST_INITIALIZER(pmapxtabhist, pmapxtabhistbuf);
273 #endif
274 
275 /*
276  * The pools from which pmap structures and sub-structures are allocated.
277  */
278 struct pool pmap_pmap_pool;
279 struct pool pmap_pv_pool;
280 
281 #ifndef PMAP_PV_LOWAT
282 #define	PMAP_PV_LOWAT	16
283 #endif
284 int	pmap_pv_lowat = PMAP_PV_LOWAT;
285 
286 bool	pmap_initialized = false;
287 #define	PMAP_PAGE_COLOROK_P(a, b) \
288 		((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
289 u_int	pmap_page_colormask;
290 
291 #define PAGE_IS_MANAGED(pa)	(pmap_initialized && uvm_pageismanaged(pa))
292 
293 #define PMAP_IS_ACTIVE(pm)						\
294 	((pm) == pmap_kernel() ||					\
295 	 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
296 
297 /* Forward function declarations */
298 void pmap_page_remove(struct vm_page_md *);
299 static void pmap_pvlist_check(struct vm_page_md *);
300 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
301 void pmap_enter_pv(pmap_t, vaddr_t, paddr_t, struct vm_page_md *, pt_entry_t *, u_int);
302 
303 /*
304  * PV table management functions.
305  */
306 void	*pmap_pv_page_alloc(struct pool *, int);
307 void	pmap_pv_page_free(struct pool *, void *);
308 
309 struct pool_allocator pmap_pv_page_allocator = {
310 	pmap_pv_page_alloc, pmap_pv_page_free, 0,
311 };
312 
313 #define	pmap_pv_alloc()		pool_get(&pmap_pv_pool, PR_NOWAIT)
314 #define	pmap_pv_free(pv)	pool_put(&pmap_pv_pool, (pv))
315 
316 #ifndef PMAP_NEED_TLB_MISS_LOCK
317 
318 #if defined(PMAP_MD_NEED_TLB_MISS_LOCK) || defined(DEBUG)
319 #define	PMAP_NEED_TLB_MISS_LOCK
320 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK || DEBUG */
321 
322 #endif /* PMAP_NEED_TLB_MISS_LOCK */
323 
324 #ifdef PMAP_NEED_TLB_MISS_LOCK
325 
326 #ifdef PMAP_MD_NEED_TLB_MISS_LOCK
327 #define	pmap_tlb_miss_lock_init()	__nothing /* MD code deals with this */
328 #define	pmap_tlb_miss_lock_enter()	pmap_md_tlb_miss_lock_enter()
329 #define	pmap_tlb_miss_lock_exit()	pmap_md_tlb_miss_lock_exit()
330 #else
331 kmutex_t pmap_tlb_miss_lock		__cacheline_aligned;
332 
333 static void
pmap_tlb_miss_lock_init(void)334 pmap_tlb_miss_lock_init(void)
335 {
336 	mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
337 }
338 
339 static inline void
pmap_tlb_miss_lock_enter(void)340 pmap_tlb_miss_lock_enter(void)
341 {
342 	mutex_spin_enter(&pmap_tlb_miss_lock);
343 }
344 
345 static inline void
pmap_tlb_miss_lock_exit(void)346 pmap_tlb_miss_lock_exit(void)
347 {
348 	mutex_spin_exit(&pmap_tlb_miss_lock);
349 }
350 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK */
351 
352 #else
353 
354 #define	pmap_tlb_miss_lock_init()	__nothing
355 #define	pmap_tlb_miss_lock_enter()	__nothing
356 #define	pmap_tlb_miss_lock_exit()	__nothing
357 
358 #endif /* PMAP_NEED_TLB_MISS_LOCK */
359 
360 #ifndef MULTIPROCESSOR
361 kmutex_t pmap_pvlist_mutex	__cacheline_aligned;
362 #endif
363 
364 /*
365  * Debug functions.
366  */
367 
368 #ifdef DEBUG
369 
370 bool pmap_stealdebug = false;
371 
372 #define DPRINTF(...)							     \
373     do { if (pmap_stealdebug) { printf(__VA_ARGS__); } } while (false)
374 
375 static inline void
pmap_asid_check(pmap_t pm,const char * func)376 pmap_asid_check(pmap_t pm, const char *func)
377 {
378 	if (!PMAP_IS_ACTIVE(pm))
379 		return;
380 
381 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
382 	tlb_asid_t asid = tlb_get_asid();
383 	if (asid != pai->pai_asid)
384 		panic("%s: inconsistency for active TLB update: %u <-> %u",
385 		    func, asid, pai->pai_asid);
386 }
387 #else
388 
389 #define DPRINTF(...) __nothing
390 
391 #endif
392 
393 static void
pmap_addr_range_check(pmap_t pmap,vaddr_t sva,vaddr_t eva,const char * func)394 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
395 {
396 #ifdef DEBUG
397 	if (pmap == pmap_kernel()) {
398 		if (sva < VM_MIN_KERNEL_ADDRESS)
399 			panic("%s: kva %#"PRIxVADDR" not in range",
400 			    func, sva);
401 		if (eva >= pmap_limits.virtual_end)
402 			panic("%s: kva %#"PRIxVADDR" not in range",
403 			    func, eva);
404 	} else {
405 		if (eva > VM_MAXUSER_ADDRESS)
406 			panic("%s: uva %#"PRIxVADDR" not in range",
407 			    func, eva);
408 		pmap_asid_check(pmap, func);
409 	}
410 #endif
411 }
412 
413 /*
414  * Misc. functions.
415  */
416 
417 bool
pmap_page_clear_attributes(struct vm_page_md * mdpg,u_long clear_attributes)418 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_long clear_attributes)
419 {
420 	volatile u_long * const attrp = &mdpg->mdpg_attrs;
421 
422 #ifdef MULTIPROCESSOR
423 	for (;;) {
424 		u_long old_attr = *attrp;
425 		if ((old_attr & clear_attributes) == 0)
426 			return false;
427 		u_long new_attr = old_attr & ~clear_attributes;
428 		if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
429 			return true;
430 	}
431 #else
432 	u_long old_attr = *attrp;
433 	if ((old_attr & clear_attributes) == 0)
434 		return false;
435 	*attrp &= ~clear_attributes;
436 	return true;
437 #endif
438 }
439 
440 void
pmap_page_set_attributes(struct vm_page_md * mdpg,u_long set_attributes)441 pmap_page_set_attributes(struct vm_page_md *mdpg, u_long set_attributes)
442 {
443 #ifdef MULTIPROCESSOR
444 	atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
445 #else
446 	mdpg->mdpg_attrs |= set_attributes;
447 #endif
448 }
449 
450 static void
pmap_page_syncicache(struct vm_page * pg)451 pmap_page_syncicache(struct vm_page *pg)
452 {
453 	UVMHIST_FUNC(__func__);
454 	UVMHIST_CALLED(pmaphist);
455 #ifndef MULTIPROCESSOR
456 	struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
457 #endif
458 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
459 	pv_entry_t pv = &mdpg->mdpg_first;
460 	kcpuset_t *onproc;
461 #ifdef MULTIPROCESSOR
462 	kcpuset_create(&onproc, true);
463 	KASSERT(onproc != NULL);
464 #else
465 	onproc = NULL;
466 #endif
467 	VM_PAGEMD_PVLIST_READLOCK(mdpg);
468 	pmap_pvlist_check(mdpg);
469 
470 	UVMHIST_LOG(pmaphist, "pv %#jx pv_pmap %#jx", (uintptr_t)pv,
471 	    (uintptr_t)pv->pv_pmap, 0, 0);
472 
473 	if (pv->pv_pmap != NULL) {
474 		for (; pv != NULL; pv = pv->pv_next) {
475 #ifdef MULTIPROCESSOR
476 			UVMHIST_LOG(pmaphist, "pv %#jx pv_pmap %#jx",
477 			    (uintptr_t)pv, (uintptr_t)pv->pv_pmap, 0, 0);
478 			kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
479 			if (kcpuset_match(onproc, kcpuset_running)) {
480 				break;
481 			}
482 #else
483 			if (pv->pv_pmap == curpmap) {
484 				onproc = curcpu()->ci_kcpuset;
485 				break;
486 			}
487 #endif
488 		}
489 	}
490 	pmap_pvlist_check(mdpg);
491 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
492 	kpreempt_disable();
493 	pmap_md_page_syncicache(mdpg, onproc);
494 	kpreempt_enable();
495 #ifdef MULTIPROCESSOR
496 	kcpuset_destroy(onproc);
497 #endif
498 }
499 
500 /*
501  * Define the initial bounds of the kernel virtual address space.
502  */
503 void
pmap_virtual_space(vaddr_t * vstartp,vaddr_t * vendp)504 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
505 {
506 	*vstartp = pmap_limits.virtual_start;
507 	*vendp = pmap_limits.virtual_end;
508 }
509 
510 vaddr_t
pmap_growkernel(vaddr_t maxkvaddr)511 pmap_growkernel(vaddr_t maxkvaddr)
512 {
513 	UVMHIST_FUNC(__func__);
514 	UVMHIST_CALLARGS(pmaphist, "maxkvaddr=%#jx (%#jx)", maxkvaddr,
515 	    pmap_curmaxkvaddr, 0, 0);
516 
517 	vaddr_t virtual_end = pmap_curmaxkvaddr;
518 	maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
519 
520 	/*
521 	 * Don't exceed VM_MAX_KERNEL_ADDRESS!
522 	 */
523 	if (maxkvaddr == 0 || maxkvaddr > VM_MAX_KERNEL_ADDRESS)
524 		maxkvaddr = VM_MAX_KERNEL_ADDRESS;
525 
526 	/*
527 	 * Reserve PTEs for the new KVA space.
