xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/AsmParser/LLParser.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
getTypeString(Type * T)55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
Run(bool UpgradeDebugInfo,DataLayoutCallbackTy DataLayoutCallback)63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
parseStandaloneConstantValue(Constant * & C,const SlotMapping * Slots)85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
parseTypeAtBeginning(Type * & Ty,unsigned & Read,const SlotMapping * Slots)98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
restoreParsingState(const SlotMapping * Slots)114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and sanity checks at the end of the
128 /// module.
validateEndOfModule(bool UpgradeDebugInfo)129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B;
137 
138     for (const auto &Attr : Attrs)
139       B.merge(NumberedAttrBuilders[Attr]);
140 
141     if (Function *Fn = dyn_cast<Function>(V)) {
142       AttributeList AS = Fn->getAttributes();
143       AttrBuilder FnAttrs(AS.getFnAttributes());
144       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
145 
146       FnAttrs.merge(B);
147 
148       // If the alignment was parsed as an attribute, move to the alignment
149       // field.
150       if (FnAttrs.hasAlignmentAttr()) {
151         Fn->setAlignment(FnAttrs.getAlignment());
152         FnAttrs.removeAttribute(Attribute::Alignment);
153       }
154 
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       Fn->setAttributes(AS);
158     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
159       AttributeList AS = CI->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeList AS = II->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       II->setAttributes(AS);
174     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
175       AttributeList AS = CBI->getAttributes();
176       AttrBuilder FnAttrs(AS.getFnAttributes());
177       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
178       FnAttrs.merge(B);
179       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
180                             AttributeSet::get(Context, FnAttrs));
181       CBI->setAttributes(AS);
182     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
183       AttrBuilder Attrs(GV->getAttributes());
184       Attrs.merge(B);
185       GV->setAttributes(AttributeSet::get(Context,Attrs));
186     } else {
187       llvm_unreachable("invalid object with forward attribute group reference");
188     }
189   }
190 
191   // If there are entries in ForwardRefBlockAddresses at this point, the
192   // function was never defined.
193   if (!ForwardRefBlockAddresses.empty())
194     return error(ForwardRefBlockAddresses.begin()->first.Loc,
195                  "expected function name in blockaddress");
196 
197   for (const auto &NT : NumberedTypes)
198     if (NT.second.second.isValid())
199       return error(NT.second.second,
200                    "use of undefined type '%" + Twine(NT.first) + "'");
201 
202   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
203        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
204     if (I->second.second.isValid())
205       return error(I->second.second,
206                    "use of undefined type named '" + I->getKey() + "'");
207 
208   if (!ForwardRefComdats.empty())
209     return error(ForwardRefComdats.begin()->second,
210                  "use of undefined comdat '$" +
211                      ForwardRefComdats.begin()->first + "'");
212 
213   if (!ForwardRefVals.empty())
214     return error(ForwardRefVals.begin()->second.second,
215                  "use of undefined value '@" + ForwardRefVals.begin()->first +
216                      "'");
217 
218   if (!ForwardRefValIDs.empty())
219     return error(ForwardRefValIDs.begin()->second.second,
220                  "use of undefined value '@" +
221                      Twine(ForwardRefValIDs.begin()->first) + "'");
222 
223   if (!ForwardRefMDNodes.empty())
224     return error(ForwardRefMDNodes.begin()->second.second,
225                  "use of undefined metadata '!" +
226                      Twine(ForwardRefMDNodes.begin()->first) + "'");
227 
228   // Resolve metadata cycles.
229   for (auto &N : NumberedMetadata) {
230     if (N.second && !N.second->isResolved())
231       N.second->resolveCycles();
232   }
233 
234   for (auto *Inst : InstsWithTBAATag) {
235     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
236     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
237     auto *UpgradedMD = UpgradeTBAANode(*MD);
238     if (MD != UpgradedMD)
239       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
240   }
241 
242   // Look for intrinsic functions and CallInst that need to be upgraded
243   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
244     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
245 
246   // Some types could be renamed during loading if several modules are
247   // loaded in the same LLVMContext (LTO scenario). In this case we should
248   // remangle intrinsics names as well.
249   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
250     Function *F = &*FI++;
251     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
252       F->replaceAllUsesWith(Remangled.getValue());
253       F->eraseFromParent();
254     }
255   }
256 
257   if (UpgradeDebugInfo)
258     llvm::UpgradeDebugInfo(*M);
259 
260   UpgradeModuleFlags(*M);
261   UpgradeSectionAttributes(*M);
262 
263   if (!Slots)
264     return false;
265   // Initialize the slot mapping.
266   // Because by this point we've parsed and validated everything, we can "steal"
267   // the mapping from LLParser as it doesn't need it anymore.
268   Slots->GlobalValues = std::move(NumberedVals);
269   Slots->MetadataNodes = std::move(NumberedMetadata);
270   for (const auto &I : NamedTypes)
271     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
272   for (const auto &I : NumberedTypes)
273     Slots->Types.insert(std::make_pair(I.first, I.second.first));
274 
275   return false;
276 }
277 
278 /// Do final validity and sanity checks at the end of the index.
validateEndOfIndex()279 bool LLParser::validateEndOfIndex() {
280   if (!Index)
281     return false;
282 
283   if (!ForwardRefValueInfos.empty())
284     return error(ForwardRefValueInfos.begin()->second.front().second,
285                  "use of undefined summary '^" +
286                      Twine(ForwardRefValueInfos.begin()->first) + "'");
287 
288   if (!ForwardRefAliasees.empty())
289     return error(ForwardRefAliasees.begin()->second.front().second,
290                  "use of undefined summary '^" +
291                      Twine(ForwardRefAliasees.begin()->first) + "'");
292 
293   if (!ForwardRefTypeIds.empty())
294     return error(ForwardRefTypeIds.begin()->second.front().second,
295                  "use of undefined type id summary '^" +
296                      Twine(ForwardRefTypeIds.begin()->first) + "'");
297 
298   return false;
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // Top-Level Entities
303 //===----------------------------------------------------------------------===//
304 
parseTargetDefinitions()305 bool LLParser::parseTargetDefinitions() {
306   while (true) {
307     switch (Lex.getKind()) {
308     case lltok::kw_target:
309       if (parseTargetDefinition())
310         return true;
311       break;
312     case lltok::kw_source_filename:
313       if (parseSourceFileName())
314         return true;
315       break;
316     default:
317       return false;
318     }
319   }
320 }
321 
parseTopLevelEntities()322 bool LLParser::parseTopLevelEntities() {
323   // If there is no Module, then parse just the summary index entries.
