xref: /netbsd-src/sys/fs/hfs/libhfs.c (revision dd6a50589e07b50bea16f69073970e5c76b41bfb)
1 /*	$NetBSD: libhfs.c,v 1.19 2023/08/11 05:51:34 mrg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Yevgeny Binder, Dieter Baron, and Pelle Johansson.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *  All functions and variable types have the prefix "hfs_". All constants
34  *  have the prefix "HFS_".
35  *
36  *  Naming convention for functions which read/write raw, linear data
37  *	into/from a structured form:
38  *
39  *  hfs_read/write[d][a]_foo_bar
40  *      [d] - read/write from/to [d]isk instead of a memory buffer
41  *      [a] - [a]llocate output buffer instead of using an existing one
42  *            (not applicable for writing functions)
43  *
44  *  Most functions do not have either of these options, so they will read from
45  *	or write to a memory buffer, which has been previously allocated by the
46  *	caller.
47  */
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: libhfs.c,v 1.19 2023/08/11 05:51:34 mrg Exp $");
51 
52 #include "libhfs.h"
53 
54 /* global private file/folder keys */
55 hfs_catalog_key_t hfs_gMetadataDirectoryKey; /* contains HFS+ inodes */
56 hfs_catalog_key_t hfs_gJournalInfoBlockFileKey;
57 hfs_catalog_key_t hfs_gJournalBufferFileKey;
58 hfs_catalog_key_t* hfs_gPrivateObjectKeys[4] = {
59 	&hfs_gMetadataDirectoryKey,
60 	&hfs_gJournalInfoBlockFileKey,
61 	&hfs_gJournalBufferFileKey,
62 	NULL
63 };
64 
65 
66 extern uint16_t be16tohp(void** inout_ptr);
67 extern uint32_t be32tohp(void** inout_ptr);
68 extern uint64_t be64tohp(void** inout_ptr);
69 
70 hfs_callbacks	hfs_gcb;	/* global callbacks */
71 
72 /*
73  * global case folding table
74  * (lazily initialized; see comments at bottom of hfs_open_volume())
75  */
76 unichar_t* hfs_gcft;
77 
78 
79 int hfslib_create_casefolding_table(void);
80 
81 #ifdef DLO_DEBUG
82 #include <stdio.h>
83 void
dlo_print_key(hfs_catalog_key_t * key)84 dlo_print_key(hfs_catalog_key_t *key)
85 {
86 	int i;
87 
88 	printf("%ld:[", (long)key->parent_cnid);
89 	for (i=0; i<key->name.length; i++) {
90 		if (key->name.unicode[i] < 256
91 		    && isprint(key->name.unicode[i]))
92 			putchar(key->name.unicode[i]);
93 		else
94 			printf("<%04x>", key->name.unicode[i]);
95 	}
96 	printf("]");
97 }
98 #endif
99 
100 void
hfslib_init(hfs_callbacks * in_callbacks)101 hfslib_init(hfs_callbacks* in_callbacks)
102 {
103 	unichar_t	temp[256];
104 
105 	if (in_callbacks != NULL)
106 		memcpy(&hfs_gcb, in_callbacks, sizeof(hfs_callbacks));
107 
108 	hfs_gcft = NULL;
109 
110 	/*
111 	 * Create keys for the HFS+ "private" files so we can reuse them whenever
112 	 * we perform a user-visible operation, such as listing directory contents.
113 	 */
114 
115 #define ATOU(str, len) /* quick & dirty ascii-to-unicode conversion */ \
116 	do{ int i; for(i=0; i<len; i++) temp[i]=str[i]; } \
117 	while( /*CONSTCOND*/ 0)
118 
119 	ATOU("\0\0\0\0HFS+ Private Data", 21);
120 	hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 21, temp,
121 		&hfs_gMetadataDirectoryKey);
122 
123 	ATOU(".journal_info_block", 19);
124 	hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 19, temp,
125 		&hfs_gJournalInfoBlockFileKey);
126 
127 	ATOU(".journal", 8);
128 	hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 8, temp,
129 		&hfs_gJournalBufferFileKey);
130 
131 #undef ATOU
132 }
133 
134 void
hfslib_done(void)135 hfslib_done(void)
136 {
137 	hfs_callback_args	cbargs;
138 
139 	if (hfs_gcft != NULL) {
140 		hfslib_init_cbargs(&cbargs);
141 		hfslib_free(hfs_gcft, &cbargs);
142 		hfs_gcft = NULL;
143 	}
144 
145 	return;
146 }
147 
148 void
hfslib_init_cbargs(hfs_callback_args * ptr)149 hfslib_init_cbargs(hfs_callback_args* ptr)
150 {
151 	memset(ptr, 0, sizeof(hfs_callback_args));
152 }
153 
154 #if 0
155 #pragma mark -
156 #pragma mark High-Level Routines
157 #endif
158 
159 int
hfslib_open_volume(const char * in_device,int in_readonly,hfs_volume * out_vol,hfs_callback_args * cbargs)160 hfslib_open_volume(
161 	const char* in_device,
162 	int in_readonly,
163 	hfs_volume* out_vol,
164 	hfs_callback_args* cbargs)
165 {
166 	hfs_catalog_key_t		rootkey;
167 	hfs_thread_record_t	rootthread;
168 	hfs_hfs_master_directory_block_t mdb;
169 	uint16_t	node_rec_sizes[1];
170 	void*		node_recs[1];
171 	void*		buffer;
172 	void*		buffer2;	/* used as temporary pointer for realloc() */
173 	int			result;
174 	int		isopen = 0;
175 
176 	result = 1;
177 	buffer = NULL;
178 
179 	if (in_device == NULL || out_vol == NULL)
180 		return 1;
181 
182 	out_vol->readonly = in_readonly;
183 	out_vol->offset = 0;
184 
185 	if (hfslib_openvoldevice(out_vol, in_device, cbargs) != 0)
186 		HFS_LIBERR("could not open device");
187 	isopen = 1;
188 
189 	/*
190 	 * Read the volume header.
191 	 */
192 	buffer = hfslib_malloc(max(sizeof(hfs_volume_header_t),
193 		sizeof(hfs_hfs_master_directory_block_t)), cbargs);
194 	if (buffer == NULL)
195 		HFS_LIBERR("could not allocate volume header");
196 	if (hfslib_readd(out_vol, buffer, max(sizeof(hfs_volume_header_t),
197 	    sizeof(hfs_hfs_master_directory_block_t)),
198 	    HFS_VOLUME_HEAD_RESERVE_SIZE, cbargs) != 0)
199 		HFS_LIBERR("could not read volume header");
200 
201 	if (be16toh(*((uint16_t *)buffer)) == HFS_SIG_HFS) {
202 		if (hfslib_read_master_directory_block(buffer, &mdb) == 0)
203 			HFS_LIBERR("could not parse master directory block");
204 		if (mdb.embedded_signature == HFS_SIG_HFSP) {
205 			/* XXX: is 512 always correct? */
206 			out_vol->offset =
207 			    mdb.first_block * 512
208 			    + mdb.embedded_extent.start_block
209 			    * (uint64_t)mdb.block_size;
210 
211 			if (hfslib_readd(out_vol, buffer,
212 			    sizeof(hfs_volume_header_t),
213 			    HFS_VOLUME_HEAD_RESERVE_SIZE, cbargs) != 0)
214 				HFS_LIBERR("could not read volume header");
215 		} else
216 			HFS_LIBERR("Plain HFS volumes not currently supported");
217 	}
218 
219 	if (hfslib_read_volume_header(buffer, &(out_vol->vh)) == 0)
220 		HFS_LIBERR("could not parse volume header");
221 
222 	/*
223 	 * Check the volume signature to see if this is a legitimate HFS+ or HFSX
224 	 * volume. If so, set the key comparison function pointers appropriately.
225 	 */
226 	switch(out_vol->vh.signature) {
227 		case HFS_SIG_HFSP:
228 			out_vol->keycmp = hfslib_compare_catalog_keys_cf;
229 			break;
230 		case HFS_SIG_HFSX:
231 			out_vol->keycmp = NULL; /* will be set below */
232 			break;
233 		default:
234 			/* HFS_LIBERR("unrecognized volume format"); */
235 			goto error;
236 			break;
237 	}
238 
239 	/*
240 	 * Read the catalog header.
241 	 */
242 	buffer2 = hfslib_realloc(buffer, 512, cbargs);
243 	if (buffer2 == NULL)
244 		HFS_LIBERR("could not allocate catalog header node");
245 	buffer = buffer2;
246 
247 	/*
248 	 * We are only interested in the node header, so read the first
249 	 * 512 bytes and construct the node descriptor by hand.
250 	 */
251 	if (hfslib_readd(out_vol, buffer, 512,
252 	    out_vol->vh.catalog_file.extents[0].start_block *
253 	    (uint64_t)out_vol->vh.block_size, cbargs) != 0)
254 		HFS_LIBERR("could not read catalog header node");
255 	node_recs[0] = (char *)buffer+14;
256 	node_rec_sizes[0] = 120;
257 	if (hfslib_read_header_node(node_recs, node_rec_sizes, 1,
258 	    &out_vol->chr, NULL, NULL) == 0)
259 		HFS_LIBERR("could not parse catalog header node");
260 
261 	/*
262 	 * If this is an HFSX volume, the catalog header specifies the type of
263 	 * key comparison method (case-folding or binary compare) we should
264 	 * use.
265 	 */
266 	if (out_vol->keycmp == NULL) {
267 		if (out_vol->chr.keycomp_type == HFS_KEY_CASEFOLD)
268 			out_vol->keycmp = hfslib_compare_catalog_keys_cf;
269 		else if (out_vol->chr.keycomp_type == HFS_KEY_BINARY)
270 			out_vol->keycmp = hfslib_compare_catalog_keys_bc;
271 		else
272 			HFS_LIBERR("undefined key compare method");
273 	}
274 
275 	out_vol->catkeysizefieldsize
276 	    = (out_vol->chr.attributes & HFS_BIG_KEYS_MASK) ?
277 	    sizeof(uint16_t) : sizeof(uint8_t);
278 
279 	/*
280 	 * Read the extent overflow header.
281 	 */
282 	/*
283 	 * We are only interested in the node header, so read the first
284 	 * 512 bytes and construct the node descriptor by hand.
285 	 * buffer is already 512 bytes long.
286 	 */
287 	if (hfslib_readd(out_vol, buffer, 512,
288 	    out_vol->vh.extents_file.extents[0].start_block *
289 	    (uint64_t)out_vol->vh.block_size, cbargs) != 0)
290 		HFS_LIBERR("could not read extent header node");
291 
292 	node_recs[0] = (char *)buffer+14;
293 	node_rec_sizes[0] = 120;
294 	if (hfslib_read_header_node(node_recs, node_rec_sizes, 1,
295 	    &out_vol->ehr, NULL, NULL) == 0)
296 		HFS_LIBERR("could not parse extent header node");
297 	out_vol->extkeysizefieldsize
298 	    = (out_vol->ehr.attributes & HFS_BIG_KEYS_MASK) ?
299 	    sizeof(uint16_t):sizeof(uint8_t);
300 	/*
301 	 * Read the journal info block and journal header (if volume journaled).
302 	 */
303 	if (out_vol->vh.attributes & (1<<HFS_VOL_JOURNALED)) {
304 		/* journal info block */
305 		buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_info_t), cbargs);
306 		if (buffer2 == NULL)
307 			HFS_LIBERR("could not allocate journal info block");
308 		buffer = buffer2;
309 
310 		if (hfslib_readd(out_vol, buffer, sizeof(hfs_journal_info_t),
311 		    out_vol->vh.journal_info_block * out_vol->vh.block_size,
312 		    cbargs) != 0)
313 			HFS_LIBERR("could not read journal info block");
314 
315 		if (hfslib_read_journal_info(buffer, &out_vol->jib) == 0)
316 			HFS_LIBERR("could not parse journal info block");
317 
318 		/* journal header */
319 		buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_header_t), cbargs);
320 		if (buffer2 == NULL)
321 			HFS_LIBERR("could not allocate journal header");
322 		buffer = buffer2;
323 
324 		if (hfslib_readd(out_vol, buffer, sizeof(hfs_journal_header_t),
325 		    out_vol->jib.offset, cbargs) != 0)
326 			HFS_LIBERR("could not read journal header");
327 
328 		if (hfslib_read_journal_header(buffer, &out_vol->jh) == 0)
329 			HFS_LIBERR("could not parse journal header");
330 
331 		out_vol->journaled = 1;
332 	} else {
333 		out_vol->journaled = 0;
334 	}
335 
336 	/*
337 	 * If this volume uses case-folding comparison and the folding table hasn't
338 	 * been created yet, do that here. (We don't do this in hfslib_init()
339 	 * because the table is large and we might never even need to use it.)
340 	 */
341 	if (out_vol->keycmp == hfslib_compare_catalog_keys_cf && hfs_gcft == NULL)
342 		result = hfslib_create_casefolding_table();
343 	else
344 		result = 0;
345 
346 	/*
347 	 * Find and store the volume name.