528 	 */
529 	for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
530 		pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
531 	}
532 
533 	kasan_shadow_map((void *)pmap_curmaxkvaddr,
534 	    (size_t)(virtual_end - pmap_curmaxkvaddr));
535 
536 	/*
537 	 * Update new end.
538 	 */
539 	pmap_curmaxkvaddr = virtual_end;
540 
541 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
542 
543 	return virtual_end;
544 }
545 
546 /*
547  * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
548  * This function allows for early dynamic memory allocation until the virtual
549  * memory system has been bootstrapped.  After that point, either kmem_alloc
550  * or malloc should be used.  This function works by stealing pages from the
551  * (to be) managed page pool, then implicitly mapping the pages (by using
552  * their direct mapped addresses) and zeroing them.
553  *
554  * It may be used once the physical memory segments have been pre-loaded
555  * into the vm_physmem[] array.  Early memory allocation MUST use this
556  * interface!  This cannot be used after vm_page_startup(), and will
557  * generate a panic if tried.
558  *
559  * Note that this memory will never be freed, and in essence it is wired
560  * down.
561  *
562  * We must adjust *vstartp and/or *vendp iff we use address space
563  * from the kernel virtual address range defined by pmap_virtual_space().
564  */
565 vaddr_t
pmap_steal_memory(vsize_t size,vaddr_t * vstartp,vaddr_t * vendp)566 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
567 {
568 	size_t npgs;
569 	paddr_t pa;
570 	vaddr_t va;
571 
572 	uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
573 
574 	size = round_page(size);
575 	npgs = atop(size);
576 
577 	DPRINTF("%s: need %zu pages\n", __func__, npgs);
578 
579 	for (uvm_physseg_t bank = uvm_physseg_get_first();
580 	     uvm_physseg_valid_p(bank);
581 	     bank = uvm_physseg_get_next(bank)) {
582 
583 		if (uvm.page_init_done == true)
584 			panic("pmap_steal_memory: called _after_ bootstrap");
585 
586 		DPRINTF("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
587 		    __func__, bank,
588 		    uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
589 		    uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
590 
591 		if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
592 		    || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
593 			DPRINTF("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
594 			continue;
595 		}
596 
597 		if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
598 			DPRINTF("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
599 			    __func__, bank, npgs);
600 			continue;
601 		}
602 
603 		if (!pmap_md_ok_to_steal_p(bank, npgs)) {
604 			continue;
605 		}
606 
607 		/*
608 		 * Always try to allocate from the segment with the least
609 		 * amount of space left.
610 		 */
611 #define VM_PHYSMEM_SPACE(b)	((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
612 		if (uvm_physseg_valid_p(maybe_bank) == false
613 		    || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
614 			maybe_bank = bank;
615 		}
616 	}
617 
618 	if (uvm_physseg_valid_p(maybe_bank)) {
619 		const uvm_physseg_t bank = maybe_bank;
620 
621 		/*
622 		 * There are enough pages here; steal them!
623 		 */
624 		pa = ptoa(uvm_physseg_get_start(bank));
625 		uvm_physseg_unplug(atop(pa), npgs);
626 
627 		DPRINTF("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
628 		    __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
629 
630 		va = pmap_md_map_poolpage(pa, size);
631 		memset((void *)va, 0, size);
632 		return va;
633 	}
634 
635 	/*
636 	 * If we got here, there was no memory left.
637 	 */
638 	panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
639 }
640 
641 /*
642  *	Bootstrap the system enough to run with virtual memory.
643  *	(Common routine called by machine-dependent bootstrap code.)
644  */
645 void
pmap_bootstrap_common(void)646 pmap_bootstrap_common(void)
647 {
648 	UVMHIST_LINK_STATIC(pmapexechist);
649 	UVMHIST_LINK_STATIC(pmaphist);
650 	UVMHIST_LINK_STATIC(pmapxtabhist);
651 
652 	static const struct uvm_pagerops pmap_pager = {
653 		/* nothing */
654 	};
655 
656 	pmap_t pm = pmap_kernel();
657 
658 	rw_init(&pm->pm_obj_lock);
659 	uvm_obj_init(&pm->pm_uobject, &pmap_pager, false, 1);
660 	uvm_obj_setlock(&pm->pm_uobject, &pm->pm_obj_lock);
661 
662 	TAILQ_INIT(&pm->pm_ppg_list);
663 
664 #if defined(PMAP_HWPAGEWALKER)
665 	TAILQ_INIT(&pm->pm_pdetab_list);
666 #endif
667 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
668 	TAILQ_INIT(&pm->pm_segtab_list);
669 #endif
670 
671 #if defined(EFI_RUNTIME)
672 
673 	const pmap_t efipm = pmap_efirt();
674 	struct pmap_asid_info * const efipai = PMAP_PAI(efipm, cpu_tlb_info(ci));
675 
676 	rw_init(&efipm->pm_obj_lock);
677 	uvm_obj_init(&efipm->pm_uobject, &pmap_pager, false, 1);
678 	uvm_obj_setlock(&efipm->pm_uobject, &efipm->pm_obj_lock);
679 
680 	efipai->pai_asid = KERNEL_PID;
681 
682 	TAILQ_INIT(&efipm->pm_ppg_list);
683 
684 #if defined(PMAP_HWPAGEWALKER)
685 	TAILQ_INIT(&efipm->pm_pdetab_list);
686 #endif
687 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
688 	TAILQ_INIT(&efipm->pm_segtab_list);
689 #endif
690 
691 #endif
692 
693 	/*
694 	 * Initialize the segtab lock.
695 	 */
696 	mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
697 
698 	pmap_tlb_miss_lock_init();
699 }
700 
701 /*
702  *	Initialize the pmap module.
703  *	Called by vm_init, to initialize any structures that the pmap
704  *	system needs to map virtual memory.
705  */
706 void
pmap_init(void)707 pmap_init(void)
708 {
709 	UVMHIST_FUNC(__func__);
710 	UVMHIST_CALLED(pmaphist);
711 
712 	/*
713 	 * Set a low water mark on the pv_entry pool, so that we are
714 	 * more likely to have these around even in extreme memory
715 	 * starvation.
716 	 */
717 	pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
718 
719 	/*
720 	 * Set the page colormask but allow pmap_md_init to override it.
721 	 */
722 	pmap_page_colormask = ptoa(uvmexp.colormask);
723 
724 	pmap_md_init();
725 
726 	/*
727 	 * Now it is safe to enable pv entry recording.
728 	 */
729 	pmap_initialized = true;
730 }
731 
732 /*
733  *	Create and return a physical map.
734  *
735  *	If the size specified for the map
736  *	is zero, the map is an actual physical
737  *	map, and may be referenced by the
738  *	hardware.
739  *
740  *	If the size specified is non-zero,
741  *	the map will be used in software only, and
742  *	is bounded by that size.
743  */
744 pmap_t
pmap_create(void)745 pmap_create(void)
746 {
747 	UVMHIST_FUNC(__func__);
748 	UVMHIST_CALLED(pmaphist);
749 	PMAP_COUNT(create);
750 
751 	static const struct uvm_pagerops pmap_pager = {
752 		/* nothing */
753 	};
754 
755 	pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
756 	memset(pmap, 0, PMAP_SIZE);
757 
758 	KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
759 
760 	pmap->pm_refcnt = 1;
761 	pmap->pm_minaddr = VM_MIN_ADDRESS;
762 	pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
763 
764 	rw_init(&pmap->pm_obj_lock);
765 	uvm_obj_init(&pmap->pm_uobject, &pmap_pager, false, 1);
766 	uvm_obj_setlock(&pmap->pm_uobject, &pmap->pm_obj_lock);
767 
768 	TAILQ_INIT(&pmap->pm_ppg_list);
769 #if defined(PMAP_HWPAGEWALKER)
770 	TAILQ_INIT(&pmap->pm_pdetab_list);
771 #endif
772 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
773 	TAILQ_INIT(&pmap->pm_segtab_list);
774 #endif
775 
776 	pmap_segtab_init(pmap);
777 
778 #ifdef MULTIPROCESSOR
779 	kcpuset_create(&pmap->pm_active, true);
780 	kcpuset_create(&pmap->pm_onproc, true);
781 	KASSERT(pmap->pm_active != NULL);
782 	KASSERT(pmap->pm_onproc != NULL);
783 #endif
784 
785 	UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap,
786 	    0, 0, 0);
787 
788 	return pmap;
789 }
790 
791 /*
792  *	Retire the given physical map from service.
793  *	Should only be called if the map contains
794  *	no valid mappings.
795  */
796 void
pmap_destroy(pmap_t pmap)797 pmap_destroy(pmap_t pmap)
798 {
799 	UVMHIST_FUNC(__func__);
800 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
801 	UVMHIST_CALLARGS(pmapxtabhist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
802 
803 	membar_release();
804 	if (atomic_dec_uint_nv(&pmap->pm_refcnt) > 0) {
805 		PMAP_COUNT(dereference);
806 		UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
807 		UVMHIST_LOG(pmapxtabhist, " <-- done (deref)", 0, 0, 0, 0);
808 		return;
809 	}
810 	membar_acquire();
811 
812 	PMAP_COUNT(destroy);
813 	KASSERT(pmap->pm_refcnt == 0);
814 	kpreempt_disable();
815 	pmap_tlb_miss_lock_enter();
816 	pmap_tlb_asid_release_all(pmap);
817 	pmap_tlb_miss_lock_exit();
818 	pmap_segtab_destroy(pmap, NULL, 0);
819 
820 	KASSERT(TAILQ_EMPTY(&pmap->pm_ppg_list));
821 
822 #ifdef _LP64
823 #if defined(PMAP_HWPAGEWALKER)
824 	KASSERT(TAILQ_EMPTY(&pmap->pm_pdetab_list));
825 #endif
826 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
827 	KASSERT(TAILQ_EMPTY(&pmap->pm_segtab_list));
828 #endif
829 #endif
830 	KASSERT(pmap->pm_uobject.uo_npages == 0);
831 
832 	uvm_obj_destroy(&pmap->pm_uobject, false);
833 	rw_destroy(&pmap->pm_obj_lock);
834 
835 #ifdef MULTIPROCESSOR
836 	kcpuset_destroy(pmap->pm_active);
837 	kcpuset_destroy(pmap->pm_onproc);
838 	pmap->pm_active = NULL;
839 	pmap->pm_onproc = NULL;
840 #endif
841 
842 	pool_put(&pmap_pmap_pool, pmap);
843 	kpreempt_enable();
844 
845 	UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
846 	UVMHIST_LOG(pmapxtabhist, " <-- done (freed)", 0, 0, 0, 0);
847 }
848 
849 /*
850  *	Add a reference to the specified pmap.