324   if (!M) {
325     while (true) {
326       switch (Lex.getKind()) {
327       case lltok::Eof:
328         return false;
329       case lltok::SummaryID:
330         if (parseSummaryEntry())
331           return true;
332         break;
333       case lltok::kw_source_filename:
334         if (parseSourceFileName())
335           return true;
336         break;
337       default:
338         // Skip everything else
339         Lex.Lex();
340       }
341     }
342   }
343   while (true) {
344     switch (Lex.getKind()) {
345     default:
346       return tokError("expected top-level entity");
347     case lltok::Eof: return false;
348     case lltok::kw_declare:
349       if (parseDeclare())
350         return true;
351       break;
352     case lltok::kw_define:
353       if (parseDefine())
354         return true;
355       break;
356     case lltok::kw_module:
357       if (parseModuleAsm())
358         return true;
359       break;
360     case lltok::kw_deplibs:
361       if (parseDepLibs())
362         return true;
363       break;
364     case lltok::LocalVarID:
365       if (parseUnnamedType())
366         return true;
367       break;
368     case lltok::LocalVar:
369       if (parseNamedType())
370         return true;
371       break;
372     case lltok::GlobalID:
373       if (parseUnnamedGlobal())
374         return true;
375       break;
376     case lltok::GlobalVar:
377       if (parseNamedGlobal())
378         return true;
379       break;
380     case lltok::ComdatVar:  if (parseComdat()) return true; break;
381     case lltok::exclaim:
382       if (parseStandaloneMetadata())
383         return true;
384       break;
385     case lltok::SummaryID:
386       if (parseSummaryEntry())
387         return true;
388       break;
389     case lltok::MetadataVar:
390       if (parseNamedMetadata())
391         return true;
392       break;
393     case lltok::kw_attributes:
394       if (parseUnnamedAttrGrp())
395         return true;
396       break;
397     case lltok::kw_uselistorder:
398       if (parseUseListOrder())
399         return true;
400       break;
401     case lltok::kw_uselistorder_bb:
402       if (parseUseListOrderBB())
403         return true;
404       break;
405     }
406   }
407 }
408 
409 /// toplevelentity
410 ///   ::= 'module' 'asm' STRINGCONSTANT
parseModuleAsm()411 bool LLParser::parseModuleAsm() {
412   assert(Lex.getKind() == lltok::kw_module);
413   Lex.Lex();
414 
415   std::string AsmStr;
416   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
417       parseStringConstant(AsmStr))
418     return true;
419 
420   M->appendModuleInlineAsm(AsmStr);
421   return false;
422 }
423 
424 /// toplevelentity
425 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
426 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
parseTargetDefinition()427 bool LLParser::parseTargetDefinition() {
428   assert(Lex.getKind() == lltok::kw_target);
429   std::string Str;
430   switch (Lex.Lex()) {
431   default:
432     return tokError("unknown target property");
433   case lltok::kw_triple:
434     Lex.Lex();
435     if (parseToken(lltok::equal, "expected '=' after target triple") ||
436         parseStringConstant(Str))
437       return true;
438     M->setTargetTriple(Str);
439     return false;
440   case lltok::kw_datalayout:
441     Lex.Lex();
442     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
443         parseStringConstant(Str))
444       return true;
445     M->setDataLayout(Str);
446     return false;
447   }
448 }
449 
450 /// toplevelentity
451 ///   ::= 'source_filename' '=' STRINGCONSTANT
parseSourceFileName()452 bool LLParser::parseSourceFileName() {
453   assert(Lex.getKind() == lltok::kw_source_filename);
454   Lex.Lex();
455   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
456       parseStringConstant(SourceFileName))
457     return true;
458   if (M)
459     M->setSourceFileName(SourceFileName);
460   return false;
461 }
462 
463 /// toplevelentity
464 ///   ::= 'deplibs' '=' '[' ']'
465 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
466 /// FIXME: Remove in 4.0. Currently parse, but ignore.
parseDepLibs()467 bool LLParser::parseDepLibs() {
468   assert(Lex.getKind() == lltok::kw_deplibs);
469   Lex.Lex();
470   if (parseToken(lltok::equal, "expected '=' after deplibs") ||
471       parseToken(lltok::lsquare, "expected '=' after deplibs"))
472     return true;
473 
474   if (EatIfPresent(lltok::rsquare))
475     return false;
476 
477   do {
478     std::string Str;
479     if (parseStringConstant(Str))
480       return true;
481   } while (EatIfPresent(lltok::comma));
482 
483   return parseToken(lltok::rsquare, "expected ']' at end of list");
484 }
485 
486 /// parseUnnamedType:
487 ///   ::= LocalVarID '=' 'type' type
parseUnnamedType()488 bool LLParser::parseUnnamedType() {
489   LocTy TypeLoc = Lex.getLoc();
490   unsigned TypeID = Lex.getUIntVal();
491   Lex.Lex(); // eat LocalVarID;
492 
493   if (parseToken(lltok::equal, "expected '=' after name") ||
494       parseToken(lltok::kw_type, "expected 'type' after '='"))
495     return true;
496 
497   Type *Result = nullptr;
498   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
499     return true;
500 
501   if (!isa<StructType>(Result)) {
502     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
503     if (Entry.first)
504       return error(TypeLoc, "non-struct types may not be recursive");
505     Entry.first = Result;
506     Entry.second = SMLoc();
507   }
508 
509   return false;
510 }
511 
512 /// toplevelentity
513 ///   ::= LocalVar '=' 'type' type
parseNamedType()514 bool LLParser::parseNamedType() {
515   std::string Name = Lex.getStrVal();
516   LocTy NameLoc = Lex.getLoc();
517   Lex.Lex();  // eat LocalVar.
518 
519   if (parseToken(lltok::equal, "expected '=' after name") ||
520       parseToken(lltok::kw_type, "expected 'type' after name"))
521     return true;
522 
523   Type *Result = nullptr;
524   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
525     return true;
526 
527   if (!isa<StructType>(Result)) {
528     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
529     if (Entry.first)
530       return error(NameLoc, "non-struct types may not be recursive");
531     Entry.first = Result;
532     Entry.second = SMLoc();
533   }
534 
535   return false;
536 }
537 
538 /// toplevelentity
539 ///   ::= 'declare' FunctionHeader
parseDeclare()540 bool LLParser::parseDeclare() {
541   assert(Lex.getKind() == lltok::kw_declare);
542   Lex.Lex();
543 
544   std::vector<std::pair<unsigned, MDNode *>> MDs;
545   while (Lex.getKind() == lltok::MetadataVar) {
546     unsigned MDK;
547     MDNode *N;
548     if (parseMetadataAttachment(MDK, N))
549       return true;
550     MDs.push_back({MDK, N});
551   }
552 
553   Function *F;
554   if (parseFunctionHeader(F, false))
555     return true;
556   for (auto &MD : MDs)
557     F->addMetadata(MD.first, *MD.second);
558   return false;
559 }
560 
561 /// toplevelentity
562 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
parseDefine()563 bool LLParser::parseDefine() {
564   assert(Lex.getKind() == lltok::kw_define);
565   Lex.Lex();
566 
567   Function *F;
568   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
569          parseFunctionBody(*F);
570 }
571 
572 /// parseGlobalType
573 ///   ::= 'constant'
574 ///   ::= 'global'
parseGlobalType(bool & IsConstant)575 bool LLParser::parseGlobalType(bool &IsConstant) {
576   if (Lex.getKind() == lltok::kw_constant)
577     IsConstant = true;
578   else if (Lex.getKind() == lltok::kw_global)
579     IsConstant = false;
580   else {
581     IsConstant = false;
582     return tokError("expected 'global' or 'constant'");
583   }
584   Lex.Lex();
585   return false;
586 }
587 
parseOptionalUnnamedAddr(GlobalVariable::UnnamedAddr & UnnamedAddr)588 bool LLParser::parseOptionalUnnamedAddr(
589     GlobalVariable::UnnamedAddr &UnnamedAddr) {
590   if (EatIfPresent(lltok::kw_unnamed_addr))
591     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
592   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
593     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
594   else
595     UnnamedAddr = GlobalValue::UnnamedAddr::None;
596   return false;
597 }
598 
599 /// parseUnnamedGlobal:
600 ///   OptionalVisibility (ALIAS | IFUNC) ...