348 	 */
349 	if (hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 0, NULL, &rootkey) == 0)
350 		HFS_LIBERR("could not make root search key");
351 
352 	if (hfslib_find_catalog_record_with_key(out_vol, &rootkey,
353 	    (hfs_catalog_keyed_record_t*)&rootthread, cbargs)!=0)
354 		HFS_LIBERR("could not find root parent");
355 
356 	memcpy(&out_vol->name, &rootthread.name, sizeof(hfs_unistr255_t));
357 
358 	/* FALLTHROUGH */
359 error:
360 	if (result != 0 && isopen)
361 		hfslib_close_volume(out_vol, cbargs);
362 	if (buffer != NULL)
363 		hfslib_free(buffer, cbargs);
364 	return result;
365 }
366 
367 void
hfslib_close_volume(hfs_volume * in_vol,hfs_callback_args * cbargs)368 hfslib_close_volume(hfs_volume* in_vol, hfs_callback_args* cbargs)
369 {
370 	if (in_vol == NULL)
371 		return;
372 	hfslib_closevoldevice(in_vol, cbargs);
373 }
374 
375 int
hfslib_path_to_cnid(hfs_volume * in_vol,hfs_cnid_t in_cnid,char ** out_unicode,uint16_t * out_length,hfs_callback_args * cbargs)376 hfslib_path_to_cnid(hfs_volume* in_vol,
377 	hfs_cnid_t in_cnid,
378 	char** out_unicode,
379 	uint16_t* out_length,
380 	hfs_callback_args* cbargs)
381 {
382 	hfs_thread_record_t	parent_thread;
383 	hfs_cnid_t	parent_cnid, child_cnid;
384 	char*		newpath;
385 	char*		path;
386 	int			path_offset = 0;
387 	int			result;
388 	uint16_t*	ptr;	/* dummy var */
389 	uint16_t	uchar;	/* dummy var */
390 	uint16_t	total_path_length;
391 
392 	if (in_vol == NULL || in_cnid == 0 || out_unicode == NULL ||
393 	    out_length == NULL)
394 		return 1;
395 
396 	result = 1;
397 	*out_unicode = NULL;
398 	*out_length = 0;
399 	path = NULL;
400 	total_path_length = 0;
401 
402 	path = hfslib_malloc(514, cbargs); /* 256 unichars plus a forward slash */
403 	if (path == NULL)
404 		return 1;
405 
406 	child_cnid = in_cnid;
407 	parent_cnid = child_cnid; /* skips loop in case in_cnid is root id */
408 	while (parent_cnid != HFS_CNID_ROOT_FOLDER &&
409 	    parent_cnid != HFS_CNID_ROOT_PARENT)
410 	{
411 		if (child_cnid != in_cnid) {
412 			newpath = hfslib_realloc(path, 514 + total_path_length*2, cbargs);
413 			if (newpath == NULL)
414 				goto exit;
415 			path = newpath;
416 			memmove(path + 514, path + path_offset, total_path_length*2);
417 		}
418 
419 		parent_cnid = hfslib_find_parent_thread(in_vol, child_cnid,
420 		    &parent_thread, cbargs);
421 		if (parent_cnid == 0)
422 			goto exit;
423 
424 		path_offset = 512 - parent_thread.name.length*2;
425 
426 		memcpy(path + path_offset, parent_thread.name.unicode,
427 			parent_thread.name.length*2);
428 
429 		/* Add a forward slash. The unicode string was specified in big endian
430 		 * format, so convert to core format if necessary. */
431 		path[512] = 0x00;
432 		path[513] = 0x2F;
433 
434 		ptr = (uint16_t*)path + 256;
435 		uchar = be16tohp((void*)&ptr);
436 		*(ptr-1) = uchar;
437 
438 		total_path_length += parent_thread.name.length + 1;
439 		child_cnid = parent_cnid;
440 	}
441 
442 	/*
443 	 * At this point, 'path' holds a sequence of unicode characters which
444 	 * represent the absolute path to the given cnid. This string is missing
445 	 * a terminating null char and an initial forward slash that represents
446 	 * the root of the filesystem. It most likely also has extra space in
447 	 * the beginning, due to the fact that we reserve 512 bytes for each path
448 	 * component and won't usually use all that space. So, we allocate the
449 	 * final string based on the actual length of the absolute path, plus four
450 	 * additional bytes (two unichars) for the forward slash and the null char.
451 	 */
452 
453 	*out_unicode = hfslib_malloc((total_path_length+2)*2, cbargs);
454 	if (*out_unicode == NULL)
455 		goto exit;
456 
457 	/* copy only the bytes that are actually used */
458 	memcpy(*out_unicode + 2, path + path_offset, total_path_length*2);
459 
460 	/* insert forward slash at start */
461 	uchar = be16toh(0x2F);
462 	memcpy(*out_unicode, &uchar, sizeof(uchar));
463 
464 	/* insert null char at end */
465 	(*out_unicode)[total_path_length*2+2] = 0x00;
466 	(*out_unicode)[total_path_length*2+3] = 0x00;
467 
468 	*out_length = total_path_length + 1 /* extra for forward slash */ ;
469 
470 	result = 0;
471 
472 exit:
473 	if (path != NULL)
474 		hfslib_free(path, cbargs);
475 	return result;
476 }
477 
478 hfs_cnid_t
hfslib_find_parent_thread(hfs_volume * in_vol,hfs_cnid_t in_child,hfs_thread_record_t * out_thread,hfs_callback_args * cbargs)479 hfslib_find_parent_thread(
480 	hfs_volume* in_vol,
481 	hfs_cnid_t in_child,
482 	hfs_thread_record_t* out_thread,
483 	hfs_callback_args* cbargs)
484 {
485 	hfs_catalog_key_t	childkey;
486 
487 	if (in_vol == NULL || in_child == 0 || out_thread == NULL)
488 		return 0;
489 
490 	if (hfslib_make_catalog_key(in_child, 0, NULL, &childkey) == 0)
491 		return 0;
492 
493 	if (hfslib_find_catalog_record_with_key(in_vol, &childkey,
494 		(hfs_catalog_keyed_record_t*)out_thread, cbargs) != 0)
495 		return 0;
496 
497 	return out_thread->parent_cnid;
498 }
499 
500 /*
501  * hfslib_find_catalog_record_with_cnid()
502  *
503  * Looks up a catalog record by calling hfslib_find_parent_thread() and
504  * hfslib_find_catalog_record_with_key(). out_key may be NULL; if not, the key
505  * corresponding to this cnid is stuffed in it. Returns 0 on success.
506  */
507 int
hfslib_find_catalog_record_with_cnid(hfs_volume * in_vol,hfs_cnid_t in_cnid,hfs_catalog_keyed_record_t * out_rec,hfs_catalog_key_t * out_key,hfs_callback_args * cbargs)508 hfslib_find_catalog_record_with_cnid(
509 	hfs_volume* in_vol,
510 	hfs_cnid_t in_cnid,
511 	hfs_catalog_keyed_record_t* out_rec,
512 	hfs_catalog_key_t* out_key,
513 	hfs_callback_args* cbargs)
514 {
515 	hfs_cnid_t					parentcnid;
516 	hfs_thread_record_t		parentthread;
517 	hfs_catalog_key_t			key;
518 
519 	if (in_vol == NULL || in_cnid == 0 || out_rec == NULL)
520 		return 0;
521 
522 	parentcnid =
523 		hfslib_find_parent_thread(in_vol, in_cnid, &parentthread, cbargs);
524 	if (parentcnid == 0)
525 		HFS_LIBERR("could not find parent thread for cnid %i", in_cnid);
526 
527 	if (hfslib_make_catalog_key(parentthread.parent_cnid,
528 		parentthread.name.length, parentthread.name.unicode, &key) == 0)
529 		HFS_LIBERR("could not make catalog search key");
530 
531 	if (out_key != NULL)
532 		memcpy(out_key, &key, sizeof(key));
533 
534 	return hfslib_find_catalog_record_with_key(in_vol, &key, out_rec, cbargs);
535 
536 error:
537 	return 1;
538 }
539 
540 /* Returns 0 on success, 1 on error, and -1 if record was not found. */
541 int
hfslib_find_catalog_record_with_key(hfs_volume * in_vol,hfs_catalog_key_t * in_key,hfs_catalog_keyed_record_t * out_rec,hfs_callback_args * cbargs)542 hfslib_find_catalog_record_with_key(
543 	hfs_volume* in_vol,
544 	hfs_catalog_key_t* in_key,
545 	hfs_catalog_keyed_record_t* out_rec,
546 	hfs_callback_args* cbargs)
547 {
548 	hfs_node_descriptor_t			nd = { .num_recs = 0 };
549 	hfs_extent_descriptor_t*		extents;
550 	hfs_catalog_keyed_record_t		lastrec;
551 	hfs_catalog_key_t*	curkey;
552 	void**				recs;
553 	void*				buffer;
554 	uint64_t			bytesread;
555 	uint32_t			curnode;
556 	uint16_t*			recsizes;
557 	uint16_t			numextents;
558 	uint16_t			recnum;
559 	int16_t				leaftype;
560 	int					keycompare;
561 	int					result;
562 
563 	if (in_key == NULL || out_rec == NULL || in_vol == NULL)
564 		return 1;
565 
566 	result = 1;
567 	buffer = NULL;
568 	curkey = NULL;
569 	extents = NULL;
570 	recs = NULL;
571 	recsizes = NULL;
572 
573 	/* The key takes up over half a kb of ram, which is a lot for the BSD
574 	 * kernel stack. So allocate it in the heap instead to play it safe. */
575 	curkey = hfslib_malloc(sizeof(hfs_catalog_key_t), cbargs);
576 	if (curkey == NULL)
577 		HFS_LIBERR("could not allocate catalog search key");
578 
579 	buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
580 	if (buffer == NULL)
581 		HFS_LIBERR("could not allocate node buffer");
582 
583 	numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
584 		HFS_DATAFORK, &extents, cbargs);
585 	if (numextents == 0)
586 		HFS_LIBERR("could not locate fork extents");
587 
588 	curnode = in_vol->chr.root_node;
589 
590 #ifdef DLO_DEBUG
591 	printf("-> key ");
592 	dlo_print_key(in_key);
593 	printf("\n");
594 #endif
595 
596 	do {
597 #ifdef DLO_DEBUG
598 		printf("--> node %d\n", curnode);
599 #endif
600 
601 		if (hfslib_readd_with_extents(in_vol, buffer,
602 			&bytesread,in_vol->chr.node_size, curnode * in_vol->chr.node_size,
603 			extents, numextents, cbargs) != 0)
604 			HFS_LIBERR("could not read catalog node #%i", curnode);
605 
606 		if (hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
607 			in_vol, cbargs) == 0)
608 			HFS_LIBERR("could not parse catalog node #%i", curnode);
609 
610 		for (recnum = 0; recnum < nd.num_recs; recnum++)
611 		{
612 			leaftype = nd.kind;
613 			if (hfslib_read_catalog_keyed_record(recs[recnum], out_rec,
614 				&leaftype, curkey, in_vol) == 0)
615 				HFS_LIBERR("could not read catalog record #%i",recnum);
616 
617 #ifdef DLO_DEBUG
618 			printf("---> record %d: ", recnum);
619 			dlo_print_key(curkey);
620 			fflush(stdout);
621 #endif
622 			keycompare = in_vol->keycmp(in_key, curkey);
623 #ifdef DLO_DEBUG
624 			printf(" %c\n",
625 			       keycompare < 0 ? '<'
626 			       : keycompare == 0 ? '=' : '>');
627 #endif
628 
629 			if (keycompare < 0) {
630 				/* Check if key is less than *every* record, which should never
631 				 * happen if the volume is consistent and the key legit. */
632 				if (recnum == 0)
633 					HFS_LIBERR("all records greater than key");
634 
635 				/* Otherwise, we've found the first record that exceeds our key,
636 				 * so retrieve the previous record, which is still less... */
637 				memcpy(out_rec, &lastrec,
638 					sizeof(hfs_catalog_keyed_record_t));
639 
640 				/* ...unless this is a leaf node, which means we've gone from
641 				 * a key which is smaller than the search key, in the previous
642 				 * loop, to a key which is larger, in this loop, and that
643 				 * implies that our search key does not exist on the volume. */
644 				if (nd.kind == HFS_LEAFNODE)
645 					result = -1;
646 				break;
647 			} else if (keycompare == 0) {
648 				/* If leaf node, found an exact match. */
649 				result = 0;
650 				break;
651 			} else if (recnum == nd.num_recs-1 && keycompare > 0) {
652 				/* If leaf node, we've reached the last record with no match,
653 				 * which means this key is not present on the volume. */
654 				result = -1;
655 				break;
656 			}
657 
658 			memcpy(&lastrec, out_rec, sizeof(hfs_catalog_keyed_record_t));
659 		}
660 
661 		if (nd.kind == HFS_INDEXNODE)
662 			curnode = out_rec->child;
663 		else if (nd.kind == HFS_LEAFNODE)
664 			break;
665 		hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
666 	} while (nd.kind != HFS_LEAFNODE);
667 
668 	/* FALLTHROUGH */
669 error:
670 	if (extents != NULL)
671 		hfslib_free(extents, cbargs);
672 	hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
673 	if (curkey != NULL)
674 		hfslib_free(curkey, cbargs);
675 	if (buffer != NULL)
676 		hfslib_free(buffer, cbargs);
677 	return result;
678 }
679 
680 /* returns 0 on success */
681 /* XXX Need to look this over and make sure it gracefully handles cases where
682  * XXX the key is not found. */
683 int
hfslib_find_extent_record_with_key(hfs_volume * in_vol,hfs_extent_key_t * in_key,hfs_extent_record_t * out_rec,hfs_callback_args * cbargs)684 hfslib_find_extent_record_with_key(hfs_volume* in_vol,
685 	hfs_extent_key_t* in_key,
686 	hfs_extent_record_t* out_rec,