851  */
852 void
pmap_reference(pmap_t pmap)853 pmap_reference(pmap_t pmap)
854 {
855 	UVMHIST_FUNC(__func__);
856 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
857 	PMAP_COUNT(reference);
858 
859 	if (pmap != NULL) {
860 		atomic_inc_uint(&pmap->pm_refcnt);
861 	}
862 
863 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
864 }
865 
866 /*
867  *	Make a new pmap (vmspace) active for the given process.
868  */
869 void
pmap_activate(struct lwp * l)870 pmap_activate(struct lwp *l)
871 {
872 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
873 
874 	UVMHIST_FUNC(__func__);
875 	UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
876 	    (uintptr_t)pmap, 0, 0);
877 	PMAP_COUNT(activate);
878 
879 	kpreempt_disable();
880 	pmap_tlb_miss_lock_enter();
881 	pmap_tlb_asid_acquire(pmap, l);
882 	pmap_segtab_activate(pmap, l);
883 	pmap_tlb_miss_lock_exit();
884 	kpreempt_enable();
885 
886 	UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
887 	    l->l_lid, 0, 0);
888 }
889 
890 /*
891  * Remove this page from all physical maps in which it resides.
892  * Reflects back modify bits to the pager.
893  */
894 void
pmap_page_remove(struct vm_page_md * mdpg)895 pmap_page_remove(struct vm_page_md *mdpg)
896 {
897 	kpreempt_disable();
898 	VM_PAGEMD_PVLIST_LOCK(mdpg);
899 	pmap_pvlist_check(mdpg);
900 
901 	struct vm_page * const pg =
902 	    VM_PAGEMD_VMPAGE_P(mdpg) ? VM_MD_TO_PAGE(mdpg) : NULL;
903 
904 	UVMHIST_FUNC(__func__);
905 	if (pg) {
906 		UVMHIST_CALLARGS(pmaphist, "mdpg %#jx pg %#jx (pa %#jx): "
907 		    "execpage cleared", (uintptr_t)mdpg, (uintptr_t)pg,
908 		    VM_PAGE_TO_PHYS(pg), 0);
909 	} else {
910 		UVMHIST_CALLARGS(pmaphist, "mdpg %#jx", (uintptr_t)mdpg, 0,
911 		    0, 0);
912 	}
913 
914 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
915 	pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE | VM_PAGEMD_UNCACHED);
916 #else
917 	pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
918 #endif
919 	PMAP_COUNT(exec_uncached_remove);
920 
921 	pv_entry_t pv = &mdpg->mdpg_first;
922 	if (pv->pv_pmap == NULL) {
923 		VM_PAGEMD_PVLIST_UNLOCK(mdpg);
924 		kpreempt_enable();
925 		UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
926 		return;
927 	}
928 
929 	pv_entry_t npv;
930 	pv_entry_t pvp = NULL;
931 
932 	for (; pv != NULL; pv = npv) {
933 		npv = pv->pv_next;
934 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
935 		if (PV_ISKENTER_P(pv)) {
936 			UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %#jx"
937 			    " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap,
938 			    pv->pv_va, 0);
939 
940 			KASSERT(pv->pv_pmap == pmap_kernel());
941 
942 			/* Assume no more - it'll get fixed if there are */
943 			pv->pv_next = NULL;
944 
945 			/*
946 			 * pvp is non-null when we already have a PV_KENTER
947 			 * pv in pvh_first; otherwise we haven't seen a
948 			 * PV_KENTER pv and we need to copy this one to
949 			 * pvh_first
950 			 */
951 			if (pvp) {
952 				/*
953 				 * The previous PV_KENTER pv needs to point to
954 				 * this PV_KENTER pv
955 				 */
956 				pvp->pv_next = pv;
957 			} else {
958 				pv_entry_t fpv = &mdpg->mdpg_first;
959 				*fpv = *pv;
960 				KASSERT(fpv->pv_pmap == pmap_kernel());
961 			}
962 			pvp = pv;
963 			continue;
964 		}
965 #endif
966 		const pmap_t pmap = pv->pv_pmap;
967 		vaddr_t va = trunc_page(pv->pv_va);
968 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
969 		KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
970 		    pmap_limits.virtual_end);
971 		pt_entry_t pte = *ptep;
972 		UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %#jx"
973 		    " pte %#jx", (uintptr_t)pv, (uintptr_t)pmap, va,
974 		    pte_value(pte));
975 		if (!pte_valid_p(pte))
976 			continue;
977 		const bool is_kernel_pmap_p = (pmap == pmap_kernel());
978 		if (is_kernel_pmap_p) {
979 			PMAP_COUNT(remove_kernel_pages);
980 		} else {
981 			PMAP_COUNT(remove_user_pages);
982 		}
983 		if (pte_wired_p(pte))
984 			pmap->pm_stats.wired_count--;
985 		pmap->pm_stats.resident_count--;
986 
987 		pmap_tlb_miss_lock_enter();
988 		const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
989 		pte_set(ptep, npte);
990 		if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
991 			/*
992 			 * Flush the TLB for the given address.
993 			 */
994 			pmap_tlb_invalidate_addr(pmap, va);
995 		}
996 		pmap_tlb_miss_lock_exit();
997 
998 		/*
999 		 * non-null means this is a non-pvh_first pv, so we should
1000 		 * free it.
1001 		 */
1002 		if (pvp) {
1003 			KASSERT(pvp->pv_pmap == pmap_kernel());
1004 			KASSERT(pvp->pv_next == NULL);
1005 			pmap_pv_free(pv);
1006 		} else {
1007 			pv->pv_pmap = NULL;
1008 			pv->pv_next = NULL;
1009 		}
1010 	}
1011 
1012 	pmap_pvlist_check(mdpg);
1013 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1014 	kpreempt_enable();
1015 
1016 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1017 }
1018 
1019 #ifdef __HAVE_PMAP_PV_TRACK
1020 /*
1021  * pmap_pv_protect: change protection of an unmanaged pv-tracked page from
1022  * all pmaps that map it
1023  */
1024 void
pmap_pv_protect(paddr_t pa,vm_prot_t prot)1025 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
1026 {
1027 
1028 	/* the only case is remove at the moment */
1029 	KASSERT(prot == VM_PROT_NONE);
1030 	struct pmap_page *pp;
1031 
1032 	pp = pmap_pv_tracked(pa);
1033 	if (pp == NULL)
1034 		panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
1035 		    pa);
1036 
1037 	struct vm_page_md *mdpg = PMAP_PAGE_TO_MD(pp);
1038 	pmap_page_remove(mdpg);
1039 }
1040 #endif
1041 
1042 /*
1043  *	Make a previously active pmap (vmspace) inactive.
1044  */
1045 void
pmap_deactivate(struct lwp * l)1046 pmap_deactivate(struct lwp *l)
1047 {
1048 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1049 
1050 	UVMHIST_FUNC(__func__);
1051 	UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
1052 	    (uintptr_t)pmap, 0, 0);
1053 	PMAP_COUNT(deactivate);
1054 
1055 	kpreempt_disable();
1056 	KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
1057 	pmap_tlb_miss_lock_enter();
1058 	pmap_tlb_asid_deactivate(pmap);
1059 	pmap_segtab_deactivate(pmap);
1060 	pmap_tlb_miss_lock_exit();
1061 	kpreempt_enable();
1062 
1063 	UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
1064 	    l->l_lid, 0, 0);
1065 }
1066 
1067 void
pmap_update(struct pmap * pmap)1068 pmap_update(struct pmap *pmap)
1069 {
1070 	UVMHIST_FUNC(__func__);
1071 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
1072 	PMAP_COUNT(update);
1073 
1074 	kpreempt_disable();
1075 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
1076 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
1077 	if (pending && pmap_tlb_shootdown_bystanders(pmap))
1078 		PMAP_COUNT(shootdown_ipis);
1079 #endif
1080 	pmap_tlb_miss_lock_enter();
1081 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
1082 	pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
1083 #endif /* DEBUG */
1084 
1085 	/*
1086 	 * If pmap_remove_all was called, we deactivated ourselves and nuked
1087 	 * our ASID.  Now we have to reactivate ourselves.
1088 	 */
1089 	if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
1090 		pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
1091 		pmap_tlb_asid_acquire(pmap, curlwp);
1092 		pmap_segtab_activate(pmap, curlwp);
1093 	}
1094 	pmap_tlb_miss_lock_exit();
1095 	kpreempt_enable();
1096 
1097 	UVMHIST_LOG(pmaphist, " <-- done (kernel=%jd)",
1098 		    (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0);
1099 }
1100 
1101 /*
1102  *	Remove the given range of addresses from the specified map.
1103  *
1104  *	It is assumed that the start and end are properly
1105  *	rounded to the page size.