601 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
602 ///   OptionalDLLStorageClass
603 ///                                                     ...   -> global variable
604 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
605 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
606 ///   OptionalVisibility
607 ///                OptionalDLLStorageClass
608 ///                                                     ...   -> global variable
parseUnnamedGlobal()609 bool LLParser::parseUnnamedGlobal() {
610   unsigned VarID = NumberedVals.size();
611   std::string Name;
612   LocTy NameLoc = Lex.getLoc();
613 
614   // Handle the GlobalID form.
615   if (Lex.getKind() == lltok::GlobalID) {
616     if (Lex.getUIntVal() != VarID)
617       return error(Lex.getLoc(),
618                    "variable expected to be numbered '%" + Twine(VarID) + "'");
619     Lex.Lex(); // eat GlobalID;
620 
621     if (parseToken(lltok::equal, "expected '=' after name"))
622       return true;
623   }
624 
625   bool HasLinkage;
626   unsigned Linkage, Visibility, DLLStorageClass;
627   bool DSOLocal;
628   GlobalVariable::ThreadLocalMode TLM;
629   GlobalVariable::UnnamedAddr UnnamedAddr;
630   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
631                            DSOLocal) ||
632       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
633     return true;
634 
635   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
636     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
637                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
638 
639   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
640                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
641 }
642 
643 /// parseNamedGlobal:
644 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
645 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
646 ///                 OptionalVisibility OptionalDLLStorageClass
647 ///                                                     ...   -> global variable
parseNamedGlobal()648 bool LLParser::parseNamedGlobal() {
649   assert(Lex.getKind() == lltok::GlobalVar);
650   LocTy NameLoc = Lex.getLoc();
651   std::string Name = Lex.getStrVal();
652   Lex.Lex();
653 
654   bool HasLinkage;
655   unsigned Linkage, Visibility, DLLStorageClass;
656   bool DSOLocal;
657   GlobalVariable::ThreadLocalMode TLM;
658   GlobalVariable::UnnamedAddr UnnamedAddr;
659   if (parseToken(lltok::equal, "expected '=' in global variable") ||
660       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
661                            DSOLocal) ||
662       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
663     return true;
664 
665   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
666     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
667                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
668 
669   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
670                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
671 }
672 
parseComdat()673 bool LLParser::parseComdat() {
674   assert(Lex.getKind() == lltok::ComdatVar);
675   std::string Name = Lex.getStrVal();
676   LocTy NameLoc = Lex.getLoc();
677   Lex.Lex();
678 
679   if (parseToken(lltok::equal, "expected '=' here"))
680     return true;
681 
682   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
683     return tokError("expected comdat type");
684 
685   Comdat::SelectionKind SK;
686   switch (Lex.getKind()) {
687   default:
688     return tokError("unknown selection kind");
689   case lltok::kw_any:
690     SK = Comdat::Any;
691     break;
692   case lltok::kw_exactmatch:
693     SK = Comdat::ExactMatch;
694     break;
695   case lltok::kw_largest:
696     SK = Comdat::Largest;
697     break;
698   case lltok::kw_noduplicates:
699     SK = Comdat::NoDuplicates;
700     break;
701   case lltok::kw_samesize:
702     SK = Comdat::SameSize;
703     break;
704   }
705   Lex.Lex();
706 
707   // See if the comdat was forward referenced, if so, use the comdat.
708   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
709   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
710   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
711     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
712 
713   Comdat *C;
714   if (I != ComdatSymTab.end())
715     C = &I->second;
716   else
717     C = M->getOrInsertComdat(Name);
718   C->setSelectionKind(SK);
719 
720   return false;
721 }
722 
723 // MDString:
724 //   ::= '!' STRINGCONSTANT
parseMDString(MDString * & Result)725 bool LLParser::parseMDString(MDString *&Result) {
726   std::string Str;
727   if (parseStringConstant(Str))
728     return true;
729   Result = MDString::get(Context, Str);
730   return false;
731 }
732 
733 // MDNode:
734 //   ::= '!' MDNodeNumber
parseMDNodeID(MDNode * & Result)735 bool LLParser::parseMDNodeID(MDNode *&Result) {
736   // !{ ..., !42, ... }
737   LocTy IDLoc = Lex.getLoc();
738   unsigned MID = 0;
739   if (parseUInt32(MID))
740     return true;
741 
742   // If not a forward reference, just return it now.
743   if (NumberedMetadata.count(MID)) {
744     Result = NumberedMetadata[MID];
745     return false;
746   }
747 
748   // Otherwise, create MDNode forward reference.
749   auto &FwdRef = ForwardRefMDNodes[MID];
750   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
751 
752   Result = FwdRef.first.get();
753   NumberedMetadata[MID].reset(Result);
754   return false;
755 }
756 
757 /// parseNamedMetadata:
758 ///   !foo = !{ !1, !2 }
parseNamedMetadata()759 bool LLParser::parseNamedMetadata() {
760   assert(Lex.getKind() == lltok::MetadataVar);
761   std::string Name = Lex.getStrVal();
762   Lex.Lex();
763 
764   if (parseToken(lltok::equal, "expected '=' here") ||
765       parseToken(lltok::exclaim, "Expected '!' here") ||
766       parseToken(lltok::lbrace, "Expected '{' here"))
767     return true;
768 
769   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
770   if (Lex.getKind() != lltok::rbrace)
771     do {
772       MDNode *N = nullptr;
773       // parse DIExpressions inline as a special case. They are still MDNodes,
774       // so they can still appear in named metadata. Remove this logic if they
775       // become plain Metadata.
776       if (Lex.getKind() == lltok::MetadataVar &&
777           Lex.getStrVal() == "DIExpression") {
778         if (parseDIExpression(N, /*IsDistinct=*/false))
779           return true;
780         // DIArgLists should only appear inline in a function, as they may
781         // contain LocalAsMetadata arguments which require a function context.
782       } else if (Lex.getKind() == lltok::MetadataVar &&
783                  Lex.getStrVal() == "DIArgList") {
784         return tokError("found DIArgList outside of function");
785       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
786                  parseMDNodeID(N)) {
787         return true;
788       }
789       NMD->addOperand(N);
790     } while (EatIfPresent(lltok::comma));
791 
792   return parseToken(lltok::rbrace, "expected end of metadata node");
793 }
794 
795 /// parseStandaloneMetadata:
796 ///   !42 = !{...}
parseStandaloneMetadata()797 bool LLParser::parseStandaloneMetadata() {
798   assert(Lex.getKind() == lltok::exclaim);
799   Lex.Lex();
800   unsigned MetadataID = 0;
801 
802   MDNode *Init;
803   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
804     return true;
805 
806   // Detect common error, from old metadata syntax.