687 	hfs_callback_args* cbargs)
688 {
689 	hfs_node_descriptor_t		nd = { .num_recs = 0 };
690 	hfs_extent_descriptor_t*	extents;
691 	hfs_extent_record_t		lastrec;
692 	hfs_extent_key_t	curkey;
693 	void**				recs;
694 	void*				buffer;
695 	uint64_t			bytesread;
696 	uint32_t			curnode;
697 	uint16_t*			recsizes;
698 	uint16_t			numextents;
699 	uint16_t			recnum;
700 	int					keycompare;
701 	int					result;
702 
703 	if (in_vol == NULL || in_key == NULL || out_rec == NULL)
704 		return 1;
705 
706 	result = 1;
707 	buffer = NULL;
708 	extents = NULL;
709 	recs = NULL;
710 	recsizes = NULL;
711 
712 	buffer = hfslib_malloc(in_vol->ehr.node_size, cbargs);
713 	if (buffer == NULL)
714 		HFS_LIBERR("could not allocate node buffer");
715 
716 	numextents = hfslib_get_file_extents(in_vol, HFS_CNID_EXTENTS,
717 		HFS_DATAFORK, &extents, cbargs);
718 	if (numextents == 0)
719 		HFS_LIBERR("could not locate fork extents");
720 
721 	nd.num_recs = 0;
722 	curnode = in_vol->ehr.root_node;
723 
724 	do {
725 		hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
726 		recnum = 0;
727 
728 		if (hfslib_readd_with_extents(in_vol, buffer, &bytesread,
729 			in_vol->ehr.node_size, curnode * in_vol->ehr.node_size, extents,
730 			numextents, cbargs) != 0)
731 			HFS_LIBERR("could not read extents overflow node #%i", curnode);
732 
733 		if (hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_EXTENTS_FILE,
734 			in_vol, cbargs) == 0)
735 			HFS_LIBERR("could not parse extents overflow node #%i",curnode);
736 
737 		for (recnum = 0; recnum < nd.num_recs; recnum++) {
738 			memcpy(&lastrec, out_rec, sizeof(hfs_extent_record_t));
739 
740 			if (hfslib_read_extent_record(recs[recnum], out_rec, nd.kind,
741 				&curkey, in_vol) == 0)
742 				HFS_LIBERR("could not read extents record #%i",recnum);
743 
744 			keycompare = hfslib_compare_extent_keys(in_key, &curkey);
745 			if (keycompare < 0) {
746 				/* this should never happen for any legitimate key */
747 				if (recnum == 0)
748 					return 1;
749 				memcpy(out_rec, &lastrec, sizeof(hfs_extent_record_t));
750 				break;
751 			} else if (keycompare == 0 ||
752 			    (recnum == nd.num_recs-1 && keycompare > 0))
753 				break;
754 		}
755 
756 		if (nd.kind == HFS_INDEXNODE)
757 			curnode = *((uint32_t *)out_rec); /* out_rec is a node ptr in this case */
758 		else if (nd.kind == HFS_LEAFNODE)
759 			break;
760 		else
761 		    HFS_LIBERR("unknown node type for extents overflow node #%i",curnode);
762 	} while (nd.kind != HFS_LEAFNODE);
763 
764 	result = 0;
765 
766 	/* FALLTHROUGH */
767 
768 error:
769 	if (buffer != NULL)
770 		hfslib_free(buffer, cbargs);
771 	if (extents != NULL)
772 		hfslib_free(extents, cbargs);
773 	hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
774 	return result;
775 }
776 
777 /* out_extents may be NULL. */
778 uint16_t
hfslib_get_file_extents(hfs_volume * in_vol,hfs_cnid_t in_cnid,uint8_t in_forktype,hfs_extent_descriptor_t ** out_extents,hfs_callback_args * cbargs)779 hfslib_get_file_extents(hfs_volume* in_vol,
780 	hfs_cnid_t in_cnid,
781 	uint8_t in_forktype,
782 	hfs_extent_descriptor_t** out_extents,
783 	hfs_callback_args* cbargs)
784 {
785 	hfs_extent_descriptor_t*	dummy;
786 	hfs_extent_key_t		extentkey;
787 	hfs_file_record_t		file;
788 	hfs_catalog_key_t		filekey;
789 	hfs_thread_record_t	fileparent;
790 	hfs_fork_t		fork = {.logical_size = 0};
791 	hfs_extent_record_t	nextextentrec;
792 	uint32_t	numblocks;
793 	uint16_t	numextents, n;
794 
795 	if (in_vol == NULL || in_cnid == 0)
796 		return 0;
797 
798 	if (out_extents != NULL) {
799 		*out_extents = hfslib_malloc(sizeof(hfs_extent_descriptor_t), cbargs);
800 		if (*out_extents == NULL)
801 			return 0;
802 	}
803 
804 	switch(in_cnid)
805 	{
806 		case HFS_CNID_CATALOG:
807 			fork = in_vol->vh.catalog_file;
808 			break;
809 
810 		case HFS_CNID_EXTENTS:
811 			fork = in_vol->vh.extents_file;
812 			break;
813 
814 		case HFS_CNID_ALLOCATION:
815 			fork = in_vol->vh.allocation_file;
816 			break;
817 
818 		case HFS_CNID_ATTRIBUTES:
819 			fork = in_vol->vh.attributes_file;
820 			break;
821 
822 		case HFS_CNID_STARTUP:
823 			fork = in_vol->vh.startup_file;
824 			break;
825 
826 		default:
827 			if (hfslib_find_parent_thread(in_vol, in_cnid, &fileparent,
828 				cbargs) == 0)
829 				goto error;
830 
831 			if (hfslib_make_catalog_key(fileparent.parent_cnid,
832 				fileparent.name.length, fileparent.name.unicode, &filekey) == 0)
833 				goto error;
834 
835 			if (hfslib_find_catalog_record_with_key(in_vol, &filekey,
836 				(hfs_catalog_keyed_record_t*)&file, cbargs) != 0)
837 				goto error;
838 
839 			/* only files have extents, not folders or threads */
840 			if (file.rec_type != HFS_REC_FILE)
841 				goto error;
842 
843 			if (in_forktype == HFS_DATAFORK)
844 				fork = file.data_fork;
845 			else if (in_forktype == HFS_RSRCFORK)
846 				fork = file.rsrc_fork;
847 	}
848 
849 	numextents = 0;
850 	numblocks = 0;
851 	memcpy(&nextextentrec, &fork.extents, sizeof(hfs_extent_record_t));
852 
853 	while (1) {
854 		for (n = 0; n < 8; n++) {
855 			if (nextextentrec[n].block_count == 0)
856 				break;
857 			numblocks += nextextentrec[n].block_count;
858 		}
859 		if (out_extents != NULL) {
860 			dummy = hfslib_realloc(*out_extents,
861 			    (numextents+n) * sizeof(hfs_extent_descriptor_t),
862 			    cbargs);
863 			if (dummy == NULL)
864 				goto error;
865 			*out_extents = dummy;
866 
867 			memcpy(*out_extents + numextents,
868 			    &nextextentrec, n*sizeof(hfs_extent_descriptor_t));
869 		}
870 		numextents += n;
871 
872 		if (numblocks >= fork.total_blocks)
873 			break;
874 
875 		if (hfslib_make_extent_key(in_cnid, in_forktype, numblocks,
876 			&extentkey) == 0)
877 			goto error;
878 
879 		if (hfslib_find_extent_record_with_key(in_vol, &extentkey,
880 			&nextextentrec, cbargs) != 0)
881 			goto error;
882 	}
883 
884 	goto exit;
885 
886 error:
887 	if (out_extents != NULL && *out_extents != NULL) {
888 		hfslib_free(*out_extents, cbargs);
889 		*out_extents = NULL;
890 	}
891 	return 0;
892 
893 exit:
894 	return numextents;
895 }
896 
897 /*
898  * hfslib_get_directory_contents()
899  *
900  * Finds the immediate children of a given directory CNID and places their
901  * CNIDs in an array allocated here. The first child is found by doing a
902  * catalog search that only compares parent CNIDs (ignoring file/folder names)
903  * and skips over thread records. Then the remaining children are listed in
904  * ascending order by name, according to the HFS+ spec, so just read off each
905  * successive leaf node until a different parent CNID is found.
906  *
907  * If out_childnames is not NULL, it will be allocated and set to an array of
908  * hfs_unistr255_t's which correspond to the name of the child with that same
909  * index.
910  *
911  * out_children may be NULL.
912  *
913  * Returns 0 on success.
914  */
915 int
hfslib_get_directory_contents(hfs_volume * in_vol,hfs_cnid_t in_dir,hfs_catalog_keyed_record_t ** out_children,hfs_unistr255_t ** out_childnames,uint32_t * out_numchildren,hfs_callback_args * cbargs)916 hfslib_get_directory_contents(
917 	hfs_volume* in_vol,
918 	hfs_cnid_t in_dir,
919 	hfs_catalog_keyed_record_t** out_children,
920 	hfs_unistr255_t** out_childnames,
921 	uint32_t* out_numchildren,
922 	hfs_callback_args* cbargs)
923 {
924 	hfs_node_descriptor_t			nd = { .num_recs = 0 };
925 	hfs_extent_descriptor_t*		extents;
926 	hfs_catalog_keyed_record_t		currec;
927 	hfs_catalog_key_t	curkey;
928 	void**				recs;
929 	void*				buffer;
930 	void*				ptr; /* temporary pointer for realloc() */
931 	uint64_t			bytesread;
932 	uint32_t			curnode;
933 	uint32_t			lastnode;
934 	uint16_t*			recsizes;
935 	uint16_t			numextents;
936 	uint16_t			recnum;
937 	int16_t				leaftype;
938 	int					keycompare;
939 	int					result;
940 
941 	if (in_vol == NULL || in_dir == 0 || out_numchildren == NULL)
942 		return 1;
943 
944 	result = 1;
945 	buffer = NULL;
946 	extents = NULL;
947 	lastnode = 0;
948 	recs = NULL;
949 	recsizes = NULL;
950 	*out_numchildren = 0;
951 	if (out_children != NULL)
952 		*out_children = NULL;
953 	if (out_childnames != NULL)
954 		*out_childnames = NULL;
955 
956 	buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
957 	if (buffer == NULL)
958 		HFS_LIBERR("could not allocate node buffer");
959 
960 	numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
961 		HFS_DATAFORK, &extents, cbargs);
962 	if (numextents == 0)
963 		HFS_LIBERR("could not locate fork extents");
964 
965 	nd.num_recs = 0;
966 	curnode = in_vol->chr.root_node;
967 
968 	while (1)
969 	{
970 		hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
971 		recnum = 0;
972 
973 		if (hfslib_readd_with_extents(in_vol, buffer, &bytesread,
974 			in_vol->chr.node_size, curnode * in_vol->chr.node_size, extents,
975 			numextents, cbargs) != 0)
976 			HFS_LIBERR("could not read catalog node #%i", curnode);
977 
978 		if (hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
979 			in_vol, cbargs) == 0)
980 			HFS_LIBERR("could not parse catalog node #%i", curnode);
981 
982 		for (recnum = 0; recnum < nd.num_recs; recnum++)
983 		{
984 			leaftype = nd.kind; /* needed b/c leaftype might be modified now */
985 			if (hfslib_read_catalog_keyed_record(recs[recnum], &currec,
986 				&leaftype, &curkey, in_vol) == 0)
987 				HFS_LIBERR("could not read cat record %i:%i", curnode, recnum);
988 
989 			if (nd.kind == HFS_INDEXNODE)
990 			{
991 				keycompare = in_dir - curkey.parent_cnid;
992 				if (keycompare < 0) {
993 					/* Check if key is less than *every* record, which should
994 					 * never happen if the volume and key are good. */
995 					if (recnum == 0)
996 						HFS_LIBERR("all records greater than key");
997 
998 					/* Otherwise, we've found the first record that exceeds our
999 					 * key, so retrieve the previous, lesser record. */
1000 					curnode = lastnode;
1001 					break;
1002 				} else if (keycompare == 0) {
1003 					/*
1004 					 * Normally, if we were doing a typical catalog lookup with
1005 					 * both a parent cnid AND a name, keycompare==0 would be an
1006 					 * exact match. However, since we are ignoring object names
1007 					 * in this case and only comparing parent cnids, a direct
1008 					 * match on only a parent cnid could mean that we've found
1009 					 * an object with that parent cnid BUT which is NOT the
1010 					 * first object (according to the HFS+ spec) with that
1011 					 * parent cnid. Thus, when we find a parent cnid match, we
1012 					 * still go back to the previously found leaf node and start
1013 					 * checking it for a possible prior instance of an object
1014 					 * with our desired parent cnid.
1015 					 */
1016 					curnode = lastnode;
1017 					break;
1018 				} else if (recnum == nd.num_recs-1 && keycompare > 0) {
1019 					/* Descend to child node if we found an exact match, or if
1020 					 * this is the last pointer record. */
1021 					curnode = currec.child;
1022 					break;
1023 				}
1024 
1025 				lastnode = currec.child;
1026 			} else {
1027 				/*
1028 				 * We have now descended down the hierarchy of index nodes into
1029 				 * the leaf node that contains the first catalog record with a
1030 				 * matching parent CNID. Since all leaf nodes are chained
1031 				 * through their flink/blink, we can simply walk forward through
1032 				 * this chain, copying every matching non-thread record, until
1033 				 * we hit a record with a different parent CNID. At that point,
1034 				 * we've retrieved all of our directory's items, if any.