1106  */
1107 
1108 static bool
pmap_pte_remove(pmap_t pmap,vaddr_t sva,vaddr_t eva,pt_entry_t * ptep,uintptr_t flags)1109 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1110     uintptr_t flags)
1111 {
1112 	const pt_entry_t npte = flags;
1113 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1114 
1115 	UVMHIST_FUNC(__func__);
1116 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jd va=%#jx..%#jx)",
1117 	    (uintptr_t)pmap, (is_kernel_pmap_p ? 1 : 0), sva, eva);
1118 	UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
1119 	    (uintptr_t)ptep, flags, 0, 0);
1120 
1121 	KASSERT(kpreempt_disabled());
1122 
1123 	for (; sva < eva; sva += NBPG, ptep++) {
1124 		const pt_entry_t pte = *ptep;
1125 		if (!pte_valid_p(pte))
1126 			continue;
1127 		if (is_kernel_pmap_p) {
1128 			PMAP_COUNT(remove_kernel_pages);
1129 		} else {
1130 			PMAP_COUNT(remove_user_pages);
1131 		}
1132 		if (pte_wired_p(pte))
1133 			pmap->pm_stats.wired_count--;
1134 		pmap->pm_stats.resident_count--;
1135 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1136 		if (__predict_true(pg != NULL)) {
1137 			pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
1138 		}
1139 		pmap_tlb_miss_lock_enter();
1140 		pte_set(ptep, npte);
1141 		if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
1142 			/*
1143 			 * Flush the TLB for the given address.
1144 			 */
1145 			pmap_tlb_invalidate_addr(pmap, sva);
1146 		}
1147 		pmap_tlb_miss_lock_exit();
1148 	}
1149 
1150 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1151 
1152 	return false;
1153 }
1154 
1155 void
pmap_remove(pmap_t pmap,vaddr_t sva,vaddr_t eva)1156 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
1157 {
1158 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1159 	const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
1160 
1161 	UVMHIST_FUNC(__func__);
1162 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)",
1163 	    (uintptr_t)pmap, sva, eva, 0);
1164 
1165 	if (is_kernel_pmap_p) {
1166 		PMAP_COUNT(remove_kernel_calls);
1167 	} else {
1168 		PMAP_COUNT(remove_user_calls);
1169 	}
1170 #ifdef PMAP_FAULTINFO
1171 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1172 	curpcb->pcb_faultinfo.pfi_repeats = 0;
1173 	curpcb->pcb_faultinfo.pfi_faultptep = NULL;
1174 #endif
1175 	kpreempt_disable();
1176 	pmap_addr_range_check(pmap, sva, eva, __func__);
1177 	pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
1178 	kpreempt_enable();
1179 
1180 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1181 }
1182 
1183 /*
1184  *	pmap_page_protect:
1185  *
1186  *	Lower the permission for all mappings to a given page.
1187  */
1188 void
pmap_page_protect(struct vm_page * pg,vm_prot_t prot)1189 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1190 {
1191 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1192 	pv_entry_t pv;
1193 	vaddr_t va;
1194 
1195 	UVMHIST_FUNC(__func__);
1196 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)",
1197 	    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0);
1198 	PMAP_COUNT(page_protect);
1199 
1200 	switch (prot) {
1201 	case VM_PROT_READ | VM_PROT_WRITE:
1202 	case VM_PROT_ALL:
1203 		break;
1204 
1205 	/* copy_on_write */
1206 	case VM_PROT_READ:
1207 	case VM_PROT_READ | VM_PROT_EXECUTE:
1208 		pv = &mdpg->mdpg_first;
1209 		kpreempt_disable();
1210 		VM_PAGEMD_PVLIST_READLOCK(mdpg);
1211 		pmap_pvlist_check(mdpg);
1212 		/*
1213 		 * Loop over all current mappings setting/clearing as
1214 		 * appropriate.
1215 		 */
1216 		if (pv->pv_pmap != NULL) {
1217 			while (pv != NULL) {
1218 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1219 				if (PV_ISKENTER_P(pv)) {
1220 					pv = pv->pv_next;
1221 					continue;
1222 				}
1223 #endif
1224 				const pmap_t pmap = pv->pv_pmap;
1225 				va = trunc_page(pv->pv_va);
1226 				const uintptr_t gen =
1227 				    VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1228 				pmap_protect(pmap, va, va + PAGE_SIZE, prot);
1229 				KASSERT(pv->pv_pmap == pmap);
1230 				pmap_update(pmap);
1231 				if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
1232 					pv = &mdpg->mdpg_first;
1233 				} else {
1234 					pv = pv->pv_next;
1235 				}
1236 				pmap_pvlist_check(mdpg);
1237 			}
1238 		}
1239 		pmap_pvlist_check(mdpg);
1240 		VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1241 		kpreempt_enable();
1242 		break;
1243 
1244 	/* remove_all */
1245 	default:
1246 		pmap_page_remove(mdpg);
1247 	}
1248 
1249 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1250 }
1251 
1252 static bool
pmap_pte_protect(pmap_t pmap,vaddr_t sva,vaddr_t eva,pt_entry_t * ptep,uintptr_t flags)1253 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1254 	uintptr_t flags)
1255 {
1256 	const vm_prot_t prot = (flags & VM_PROT_ALL);
1257 
1258 	UVMHIST_FUNC(__func__);
1259 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jd va=%#jx..%#jx)",
1260 	    (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
1261 	UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
1262 	    (uintptr_t)ptep, flags, 0, 0);
1263 
1264 	KASSERT(kpreempt_disabled());
1265 	/*
1266 	 * Change protection on every valid mapping within this segment.
1267 	 */
1268 	for (; sva < eva; sva += NBPG, ptep++) {
1269 		pt_entry_t pte = *ptep;
1270 		if (!pte_valid_p(pte))
1271 			continue;
1272 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1273 		if (pg != NULL && pte_modified_p(pte)) {
1274 			struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1275 			if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1276 				KASSERT(!VM_PAGEMD_PVLIST_EMPTY_P(mdpg));
1277 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1278 				if (VM_PAGEMD_CACHED_P(mdpg)) {
1279 #endif
1280 					UVMHIST_LOG(pmapexechist,
1281 					    "pg %#jx (pa %#jx): "
1282 					    "syncicached performed",
1283 					    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg),
1284 					    0, 0);
1285 					pmap_page_syncicache(pg);
1286 					PMAP_COUNT(exec_synced_protect);
1287 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1288 				}
1289 #endif
1290 			}
1291 		}
1292 		pte = pte_prot_downgrade(pte, prot);
1293 		if (*ptep != pte) {
1294 			pmap_tlb_miss_lock_enter();
1295 			pte_set(ptep, pte);
1296 			/*
1297 			 * Update the TLB if needed.
1298 			 */
1299 			pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1300 			pmap_tlb_miss_lock_exit();
1301 		}
1302 	}
1303 
1304 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1305 
1306 	return false;
1307 }
1308 
1309 /*
1310  *	Set the physical protection on the
1311  *	specified range of this map as requested.
1312  */
1313 void
pmap_protect(pmap_t pmap,vaddr_t sva,vaddr_t eva,vm_prot_t prot)1314 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1315 {
1316 	UVMHIST_FUNC(__func__);
1317 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)",
1318 	    (uintptr_t)pmap, sva, eva, prot);
1319 	PMAP_COUNT(protect);
1320 
1321 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1322 		pmap_remove(pmap, sva, eva);
1323 		UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1324 		return;
1325 	}
1326 
1327 	/*
1328 	 * Change protection on every valid mapping within this segment.
1329 	 */
1330 	kpreempt_disable();
1331 	pmap_addr_range_check(pmap, sva, eva, __func__);
1332 	pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1333 	kpreempt_enable();
1334 
1335 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1336 }
1337 
1338 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1339 /*
1340  *	pmap_page_cache:
1341  *
1342  *	Change all mappings of a managed page to cached/uncached.
1343  */
1344 void
pmap_page_cache(struct vm_page_md * mdpg,bool cached)1345 pmap_page_cache(struct vm_page_md *mdpg, bool cached)
1346 {
1347 #ifdef UVMHIST
1348 	const bool vmpage_p = VM_PAGEMD_VMPAGE_P(mdpg);
1349 	struct vm_page * const pg = vmpage_p ? VM_MD_TO_PAGE(mdpg) : NULL;
1350 #endif
1351 
1352 	UVMHIST_FUNC(__func__);
1353 	UVMHIST_CALLARGS(pmaphist, "(mdpg=%#jx (pa %#jx) cached=%jd vmpage %jd)",
1354 	    (uintptr_t)mdpg, pg ? VM_PAGE_TO_PHYS(pg) : 0, cached, vmpage_p);
1355 
1356 	KASSERT(kpreempt_disabled());
1357 	KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1358 
1359 	if (cached) {
1360 		pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1361 		PMAP_COUNT(page_cache_restorations);
1362 	} else {
1363 		pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1364 		PMAP_COUNT(page_cache_evictions);
1365 	}
1366 
1367 	for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1368 		pmap_t pmap = pv->pv_pmap;
1369 		vaddr_t va = trunc_page(pv->pv_va);
1370 
1371 		KASSERT(pmap != NULL);
1372 		KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1373 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1374 		if (ptep == NULL)
1375 			continue;
1376 		pt_entry_t pte = *ptep;
1377 		if (pte_valid_p(pte)) {
1378 			pte = pte_cached_change(pte, cached);
1379 			pmap_tlb_miss_lock_enter();
1380 			pte_set(ptep, pte);
1381 			pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1382 			pmap_tlb_miss_lock_exit();
1383 		}
1384 	}
1385 
1386 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1387 }
1388 #endif	/* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1389 
1390 /*
1391  *	Insert the given physical page (p) at
1392  *	the specified virtual address (v) in the
1393  *	target physical map with the protection requested.