807   if (Lex.getKind() == lltok::Type)
808     return tokError("unexpected type in metadata definition");
809 
810   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
811   if (Lex.getKind() == lltok::MetadataVar) {
812     if (parseSpecializedMDNode(Init, IsDistinct))
813       return true;
814   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
815              parseMDTuple(Init, IsDistinct))
816     return true;
817 
818   // See if this was forward referenced, if so, handle it.
819   auto FI = ForwardRefMDNodes.find(MetadataID);
820   if (FI != ForwardRefMDNodes.end()) {
821     FI->second.first->replaceAllUsesWith(Init);
822     ForwardRefMDNodes.erase(FI);
823 
824     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
825   } else {
826     if (NumberedMetadata.count(MetadataID))
827       return tokError("Metadata id is already used");
828     NumberedMetadata[MetadataID].reset(Init);
829   }
830 
831   return false;
832 }
833 
834 // Skips a single module summary entry.
skipModuleSummaryEntry()835 bool LLParser::skipModuleSummaryEntry() {
836   // Each module summary entry consists of a tag for the entry
837   // type, followed by a colon, then the fields which may be surrounded by
838   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
839   // support is in place we will look for the tokens corresponding to the
840   // expected tags.
841   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
842       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
843       Lex.getKind() != lltok::kw_blockcount)
844     return tokError(
845         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
846         "start of summary entry");
847   if (Lex.getKind() == lltok::kw_flags)
848     return parseSummaryIndexFlags();
849   if (Lex.getKind() == lltok::kw_blockcount)
850     return parseBlockCount();
851   Lex.Lex();
852   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
853       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
854     return true;
855   // Now walk through the parenthesized entry, until the number of open
856   // parentheses goes back down to 0 (the first '(' was parsed above).
857   unsigned NumOpenParen = 1;
858   do {
859     switch (Lex.getKind()) {
860     case lltok::lparen:
861       NumOpenParen++;
862       break;
863     case lltok::rparen:
864       NumOpenParen--;
865       break;
866     case lltok::Eof:
867       return tokError("found end of file while parsing summary entry");
868     default:
869       // Skip everything in between parentheses.
870       break;
871     }
872     Lex.Lex();
873   } while (NumOpenParen > 0);
874   return false;
875 }
876 
877 /// SummaryEntry
878 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
parseSummaryEntry()879 bool LLParser::parseSummaryEntry() {
880   assert(Lex.getKind() == lltok::SummaryID);
881   unsigned SummaryID = Lex.getUIntVal();
882 
883   // For summary entries, colons should be treated as distinct tokens,
884   // not an indication of the end of a label token.
885   Lex.setIgnoreColonInIdentifiers(true);
886 
887   Lex.Lex();
888   if (parseToken(lltok::equal, "expected '=' here"))
889     return true;
890 
891   // If we don't have an index object, skip the summary entry.
892   if (!Index)
893     return skipModuleSummaryEntry();
894 
895   bool result = false;
896   switch (Lex.getKind()) {
897   case lltok::kw_gv:
898     result = parseGVEntry(SummaryID);
899     break;
900   case lltok::kw_module:
901     result = parseModuleEntry(SummaryID);
902     break;
903   case lltok::kw_typeid:
904     result = parseTypeIdEntry(SummaryID);
905     break;
906   case lltok::kw_typeidCompatibleVTable:
907     result = parseTypeIdCompatibleVtableEntry(SummaryID);
908     break;
909   case lltok::kw_flags:
910     result = parseSummaryIndexFlags();
911     break;
912   case lltok::kw_blockcount:
913     result = parseBlockCount();
914     break;
915   default:
916     result = error(Lex.getLoc(), "unexpected summary kind");
917     break;
918   }
919   Lex.setIgnoreColonInIdentifiers(false);
920   return result;
921 }
922 
isValidVisibilityForLinkage(unsigned V,unsigned L)923 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
924   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
925          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
926 }
927 
928 // If there was an explicit dso_local, update GV. In the absence of an explicit
929 // dso_local we keep the default value.
maybeSetDSOLocal(bool DSOLocal,GlobalValue & GV)930 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
931   if (DSOLocal)
932     GV.setDSOLocal(true);
933 }
934 
typeComparisonErrorMessage(StringRef Message,Type * Ty1,Type * Ty2)935 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
936                                               Type *Ty2) {
937   std::string ErrString;
938   raw_string_ostream ErrOS(ErrString);
939   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
940   return ErrOS.str();
941 }
942 
943 /// parseIndirectSymbol:
944 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
945 ///                     OptionalVisibility OptionalDLLStorageClass
946 ///                     OptionalThreadLocal OptionalUnnamedAddr
947 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
948 ///
949 /// IndirectSymbol
950 ///   ::= TypeAndValue
951 ///
952 /// IndirectSymbolAttr
953 ///   ::= ',' 'partition' StringConstant
954 ///
955 /// Everything through OptionalUnnamedAddr has already been parsed.
956 ///
parseIndirectSymbol(const std::string & Name,LocTy NameLoc,unsigned L,unsigned Visibility,unsigned DLLStorageClass,bool DSOLocal,GlobalVariable::ThreadLocalMode TLM,GlobalVariable::UnnamedAddr UnnamedAddr)957 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
958                                    unsigned L, unsigned Visibility,
959                                    unsigned DLLStorageClass, bool DSOLocal,
960                                    GlobalVariable::ThreadLocalMode TLM,
961                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
962   bool IsAlias;
963   if (Lex.getKind() == lltok::kw_alias)
964     IsAlias = true;
965   else if (Lex.getKind() == lltok::kw_ifunc)
966     IsAlias = false;
967   else
968     llvm_unreachable("Not an alias or ifunc!");
969   Lex.Lex();
970 
971   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
972 
973   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
974     return error(NameLoc, "invalid linkage type for alias");
975 
976   if (!isValidVisibilityForLinkage(Visibility, L))
977     return error(NameLoc,
978                  "symbol with local linkage must have default visibility");
979 
980   Type *Ty;
981   LocTy ExplicitTypeLoc = Lex.getLoc();
982   if (parseType(Ty) ||
983       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
984     return true;
985 
986   Constant *Aliasee;
987   LocTy AliaseeLoc = Lex.getLoc();
988   if (Lex.getKind() != lltok::kw_bitcast &&
989       Lex.getKind() != lltok::kw_getelementptr &&
990       Lex.getKind() != lltok::kw_addrspacecast &&
991       Lex.getKind() != lltok::kw_inttoptr) {
992     if (parseGlobalTypeAndValue(Aliasee))
993       return true;
994   } else {
995     // The bitcast dest type is not present, it is implied by the dest type.
996     ValID ID;
997     if (parseValID(ID))
998       return true;
999     if (ID.Kind != ValID::t_Constant)
1000       return error(AliaseeLoc, "invalid aliasee");
1001     Aliasee = ID.ConstantVal;
1002   }
1003 
1004   Type *AliaseeType = Aliasee->getType();
1005   auto *PTy = dyn_cast<PointerType>(AliaseeType);
1006   if (!PTy)
1007     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1008   unsigned AddrSpace = PTy->getAddressSpace();
1009 
1010   if (IsAlias && Ty != PTy->getElementType()) {
1011     return error(
1012         ExplicitTypeLoc,
1013         typeComparisonErrorMessage(
1014             "explicit pointee type doesn't match operand's pointee type", Ty,
1015             PTy->getElementType()));
1016   }
1017 
1018   if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
1019     return error(ExplicitTypeLoc,
1020                  "explicit pointee type should be a function type");
1021   }
1022 
1023   GlobalValue *GVal = nullptr;
1024 
1025   // See if the alias was forward referenced, if so, prepare to replace the
1026   // forward reference.