1035 				 */
1036 				curnode = nd.flink;
1037 
1038 				if (curkey.parent_cnid < in_dir) {
1039 					continue;
1040 				} else if (curkey.parent_cnid == in_dir) {
1041 					/* Hide files/folders which are supposed to be invisible
1042 					 * to users, according to the hfs+ spec. */
1043 					if (hfslib_is_private_file(&curkey))
1044 						continue;
1045 
1046 					/* leaftype has now been set to the catalog record type */
1047 					if (leaftype == HFS_REC_FLDR || leaftype == HFS_REC_FILE)
1048 					{
1049 						(*out_numchildren)++;
1050 
1051 						if (out_children != NULL) {
1052 							ptr = hfslib_realloc(*out_children,
1053 								*out_numchildren *
1054 								sizeof(hfs_catalog_keyed_record_t), cbargs);
1055 							if (ptr == NULL)
1056 								HFS_LIBERR("could not allocate child record");
1057 							*out_children = ptr;
1058 
1059 							memcpy(&((*out_children)[*out_numchildren-1]),
1060 								&currec, sizeof(hfs_catalog_keyed_record_t));
1061 						}
1062 
1063 						if (out_childnames != NULL) {
1064 							ptr = hfslib_realloc(*out_childnames,
1065 								*out_numchildren * sizeof(hfs_unistr255_t),
1066 								cbargs);
1067 							if (ptr == NULL)
1068 								HFS_LIBERR("could not allocate child name");
1069 							*out_childnames = ptr;
1070 
1071 							memcpy(&((*out_childnames)[*out_numchildren-1]),
1072 								&curkey.name, sizeof(hfs_unistr255_t));
1073 						}
1074 					}
1075 				} else {
1076 					result = 0;
1077 					/* We have just now passed the last item in the desired
1078 					 * folder (or the folder was empty), so exit. */
1079 					goto exit;
1080 				}
1081 			}
1082 		}
1083 	}
1084 
1085 	result = 0;
1086 	goto exit;
1087 
1088 error:
1089 	if (out_children != NULL && *out_children != NULL)
1090 		hfslib_free(*out_children, cbargs);
1091 	if (out_childnames != NULL && *out_childnames != NULL)
1092 		hfslib_free(*out_childnames, cbargs);
1093 	/* FALLTHROUGH */
1094 
1095 exit:
1096 	if (extents != NULL)
1097 		hfslib_free(extents, cbargs);
1098 	hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
1099 	if (buffer != NULL)
1100 		hfslib_free(buffer, cbargs);
1101 	return result;
1102 }
1103 
1104 int
hfslib_is_journal_clean(hfs_volume * in_vol)1105 hfslib_is_journal_clean(hfs_volume* in_vol)
1106 {
1107 	if (in_vol == NULL)
1108 		return 0;
1109 
1110 	/* return true if no journal */
1111 	if (!(in_vol->vh.attributes & (1<<HFS_VOL_JOURNALED)))
1112 		return 1;
1113 
1114 	return (in_vol->jh.start == in_vol->jh.end);
1115 }
1116 
1117 /*
1118  * hfslib_is_private_file()
1119  *
1120  * Given a file/folder's key and parent CNID, determines if it should be hidden
1121  * from the user (e.g., the journal header file or the HFS+ Private Data folder)
1122  */
1123 int
hfslib_is_private_file(hfs_catalog_key_t * filekey)1124 hfslib_is_private_file(hfs_catalog_key_t *filekey)
1125 {
1126 	hfs_catalog_key_t* curkey = NULL;
1127 	int i = 0;
1128 
1129 	/*
1130 	 * According to the HFS+ spec to date, all special objects are located in
1131 	 * the root directory of the volume, so don't bother going further if the
1132 	 * requested object is not.
1133 	 */
1134 	if (filekey->parent_cnid != HFS_CNID_ROOT_FOLDER)
1135 		return 0;
1136 
1137 	while ((curkey = hfs_gPrivateObjectKeys[i]) != NULL) {
1138 		/* XXX Always use binary compare here, or use volume's specific key
1139 		 * XXX comparison routine? */
1140 		if (filekey->name.length == curkey->name.length &&
1141 		    memcmp(filekey->name.unicode, curkey->name.unicode,
1142 				2 * curkey->name.length) == 0)
1143 			return 1;
1144 		i++;
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 
1151 /* bool
1152 hfslib_is_journal_valid(hfs_volume* in_vol)
1153 {
1154 	- check magic numbers
1155 	- check Other Things
1156 }*/
1157 
1158 #if 0
1159 #pragma mark -
1160 #pragma mark Major Structures
1161 #endif
1162 
1163 /*
1164  *	hfslib_read_volume_header()
1165  *
1166  *	Reads in_bytes, formats the data appropriately, and places the result
1167  *	in out_header, which is assumed to be previously allocated. Returns number
1168  *	of bytes read, 0 if failed.
1169  */
1170 
1171 size_t
hfslib_read_volume_header(void * in_bytes,hfs_volume_header_t * out_header)1172 hfslib_read_volume_header(void* in_bytes, hfs_volume_header_t* out_header)
1173 {
1174 	void*	ptr;
1175 	size_t	last_bytes_read;
1176 	int		i;
1177 
1178 	if (in_bytes == NULL || out_header == NULL)
1179 		return 0;
1180 
1181 	ptr = in_bytes;
1182 
1183 	out_header->signature = be16tohp(&ptr);
1184 	out_header->version = be16tohp(&ptr);
1185 	out_header->attributes = be32tohp(&ptr);
1186 	out_header->last_mounting_version = be32tohp(&ptr);
1187 	out_header->journal_info_block = be32tohp(&ptr);
1188 
1189 	out_header->date_created = be32tohp(&ptr);
1190 	out_header->date_modified = be32tohp(&ptr);
1191 	out_header->date_backedup = be32tohp(&ptr);
1192 	out_header->date_checked = be32tohp(&ptr);
1193 
1194 	out_header->file_count = be32tohp(&ptr);
1195 	out_header->folder_count = be32tohp(&ptr);
1196 
1197 	out_header->block_size = be32tohp(&ptr);
1198 	out_header->total_blocks = be32tohp(&ptr);
1199 	out_header->free_blocks = be32tohp(&ptr);
1200 	out_header->next_alloc_block = be32tohp(&ptr);
1201 	out_header->rsrc_clump_size = be32tohp(&ptr);
1202 	out_header->data_clump_size = be32tohp(&ptr);
1203 	out_header->next_cnid = be32tohp(&ptr);
1204 
1205 	out_header->write_count = be32tohp(&ptr);
1206 	out_header->encodings = be64tohp(&ptr);
1207 
1208 	for (i =0 ; i < 8; i++)
1209 		out_header->finder_info[i] = be32tohp(&ptr);
1210 
1211 	if ((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1212 		&out_header->allocation_file)) == 0)
1213 		return 0;
1214 	ptr = (uint8_t*)ptr + last_bytes_read;
1215 
1216 	if ((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1217 		&out_header->extents_file)) == 0)
1218 		return 0;
1219 	ptr = (uint8_t*)ptr + last_bytes_read;
1220 
1221 	if ((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1222 		&out_header->catalog_file)) == 0)
1223 		return 0;
1224 	ptr = (uint8_t*)ptr + last_bytes_read;
1225 
1226 	if ((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1227 		&out_header->attributes_file)) == 0)
1228 		return 0;
1229 	ptr = (uint8_t*)ptr + last_bytes_read;
1230 
1231 	if ((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1232 		&out_header->startup_file)) == 0)
1233 		return 0;
1234 	ptr = (uint8_t*)ptr + last_bytes_read;
1235 
1236 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1237 }
1238 
1239 /*
1240  *      hfsplib_read_master_directory_block()
1241  *
1242  *      Reads in_bytes, formats the data appropriately, and places the result
1243  *      in out_header, which is assumed to be previously allocated. Returns numb
1244 er
1245  *      of bytes read, 0 if failed.
1246  */
1247 
1248 size_t
hfslib_read_master_directory_block(void * in_bytes,hfs_hfs_master_directory_block_t * out_mdr)1249 hfslib_read_master_directory_block(void* in_bytes,
1250     hfs_hfs_master_directory_block_t* out_mdr)
1251 {
1252 	void*   ptr;
1253 	int     i;
1254 
1255 	if (in_bytes == NULL || out_mdr == NULL)
1256 		return 0;
1257 
1258 	ptr = in_bytes;
1259 
1260 	out_mdr->signature = be16tohp(&ptr);
1261 
1262 	out_mdr->date_created = be32tohp(&ptr);
1263 	out_mdr->date_modified = be32tohp(&ptr);
1264 
1265 	out_mdr->attributes = be16tohp(&ptr);
1266 	out_mdr->root_file_count = be16tohp(&ptr);
1267 	out_mdr->volume_bitmap = be16tohp(&ptr);
1268 
1269 	out_mdr->next_alloc_block = be16tohp(&ptr);
1270 	out_mdr->total_blocks = be16tohp(&ptr);
1271 	out_mdr->block_size = be32tohp(&ptr);
1272 
1273 	out_mdr->clump_size = be32tohp(&ptr);
1274 	out_mdr->first_block = be16tohp(&ptr);
1275 	out_mdr->next_cnid = be32tohp(&ptr);
1276 	out_mdr->free_blocks = be16tohp(&ptr);
1277 
1278 	memcpy(out_mdr->volume_name, ptr, 28);
1279 	ptr = (char *)ptr + 28;
1280 
1281 	out_mdr->date_backedup = be32tohp(&ptr);
1282 	out_mdr->backup_seqnum = be16tohp(&ptr);
1283 
1284 	out_mdr->write_count = be32tohp(&ptr);
1285 
1286 	out_mdr->extents_clump_size = be32tohp(&ptr);
1287 	out_mdr->catalog_clump_size = be32tohp(&ptr);
1288 
1289 	out_mdr->root_folder_count = be16tohp(&ptr);
1290 	out_mdr->file_count = be32tohp(&ptr);
1291 	out_mdr->folder_count = be32tohp(&ptr);
1292 
1293 	for (i = 0; i < 8; i++)
1294 		out_mdr->finder_info[i] = be32tohp(&ptr);
1295 
1296 	out_mdr->embedded_signature = be16tohp(&ptr);
1297 	out_mdr->embedded_extent.start_block = be16tohp(&ptr);
1298 	out_mdr->embedded_extent.block_count = be16tohp(&ptr);
1299 
1300 	out_mdr->extents_size = be32tohp(&ptr);
1301 	for (i = 0; i < 3; i++) {
1302 		out_mdr->extents_extents[i].start_block = be16tohp(&ptr);
1303 		out_mdr->extents_extents[i].block_count = be16tohp(&ptr);
1304 	}
1305 
1306 	out_mdr->catalog_size = be32tohp(&ptr);
1307 	for (i = 0; i < 3; i++) {
1308 		out_mdr->catalog_extents[i].start_block = be16tohp(&ptr);
1309 		out_mdr->catalog_extents[i].block_count = be16tohp(&ptr);
1310 	}
1311 
1312 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1313 }
1314 
1315 /*
1316  *	hfslib_reada_node()
1317  *
1318  *	Given the pointer to and size of a buffer containing the entire, raw
1319  *	contents of any b-tree node from the disk, this function will:
1320  *
1321  *		1.	determine the type of node and read its contents
1322  *		2.	allocate memory for each record and fill it appropriately
1323  *		3.	set out_record_ptrs_array to point to an array (which it allocates)
1324  *			which has out_node_descriptor->num_recs many pointers to the
1325  *			records themselves
1326  *		4.	allocate out_record_ptr_sizes_array and fill it with the sizes of
1327  *			each record
1328  *		5.	return the number of bytes read (i.e., the size of the node)
1329  *			or 0 on failure
1330  *
1331  *	out_node_descriptor must be allocated by the caller and may not be NULL.
1332  *
1333  *	out_record_ptrs_array and out_record_ptr_sizes_array must both be specified,
1334  *	or both be NULL if the caller is not interested in reading the records.
1335  *
1336  *	out_record_ptr_sizes_array may be NULL if the caller is not interested in
1337  *	reading the records, but must not be NULL if out_record_ptrs_array is not.
1338  *
1339  *	in_parent_file is HFS_CATALOG_FILE, HFS_EXTENTS_FILE, or
1340  *	HFS_ATTRIBUTES_FILE, depending on the special file in which this node
1341  *	resides.
1342  *
1343  *	inout_volume must have its catnodesize or extnodesize field (depending on
1344  *	the parent file) set to the correct value if this is an index, leaf, or map
1345  *	node. If this is a header node, the field will be set to its correct value.
1346  */
1347 size_t
hfslib_reada_node(void * in_bytes,hfs_node_descriptor_t * out_node_descriptor,void ** out_record_ptrs_array[],uint16_t * out_record_ptr_sizes_array[],hfs_btree_file_type in_parent_file,hfs_volume * inout_volume,hfs_callback_args * cbargs)1348 hfslib_reada_node(void* in_bytes,
1349 	hfs_node_descriptor_t* out_node_descriptor,
1350 	void** out_record_ptrs_array[],
1351 	uint16_t* out_record_ptr_sizes_array[],
1352 	hfs_btree_file_type in_parent_file,
1353 	hfs_volume* inout_volume,
1354 	hfs_callback_args* cbargs)
1355 {
1356 	void*		ptr;
1357 	uint16_t*	rec_offsets;
1358 	size_t		last_bytes_read;
1359 	uint16_t	nodesize;
1360 	uint16_t	numrecords;
1361 	uint16_t	free_space_offset;	/* offset to free space in node */
1362 	int			keysizefieldsize;
1363 	int			i;
1364 
1365 	numrecords = 0;
1366 	rec_offsets = NULL;
1367 	if (out_record_ptrs_array != NULL)
1368 		*out_record_ptrs_array = NULL;
1369 	if (out_record_ptr_sizes_array != NULL)
1370 		*out_record_ptr_sizes_array = NULL;
1371 
1372 	if (in_bytes == NULL || inout_volume == NULL || out_node_descriptor == NULL
1373 		|| (out_record_ptrs_array == NULL && out_record_ptr_sizes_array != NULL)
1374 		|| (out_record_ptrs_array != NULL && out_record_ptr_sizes_array == NULL) )
1375 		goto error;
1376 
1377 	ptr = in_bytes;
1378 
1379 	out_node_descriptor->flink = be32tohp(&ptr);
1380 	out_node_descriptor->blink = be32tohp(&ptr);
1381 	out_node_descriptor->kind = *(((int8_t*)ptr));
1382 	ptr = (uint8_t*)ptr + 1;
1383 	out_node_descriptor->height = *(((uint8_t*)ptr));
1384 	ptr = (uint8_t*)ptr + 1;
1385 	out_node_descriptor->num_recs = be16tohp(&ptr);
1386 	out_node_descriptor->reserved = be16tohp(&ptr);
1387 
1388 	numrecords = out_node_descriptor->num_recs;
1389 
1390 	/*
1391 	 *	To go any further, we will need to know the size of this node, as well
1392 	 *	as the width of keyed records' key_len parameters for this btree. If
1393 	 *	this is an index, leaf, or map node, inout_volume already has the node
1394 	 *	size set in its catnodesize or extnodesize field and the key length set
1395 	 *	in the catkeysizefieldsize or extkeysizefieldsize for catalog files and
1396 	 *	extent files, respectively. However, if this is a header node, this
1397 	 *	information has not yet been determined, so this is the place to do it.