1394  *
1395  *	If specified, the page will be wired down, meaning
1396  *	that the related pte can not be reclaimed.
1397  *
1398  *	NB:  This is the only routine which MAY NOT lazy-evaluate
1399  *	or lose information.  That is, this routine must actually
1400  *	insert this page into the given map NOW.
1401  */
1402 int
pmap_enter(pmap_t pmap,vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags)1403 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1404 {
1405 	const bool wired = (flags & PMAP_WIRED) != 0;
1406 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1407 #if defined(EFI_RUNTIME)
1408 	const bool is_efirt_pmap_p = (pmap == pmap_efirt());
1409 #else
1410 	const bool is_efirt_pmap_p = false;
1411 #endif
1412 	u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1413 #ifdef UVMHIST
1414 	struct kern_history * const histp =
1415 	    ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1416 #endif
1417 
1418 	UVMHIST_FUNC(__func__);
1419 	UVMHIST_CALLARGS(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx",
1420 	    (uintptr_t)pmap, va, pa, 0);
1421 	UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0);
1422 
1423 	const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1424 	if (is_kernel_pmap_p) {
1425 		PMAP_COUNT(kernel_mappings);
1426 		if (!good_color)
1427 			PMAP_COUNT(kernel_mappings_bad);
1428 	} else {
1429 		PMAP_COUNT(user_mappings);
1430 		if (!good_color)
1431 			PMAP_COUNT(user_mappings_bad);
1432 	}
1433 	pmap_addr_range_check(pmap, va, va, __func__);
1434 
1435 	KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1436 	    VM_PROT_READ, prot);
1437 
1438 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1439 	struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1440 
1441 	struct vm_page_md *mdpp = NULL;
1442 #ifdef __HAVE_PMAP_PV_TRACK
1443 	struct pmap_page *pp = pmap_pv_tracked(pa);
1444 	mdpp = pp ? PMAP_PAGE_TO_MD(pp) : NULL;
1445 #endif
1446 
1447 	if (mdpg) {
1448 		/* Set page referenced/modified status based on flags */
1449 		if (flags & VM_PROT_WRITE) {
1450 			pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED | VM_PAGEMD_REFERENCED);
1451 		} else if (flags & VM_PROT_ALL) {
1452 			pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1453 		}
1454 
1455 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1456 		if (!VM_PAGEMD_CACHED_P(mdpg)) {
1457 			flags |= PMAP_NOCACHE;
1458 			PMAP_COUNT(uncached_mappings);
1459 		}
1460 #endif
1461 
1462 		PMAP_COUNT(managed_mappings);
1463 	} else if (mdpp) {
1464 #ifdef __HAVE_PMAP_PV_TRACK
1465 		pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1466 
1467 		PMAP_COUNT(pvtracked_mappings);
1468 #endif
1469 	} else if (is_efirt_pmap_p) {
1470 		PMAP_COUNT(efirt_mappings);
1471 	} else {
1472 		/*
1473 		 * Assumption: if it is not part of our managed memory
1474 		 * then it must be device memory which may be volatile.
1475 		 */
1476 		if ((flags & PMAP_CACHE_MASK) == 0)
1477 			flags |= PMAP_NOCACHE;
1478 		PMAP_COUNT(unmanaged_mappings);
1479 	}
1480 
1481 	KASSERTMSG(mdpg == NULL || mdpp == NULL || is_efirt_pmap_p,
1482 	    "mdpg %p mdpp %p efirt %s", mdpg, mdpp,
1483 	    is_efirt_pmap_p ? "true" : "false");
1484 
1485 	struct vm_page_md *md = (mdpg != NULL) ? mdpg : mdpp;
1486 	pt_entry_t npte = is_efirt_pmap_p ?
1487 	    pte_make_enter_efirt(pa, prot, flags) :
1488 	    pte_make_enter(pa, md, prot, flags, is_kernel_pmap_p);
1489 
1490 	kpreempt_disable();
1491 
1492 	pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1493 	if (__predict_false(ptep == NULL)) {
1494 		kpreempt_enable();
1495 		UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1496 		return ENOMEM;
1497 	}
1498 	const pt_entry_t opte = *ptep;
1499 	const bool resident = pte_valid_p(opte);
1500 	bool remap = false;
1501 	if (resident) {
1502 		if (pte_to_paddr(opte) != pa) {
1503 			KASSERT(!is_kernel_pmap_p);
1504 			const pt_entry_t rpte = pte_nv_entry(false);
1505 
1506 			pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1507 			pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1508 			    rpte);
1509 			PMAP_COUNT(user_mappings_changed);
1510 			remap = true;
1511 		}
1512 		update_flags |= PMAP_TLB_NEED_IPI;
1513 	}
1514 
1515 	if (!resident || remap) {
1516 		pmap->pm_stats.resident_count++;
1517 	}
1518 
1519 	/* Done after case that may sleep/return. */
1520 	if (md)
1521 		pmap_enter_pv(pmap, va, pa, md, &npte, 0);
1522 
1523 	/*
1524 	 * Now validate mapping with desired protection/wiring.
1525 	 */
1526 	if (wired) {
1527 		pmap->pm_stats.wired_count++;
1528 		npte = pte_wire_entry(npte);
1529 	}
1530 
1531 	UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)",
1532 	    pte_value(npte), pa, 0, 0);
1533 
1534 	KASSERT(pte_valid_p(npte));
1535 
1536 	pmap_tlb_miss_lock_enter();
1537 	pte_set(ptep, npte);
1538 	pmap_tlb_update_addr(pmap, va, npte, update_flags);
1539 	pmap_tlb_miss_lock_exit();
1540 	kpreempt_enable();
1541 
1542 	if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1543 		KASSERT(mdpg != NULL);
1544 		PMAP_COUNT(exec_mappings);
1545 		if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1546 			if (!pte_deferred_exec_p(npte)) {
1547 				UVMHIST_LOG(*histp, "va=%#jx pg %#jx: "
1548 				    "immediate syncicache",
1549 				    va, (uintptr_t)pg, 0, 0);
1550 				pmap_page_syncicache(pg);
1551 				pmap_page_set_attributes(mdpg,
1552 				    VM_PAGEMD_EXECPAGE);
1553 				PMAP_COUNT(exec_synced_mappings);
1554 			} else {
1555 				UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer "
1556 				    "syncicache: pte %#jx",
1557 				    va, (uintptr_t)pg, npte, 0);
1558 			}
1559 		} else {
1560 			UVMHIST_LOG(*histp,
1561 			    "va=%#jx pg %#jx: no syncicache cached %jd",
1562 			    va, (uintptr_t)pg, pte_cached_p(npte), 0);
1563 		}
1564 	} else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1565 		KASSERT(mdpg != NULL);
1566 		KASSERT(prot & VM_PROT_WRITE);
1567 		PMAP_COUNT(exec_mappings);
1568 		pmap_page_syncicache(pg);
1569 		pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1570 		UVMHIST_LOG(*histp,
1571 		    "va=%#jx pg %#jx: immediate syncicache (writeable)",
1572 		    va, (uintptr_t)pg, 0, 0);
1573 	}
1574 
1575 	UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1576 	return 0;
1577 }
1578 
1579 void
pmap_kenter_pa(vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags)1580 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1581 {
1582 	pmap_t pmap = pmap_kernel();
1583 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1584 	struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1585 
1586 	UVMHIST_FUNC(__func__);
1587 	UVMHIST_CALLARGS(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)",
1588 	    va, pa, prot, flags);
1589 	PMAP_COUNT(kenter_pa);
1590 
1591 	if (mdpg == NULL) {
1592 		PMAP_COUNT(kenter_pa_unmanaged);
1593 		if ((flags & PMAP_CACHE_MASK) == 0)
1594 			flags |= PMAP_NOCACHE;
1595 	} else {
1596 		if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1597 			PMAP_COUNT(kenter_pa_bad);
1598 	}
1599 
1600 	pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1601 	kpreempt_disable();
1602 	pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, 0);
1603 
1604 	KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1605 	    pmap_limits.virtual_end);
1606 	KASSERT(!pte_valid_p(*ptep));
1607 
1608 	/*
1609 	 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1610 	 */
1611 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1612 	if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1613 	    && pmap_md_virtual_cache_aliasing_p()) {
1614 		pmap_enter_pv(pmap, va, pa, mdpg, &npte, PV_KENTER);
1615 	}
1616 #endif
1617 
1618 	/*
1619 	 * We have the option to force this mapping into the TLB but we
1620 	 * don't.  Instead let the next reference to the page do it.
1621 	 */
1622 	pmap_tlb_miss_lock_enter();
1623 	pte_set(ptep, npte);
1624 	pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1625 	pmap_tlb_miss_lock_exit();
1626 	kpreempt_enable();
1627 #if DEBUG > 1
1628 	for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1629 		if (((long *)va)[i] != ((long *)pa)[i])
1630 			panic("%s: contents (%lx) of va %#"PRIxVADDR
1631 			    " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1632 			    ((long *)va)[i], va, ((long *)pa)[i], pa);
1633 	}
1634 #endif
1635 
1636 	UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0,
1637 	    0);
1638 }
1639 
1640 /*
1641  *	Remove the given range of addresses from the kernel map.
1642  *
1643  *	It is assumed that the start and end are properly
1644  *	rounded to the page size.