1027   if (!Name.empty()) {
1028     GVal = M->getNamedValue(Name);
1029     if (GVal) {
1030       if (!ForwardRefVals.erase(Name))
1031         return error(NameLoc, "redefinition of global '@" + Name + "'");
1032     }
1033   } else {
1034     auto I = ForwardRefValIDs.find(NumberedVals.size());
1035     if (I != ForwardRefValIDs.end()) {
1036       GVal = I->second.first;
1037       ForwardRefValIDs.erase(I);
1038     }
1039   }
1040 
1041   // Okay, create the alias but do not insert it into the module yet.
1042   std::unique_ptr<GlobalIndirectSymbol> GA;
1043   if (IsAlias)
1044     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1045                                  (GlobalValue::LinkageTypes)Linkage, Name,
1046                                  Aliasee, /*Parent*/ nullptr));
1047   else
1048     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1049                                  (GlobalValue::LinkageTypes)Linkage, Name,
1050                                  Aliasee, /*Parent*/ nullptr));
1051   GA->setThreadLocalMode(TLM);
1052   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1053   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1054   GA->setUnnamedAddr(UnnamedAddr);
1055   maybeSetDSOLocal(DSOLocal, *GA);
1056 
1057   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1058   // Now parse them if there are any.
1059   while (Lex.getKind() == lltok::comma) {
1060     Lex.Lex();
1061 
1062     if (Lex.getKind() == lltok::kw_partition) {
1063       Lex.Lex();
1064       GA->setPartition(Lex.getStrVal());
1065       if (parseToken(lltok::StringConstant, "expected partition string"))
1066         return true;
1067     } else {
1068       return tokError("unknown alias or ifunc property!");
1069     }
1070   }
1071 
1072   if (Name.empty())
1073     NumberedVals.push_back(GA.get());
1074 
1075   if (GVal) {
1076     // Verify that types agree.
1077     if (GVal->getType() != GA->getType())
1078       return error(
1079           ExplicitTypeLoc,
1080           "forward reference and definition of alias have different types");
1081 
1082     // If they agree, just RAUW the old value with the alias and remove the
1083     // forward ref info.
1084     GVal->replaceAllUsesWith(GA.get());
1085     GVal->eraseFromParent();
1086   }
1087 
1088   // Insert into the module, we know its name won't collide now.
1089   if (IsAlias)
1090     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1091   else
1092     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1093   assert(GA->getName() == Name && "Should not be a name conflict!");
1094 
1095   // The module owns this now
1096   GA.release();
1097 
1098   return false;
1099 }
1100 
1101 /// parseGlobal
1102 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1103 ///       OptionalVisibility OptionalDLLStorageClass
1104 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1105 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1106 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1107 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1108 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1109 ///       Const OptionalAttrs
1110 ///
1111 /// Everything up to and including OptionalUnnamedAddr has been parsed
1112 /// already.
1113 ///
parseGlobal(const std::string & Name,LocTy NameLoc,unsigned Linkage,bool HasLinkage,unsigned Visibility,unsigned DLLStorageClass,bool DSOLocal,GlobalVariable::ThreadLocalMode TLM,GlobalVariable::UnnamedAddr UnnamedAddr)1114 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1115                            unsigned Linkage, bool HasLinkage,
1116                            unsigned Visibility, unsigned DLLStorageClass,
1117                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1118                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1119   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1120     return error(NameLoc,
1121                  "symbol with local linkage must have default visibility");
1122 
1123   unsigned AddrSpace;
1124   bool IsConstant, IsExternallyInitialized;
1125   LocTy IsExternallyInitializedLoc;
1126   LocTy TyLoc;
1127 
1128   Type *Ty = nullptr;
1129   if (parseOptionalAddrSpace(AddrSpace) ||
1130       parseOptionalToken(lltok::kw_externally_initialized,
1131                          IsExternallyInitialized,
1132                          &IsExternallyInitializedLoc) ||
1133       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1134     return true;
1135 
1136   // If the linkage is specified and is external, then no initializer is
1137   // present.
1138   Constant *Init = nullptr;
1139   if (!HasLinkage ||
1140       !GlobalValue::isValidDeclarationLinkage(
1141           (GlobalValue::LinkageTypes)Linkage)) {
1142     if (parseGlobalValue(Ty, Init))
1143       return true;
1144   }
1145 
1146   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1147     return error(TyLoc, "invalid type for global variable");
1148 
1149   GlobalValue *GVal = nullptr;
1150 
1151   // See if the global was forward referenced, if so, use the global.
1152   if (!Name.empty()) {
1153     GVal = M->getNamedValue(Name);
1154     if (GVal) {
1155       if (!ForwardRefVals.erase(Name))
1156         return error(NameLoc, "redefinition of global '@" + Name + "'");
1157     }
1158   } else {
1159     auto I = ForwardRefValIDs.find(NumberedVals.size());
1160     if (I != ForwardRefValIDs.end()) {
1161       GVal = I->second.first;
1162       ForwardRefValIDs.erase(I);
1163     }
1164   }
1165 
1166   GlobalVariable *GV;
1167   if (!GVal) {
1168     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1169                             Name, nullptr, GlobalVariable::NotThreadLocal,
1170                             AddrSpace);
1171   } else {
1172     if (GVal->getValueType() != Ty)
1173       return error(
1174           TyLoc,
1175           "forward reference and definition of global have different types");
1176 
1177     GV = cast<GlobalVariable>(GVal);
1178 
1179     // Move the forward-reference to the correct spot in the module.
1180     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1181   }
1182 
1183   if (Name.empty())
1184     NumberedVals.push_back(GV);
1185 
1186   // Set the parsed properties on the global.
1187   if (Init)
1188     GV->setInitializer(Init);
1189   GV->setConstant(IsConstant);
1190   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1191   maybeSetDSOLocal(DSOLocal, *GV);
1192   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1193   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1194   GV->setExternallyInitialized(IsExternallyInitialized);
1195   GV->setThreadLocalMode(TLM);
1196   GV->setUnnamedAddr(UnnamedAddr);
1197 
1198   // parse attributes on the global.