1398 	 */
1399 	if (out_node_descriptor->kind == HFS_HEADERNODE)
1400 	{
1401 		hfs_header_record_t	hr;
1402 		void*		header_rec_offset[1];
1403 		uint16_t	header_rec_size[1];
1404 
1405 		/* sanity check to ensure this is a good header node */
1406 		if (numrecords != 3)
1407 			HFS_LIBERR("header node does not have exactly 3 records");
1408 
1409 		header_rec_offset[0] = ptr;
1410 		header_rec_size[0] = sizeof(hfs_header_record_t);
1411 
1412 		last_bytes_read = hfslib_read_header_node(header_rec_offset,
1413 			header_rec_size, 1, &hr, NULL, NULL);
1414 		if (last_bytes_read == 0)
1415 			HFS_LIBERR("could not read header node");
1416 
1417 		switch(in_parent_file)
1418 		{
1419 			case HFS_CATALOG_FILE:
1420 				inout_volume->chr.node_size = hr.node_size;
1421 				inout_volume->catkeysizefieldsize =
1422 					(hr.attributes & HFS_BIG_KEYS_MASK) ?
1423 						sizeof(uint16_t):sizeof(uint8_t);
1424 				break;
1425 
1426 			case HFS_EXTENTS_FILE:
1427 				inout_volume->ehr.node_size = hr.node_size;
1428 				inout_volume->extkeysizefieldsize =
1429 					(hr.attributes & HFS_BIG_KEYS_MASK) ?
1430 						sizeof(uint16_t):sizeof(uint8_t);
1431 				break;
1432 
1433 			case HFS_ATTRIBUTES_FILE:
1434 			default:
1435 				HFS_LIBERR("invalid parent file type specified");
1436 				/* NOTREACHED */
1437 		}
1438 	}
1439 
1440 	switch (in_parent_file)
1441 	{
1442 		case HFS_CATALOG_FILE:
1443 			nodesize = inout_volume->chr.node_size;
1444 			keysizefieldsize = inout_volume->catkeysizefieldsize;
1445 			break;
1446 
1447 		case HFS_EXTENTS_FILE:
1448 			nodesize = inout_volume->ehr.node_size;
1449 			keysizefieldsize = inout_volume->extkeysizefieldsize;
1450 			break;
1451 
1452 		case HFS_ATTRIBUTES_FILE:
1453 		default:
1454 			HFS_LIBERR("invalid parent file type specified");
1455 			/* NOTREACHED */
1456 	}
1457 
1458 	/*
1459 	 *	Don't care about records so just exit after getting the node descriptor.
1460 	 *	Note: This happens after the header node code, and not before it, in
1461 	 *	case the caller calls this function and ignores the record data just to
1462 	 *	get at the node descriptor, but then tries to call it again on a non-
1463 	 *	header node without first setting inout_volume->cat/extnodesize.
1464 	 */
1465 	if (out_record_ptrs_array == NULL)
1466 		return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1467 
1468 	rec_offsets = hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
1469 	*out_record_ptr_sizes_array =
1470 		hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
1471 	if (rec_offsets == NULL || *out_record_ptr_sizes_array == NULL)
1472 		HFS_LIBERR("could not allocate node record offsets");
1473 
1474 	*out_record_ptrs_array = hfslib_malloc(numrecords * sizeof(void*), cbargs);
1475 	if (*out_record_ptrs_array == NULL)
1476 		HFS_LIBERR("could not allocate node records");
1477 
1478 	last_bytes_read = hfslib_reada_node_offsets((uint8_t*)in_bytes + nodesize -
1479 			numrecords * sizeof(uint16_t), rec_offsets, numrecords);
1480 	if (last_bytes_read == 0)
1481 		HFS_LIBERR("could not read node record offsets");
1482 
1483 	/*	The size of the last record (i.e. the first one listed in the offsets)
1484 	 *	must be determined using the offset to the node's free space. */
1485 	free_space_offset = be16toh(*(uint16_t*)((uint8_t*)in_bytes + nodesize -
1486 			(numrecords+1) * sizeof(uint16_t)));
1487 
1488 	(*out_record_ptr_sizes_array)[numrecords-1] =
1489 		free_space_offset - rec_offsets[0];
1490 	for (i = 1; i < numrecords; i++) {
1491 		(*out_record_ptr_sizes_array)[numrecords-i-1] =
1492 			rec_offsets[i-1] - rec_offsets[i];
1493 	}
1494 
1495 	for (i = 0; i < numrecords; i++)
1496 	{
1497 		(*out_record_ptrs_array)[i] =
1498 			hfslib_malloc((*out_record_ptr_sizes_array)[i], cbargs);
1499 
1500 		if ((*out_record_ptrs_array)[i] == NULL)
1501 			HFS_LIBERR("could not allocate node record #%i",i);
1502 
1503 		/*
1504 		 *	If this is a keyed node (i.e., a leaf or index node), there are two
1505 		 *	boundary rules that each record must obey:
1506 		 *
1507 		 *		1.	A pad byte must be placed between the key and data if the
1508 		 *			size of the key plus the size of the key_len field is odd.
1509 		 *
1510 		 *		2.	A pad byte must be placed after the data if the data size
1511 		 *			is odd.
1512 		 *
1513 		 *	So in the first case we increment the starting point of the data
1514 		 *	and correspondingly decrement the record size. In the second case
1515 		 *	we decrement the record size.
1516 		 */
1517 		if (out_node_descriptor->kind == HFS_LEAFNODE ||
1518 		    out_node_descriptor->kind == HFS_INDEXNODE)
1519 		{
1520 			hfs_catalog_key_t	reckey;
1521 			uint16_t			rectype;
1522 
1523 			rectype = out_node_descriptor->kind;
1524 			last_bytes_read = hfslib_read_catalog_keyed_record(ptr, NULL,
1525 				&rectype, &reckey, inout_volume);
1526 			if (last_bytes_read == 0)
1527 				HFS_LIBERR("could not read node record");
1528 
1529 			if ((reckey.key_len + keysizefieldsize) % 2 == 1) {
1530 				ptr = (uint8_t*)ptr + 1;
1531 				(*out_record_ptr_sizes_array)[i]--;
1532 			}
1533 
1534 			if ((*out_record_ptr_sizes_array)[i] % 2 == 1)
1535 				(*out_record_ptr_sizes_array)[i]--;
1536 		}
1537 
1538 		memcpy((*out_record_ptrs_array)[i], ptr,
1539 				(*out_record_ptr_sizes_array)[i]);
1540 		ptr = (uint8_t*)ptr + (*out_record_ptr_sizes_array)[i];
1541 	}
1542 
1543 	goto exit;
1544 
1545 error:
1546 	hfslib_free_recs(out_record_ptrs_array, out_record_ptr_sizes_array,
1547 		&numrecords, cbargs);
1548 
1549 	ptr = in_bytes;
1550 
1551 	/* warn("error occurred in hfslib_reada_node()"); */
1552 
1553 	/* FALLTHROUGH */
1554 
1555 exit:
1556 	if (rec_offsets != NULL)
1557 		hfslib_free(rec_offsets, cbargs);
1558 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1559 }
1560 
1561 /*
1562  *	hfslib_reada_node_offsets()
1563  *
1564  *	Sets out_offset_array to contain the offsets to each record in the node,
1565  *	in reverse order. Does not read the free space offset.
1566  */
1567 size_t
hfslib_reada_node_offsets(void * in_bytes,uint16_t * out_offset_array,uint16_t numrecords)1568 hfslib_reada_node_offsets(void* in_bytes, uint16_t* out_offset_array,
1569     uint16_t numrecords)
1570 {
1571 	void*		ptr;
1572 
1573 	if (in_bytes == NULL || out_offset_array == NULL)
1574 		return 0;
1575 
1576 	ptr = in_bytes;
1577 
1578 	/*
1579 	 * The offset for record 0 (which is the very last offset in the node) is
1580 	 * always equal to 14, the size of the node descriptor. So, once we hit
1581 	 * offset=14, we know this is the last offset. In this way, we don't need
1582 	 * to know the number of records beforehand.
1583 	 */
1584 	do {
1585 		if (numrecords-- == 0)
1586 			return 0;
1587 		*out_offset_array = be16tohp(&ptr);
1588 	} while (*out_offset_array++ != (uint16_t)14);
1589 
1590 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1591 }
1592 
1593 /*	hfslib_read_header_node()
1594  *
1595  *	out_header_record and/or out_map_record may be NULL if the caller doesn't
1596  *	care about their contents.
1597  */
1598 size_t
hfslib_read_header_node(void ** in_recs,uint16_t * in_rec_sizes,uint16_t in_num_recs,hfs_header_record_t * out_hr,void * out_userdata,void * out_map)1599 hfslib_read_header_node(void** in_recs,
1600 	uint16_t* in_rec_sizes,
1601 	uint16_t in_num_recs,
1602 	hfs_header_record_t* out_hr,
1603 	void* out_userdata,
1604 	void* out_map)
1605 {
1606 	void*	ptr;
1607 	int		i;
1608 
1609 	KASSERT(out_hr != NULL);
1610 
1611 	if (in_recs == NULL || in_rec_sizes == NULL)
1612 		return 0;
1613 
1614 	ptr = in_recs[0];
1615 	out_hr->tree_depth = be16tohp(&ptr);
1616 	out_hr->root_node = be32tohp(&ptr);
1617 	out_hr->leaf_recs = be32tohp(&ptr);
1618 	out_hr->first_leaf = be32tohp(&ptr);
1619 	out_hr->last_leaf = be32tohp(&ptr);
1620 	out_hr->node_size = be16tohp(&ptr);
1621 	out_hr->max_key_len = be16tohp(&ptr);
1622 	out_hr->total_nodes = be32tohp(&ptr);
1623 	out_hr->free_nodes = be32tohp(&ptr);
1624 	out_hr->reserved = be16tohp(&ptr);
1625 	out_hr->clump_size = be32tohp(&ptr);
1626 	out_hr->btree_type = *(((uint8_t*)ptr));
1627 	ptr = (uint8_t*)ptr + 1;
1628 	out_hr->keycomp_type = *(((uint8_t*)ptr));
1629 	ptr = (uint8_t*)ptr + 1;
1630 	out_hr->attributes = be32tohp(&ptr);
1631 	for (i = 0; i < 16; i++)
1632 		out_hr->reserved2[i] = be32tohp(&ptr);
1633 
1634 	if (out_userdata != NULL) {
1635 		memcpy(out_userdata, in_recs[1], in_rec_sizes[1]);
1636 	}
1637 	ptr = (uint8_t*)ptr + in_rec_sizes[1];	/* size of user data record */
1638 
1639 	if (out_map != NULL) {
1640 		memcpy(out_map, in_recs[2], in_rec_sizes[2]);
1641 	}
1642 	ptr = (uint8_t*)ptr + in_rec_sizes[2];	/* size of map record */
1643 
1644 	return ((uint8_t*)ptr - (uint8_t*)in_recs[0]);
1645 }
1646 
1647 /*
1648  *	hfslib_read_catalog_keyed_record()
1649  *
1650  *	out_recdata can be NULL. inout_rectype must be set to either HFS_LEAFNODE
1651  *	or HFS_INDEXNODE upon calling this function, and will be set by the
1652  *	function to one of HFS_REC_FLDR, HFS_REC_FILE, HFS_REC_FLDR_THREAD, or
1653  *	HFS_REC_FLDR_THREAD upon return if the node is a leaf node. If it is an
1654  *	index node, inout_rectype will not be changed.