1645  */
1646 
1647 static bool
pmap_pte_kremove(pmap_t pmap,vaddr_t sva,vaddr_t eva,pt_entry_t * ptep,uintptr_t flags)1648 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1649 	uintptr_t flags)
1650 {
1651 	const pt_entry_t new_pte = pte_nv_entry(true);
1652 
1653 	UVMHIST_FUNC(__func__);
1654 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)",
1655 	    (uintptr_t)pmap, sva, eva, (uintptr_t)ptep);
1656 
1657 	KASSERT(kpreempt_disabled());
1658 
1659 	for (; sva < eva; sva += NBPG, ptep++) {
1660 		pt_entry_t pte = *ptep;
1661 		if (!pte_valid_p(pte))
1662 			continue;
1663 
1664 		PMAP_COUNT(kremove_pages);
1665 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1666 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1667 		if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1668 			pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1669 		}
1670 #endif
1671 
1672 		pmap_tlb_miss_lock_enter();
1673 		pte_set(ptep, new_pte);
1674 		pmap_tlb_invalidate_addr(pmap, sva);
1675 		pmap_tlb_miss_lock_exit();
1676 	}
1677 
1678 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1679 
1680 	return false;
1681 }
1682 
1683 void
pmap_kremove(vaddr_t va,vsize_t len)1684 pmap_kremove(vaddr_t va, vsize_t len)
1685 {
1686 	const vaddr_t sva = trunc_page(va);
1687 	const vaddr_t eva = round_page(va + len);
1688 
1689 	UVMHIST_FUNC(__func__);
1690 	UVMHIST_CALLARGS(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0);
1691 
1692 	kpreempt_disable();
1693 	pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1694 	kpreempt_enable();
1695 
1696 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1697 }
1698 
1699 bool
pmap_remove_all(struct pmap * pmap)1700 pmap_remove_all(struct pmap *pmap)
1701 {
1702 	UVMHIST_FUNC(__func__);
1703 	UVMHIST_CALLARGS(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0);
1704 
1705 	KASSERT(pmap != pmap_kernel());
1706 
1707 	kpreempt_disable();
1708 	/*
1709 	 * Free all of our ASIDs which means we can skip doing all the
1710 	 * tlb_invalidate_addrs().
1711 	 */
1712 	pmap_tlb_miss_lock_enter();
1713 #ifdef MULTIPROCESSOR
1714 	// This should be the last CPU with this pmap onproc
1715 	KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1716 	if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1717 #endif
1718 		pmap_tlb_asid_deactivate(pmap);
1719 #ifdef MULTIPROCESSOR
1720 	KASSERT(kcpuset_iszero(pmap->pm_onproc));
1721 #endif
1722 	pmap_tlb_asid_release_all(pmap);
1723 	pmap_tlb_miss_lock_exit();
1724 	pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1725 
1726 #ifdef PMAP_FAULTINFO
1727 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1728 	curpcb->pcb_faultinfo.pfi_repeats = 0;
1729 	curpcb->pcb_faultinfo.pfi_faultptep = NULL;
1730 #endif
1731 	kpreempt_enable();
1732 
1733 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1734 	return false;
1735 }
1736 
1737 /*
1738  *	Routine:	pmap_unwire
1739  *	Function:	Clear the wired attribute for a map/virtual-address
1740  *			pair.
1741  *	In/out conditions:
1742  *			The mapping must already exist in the pmap.
1743  */
1744 void
pmap_unwire(pmap_t pmap,vaddr_t va)1745 pmap_unwire(pmap_t pmap, vaddr_t va)
1746 {
1747 	UVMHIST_FUNC(__func__);
1748 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va,
1749 	    0, 0);
1750 	PMAP_COUNT(unwire);
1751 
1752 	/*
1753 	 * Don't need to flush the TLB since PG_WIRED is only in software.
1754 	 */
1755 	kpreempt_disable();
1756 	pmap_addr_range_check(pmap, va, va, __func__);
1757 	pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1758 	KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1759 	    pmap, va);
1760 	pt_entry_t pte = *ptep;
1761 	KASSERTMSG(pte_valid_p(pte),
1762 	    "pmap %p va %#" PRIxVADDR " invalid PTE %#" PRIxPTE " @ %p",
1763 	    pmap, va, pte_value(pte), ptep);
1764 
1765 	if (pte_wired_p(pte)) {
1766 		pmap_tlb_miss_lock_enter();
1767 		pte_set(ptep, pte_unwire_entry(pte));
1768 		pmap_tlb_miss_lock_exit();
1769 		pmap->pm_stats.wired_count--;
1770 	}
1771 #ifdef DIAGNOSTIC
1772 	else {
1773 		printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1774 		    __func__, pmap, va);
1775 	}
1776 #endif
1777 	kpreempt_enable();
1778 
1779 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1780 }
1781 
1782 /*
1783  *	Routine:	pmap_extract
1784  *	Function:
1785  *		Extract the physical page address associated
1786  *		with the given map/virtual_address pair.
1787  */
1788 bool
pmap_extract(pmap_t pmap,vaddr_t va,paddr_t * pap)1789 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1790 {
1791 	paddr_t pa;
1792 
1793 	if (pmap == pmap_kernel()) {
1794 		if (pmap_md_direct_mapped_vaddr_p(va)) {
1795 			pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1796 			goto done;
1797 		}
1798 		if (pmap_md_io_vaddr_p(va))
1799 			panic("pmap_extract: io address %#"PRIxVADDR"", va);
1800 
1801 		if (va >= pmap_limits.virtual_end)
1802 			panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1803 			    __func__, va);
1804 	}
1805 	kpreempt_disable();
1806 	const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1807 	if (ptep == NULL || !pte_valid_p(*ptep)) {
1808 		kpreempt_enable();
1809 		return false;
1810 	}
1811 	pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1812 	kpreempt_enable();
1813 done:
1814 	if (pap != NULL) {
1815 		*pap = pa;
1816 	}
1817 	return true;
1818 }
1819 
1820 /*
1821  *	Copy the range specified by src_addr/len
1822  *	from the source map to the range dst_addr/len
1823  *	in the destination map.
1824  *
1825  *	This routine is only advisory and need not do anything.
1826  */
1827 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vaddr_t dst_addr,vsize_t len,vaddr_t src_addr)1828 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1829     vaddr_t src_addr)
1830 {
1831 	UVMHIST_FUNC(__func__);
1832 	UVMHIST_CALLARGS(pmaphist, "(dpm=#%jx spm=%#jx dva=%#jx sva=%#jx",
1833 	    (uintptr_t)dst_pmap, (uintptr_t)src_pmap, dst_addr, src_addr);
1834 	UVMHIST_LOG(pmaphist, "... len=%#jx)", len, 0, 0, 0);
1835 	PMAP_COUNT(copy);
1836 }
1837 
1838 /*
1839  *	pmap_clear_reference:
1840  *
1841  *	Clear the reference bit on the specified physical page.
1842  */
1843 bool
pmap_clear_reference(struct vm_page * pg)1844 pmap_clear_reference(struct vm_page *pg)
1845 {
1846 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1847 
1848 	UVMHIST_FUNC(__func__);
1849 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx))",
1850 	   (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1851 
1852 	bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1853 
1854 	UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0);
1855 
1856 	return rv;
1857 }
1858 
1859 /*
1860  *	pmap_is_referenced:
1861  *
1862  *	Return whether or not the specified physical page is referenced
1863  *	by any physical maps.
1864  */
1865 bool
pmap_is_referenced(struct vm_page * pg)1866 pmap_is_referenced(struct vm_page *pg)
1867 {
1868 	return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1869 }
1870 
1871 /*
1872  *	Clear the modify bits on the specified physical page.
1873  */
1874 bool
pmap_clear_modify(struct vm_page * pg)1875 pmap_clear_modify(struct vm_page *pg)
1876 {
1877 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1878 	pv_entry_t pv = &mdpg->mdpg_first;
1879 	pv_entry_t pv_next;
1880 
1881 	UVMHIST_FUNC(__func__);
1882 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (%#jx))",
1883 	    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1884 	PMAP_COUNT(clear_modify);
1885 
1886 	if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1887 		if (pv->pv_pmap == NULL) {
1888 			UVMHIST_LOG(pmapexechist,
1889 			    "pg %#jx (pa %#jx): execpage cleared",
1890 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1891 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1892 			PMAP_COUNT(exec_uncached_clear_modify);
1893 		} else {
1894 			UVMHIST_LOG(pmapexechist,
1895 			    "pg %#jx (pa %#jx): syncicache performed",
1896 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1897 			pmap_page_syncicache(pg);
1898 			PMAP_COUNT(exec_synced_clear_modify);
1899 		}
1900 	}
1901 	if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1902 		UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1903 		return false;
1904 	}
1905 	if (pv->pv_pmap == NULL) {
1906 		UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1907 		return true;
1908 	}
1909 
1910 	/*
1911 	 * remove write access from any pages that are dirty
1912 	 * so we can tell if they are written to again later.
1913 	 * flush the VAC first if there is one.
1914 	 */
1915 	kpreempt_disable();
1916 	VM_PAGEMD_PVLIST_READLOCK(mdpg);
1917 	pmap_pvlist_check(mdpg);
1918 	for (; pv != NULL; pv = pv_next) {
1919 		pmap_t pmap = pv->pv_pmap;
1920 		vaddr_t va = trunc_page(pv->pv_va);
1921 
1922 		pv_next = pv->pv_next;
1923 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1924 		if (PV_ISKENTER_P(pv))
1925 			continue;
1926 #endif
1927 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1928 		KASSERT(ptep);
1929 		pt_entry_t pte = pte_prot_nowrite(*ptep);
1930 		if (*ptep == pte) {
1931 			continue;
1932 		}
1933 		KASSERT(pte_valid_p(pte));
1934 		const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1935 		pmap_tlb_miss_lock_enter();
1936 		pte_set(ptep, pte);
1937 		pmap_tlb_invalidate_addr(pmap, va);
1938 		pmap_tlb_miss_lock_exit();
1939 		pmap_update(pmap);
1940 		if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1941 			/*
1942 			 * The list changed!  So restart from the beginning.