1199   while (Lex.getKind() == lltok::comma) {
1200     Lex.Lex();
1201 
1202     if (Lex.getKind() == lltok::kw_section) {
1203       Lex.Lex();
1204       GV->setSection(Lex.getStrVal());
1205       if (parseToken(lltok::StringConstant, "expected global section string"))
1206         return true;
1207     } else if (Lex.getKind() == lltok::kw_partition) {
1208       Lex.Lex();
1209       GV->setPartition(Lex.getStrVal());
1210       if (parseToken(lltok::StringConstant, "expected partition string"))
1211         return true;
1212     } else if (Lex.getKind() == lltok::kw_align) {
1213       MaybeAlign Alignment;
1214       if (parseOptionalAlignment(Alignment))
1215         return true;
1216       GV->setAlignment(Alignment);
1217     } else if (Lex.getKind() == lltok::MetadataVar) {
1218       if (parseGlobalObjectMetadataAttachment(*GV))
1219         return true;
1220     } else {
1221       Comdat *C;
1222       if (parseOptionalComdat(Name, C))
1223         return true;
1224       if (C)
1225         GV->setComdat(C);
1226       else
1227         return tokError("unknown global variable property!");
1228     }
1229   }
1230 
1231   AttrBuilder Attrs;
1232   LocTy BuiltinLoc;
1233   std::vector<unsigned> FwdRefAttrGrps;
1234   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1235     return true;
1236   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1237     GV->setAttributes(AttributeSet::get(Context, Attrs));
1238     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1239   }
1240 
1241   return false;
1242 }
1243 
1244 /// parseUnnamedAttrGrp
1245 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
parseUnnamedAttrGrp()1246 bool LLParser::parseUnnamedAttrGrp() {
1247   assert(Lex.getKind() == lltok::kw_attributes);
1248   LocTy AttrGrpLoc = Lex.getLoc();
1249   Lex.Lex();
1250 
1251   if (Lex.getKind() != lltok::AttrGrpID)
1252     return tokError("expected attribute group id");
1253 
1254   unsigned VarID = Lex.getUIntVal();
1255   std::vector<unsigned> unused;
1256   LocTy BuiltinLoc;
1257   Lex.Lex();
1258 
1259   if (parseToken(lltok::equal, "expected '=' here") ||
1260       parseToken(lltok::lbrace, "expected '{' here") ||
1261       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1262                                  BuiltinLoc) ||
1263       parseToken(lltok::rbrace, "expected end of attribute group"))
1264     return true;
1265 
1266   if (!NumberedAttrBuilders[VarID].hasAttributes())
1267     return error(AttrGrpLoc, "attribute group has no attributes");
1268 
1269   return false;
1270 }
1271 
1272 /// parseFnAttributeValuePairs
1273 ///   ::= <attr> | <attr> '=' <value>
parseFnAttributeValuePairs(AttrBuilder & B,std::vector<unsigned> & FwdRefAttrGrps,bool inAttrGrp,LocTy & BuiltinLoc)1274 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1275                                           std::vector<unsigned> &FwdRefAttrGrps,
1276                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1277   bool HaveError = false;
1278 
1279   B.clear();
1280 
1281   while (true) {
1282     lltok::Kind Token = Lex.getKind();
1283     if (Token == lltok::kw_builtin)
1284       BuiltinLoc = Lex.getLoc();
1285     switch (Token) {
1286     default:
1287       if (!inAttrGrp) return HaveError;
1288       return error(Lex.getLoc(), "unterminated attribute group");
1289     case lltok::rbrace:
1290       // Finished.
1291       return false;
1292 
1293     case lltok::AttrGrpID: {
1294       // Allow a function to reference an attribute group:
1295       //
1296       //   define void @foo() #1 { ... }
1297       if (inAttrGrp)
1298         HaveError |= error(
1299             Lex.getLoc(),
1300             "cannot have an attribute group reference in an attribute group");
1301 
1302       unsigned AttrGrpNum = Lex.getUIntVal();
1303       if (inAttrGrp) break;
1304 
1305       // Save the reference to the attribute group. We'll fill it in later.
1306       FwdRefAttrGrps.push_back(AttrGrpNum);
1307       break;
1308     }
1309     // Target-dependent attributes:
1310     case lltok::StringConstant: {
1311       if (parseStringAttribute(B))
1312         return true;
1313       continue;
1314     }
1315 
1316     // Target-independent attributes:
1317     case lltok::kw_align: {
1318       // As a hack, we allow function alignment to be initially parsed as an
1319       // attribute on a function declaration/definition or added to an attribute
1320       // group and later moved to the alignment field.
1321       MaybeAlign Alignment;
1322       if (inAttrGrp) {
1323         Lex.Lex();
1324         uint32_t Value = 0;
1325         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1326           return true;
1327         Alignment = Align(Value);
1328       } else {
1329         if (parseOptionalAlignment(Alignment))
1330           return true;
1331       }
1332       B.addAlignmentAttr(Alignment);
1333       continue;
1334     }
1335     case lltok::kw_alignstack: {
1336       unsigned Alignment;
1337       if (inAttrGrp) {
1338         Lex.Lex();
1339         if (parseToken(lltok::equal, "expected '=' here") ||
1340             parseUInt32(Alignment))
1341           return true;
1342       } else {
1343         if (parseOptionalStackAlignment(Alignment))
1344           return true;
1345       }
1346       B.addStackAlignmentAttr(Alignment);
1347       continue;
1348     }
1349     case lltok::kw_allocsize: {
1350       unsigned ElemSizeArg;
1351       Optional<unsigned> NumElemsArg;
1352       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1353       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1354         return true;
1355       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1356       continue;
1357     }
1358     case lltok::kw_vscale_range: {
1359       unsigned MinValue, MaxValue;
1360       // inAttrGrp doesn't matter; we only support vscale_range(a[, b])
1361       if (parseVScaleRangeArguments(MinValue, MaxValue))
1362         return true;
1363       B.addVScaleRangeAttr(MinValue, MaxValue);
1364       continue;
1365     }
1366     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1367     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1368     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1369     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1370     case lltok::kw_hot: B.addAttribute(Attribute::Hot); break;
1371     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1372     case lltok::kw_inaccessiblememonly:
1373       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1374     case lltok::kw_inaccessiblemem_or_argmemonly:
1375       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1376     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1377     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1378     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1379     case lltok::kw_mustprogress:
1380       B.addAttribute(Attribute::MustProgress);
1381       break;
1382     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1383     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1384     case lltok::kw_nocallback:
1385       B.addAttribute(Attribute::NoCallback);
1386       break;
1387     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1388     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1389     case lltok::kw_noimplicitfloat:
1390       B.addAttribute(Attribute::NoImplicitFloat); break;
1391     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1392     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1393     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1394     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1395     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1396     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1397     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1398     case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break;
1399     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1400     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1401     case lltok::kw_null_pointer_is_valid:
1402       B.addAttribute(Attribute::NullPointerIsValid); break;
1403     case lltok::kw_optforfuzzing:
1404       B.addAttribute(Attribute::OptForFuzzing); break;
1405     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1406     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1407     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1408     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1409     case lltok::kw_returns_twice:
1410       B.addAttribute(Attribute::ReturnsTwice); break;
1411     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1412     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1413     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1414     case lltok::kw_sspstrong:
1415       B.addAttribute(Attribute::StackProtectStrong); break;
1416     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1417     case lltok::kw_shadowcallstack:
1418       B.addAttribute(Attribute::ShadowCallStack); break;
1419     case lltok::kw_sanitize_address:
1420       B.addAttribute(Attribute::SanitizeAddress); break;
1421     case lltok::kw_sanitize_hwaddress:
1422       B.addAttribute(Attribute::SanitizeHWAddress); break;
1423     case lltok::kw_sanitize_memtag:
1424       B.addAttribute(Attribute::SanitizeMemTag); break;
1425     case lltok::kw_sanitize_thread:
1426       B.addAttribute(Attribute::SanitizeThread); break;
1427     case lltok::kw_sanitize_memory:
1428       B.addAttribute(Attribute::SanitizeMemory); break;
1429     case lltok::kw_speculative_load_hardening:
1430       B.addAttribute(Attribute::SpeculativeLoadHardening);
1431       break;
1432     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1433     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1434     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1435     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1436     case lltok::kw_preallocated: {
1437       Type *Ty;
1438       if (parsePreallocated(Ty))
1439         return true;
1440       B.addPreallocatedAttr(Ty);
1441       break;
1442     }
1443 
1444     // error handling.