1655  */
1656 size_t
hfslib_read_catalog_keyed_record(void * in_bytes,hfs_catalog_keyed_record_t * out_recdata,int16_t * inout_rectype,hfs_catalog_key_t * out_key,hfs_volume * in_volume)1657 hfslib_read_catalog_keyed_record(
1658 	void* in_bytes,
1659 	hfs_catalog_keyed_record_t* out_recdata,
1660 	int16_t* inout_rectype,
1661 	hfs_catalog_key_t* out_key,
1662 	hfs_volume* in_volume)
1663 {
1664 	void*		ptr;
1665 	size_t		last_bytes_read;
1666 
1667 	if (in_bytes == NULL || out_key == NULL || inout_rectype == NULL)
1668 		return 0;
1669 
1670 	ptr = in_bytes;
1671 
1672 	/*	For HFS+, the key length is always a 2-byte number. This is indicated
1673 	 *	by the HFS_BIG_KEYS_MASK bit in the attributes field of the catalog
1674 	 *	header record. However, we just assume this bit is set, since all HFS+
1675 	 *	volumes should have it set anyway. */
1676 	if (in_volume->catkeysizefieldsize == sizeof(uint16_t))
1677 		out_key->key_len = be16tohp(&ptr);
1678 	else if (in_volume->catkeysizefieldsize == sizeof(uint8_t)) {
1679 		out_key->key_len = *(((uint8_t*)ptr));
1680 		ptr = (uint8_t*)ptr + 1;
1681 	}
1682 
1683 	out_key->parent_cnid = be32tohp(&ptr);
1684 
1685 	last_bytes_read = hfslib_read_unistr255(ptr, &out_key->name);
1686 	if (last_bytes_read == 0)
1687 		return 0;
1688 	ptr = (uint8_t*)ptr + last_bytes_read;
1689 
1690 	/* don't waste time if the user just wanted the key and/or record type */
1691 	if (out_recdata == NULL) {
1692 		if (*inout_rectype == HFS_LEAFNODE)
1693 			*inout_rectype = be16tohp(&ptr);
1694 		else if (*inout_rectype != HFS_INDEXNODE)
1695 			return 0;	/* should not happen if we were given valid arguments */
1696 
1697 		return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1698 	}
1699 
1700 	if (*inout_rectype == HFS_INDEXNODE) {
1701 		out_recdata->child = be32tohp(&ptr);
1702 	} else {
1703 		/* first need to determine what kind of record this is */
1704 		*inout_rectype = be16tohp(&ptr);
1705 		out_recdata->type = *inout_rectype;
1706 
1707 		switch(out_recdata->type)
1708 		{
1709 			case HFS_REC_FLDR:
1710 			{
1711 				out_recdata->folder.flags = be16tohp(&ptr);
1712 				out_recdata->folder.valence = be32tohp(&ptr);
1713 				out_recdata->folder.cnid = be32tohp(&ptr);
1714 				out_recdata->folder.date_created = be32tohp(&ptr);
1715 				out_recdata->folder.date_content_mod = be32tohp(&ptr);
1716 				out_recdata->folder.date_attrib_mod = be32tohp(&ptr);
1717 				out_recdata->folder.date_accessed = be32tohp(&ptr);
1718 				out_recdata->folder.date_backedup = be32tohp(&ptr);
1719 
1720 				last_bytes_read = hfslib_read_bsd_data(ptr,
1721 					&out_recdata->folder.bsd);
1722 				if (last_bytes_read == 0)
1723 					return 0;
1724 				ptr = (uint8_t*)ptr + last_bytes_read;
1725 
1726 				last_bytes_read = hfslib_read_folder_userinfo(ptr,
1727 					&out_recdata->folder.user_info);
1728 				if (last_bytes_read == 0)
1729 					return 0;
1730 				ptr = (uint8_t*)ptr + last_bytes_read;
1731 
1732 				last_bytes_read = hfslib_read_folder_finderinfo(ptr,
1733 					&out_recdata->folder.finder_info);
1734 				if (last_bytes_read == 0)
1735 					return 0;
1736 				ptr = (uint8_t*)ptr + last_bytes_read;
1737 
1738 				out_recdata->folder.text_encoding = be32tohp(&ptr);
1739 				out_recdata->folder.reserved = be32tohp(&ptr);
1740 			}
1741 			break;
1742 
1743 			case HFS_REC_FILE:
1744 			{
1745 				out_recdata->file.flags = be16tohp(&ptr);
1746 				out_recdata->file.reserved = be32tohp(&ptr);
1747 				out_recdata->file.cnid = be32tohp(&ptr);
1748 				out_recdata->file.date_created = be32tohp(&ptr);
1749 				out_recdata->file.date_content_mod = be32tohp(&ptr);
1750 				out_recdata->file.date_attrib_mod = be32tohp(&ptr);
1751 				out_recdata->file.date_accessed = be32tohp(&ptr);
1752 				out_recdata->file.date_backedup = be32tohp(&ptr);
1753 
1754 				last_bytes_read = hfslib_read_bsd_data(ptr,
1755 					&out_recdata->file.bsd);
1756 				if (last_bytes_read == 0)
1757 					return 0;
1758 				ptr = (uint8_t*)ptr + last_bytes_read;
1759 
1760 				last_bytes_read = hfslib_read_file_userinfo(ptr,
1761 					&out_recdata->file.user_info);
1762 				if (last_bytes_read == 0)
1763 					return 0;
1764 				ptr = (uint8_t*)ptr + last_bytes_read;
1765 
1766 				last_bytes_read = hfslib_read_file_finderinfo(ptr,
1767 					&out_recdata->file.finder_info);
1768 				if (last_bytes_read == 0)
1769 					return 0;
1770 				ptr = (uint8_t*)ptr + last_bytes_read;
1771 
1772 				out_recdata->file.text_encoding = be32tohp(&ptr);
1773 				out_recdata->file.reserved2 = be32tohp(&ptr);
1774 
1775 				last_bytes_read = hfslib_read_fork_descriptor(ptr,
1776 					&out_recdata->file.data_fork);
1777 				if (last_bytes_read == 0)
1778 					return 0;
1779 				ptr = (uint8_t*)ptr + last_bytes_read;
1780 
1781 				last_bytes_read = hfslib_read_fork_descriptor(ptr,
1782 					&out_recdata->file.rsrc_fork);
1783 				if (last_bytes_read == 0)
1784 					return 0;
1785 				ptr = (uint8_t*)ptr + last_bytes_read;
1786 			}
1787 			break;
1788 
1789 			case HFS_REC_FLDR_THREAD:
1790 			case HFS_REC_FILE_THREAD:
1791 			{
1792 				out_recdata->thread.reserved = be16tohp(&ptr);
1793 				out_recdata->thread.parent_cnid = be32tohp(&ptr);
1794 
1795 				last_bytes_read = hfslib_read_unistr255(ptr,
1796 					&out_recdata->thread.name);
1797 				if (last_bytes_read == 0)
1798 					return 0;
1799 				ptr = (uint8_t*)ptr + last_bytes_read;
1800 			}
1801 			break;
1802 
1803 			default:
1804 				return 1;
1805 				/* NOTREACHED */
1806 		}
1807 	}
1808 
1809 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1810 }
1811 
1812 /* out_rec may be NULL */
1813 size_t
hfslib_read_extent_record(void * in_bytes,hfs_extent_record_t * out_rec,hfs_node_kind in_nodekind,hfs_extent_key_t * out_key,hfs_volume * in_volume)1814 hfslib_read_extent_record(
1815 	void* in_bytes,
1816 	hfs_extent_record_t* out_rec,
1817 	hfs_node_kind in_nodekind,
1818 	hfs_extent_key_t* out_key,
1819 	hfs_volume* in_volume)
1820 {
1821 	void*		ptr;
1822 	size_t		last_bytes_read;
1823 
1824 	if (in_bytes == NULL || out_key == NULL
1825 	    || (in_nodekind!=HFS_LEAFNODE && in_nodekind!=HFS_INDEXNODE))
1826 		return 0;
1827 
1828 	ptr = in_bytes;
1829 
1830 	/* For HFS+, the key length is always a 2-byte number. This is indicated
1831 	 * by the HFS_BIG_KEYS_MASK bit in the attributes field of the extent
1832 	 * overflow header record. However, we just assume this bit is set, since
1833 	 * all HFS+ volumes should have it set anyway. */
1834 	if (in_volume->extkeysizefieldsize == sizeof(uint16_t))
1835 		out_key->key_length = be16tohp(&ptr);
1836 	else if (in_volume->extkeysizefieldsize == sizeof(uint8_t)) {
1837 		out_key->key_length = *(((uint8_t*)ptr));
1838 		ptr = (uint8_t*)ptr + 1;
1839 	}
1840 
1841 	out_key->fork_type = *(((uint8_t*)ptr));
1842 	ptr = (uint8_t*)ptr + 1;
1843 	out_key->padding = *(((uint8_t*)ptr));
1844 	ptr = (uint8_t*)ptr + 1;
1845 	out_key->file_cnid = be32tohp(&ptr);
1846 	out_key->start_block = be32tohp(&ptr);
1847 
1848 	/* don't waste time if the user just wanted the key */
1849 	if (out_rec == NULL)
1850 		return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1851 
1852 	if (in_nodekind == HFS_LEAFNODE) {
1853 		last_bytes_read = hfslib_read_extent_descriptors(ptr, out_rec);
1854 		if (last_bytes_read == 0)
1855 			return 0;
1856 		ptr = (uint8_t*)ptr + last_bytes_read;
1857 	} else {
1858 		/* XXX: this is completely bogus */
1859 		/*      (uint32_t*)*out_rec = be32tohp(&ptr); */
1860 	    uint32_t *ptr_32 = (uint32_t *)out_rec;
1861 		*ptr_32 = be32tohp(&ptr);
1862 		/* (*out_rec)[0].start_block = be32tohp(&ptr); */
1863 	}
1864 
1865 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1866 }
1867 
1868 void
hfslib_free_recs(void *** inout_node_recs,uint16_t ** inout_rec_sizes,uint16_t * inout_num_recs,hfs_callback_args * cbargs)1869 hfslib_free_recs(
1870 	void*** inout_node_recs,
1871 	uint16_t** inout_rec_sizes,
1872 	uint16_t* inout_num_recs,
1873 	hfs_callback_args* cbargs)
1874 {
1875 	uint16_t	i;
1876 
1877 	if (inout_num_recs == NULL || *inout_num_recs == 0)
1878 		return;
1879 
1880 	if (inout_node_recs != NULL && *inout_node_recs != NULL) {
1881 		for (i = 0 ; i < *inout_num_recs; i++) {
1882 			if ((*inout_node_recs)[i] != NULL) {
1883 				hfslib_free((*inout_node_recs)[i], cbargs);
1884 				(*inout_node_recs)[i] = NULL;
1885 			}
1886 		}
1887 		hfslib_free(*inout_node_recs, cbargs);
1888 		*inout_node_recs = NULL;
1889 	}
1890 
1891 	if (inout_rec_sizes != NULL && *inout_rec_sizes != NULL) {
1892 		hfslib_free(*inout_rec_sizes, cbargs);
1893 		*inout_rec_sizes = NULL;
1894 	}
1895 
1896 	*inout_num_recs = 0;
1897 }
1898 
1899 #if 0
1900 #pragma mark -
1901 #pragma mark Individual Fields
1902 #endif
1903 
1904 size_t
hfslib_read_fork_descriptor(void * in_bytes,hfs_fork_t * out_forkdata)1905 hfslib_read_fork_descriptor(void* in_bytes, hfs_fork_t* out_forkdata)
1906 {
1907 	void*	ptr;
1908 	size_t	last_bytes_read;
1909 
1910 	if (in_bytes == NULL || out_forkdata == NULL)
1911 		return 0;
1912 
1913 	ptr = in_bytes;
1914 
1915 	out_forkdata->logical_size = be64tohp(&ptr);
1916 	out_forkdata->clump_size = be32tohp(&ptr);
1917 	out_forkdata->total_blocks = be32tohp(&ptr);
1918 
1919 	if ((last_bytes_read = hfslib_read_extent_descriptors(ptr,
1920 		&out_forkdata->extents)) == 0)
1921 		return 0;
1922 	ptr = (uint8_t*)ptr + last_bytes_read;
1923 
1924 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1925 }
1926 
1927 size_t
hfslib_read_extent_descriptors(void * in_bytes,hfs_extent_record_t * out_extentrecord)1928 hfslib_read_extent_descriptors(
1929 	void* in_bytes,
1930 	hfs_extent_record_t* out_extentrecord)
1931 {
1932 	void*	ptr;
1933 	int		i;
1934 
1935 	if (in_bytes == NULL || out_extentrecord == NULL)
1936 		return 0;
1937 
1938 	ptr = in_bytes;
1939 
1940 	for (i = 0; i < 8; i++) {
1941 		(((hfs_extent_descriptor_t*)*out_extentrecord)[i]).start_block =
1942 			be32tohp(&ptr);
1943 		(((hfs_extent_descriptor_t*)*out_extentrecord)[i]).block_count =
1944 			be32tohp(&ptr);
1945 	}
1946 
1947 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1948 }
1949 
1950 size_t
hfslib_read_unistr255(void * in_bytes,hfs_unistr255_t * out_string)1951 hfslib_read_unistr255(void* in_bytes, hfs_unistr255_t* out_string)
1952 {
1953 	void*		ptr;
1954 	uint16_t	i, length;
1955 
1956 	if (in_bytes == NULL || out_string == NULL)
1957 		return 0;
1958 
1959 	ptr = in_bytes;
1960 
1961 	length = be16tohp(&ptr);
1962 	if (length > 255)
1963 		length = 255; /* hfs+ folder/file names have a limit of 255 chars */
1964 	out_string->length = length;
1965 
1966 	for (i = 0; i < length; i++) {
1967 		out_string->unicode[i] = be16tohp(&ptr);
1968 	}
1969 
1970 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1971 }
1972 
1973 size_t
hfslib_read_bsd_data(void * in_bytes,hfs_bsd_data_t * out_perms)1974 hfslib_read_bsd_data(void* in_bytes, hfs_bsd_data_t* out_perms)
1975 {
1976 	void*	ptr;
1977 
1978 	if (in_bytes == NULL || out_perms == NULL)
1979 		return 0;
1980 
1981 	ptr = in_bytes;
1982 
1983 	out_perms->owner_id = be32tohp(&ptr);
1984 	out_perms->group_id = be32tohp(&ptr);
1985 	out_perms->admin_flags = *(((uint8_t*)ptr));
1986 	ptr = (uint8_t*)ptr + 1;
1987 	out_perms->owner_flags = *(((uint8_t*)ptr));
1988 	ptr = (uint8_t*)ptr + 1;
1989 	out_perms->file_mode = be16tohp(&ptr);
1990 	out_perms->special.inode_num = be32tohp(&ptr); /* this field is a union */
1991 
1992 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1993 }
1994 
1995 size_t
hfslib_read_file_userinfo(void * in_bytes,hfs_macos_file_info_t * out_info)1996 hfslib_read_file_userinfo(void* in_bytes, hfs_macos_file_info_t* out_info)
1997 {
1998 	void*	ptr;
1999 
2000 	if (in_bytes == NULL || out_info == NULL)
2001 		return 0;
2002 
2003 	ptr = in_bytes;
2004 
2005 	out_info->file_type = be32tohp(&ptr);
2006 	out_info->file_creator = be32tohp(&ptr);
2007 	out_info->finder_flags = be16tohp(&ptr);
2008 	out_info->location.v = be16tohp(&ptr);
2009 	out_info->location.h = be16tohp(&ptr);
2010 	out_info->reserved = be16tohp(&ptr);
2011 
2012 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2013 }
2014 
2015 size_t
hfslib_read_file_finderinfo(void * in_bytes,hfs_macos_extended_file_info_t * out_info)2016 hfslib_read_file_finderinfo(
2017 	void* in_bytes,
2018 	hfs_macos_extended_file_info_t* out_info)
2019 {
2020 	void*	ptr;
2021 
2022 	if (in_bytes == NULL || out_info == NULL)
2023 		return 0;
2024 
2025 	ptr = in_bytes;
2026 
2027 #if 0
2028 	#pragma warn Fill in with real code!