1943 			 */
1944 			pv_next = &mdpg->mdpg_first;
1945 			pmap_pvlist_check(mdpg);
1946 		}
1947 	}
1948 	pmap_pvlist_check(mdpg);
1949 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1950 	kpreempt_enable();
1951 
1952 	UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1953 	return true;
1954 }
1955 
1956 /*
1957  *	pmap_is_modified:
1958  *
1959  *	Return whether or not the specified physical page is modified
1960  *	by any physical maps.
1961  */
1962 bool
pmap_is_modified(struct vm_page * pg)1963 pmap_is_modified(struct vm_page *pg)
1964 {
1965 	return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1966 }
1967 
1968 /*
1969  *	pmap_set_modified:
1970  *
1971  *	Sets the page modified reference bit for the specified page.
1972  */
1973 void
pmap_set_modified(paddr_t pa)1974 pmap_set_modified(paddr_t pa)
1975 {
1976 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1977 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1978 	pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED | VM_PAGEMD_REFERENCED);
1979 }
1980 
1981 /******************** pv_entry management ********************/
1982 
1983 static void
pmap_pvlist_check(struct vm_page_md * mdpg)1984 pmap_pvlist_check(struct vm_page_md *mdpg)
1985 {
1986 #ifdef DEBUG
1987 	pv_entry_t pv = &mdpg->mdpg_first;
1988 	if (pv->pv_pmap != NULL) {
1989 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1990 		const u_int colormask = uvmexp.colormask;
1991 		u_int colors = 0;
1992 #endif
1993 		for (; pv != NULL; pv = pv->pv_next) {
1994 			KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1995 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1996 			colors |= __BIT(atop(pv->pv_va) & colormask);
1997 #endif
1998 		}
1999 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2000 		// Assert that if there is more than 1 color mapped, that the
2001 		// page is uncached.
2002 		KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
2003 		    || colors == 0 || (colors & (colors-1)) == 0
2004 		    || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
2005 		    colors, VM_PAGEMD_UNCACHED_P(mdpg));
2006 #endif
2007 	} else {
2008 		KASSERT(pv->pv_next == NULL);
2009 	}
2010 #endif /* DEBUG */
2011 }
2012 
2013 /*
2014  * Enter the pmap and virtual address into the
2015  * physical to virtual map table.
2016  */
2017 void
pmap_enter_pv(pmap_t pmap,vaddr_t va,paddr_t pa,struct vm_page_md * mdpg,pt_entry_t * nptep,u_int flags)2018 pmap_enter_pv(pmap_t pmap, vaddr_t va, paddr_t pa, struct vm_page_md *mdpg,
2019     pt_entry_t *nptep, u_int flags)
2020 {
2021 	pv_entry_t pv, npv, apv;
2022 #ifdef UVMHIST
2023 	bool first = false;
2024 	struct vm_page *pg = VM_PAGEMD_VMPAGE_P(mdpg) ? VM_MD_TO_PAGE(mdpg) :
2025 	    NULL;
2026 #endif
2027 
2028 	UVMHIST_FUNC(__func__);
2029 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx va=%#jx pg=%#jx (%#jx)",
2030 	    (uintptr_t)pmap, va, (uintptr_t)pg, pa);
2031 	UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))",
2032 	    (uintptr_t)nptep, pte_value(*nptep), 0, 0);
2033 
2034 	KASSERT(kpreempt_disabled());
2035 	KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
2036 	KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
2037 	    "va %#"PRIxVADDR, va);
2038 
2039 	apv = NULL;
2040 	VM_PAGEMD_PVLIST_LOCK(mdpg);
2041 again:
2042 	pv = &mdpg->mdpg_first;
2043 	pmap_pvlist_check(mdpg);
2044 	if (pv->pv_pmap == NULL) {
2045 		KASSERT(pv->pv_next == NULL);
2046 		/*
2047 		 * No entries yet, use header as the first entry
2048 		 */
2049 		PMAP_COUNT(primary_mappings);
2050 		PMAP_COUNT(mappings);
2051 #ifdef UVMHIST
2052 		first = true;
2053 #endif
2054 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2055 		KASSERT(VM_PAGEMD_CACHED_P(mdpg));
2056 		// If the new mapping has an incompatible color the last
2057 		// mapping of this page, clean the page before using it.
2058 		if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
2059 			pmap_md_vca_clean(mdpg, PMAP_WBINV);
2060 		}
2061 #endif
2062 		pv->pv_pmap = pmap;
2063 		pv->pv_va = va | flags;
2064 	} else {
2065 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2066 		if (pmap_md_vca_add(mdpg, va, nptep)) {
2067 			goto again;
2068 		}
2069 #endif
2070 
2071 		/*
2072 		 * There is at least one other VA mapping this page.
2073 		 * Place this entry after the header.
2074 		 *
2075 		 * Note: the entry may already be in the table if
2076 		 * we are only changing the protection bits.
2077 		 */
2078 
2079 		for (npv = pv; npv; npv = npv->pv_next) {
2080 			if (pmap == npv->pv_pmap
2081 			    && va == trunc_page(npv->pv_va)) {
2082 #ifdef PARANOIADIAG
2083 				pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
2084 				pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
2085 				if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
2086 					printf("%s: found va %#"PRIxVADDR
2087 					    " pa %#"PRIxPADDR
2088 					    " in pv_table but != %#"PRIxPTE"\n",
2089 					    __func__, va, pa, pte_value(pte));
2090 #endif
2091 				PMAP_COUNT(remappings);
2092 				VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2093 				if (__predict_false(apv != NULL))
2094 					pmap_pv_free(apv);
2095 
2096 				UVMHIST_LOG(pmaphist,
2097 				    " <-- done pv=%#jx (reused)",
2098 				    (uintptr_t)pv, 0, 0, 0);
2099 				return;
2100 			}
2101 		}
2102 		if (__predict_true(apv == NULL)) {
2103 			/*
2104 			 * To allocate a PV, we have to release the PVLIST lock
2105 			 * so get the page generation.  We allocate the PV, and
2106 			 * then reacquire the lock.
2107 			 */
2108 			pmap_pvlist_check(mdpg);
2109 			const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2110 
2111 			apv = (pv_entry_t)pmap_pv_alloc();
2112 			if (apv == NULL)
2113 				panic("pmap_enter_pv: pmap_pv_alloc() failed");
2114 
2115 			/*
2116 			 * If the generation has changed, then someone else
2117 			 * tinkered with this page so we should start over.
2118 			 */
2119 			if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
2120 				goto again;
2121 		}
2122 		npv = apv;
2123 		apv = NULL;
2124 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2125 		/*
2126 		 * If need to deal with virtual cache aliases, keep mappings
2127 		 * in the kernel pmap at the head of the list.  This allows
2128 		 * the VCA code to easily use them for cache operations if
2129 		 * present.
2130 		 */
2131 		pmap_t kpmap = pmap_kernel();
2132 		if (pmap != kpmap) {
2133 			while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
2134 				pv = pv->pv_next;
2135 			}
2136 		}
2137 #endif
2138 		npv->pv_va = va | flags;
2139 		npv->pv_pmap = pmap;
2140 		npv->pv_next = pv->pv_next;
2141 		pv->pv_next = npv;
2142 		PMAP_COUNT(mappings);
2143 	}
2144 	pmap_pvlist_check(mdpg);
2145 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2146 	if (__predict_false(apv != NULL))
2147 		pmap_pv_free(apv);
2148 
2149 	UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv,
2150 	    first, 0, 0);
2151 }
2152 
2153 /*
2154  * Remove a physical to virtual address translation.
2155  * If cache was inhibited on this page, and there are no more cache
2156  * conflicts, restore caching.
2157  * Flush the cache if the last page is removed (should always be cached
2158  * at this point).
2159  */
2160 void
pmap_remove_pv(pmap_t pmap,vaddr_t va,struct vm_page * pg,bool dirty)2161 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
2162 {
2163 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2164 	pv_entry_t pv, npv;
2165 	bool last;
2166 
2167 	UVMHIST_FUNC(__func__);
2168 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)",
2169 	    (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
2170 	UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0);
2171 
2172 	KASSERT(kpreempt_disabled());
2173 	KASSERT((va & PAGE_MASK) == 0);
2174 	pv = &mdpg->mdpg_first;
2175 
2176 	VM_PAGEMD_PVLIST_LOCK(mdpg);
2177 	pmap_pvlist_check(mdpg);
2178 
2179 	/*
2180 	 * If it is the first entry on the list, it is actually
2181 	 * in the header and we must copy the following entry up
2182 	 * to the header.  Otherwise we must search the list for
2183 	 * the entry.  In either case we free the now unused entry.
2184 	 */
2185 
2186 	last = false;
2187 	if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
2188 		npv = pv->pv_next;
2189 		if (npv) {
2190 			*pv = *npv;
2191 			KASSERT(pv->pv_pmap != NULL);
2192 		} else {
2193 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2194 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
2195 #endif
2196 			pv->pv_pmap = NULL;
2197 			last = true;	/* Last mapping removed */
2198 		}
2199 		PMAP_COUNT(remove_pvfirst);
2200 	} else {
2201 		for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
2202 			PMAP_COUNT(remove_pvsearch);
2203 			if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
2204 				break;
2205 		}
2206 		if (npv) {
2207 			pv->pv_next = npv->pv_next;
2208 		}
2209 	}
2210 
2211 	pmap_pvlist_check(mdpg);
2212 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2213 
2214 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2215 	pmap_md_vca_remove(pg, va, dirty, last);
2216 #endif
2217 
2218 	/*
2219 	 * Free the pv_entry if needed.
2220 	 */
2221 	if (npv)
2222 		pmap_pv_free(npv);
2223 	if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
2224 		if (last) {
2225 			/*
2226 			 * If this was the page's last mapping, we no longer
2227 			 * care about its execness.