1445     case lltok::kw_inreg:
1446     case lltok::kw_signext:
1447     case lltok::kw_zeroext:
1448       HaveError |=
1449           error(Lex.getLoc(), "invalid use of attribute on a function");
1450       break;
1451     case lltok::kw_byval:
1452     case lltok::kw_dereferenceable:
1453     case lltok::kw_dereferenceable_or_null:
1454     case lltok::kw_inalloca:
1455     case lltok::kw_nest:
1456     case lltok::kw_noalias:
1457     case lltok::kw_noundef:
1458     case lltok::kw_nocapture:
1459     case lltok::kw_nonnull:
1460     case lltok::kw_returned:
1461     case lltok::kw_sret:
1462     case lltok::kw_swifterror:
1463     case lltok::kw_swiftself:
1464     case lltok::kw_swiftasync:
1465     case lltok::kw_immarg:
1466     case lltok::kw_byref:
1467       HaveError |=
1468           error(Lex.getLoc(),
1469                 "invalid use of parameter-only attribute on a function");
1470       break;
1471     }
1472 
1473     // parsePreallocated() consumes token
1474     if (Token != lltok::kw_preallocated)
1475       Lex.Lex();
1476   }
1477 }
1478 
1479 //===----------------------------------------------------------------------===//
1480 // GlobalValue Reference/Resolution Routines.
1481 //===----------------------------------------------------------------------===//
1482 
createGlobalFwdRef(Module * M,PointerType * PTy,const std::string & Name)1483 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1484                                               const std::string &Name) {
1485   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1486     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1487                             PTy->getAddressSpace(), Name, M);
1488   else
1489     return new GlobalVariable(*M, PTy->getElementType(), false,
1490                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1491                               nullptr, GlobalVariable::NotThreadLocal,
1492                               PTy->getAddressSpace());
1493 }
1494 
checkValidVariableType(LocTy Loc,const Twine & Name,Type * Ty,Value * Val,bool IsCall)1495 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1496                                         Value *Val, bool IsCall) {
1497   if (Val->getType() == Ty)
1498     return Val;
1499   // For calls we also accept variables in the program address space.
1500   Type *SuggestedTy = Ty;
1501   if (IsCall && isa<PointerType>(Ty)) {
1502     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1503         M->getDataLayout().getProgramAddressSpace());
1504     SuggestedTy = TyInProgAS;
1505     if (Val->getType() == TyInProgAS)
1506       return Val;
1507   }
1508   if (Ty->isLabelTy())
1509     error(Loc, "'" + Name + "' is not a basic block");
1510   else
1511     error(Loc, "'" + Name + "' defined with type '" +
1512                    getTypeString(Val->getType()) + "' but expected '" +
1513                    getTypeString(SuggestedTy) + "'");
1514   return nullptr;
1515 }
1516 
1517 /// getGlobalVal - Get a value with the specified name or ID, creating a
1518 /// forward reference record if needed.  This can return null if the value
1519 /// exists but does not have the right type.
getGlobalVal(const std::string & Name,Type * Ty,LocTy Loc,bool IsCall)1520 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1521                                     LocTy Loc, bool IsCall) {
1522   PointerType *PTy = dyn_cast<PointerType>(Ty);
1523   if (!PTy) {
1524     error(Loc, "global variable reference must have pointer type");
1525     return nullptr;
1526   }
1527 
1528   // Look this name up in the normal function symbol table.
1529   GlobalValue *Val =
1530     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1531 
1532   // If this is a forward reference for the value, see if we already created a
1533   // forward ref record.
1534   if (!Val) {
1535     auto I = ForwardRefVals.find(Name);
1536     if (I != ForwardRefVals.end())
1537       Val = I->second.first;
1538   }
1539 
1540   // If we have the value in the symbol table or fwd-ref table, return it.
1541   if (Val)
1542     return cast_or_null<GlobalValue>(
1543         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1544 
1545   // Otherwise, create a new forward reference for this value and remember it.
1546   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1547   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1548   return FwdVal;
1549 }
1550 
getGlobalVal(unsigned ID,Type * Ty,LocTy Loc,bool IsCall)1551 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1552                                     bool IsCall) {
1553   PointerType *PTy = dyn_cast<PointerType>(Ty);
1554   if (!PTy) {
1555     error(Loc, "global variable reference must have pointer type");
1556     return nullptr;
1557   }
1558 
1559   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1560 
1561   // If this is a forward reference for the value, see if we already created a
1562   // forward ref record.
1563   if (!Val) {
1564     auto I = ForwardRefValIDs.find(ID);
1565     if (I != ForwardRefValIDs.end())
1566       Val = I->second.first;
1567   }
1568 
1569   // If we have the value in the symbol table or fwd-ref table, return it.
1570   if (Val)
1571     return cast_or_null<GlobalValue>(
1572         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1573 
1574   // Otherwise, create a new forward reference for this value and remember it.
1575   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1576   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1577   return FwdVal;
1578 }
1579 
1580 //===----------------------------------------------------------------------===//
1581 // Comdat Reference/Resolution Routines.
1582 //===----------------------------------------------------------------------===//
1583 
getComdat(const std::string & Name,LocTy Loc)1584 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1585   // Look this name up in the comdat symbol table.
1586   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1587   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1588   if (I != ComdatSymTab.end())
1589     return &I->second;
1590 
1591   // Otherwise, create a new forward reference for this value and remember it.
1592   Comdat *C = M->getOrInsertComdat(Name);
1593   ForwardRefComdats[Name] = Loc;
1594   return C;
1595 }
1596 
1597 //===----------------------------------------------------------------------===//
1598 // Helper Routines.
1599 //===----------------------------------------------------------------------===//
1600 
1601 /// parseToken - If the current token has the specified kind, eat it and return
1602 /// success.  Otherwise, emit the specified error and return failure.