2029 #endif
2030 	/* FIXME: Fill in with real code! */
2031 	memset(out_info, 0, sizeof(*out_info));
2032 	ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_file_info_t);
2033 
2034 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2035 }
2036 
2037 size_t
hfslib_read_folder_userinfo(void * in_bytes,hfs_macos_folder_info_t * out_info)2038 hfslib_read_folder_userinfo(void* in_bytes, hfs_macos_folder_info_t* out_info)
2039 {
2040 	void*	ptr;
2041 
2042 	if (in_bytes == NULL || out_info == NULL)
2043 		return 0;
2044 
2045 	ptr = in_bytes;
2046 
2047 #if 0
2048 	#pragma warn Fill in with real code!
2049 #endif
2050 	/* FIXME: Fill in with real code! */
2051 	memset(out_info, 0, sizeof(*out_info));
2052 	ptr = (uint8_t*)ptr + sizeof(hfs_macos_folder_info_t);
2053 
2054 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2055 }
2056 
2057 size_t
hfslib_read_folder_finderinfo(void * in_bytes,hfs_macos_extended_folder_info_t * out_info)2058 hfslib_read_folder_finderinfo(
2059 	void* in_bytes,
2060 	hfs_macos_extended_folder_info_t* out_info)
2061 {
2062 	void*	ptr;
2063 
2064 	if (in_bytes == NULL || out_info == NULL)
2065 		return 0;
2066 
2067 	ptr = in_bytes;
2068 
2069 #if 0
2070 	#pragma warn Fill in with real code!
2071 #endif
2072 	/* FIXME: Fill in with real code! */
2073 	memset(out_info, 0, sizeof(*out_info));
2074 	ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_folder_info_t);
2075 
2076 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2077 }
2078 
2079 size_t
hfslib_read_journal_info(void * in_bytes,hfs_journal_info_t * out_info)2080 hfslib_read_journal_info(void* in_bytes, hfs_journal_info_t* out_info)
2081 {
2082 	void*	ptr;
2083 	int		i;
2084 
2085 	if (in_bytes == NULL || out_info == NULL)
2086 		return 0;
2087 
2088 	ptr = in_bytes;
2089 
2090 	out_info->flags = be32tohp(&ptr);
2091 	for (i = 0; i < 8; i++) {
2092 		out_info->device_signature[i] = be32tohp(&ptr);
2093 	}
2094 	out_info->offset = be64tohp(&ptr);
2095 	out_info->size = be64tohp(&ptr);
2096 	for (i = 0; i < 32; i++) {
2097 		out_info->reserved[i] = be64tohp(&ptr);
2098 	}
2099 
2100 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2101 }
2102 
2103 size_t
hfslib_read_journal_header(void * in_bytes,hfs_journal_header_t * out_header)2104 hfslib_read_journal_header(void* in_bytes, hfs_journal_header_t* out_header)
2105 {
2106 	void*	ptr;
2107 
2108 	if (in_bytes == NULL || out_header == NULL)
2109 		return 0;
2110 
2111 	ptr = in_bytes;
2112 
2113 	out_header->magic = be32tohp(&ptr);
2114 	out_header->endian = be32tohp(&ptr);
2115 	out_header->start = be64tohp(&ptr);
2116 	out_header->end = be64tohp(&ptr);
2117 	out_header->size = be64tohp(&ptr);
2118 	out_header->blocklist_header_size = be32tohp(&ptr);
2119 	out_header->checksum = be32tohp(&ptr);
2120 	out_header->journal_header_size = be32tohp(&ptr);
2121 
2122 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2123 }
2124 
2125 #if 0
2126 #pragma mark -
2127 #pragma mark Disk Access
2128 #endif
2129 
2130 /*
2131  *	hfslib_readd_with_extents()
2132  *
2133  *	This function reads the contents of a file from the volume, given an array
2134  *	of extent descriptors which specify where every extent of the file is
2135  *	located (in addition to the usual pread() arguments). out_bytes is presumed
2136  *  to exist and be large enough to hold in_length number of bytes. Returns 0
2137  *	on success.
2138  */
2139 int
hfslib_readd_with_extents(hfs_volume * in_vol,void * out_bytes,uint64_t * out_bytesread,uint64_t in_length,uint64_t in_offset,hfs_extent_descriptor_t in_extents[],uint16_t in_numextents,hfs_callback_args * cbargs)2140 hfslib_readd_with_extents(
2141 	hfs_volume*	in_vol,
2142 	void*		out_bytes,
2143 	uint64_t*	out_bytesread,
2144 	uint64_t	in_length,
2145 	uint64_t	in_offset,
2146 	hfs_extent_descriptor_t in_extents[],
2147 	uint16_t	in_numextents,
2148 	hfs_callback_args*	cbargs)
2149 {
2150 	uint64_t	ext_length, last_offset;
2151 	uint16_t	i;
2152 	int			error;
2153 
2154 	if (in_vol == NULL || out_bytes == NULL || in_extents == NULL ||
2155 	    in_numextents == 0 || out_bytesread == NULL)
2156 		return -1;
2157 
2158 	*out_bytesread = 0;
2159 	last_offset = 0;
2160 
2161 	for (i = 0; i < in_numextents; i++)
2162 	{
2163 		if (in_extents[i].block_count == 0)
2164 			continue;
2165 
2166 		ext_length = in_extents[i].block_count * in_vol->vh.block_size;
2167 
2168 		if (in_offset < last_offset+ext_length
2169 			&& in_offset+in_length >= last_offset)
2170 		{
2171 			uint64_t	isect_start, isect_end;
2172 
2173 			isect_start = max(in_offset, last_offset);
2174 			isect_end = min(in_offset+in_length, last_offset+ext_length);
2175 			error = hfslib_readd(in_vol, out_bytes, isect_end-isect_start,
2176 				isect_start - last_offset + (uint64_t)in_extents[i].start_block
2177 					* in_vol->vh.block_size, cbargs);
2178 
2179 			if (error != 0)
2180 				return error;
2181 
2182 			*out_bytesread += isect_end-isect_start;
2183 			out_bytes = (uint8_t*)out_bytes + isect_end-isect_start;
2184 		}
2185 
2186 		last_offset += ext_length;
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 #if 0
2193 #pragma mark -
2194 #pragma mark Callback Wrappers
2195 #endif
2196 
2197 void
hfslib_error(const char * in_format,const char * in_file,int in_line,...)2198 hfslib_error(const char* in_format, const char* in_file, int in_line, ...)
2199 {
2200 	va_list		ap;
2201 
2202 	if (in_format == NULL)
2203 		return;
2204 
2205 	if (hfs_gcb.error != NULL) {
2206 		va_start(ap, in_line);
2207 		hfs_gcb.error(in_format, in_file, in_line, ap);
2208 		va_end(ap);
2209 	}
2210 }
2211 
2212 void*
hfslib_malloc(size_t size,hfs_callback_args * cbargs)2213 hfslib_malloc(size_t size, hfs_callback_args* cbargs)
2214 {
2215 	if (hfs_gcb.allocmem != NULL)
2216 		return hfs_gcb.allocmem(size, cbargs);
2217 
2218 	return NULL;
2219 }
2220 
2221 void*
hfslib_realloc(void * ptr,size_t size,hfs_callback_args * cbargs)2222 hfslib_realloc(void* ptr, size_t size, hfs_callback_args* cbargs)
2223 {
2224 	if (hfs_gcb.reallocmem != NULL)
2225 		return hfs_gcb.reallocmem(ptr, size, cbargs);
2226 
2227 	return NULL;
2228 }
2229 
2230 void
hfslib_free(void * ptr,hfs_callback_args * cbargs)2231 hfslib_free(void* ptr, hfs_callback_args* cbargs)
2232 {
2233 	if (hfs_gcb.freemem != NULL && ptr != NULL)
2234 		hfs_gcb.freemem(ptr, cbargs);
2235 }
2236 
2237 int
hfslib_openvoldevice(hfs_volume * in_vol,const char * in_device,hfs_callback_args * cbargs)2238 hfslib_openvoldevice(
2239 	hfs_volume* in_vol,
2240 	const char* in_device,
2241 	hfs_callback_args* cbargs)
2242 {
2243 	if (hfs_gcb.openvol != NULL && in_device != NULL)
2244 		return hfs_gcb.openvol(in_vol, in_device, cbargs);
2245 
2246 	return 1;
2247 }
2248 
2249 void
hfslib_closevoldevice(hfs_volume * in_vol,hfs_callback_args * cbargs)2250 hfslib_closevoldevice(hfs_volume* in_vol, hfs_callback_args* cbargs)
2251 {
2252 	if (hfs_gcb.closevol != NULL)
2253 		hfs_gcb.closevol(in_vol, cbargs);
2254 }
2255 
2256 int
hfslib_readd(hfs_volume * in_vol,void * out_bytes,uint64_t in_length,uint64_t in_offset,hfs_callback_args * cbargs)2257 hfslib_readd(
2258 	hfs_volume* in_vol,
2259 	void* out_bytes,
2260 	uint64_t in_length,
2261 	uint64_t in_offset,
2262 	hfs_callback_args* cbargs)
2263 {
2264 	if (in_vol == NULL || out_bytes == NULL)
2265 		return -1;
2266 
2267 	if (hfs_gcb.read != NULL)
2268 		return hfs_gcb.read(in_vol, out_bytes, in_length, in_offset, cbargs);
2269 
2270 	return -1;
2271 }
2272 
2273 #if 0
2274 #pragma mark -
2275 #pragma mark Other
2276 #endif
2277 
2278 /* returns key length */
2279 uint16_t
hfslib_make_catalog_key(hfs_cnid_t in_parent_cnid,uint16_t in_name_len,unichar_t * in_unicode,hfs_catalog_key_t * out_key)2280 hfslib_make_catalog_key(
2281 	hfs_cnid_t in_parent_cnid,
2282 	uint16_t in_name_len,
2283 	unichar_t* in_unicode,
2284 	hfs_catalog_key_t* out_key)
2285 {
2286 	if (in_parent_cnid == 0 || (in_name_len > 0 && in_unicode == NULL) ||
2287 	    out_key == 0)
2288 		return 0;
2289 
2290 	if (in_name_len > 255)
2291 		in_name_len = 255;
2292 
2293 	out_key->key_len = 6 + 2 * in_name_len;
2294 	out_key->parent_cnid = in_parent_cnid;
2295 	out_key->name.length = in_name_len;
2296 	if (in_name_len > 0)
2297 		memcpy(&out_key->name.unicode, in_unicode, in_name_len*2);
2298 
2299 	return out_key->key_len;
2300 }
2301 
2302 /* returns key length */
2303 uint16_t
hfslib_make_extent_key(hfs_cnid_t in_cnid,uint8_t in_forktype,uint32_t in_startblock,hfs_extent_key_t * out_key)2304 hfslib_make_extent_key(
2305 	hfs_cnid_t in_cnid,
2306 	uint8_t in_forktype,
2307 	uint32_t in_startblock,
2308 	hfs_extent_key_t* out_key)
2309 {
2310 	if (in_cnid == 0 || out_key == 0)
2311 		return 0;
2312 
2313 	out_key->key_length = HFS_MAX_EXT_KEY_LEN;
2314 	out_key->fork_type = in_forktype;
2315 	out_key->padding = 0;
2316 	out_key->file_cnid = in_cnid;
2317 	out_key->start_block = in_startblock;
2318 
2319 	return out_key->key_length;
2320 }
2321 
2322 /* case-folding */
2323 int
hfslib_compare_catalog_keys_cf(const void * ap,const void * bp)2324 hfslib_compare_catalog_keys_cf (
2325 	const void *ap,
2326 	const void *bp)
2327 {
2328 	const hfs_catalog_key_t	*a, *b;
2329 	unichar_t	ac, bc; /* current character from a, b */
2330 	unichar_t	lc; /* lowercase version of current character */
2331 	uint8_t		apos, bpos; /* current character indices */
2332 
2333 	a = (const hfs_catalog_key_t*)ap;
2334 	b = (const hfs_catalog_key_t*)bp;
2335 
2336 	if (a->parent_cnid != b->parent_cnid) {
2337 		return (a->parent_cnid - b->parent_cnid);
2338 	} else {
2339 		/*
2340 		 * The following code implements the pseudocode suggested by
2341 		 * the HFS+ technote.
2342 		 */
2343 
2344 /*
2345  * XXX These need to be revised to be endian-independent!