2228 			 */
2229 			UVMHIST_LOG(pmapexechist,
2230 			    "pg %#jx (pa %#jx)last %ju: execpage cleared",
2231 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2232 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
2233 			PMAP_COUNT(exec_uncached_remove);
2234 		} else {
2235 			/*
2236 			 * Someone still has it mapped as an executable page
2237 			 * so we must sync it.
2238 			 */
2239 			UVMHIST_LOG(pmapexechist,
2240 			    "pg %#jx (pa %#jx) last %ju: performed syncicache",
2241 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2242 			pmap_page_syncicache(pg);
2243 			PMAP_COUNT(exec_synced_remove);
2244 		}
2245 	}
2246 
2247 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
2248 }
2249 
2250 #if defined(MULTIPROCESSOR)
2251 struct pmap_pvlist_info {
2252 	kmutex_t *pli_locks[PAGE_SIZE / 32];
2253 	volatile u_int pli_lock_refs[PAGE_SIZE / 32];
2254 	volatile u_int pli_lock_index;
2255 	u_int pli_lock_mask;
2256 } pmap_pvlist_info;
2257 
2258 void
pmap_pvlist_lock_init(size_t cache_line_size)2259 pmap_pvlist_lock_init(size_t cache_line_size)
2260 {
2261 	struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2262 	const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
2263 	vaddr_t lock_va = lock_page;
2264 	if (sizeof(kmutex_t) > cache_line_size) {
2265 		cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2266 	}
2267 	const size_t nlocks = PAGE_SIZE / cache_line_size;
2268 	KASSERT((nlocks & (nlocks - 1)) == 0);
2269 	/*
2270 	 * Now divide the page into a number of mutexes, one per cacheline.
2271 	 */
2272 	for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2273 		kmutex_t * const lock = (kmutex_t *)lock_va;
2274 		mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2275 		pli->pli_locks[i] = lock;
2276 	}
2277 	pli->pli_lock_mask = nlocks - 1;
2278 }
2279 
2280 kmutex_t *
pmap_pvlist_lock_addr(struct vm_page_md * mdpg)2281 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2282 {
2283 	struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2284 	kmutex_t *lock = mdpg->mdpg_lock;
2285 
2286 	/*
2287 	 * Allocate a lock on an as-needed basis.  This will hopefully give us
2288 	 * semi-random distribution not based on page color.
2289 	 */
2290 	if (__predict_false(lock == NULL)) {
2291 		size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2292 		size_t lockid = locknum & pli->pli_lock_mask;
2293 		kmutex_t * const new_lock = pli->pli_locks[lockid];
2294 		/*
2295 		 * Set the lock.  If some other thread already did, just use
2296 		 * the one they assigned.
2297 		 */
2298 		lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2299 		if (lock == NULL) {
2300 			lock = new_lock;
2301 			atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2302 		}
2303 	}
2304 
2305 	/*
2306 	 * Now finally provide the lock.
2307 	 */
2308 	return lock;
2309 }
2310 #else /* !MULTIPROCESSOR */
2311 void
pmap_pvlist_lock_init(size_t cache_line_size)2312 pmap_pvlist_lock_init(size_t cache_line_size)
2313 {
2314 	mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2315 }
2316 
2317 #ifdef MODULAR
2318 kmutex_t *
pmap_pvlist_lock_addr(struct vm_page_md * mdpg)2319 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2320 {
2321 	/*
2322 	 * We just use a global lock.
2323 	 */
2324 	if (__predict_false(mdpg->mdpg_lock == NULL)) {
2325 		mdpg->mdpg_lock = &pmap_pvlist_mutex;
2326 	}
2327 
2328 	/*
2329 	 * Now finally provide the lock.
2330 	 */
2331 	return mdpg->mdpg_lock;
2332 }
2333 #endif /* MODULAR */
2334 #endif /* !MULTIPROCESSOR */
2335 
2336 /*
2337  * pmap_pv_page_alloc:
2338  *
2339  *	Allocate a page for the pv_entry pool.
2340  */
2341 void *
pmap_pv_page_alloc(struct pool * pp,int flags)2342 pmap_pv_page_alloc(struct pool *pp, int flags)
2343 {
2344 	struct vm_page * const pg = pmap_md_alloc_poolpage(UVM_PGA_USERESERVE);
2345 	if (pg == NULL)
2346 		return NULL;
2347 
2348 	return (void *)pmap_md_map_poolpage(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2349 }
2350 
2351 /*
2352  * pmap_pv_page_free:
2353  *
2354  *	Free a pv_entry pool page.
2355  */
2356 void
pmap_pv_page_free(struct pool * pp,void * v)2357 pmap_pv_page_free(struct pool *pp, void *v)
2358 {
2359 	vaddr_t va = (vaddr_t)v;
2360 
2361 	KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2362 	const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2363 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2364 	KASSERT(pg != NULL);
2365 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2366 	kpreempt_disable();
2367 	pmap_md_vca_remove(pg, va, true, true);
2368 	kpreempt_enable();
2369 #endif
2370 	pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2371 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2372 	uvm_pagefree(pg);
2373 }
2374 
2375 #ifdef PMAP_PREFER
2376 /*
2377  * Find first virtual address >= *vap that doesn't cause
2378  * a cache alias conflict.
2379  */
2380 void
pmap_prefer(vaddr_t foff,vaddr_t * vap,vsize_t sz,int td)2381 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2382 {
2383 	vsize_t prefer_mask = ptoa(uvmexp.colormask);
2384 
2385 	PMAP_COUNT(prefer_requests);
2386 
2387 	prefer_mask |= pmap_md_cache_prefer_mask();
2388 
2389 	if (prefer_mask) {
2390 		vaddr_t	va = *vap;
2391 		vsize_t d = (foff - va) & prefer_mask;
2392 		if (d) {
2393 			if (td)
2394 				*vap = trunc_page(va - ((-d) & prefer_mask));
2395 			else
2396 				*vap = round_page(va + d);
2397 			PMAP_COUNT(prefer_adjustments);
2398 		}
2399 	}
2400 }
2401 #endif /* PMAP_PREFER */
2402 
2403 #ifdef PMAP_MAP_POOLPAGE
2404 vaddr_t
pmap_map_poolpage(paddr_t pa)2405 pmap_map_poolpage(paddr_t pa)
2406 {
2407 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2408 	KASSERT(pg);
2409 
2410 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2411 	KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
2412 
2413 	pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2414 
2415 	return pmap_md_map_poolpage(pa, NBPG);
2416 }
2417 
2418 paddr_t
pmap_unmap_poolpage(vaddr_t va)2419 pmap_unmap_poolpage(vaddr_t va)
2420 {
2421 	KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2422 	paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2423 
2424 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2425 	KASSERT(pg != NULL);
2426 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2427 
2428 	pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2429 	pmap_md_unmap_poolpage(va, NBPG);
2430 
2431 	return pa;
2432 }
2433 #endif /* PMAP_MAP_POOLPAGE */
2434 
2435 #ifdef DDB
2436 void
2437 pmap_db_mdpg_print(struct vm_page *pg, void (*pr)(const char *, ...) __printflike(1, 2))
2438 {
2439 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2440 	pv_entry_t pv = &mdpg->mdpg_first;
2441 
2442 	if (pv->pv_pmap == NULL) {
2443 		pr(" no mappings\n");
2444 		return;
2445 	}
2446 
2447 	int lcount = 0;
2448 	if (VM_PAGEMD_VMPAGE_P(mdpg)) {
2449 		pr(" vmpage");
2450 		lcount++;
2451 	}
2452 	if (VM_PAGEMD_POOLPAGE_P(mdpg)) {
2453 		if (lcount != 0)
2454 			pr(",");
2455 		pr(" pool");
2456 		lcount++;
2457 	}
2458 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2459 	if (VM_PAGEMD_UNCACHED_P(mdpg)) {
2460 		if (lcount != 0)
2461 			pr(",");
2462 		pr(" uncached\n");
2463 	}
2464 #endif
2465 	pr("\n");
2466 
2467 	lcount = 0;
2468 	if (VM_PAGEMD_REFERENCED_P(mdpg)) {
2469 		pr(" referened");
2470 		lcount++;
2471 	}
2472 	if (VM_PAGEMD_MODIFIED_P(mdpg)) {
2473 		if (lcount != 0)
2474 			pr(",");
2475 		pr(" modified");
2476 		lcount++;
2477 	}
2478 	if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
2479 		if (lcount != 0)
2480 			pr(",");
2481 		pr(" exec");
2482 		lcount++;
2483 	}
2484 	pr("\n");
2485 
2486 	for (size_t i = 0; pv != NULL; pv = pv->pv_next) {
2487 		pr("  pv[%zu] pv=%p\n", i, pv);
2488 		pr("    pv[%zu].pv_pmap = %p", i, pv->pv_pmap);
2489 		pr("    pv[%zu].pv_va   = %" PRIxVADDR " (kenter=%s)\n",
2490 		    i, trunc_page(pv->pv_va), PV_ISKENTER_P(pv) ? "true" : "false");
2491 		i++;
2492 	}
2493 }
2494 
2495 void
2496 pmap_db_pmap_print(struct pmap *pm,
2497     void (*pr)(const char *, ...) __printflike(1, 2))
2498 {
2499 #if defined(PMAP_HWPAGEWALKER)
2500 	pr(" pm_pdetab     = %p\n", pm->pm_pdetab);
2501 #endif
2502 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
2503 	pr(" pm_segtab     = %p\n", pm->pm_segtab);
2504 #endif
2505 
2506 	pmap_db_tlb_print(pm, pr);
2507 }
2508 #endif /* DDB */
2509