2346  */
2347 #define hbyte(x) ((x) >> 8)
2348 #define lbyte(x) ((x) & 0x00FF)
2349 
2350 		apos = bpos = 0;
2351 		while (1)
2352 		{
2353 			/* get next valid character from a */
2354 			for (lc = 0; lc == 0 && apos < a->name.length; apos++) {
2355 				ac = a->name.unicode[apos];
2356 				lc = hfs_gcft[hbyte(ac)];
2357 				if (lc == 0)
2358 					lc = ac;
2359 				else
2360 					lc = hfs_gcft[lc + lbyte(ac)];
2361 			};
2362 			ac = lc;
2363 
2364 			/* get next valid character from b */
2365 			for (lc = 0; lc == 0 && bpos < b->name.length; bpos++) {
2366 				bc = b->name.unicode[bpos];
2367 				lc = hfs_gcft[hbyte(bc)];
2368 				if (lc == 0)
2369 					lc = bc;
2370 				else
2371 					lc = hfs_gcft[lc + lbyte(bc)];
2372 			};
2373 			bc = lc;
2374 
2375 			/* on end of string ac/bc are 0, otherwise > 0 */
2376 			if (ac != bc || (ac == 0 && bc == 0))
2377 				return ac - bc;
2378 		}
2379 #undef hbyte
2380 #undef lbyte
2381 	}
2382 }
2383 
2384 /* binary compare (i.e., not case folding) */
2385 int
hfslib_compare_catalog_keys_bc(const void * ap,const void * bp)2386 hfslib_compare_catalog_keys_bc (
2387 	const void *ap,
2388 	const void *bp)
2389 {
2390 	int c;
2391 	const hfs_catalog_key_t *a, *b;
2392 
2393 	a = (const hfs_catalog_key_t *) ap;
2394 	b = (const hfs_catalog_key_t *) bp;
2395 
2396 	if (a->parent_cnid == b->parent_cnid)
2397 	{
2398 		if (a->name.length == 0 && b->name.length == 0)
2399 			return 0;
2400 
2401 		if (a->name.length == 0)
2402 			return -1;
2403 		if (b->name.length == 0)
2404 			return 1;
2405 
2406 		/* FIXME: This does a byte-per-byte comparison, whereas the HFS spec
2407 		 * mandates a uint16_t chunk comparison. */
2408 		c = memcmp(a->name.unicode, b->name.unicode,
2409 			sizeof(unichar_t)*min(a->name.length, b->name.length));
2410 		if (c != 0)
2411 			return c;
2412 		else
2413 			return (a->name.length - b->name.length);
2414 	} else {
2415 		return (a->parent_cnid - b->parent_cnid);
2416 	}
2417 }
2418 
2419 int
hfslib_compare_extent_keys(const void * ap,const void * bp)2420 hfslib_compare_extent_keys (
2421 	const void *ap,
2422 	const void *bp)
2423 {
2424 	/*
2425 	 *	Comparison order, in descending importance:
2426 	 *
2427 	 *		CNID -> fork type -> start block
2428 	 */
2429 
2430 	const hfs_extent_key_t *a, *b;
2431 	a = (const hfs_extent_key_t *) ap;
2432 	b = (const hfs_extent_key_t *) bp;
2433 
2434 	if (a->file_cnid == b->file_cnid)
2435 	{
2436 		if (a->fork_type == b->fork_type)
2437 		{
2438 			if (a->start_block == b->start_block)
2439 			{
2440 				return 0;
2441 			} else {
2442 				return (a->start_block - b->start_block);
2443 			}
2444 		} else {
2445 			return (a->fork_type - b->fork_type);
2446 		}
2447 	} else {
2448 		return (a->file_cnid - b->file_cnid);
2449 	}
2450 }
2451 
2452 /* 1+10 tables of 16 rows and 16 columns, each 2 bytes wide = 5632 bytes */
2453 int
hfslib_create_casefolding_table(void)2454 hfslib_create_casefolding_table(void)
2455 {
2456 	hfs_callback_args	cbargs;
2457 	unichar_t*	t; /* convenience */
2458 	uint16_t	s; /* current subtable * 256 */
2459 	uint16_t	i; /* current subtable index (0 to 255) */
2460 
2461 	if (hfs_gcft != NULL)
2462 		return 0; /* no sweat, table already exists */
2463 
2464 	hfslib_init_cbargs(&cbargs);
2465 	hfs_gcft = hfslib_malloc(5632, &cbargs);
2466 	if (hfs_gcft == NULL)
2467 		HFS_LIBERR("could not allocate case folding table");
2468 
2469 	t = hfs_gcft;	 /* easier to type :) */
2470 
2471 	/*
2472 	 * high byte indices
2473 	 */
2474 	s = 0 * 256;
2475 	memset(t, 0x00, 512);
2476 	t[s+  0] = 0x0100;
2477 	t[s+  1] = 0x0200;
2478 	t[s+  3] = 0x0300;
2479 	t[s+  4] = 0x0400;
2480 	t[s+  5] = 0x0500;
2481 	t[s+ 16] = 0x0600;
2482 	t[s+ 32] = 0x0700;
2483 	t[s+ 33] = 0x0800;
2484 	t[s+254] = 0x0900;
2485 	t[s+255] = 0x0a00;
2486 
2487 	/*
2488 	 * table 1 (high byte 0x00)
2489 	 */
2490 	s = 1 * 256;
2491 	for (i = 0; i < 65; i++)
2492 		t[s+i] = i;
2493 	t[s+  0] = 0xffff;
2494 	for (i = 65; i < 91; i++)
2495 		t[s+i] = i + 0x20;
2496 	for (i = 91; i < 256; i++)
2497 		t[s+i] = i;
2498 	t[s+198] = 0x00e6;
2499 	t[s+208] = 0x00f0;
2500 	t[s+216] = 0x00f8;
2501 	t[s+222] = 0x00fe;
2502 
2503 	/*
2504 	 * table 2 (high byte 0x01)
2505 	 */
2506 	s = 2 * 256;
2507 	for (i = 0; i < 256; i++)
2508 		t[s+i] = i + 0x0100;
2509 	t[s+ 16] = 0x0111;
2510 	t[s+ 38] = 0x0127;
2511 	t[s+ 50] = 0x0133;
2512 	t[s+ 63] = 0x0140;
2513 	t[s+ 65] = 0x0142;
2514 	t[s+ 74] = 0x014b;
2515 	t[s+ 82] = 0x0153;
2516 	t[s+102] = 0x0167;
2517 	t[s+129] = 0x0253;
2518 	t[s+130] = 0x0183;
2519 	t[s+132] = 0x0185;
2520 	t[s+134] = 0x0254;
2521 	t[s+135] = 0x0188;
2522 	t[s+137] = 0x0256;
2523 	t[s+138] = 0x0257;
2524 	t[s+139] = 0x018c;
2525 	t[s+142] = 0x01dd;
2526 	t[s+143] = 0x0259;
2527 	t[s+144] = 0x025b;
2528 	t[s+145] = 0x0192;
2529 	t[s+147] = 0x0260;
2530 	t[s+148] = 0x0263;
2531 	t[s+150] = 0x0269;
2532 	t[s+151] = 0x0268;
2533 	t[s+152] = 0x0199;
2534 	t[s+156] = 0x026f;
2535 	t[s+157] = 0x0272;
2536 	t[s+159] = 0x0275;
2537 	t[s+162] = 0x01a3;
2538 	t[s+164] = 0x01a5;
2539 	t[s+167] = 0x01a8;
2540 	t[s+169] = 0x0283;
2541 	t[s+172] = 0x01ad;
2542 	t[s+174] = 0x0288;
2543 	t[s+177] = 0x028a;
2544 	t[s+178] = 0x028b;
2545 	t[s+179] = 0x01b4;
2546 	t[s+181] = 0x01b6;
2547 	t[s+183] = 0x0292;
2548 	t[s+184] = 0x01b9;
2549 	t[s+188] = 0x01bd;
2550 	t[s+196] = 0x01c6;
2551 	t[s+197] = 0x01c6;
2552 	t[s+199] = 0x01c9;
2553 	t[s+200] = 0x01c9;
2554 	t[s+202] = 0x01cc;
2555 	t[s+203] = 0x01cc;
2556 	t[s+228] = 0x01e5;
2557 	t[s+241] = 0x01f3;
2558 	t[s+242] = 0x01f3;
2559 
2560 	/*
2561 	 * table 3 (high byte 0x03)
2562 	 */
2563 	s = 3 * 256;
2564 	for (i = 0; i < 145; i++)
2565 		t[s+i] = i + 0x0300;
2566 	for (i = 145; i < 170; i++)
2567 		t[s+i] = i + 0x0320;
2568 	t[s+162] = 0x03a2;
2569 	for (i = 170; i < 256; i++)
2570 		t[s+i] = i + 0x0300;
2571 
2572 	for (i = 226; i < 239; i += 2)
2573 		t[s+i] = i + 0x0301;
2574 
2575 	/*
2576 	 * table 4 (high byte 0x04)
2577 	 */
2578 	s = 4 * 256;
2579 	for (i = 0; i < 16; i++)
2580 		t[s+i] = i + 0x0400;
2581 	t[s+  2] = 0x0452;
2582 	t[s+  4] = 0x0454;
2583 	t[s+  5] = 0x0455;
2584 	t[s+  6] = 0x0456;
2585 	t[s+  8] = 0x0458;
2586 	t[s+  9] = 0x0459;
2587 	t[s+ 10] = 0x045a;
2588 	t[s+ 11] = 0x045b;
2589 	t[s+ 15] = 0x045f;
2590 
2591 	for (i = 16; i < 48; i++)
2592 		t[s+i] = i + 0x0420;
2593 	t[s+ 25] = 0x0419;
2594 	for (i = 48; i < 256; i++)
2595 		t[s+i] = i + 0x0400;
2596 	t[s+195] = 0x04c4;
2597 	t[s+199] = 0x04c8;
2598 	t[s+203] = 0x04cc;
2599 
2600 	for (i = 96; i < 129; i += 2)
2601 		t[s+i] = i + 0x0401;
2602 	t[s+118] = 0x0476;
2603 	for (i = 144; i < 191; i += 2)
2604 		t[s+i] = i + 0x0401;
2605 
2606 	/*
2607 	 * table 5 (high byte 0x05)
2608 	 */
2609 	s = 5 * 256;
2610 	for (i = 0; i < 49; i++)
2611 		t[s+i] = i + 0x0500;
2612 	for (i = 49; i < 87; i++)
2613 		t[s+i] = i + 0x0530;
2614 	for (i = 87; i < 256; i++)
2615 		t[s+i] = i + 0x0500;
2616 
2617 	/*
2618 	 * table 6 (high byte 0x10)
2619 	 */
2620 	s = 6 * 256;
2621 	for (i = 0; i < 160; i++)
2622 		t[s+i] = i + 0x1000;
2623 	for (i = 160; i < 198; i++)
2624 		t[s+i] = i + 0x1030;
2625 	for (i = 198; i < 256; i++)
2626 		t[s+i] = i + 0x1000;
2627 
2628 	/*
2629 	 * table 7 (high byte 0x20)
2630 	 */
2631 	s = 7 * 256;
2632 	for (i = 0; i < 256; i++)
2633 		t[s+i] = i + 0x2000;
2634 	{
2635 		uint8_t zi[15] = { 12,  13,  14,  15,
2636 						   42,  43,  44,  45,  46,
2637 						  106, 107, 108, 109, 110, 111};
2638 
2639 		for (i = 0; i < 15; i++)
2640 			t[s+zi[i]] = 0x0000;
2641 	}
2642 
2643 	/*
2644 	 * table 8 (high byte 0x21)
2645 	 */
2646 	s = 8 * 256;
2647 	for (i = 0; i < 96; i++)
2648 		t[s+i] = i + 0x2100;
2649 	for (i = 96; i < 112; i++)
2650 		t[s+i] = i + 0x2110;
2651 	for (i = 112; i < 256; i++)
2652 		t[s+i] = i + 0x2100;
2653 
2654 	/*
2655 	 * table 9 (high byte 0xFE)
2656 	 */
2657 	s = 9 * 256;
2658 	for (i = 0; i < 256; i++)
2659 		t[s+i] = i + 0xFE00;
2660 	t[s+255] = 0x0000;
2661 
2662 	/*
2663 	 * table 10 (high byte 0xFF)
2664 	 */
2665 	s = 10 * 256;
2666 	for (i = 0; i < 33; i++)
2667 		t[s+i] = i + 0xFF00;
2668 	for (i = 33; i < 59; i++)
2669 		t[s+i] = i + 0xFF20;
2670 	for (i = 59; i < 256; i++)
2671 		t[s+i] = i + 0xFF00;
2672 
2673 	return 0;
2674 
2675 error:
2676 	return 1;
2677 }
2678 
2679 int
hfslib_get_hardlink(hfs_volume * vol,uint32_t inode_num,hfs_catalog_keyed_record_t * rec,hfs_callback_args * cbargs)2680 hfslib_get_hardlink(hfs_volume *vol, uint32_t inode_num,
2681 		     hfs_catalog_keyed_record_t *rec,
2682 		     hfs_callback_args *cbargs)
2683 {
2684 	hfs_catalog_keyed_record_t metadata;
2685 	hfs_catalog_key_t key;
2686 	char name[16];
2687 	unichar_t name_uni[16];
2688 	int i, len;
2689 
2690 	/* XXX: cache this */
2691 	if (hfslib_find_catalog_record_with_key(vol,
2692 						 &hfs_gMetadataDirectoryKey,
2693 						 &metadata, cbargs) != 0
2694 		|| metadata.type != HFS_REC_FLDR)
2695 		return -1;
2696 
2697 	len = snprintf(name, sizeof(name), "iNode%d", inode_num);
2698 	for (i = 0; i < len; i++)
2699 		name_uni[i] = name[i];
2700 
2701 	if (hfslib_make_catalog_key(metadata.folder.cnid, len, name_uni,
2702 				     &key) == 0)
2703 		return -1;
2704 
2705 	return hfslib_find_catalog_record_with_key(vol, &key, rec, cbargs);
2706 }
2707