parseToken(lltok::Kind T,const char * ErrMsg)1603 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1604   if (Lex.getKind() != T)
1605     return tokError(ErrMsg);
1606   Lex.Lex();
1607   return false;
1608 }
1609 
1610 /// parseStringConstant
1611 ///   ::= StringConstant
parseStringConstant(std::string & Result)1612 bool LLParser::parseStringConstant(std::string &Result) {
1613   if (Lex.getKind() != lltok::StringConstant)
1614     return tokError("expected string constant");
1615   Result = Lex.getStrVal();
1616   Lex.Lex();
1617   return false;
1618 }
1619 
1620 /// parseUInt32
1621 ///   ::= uint32
parseUInt32(uint32_t & Val)1622 bool LLParser::parseUInt32(uint32_t &Val) {
1623   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1624     return tokError("expected integer");
1625   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1626   if (Val64 != unsigned(Val64))
1627     return tokError("expected 32-bit integer (too large)");
1628   Val = Val64;
1629   Lex.Lex();
1630   return false;
1631 }
1632 
1633 /// parseUInt64
1634 ///   ::= uint64
parseUInt64(uint64_t & Val)1635 bool LLParser::parseUInt64(uint64_t &Val) {
1636   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1637     return tokError("expected integer");
1638   Val = Lex.getAPSIntVal().getLimitedValue();
1639   Lex.Lex();
1640   return false;
1641 }
1642 
1643 /// parseTLSModel
1644 ///   := 'localdynamic'
1645 ///   := 'initialexec'
1646 ///   := 'localexec'
parseTLSModel(GlobalVariable::ThreadLocalMode & TLM)1647 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1648   switch (Lex.getKind()) {
1649     default:
1650       return tokError("expected localdynamic, initialexec or localexec");
1651     case lltok::kw_localdynamic:
1652       TLM = GlobalVariable::LocalDynamicTLSModel;
1653       break;
1654     case lltok::kw_initialexec:
1655       TLM = GlobalVariable::InitialExecTLSModel;
1656       break;
1657     case lltok::kw_localexec:
1658       TLM = GlobalVariable::LocalExecTLSModel;
1659       break;
1660   }
1661 
1662   Lex.Lex();
1663   return false;
1664 }
1665 
1666 /// parseOptionalThreadLocal
1667 ///   := /*empty*/
1668 ///   := 'thread_local'
1669 ///   := 'thread_local' '(' tlsmodel ')'
parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode & TLM)1670 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1671   TLM = GlobalVariable::NotThreadLocal;
1672   if (!EatIfPresent(lltok::kw_thread_local))
1673     return false;
1674 
1675   TLM = GlobalVariable::GeneralDynamicTLSModel;
1676   if (Lex.getKind() == lltok::lparen) {
1677     Lex.Lex();
1678     return parseTLSModel(TLM) ||
1679            parseToken(lltok::rparen, "expected ')' after thread local model");
1680   }
1681   return false;
1682 }
1683 
1684 /// parseOptionalAddrSpace
1685 ///   := /*empty*/
1686 ///   := 'addrspace' '(' uint32 ')'
parseOptionalAddrSpace(unsigned & AddrSpace,unsigned DefaultAS)1687 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1688   AddrSpace = DefaultAS;
1689   if (!EatIfPresent(lltok::kw_addrspace))
1690     return false;
1691   return parseToken(lltok::lparen, "expected '(' in address space") ||
1692          parseUInt32(AddrSpace) ||
1693          parseToken(lltok::rparen, "expected ')' in address space");
1694 }
1695 
1696 /// parseStringAttribute
1697 ///   := StringConstant
1698 ///   := StringConstant '=' StringConstant
parseStringAttribute(AttrBuilder & B)1699 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1700   std::string Attr = Lex.getStrVal();
1701   Lex.Lex();
1702   std::string Val;
1703   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1704     return true;
1705   B.addAttribute(Attr, Val);
1706   return false;
1707 }
1708 
1709 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1710 /// attributes.
parseOptionalParamAttrs(AttrBuilder & B)1711 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1712   bool HaveError = false;
1713 
1714   B.clear();
1715 
1716   while (true) {
1717     lltok::Kind Token = Lex.getKind();
1718     switch (Token) {
1719     default:  // End of attributes.
1720       return HaveError;
1721     case lltok::StringConstant: {
1722       if (parseStringAttribute(B))
1723         return true;
1724       continue;
1725     }
1726     case lltok::kw_align: {
1727       MaybeAlign Alignment;
1728       if (parseOptionalAlignment(Alignment, true))
1729         return true;
1730       B.addAlignmentAttr(Alignment);
1731       continue;
1732     }
1733     case lltok::kw_alignstack: {
1734       unsigned Alignment;
1735       if (parseOptionalStackAlignment(Alignment))
1736         return true;
1737       B.addStackAlignmentAttr(Alignment);
1738       continue;
1739     }
1740     case lltok::kw_byval: {
1741       Type *Ty;
1742       if (parseRequiredTypeAttr(Ty, lltok::kw_byval))
1743         return true;
1744       B.addByValAttr(Ty);
1745       continue;
1746     }
1747     case lltok::kw_sret: {
1748       Type *Ty;
1749       if (parseRequiredTypeAttr(Ty, lltok::kw_sret))
1750         return true;
1751       B.addStructRetAttr(Ty);
1752       continue;
1753     }
1754     case lltok::kw_preallocated: {
1755       Type *Ty;
1756       if (parsePreallocated(Ty))
1757         return true;
1758       B.addPreallocatedAttr(Ty);
1759       continue;
1760     }
1761     case lltok::kw_inalloca: {
1762       Type *Ty;
1763       if (parseInalloca(Ty))
1764         return true;
1765       B.addInAllocaAttr(Ty);
1766       continue;
1767     }
1768     case lltok::kw_dereferenceable: {
1769       uint64_t Bytes;
1770       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1771         return true;
1772       B.addDereferenceableAttr(Bytes);
1773       continue;
1774     }
1775     case lltok::kw_dereferenceable_or_null: {
1776       uint64_t Bytes;
1777       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1778         return true;
1779       B.addDereferenceableOrNullAttr(Bytes);
1780       continue;
1781     }
1782     case lltok::kw_byref: {
1783       Type *Ty;
1784       if (parseByRef(Ty))
1785         return true;
1786       B.addByRefAttr(Ty);
1787       continue;
1788     }
1789     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1790     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1791     case lltok::kw_noundef:
1792       B.addAttribute(Attribute::NoUndef);
1793       break;
1794     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1795     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1796     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1797     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1798     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1799     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1800     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1801     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1802     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1803     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1804     case lltok::kw_swiftasync:      B.addAttribute(Attribute::SwiftAsync); break;
1805     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1806     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1807     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1808 
1809     case lltok::kw_alwaysinline:
1810     case lltok::kw_argmemonly:
1811     case lltok::kw_builtin:
1812     case lltok::kw_inlinehint:
1813     case lltok::kw_jumptable:
1814     case lltok::kw_minsize:
1815     case lltok::kw_mustprogress:
1816     case lltok::kw_naked:
1817     case lltok::kw_nobuiltin:
1818     case lltok::kw_noduplicate:
1819     case lltok::kw_noimplicitfloat:
1820     case lltok::kw_noinline:
1821     case lltok::kw_nonlazybind:
1822     case lltok::kw_nomerge:
1823     case lltok::kw_noprofile:
1824     case lltok::kw_noredzone:
1825     case lltok::kw_noreturn:
1826     case lltok::kw_nocf_check:
1827     case lltok::kw_nounwind:
1828     case lltok::kw_optforfuzzing:
1829     case lltok::kw_optnone:
1830     case lltok::kw_optsize:
1831     case lltok::kw_returns_twice:
1832     case lltok::kw_sanitize_address:
1833     case lltok::kw_sanitize_hwaddress:
1834     case lltok::kw_sanitize_memtag:
1835     case lltok::kw_sanitize_memory:
1836     case lltok::kw_sanitize_thread:
1837     case lltok::kw_speculative_load_hardening:
1838     case lltok::kw_ssp:
1839     case lltok::kw_sspreq:
1840     case lltok::kw_sspstrong:
1841     case lltok::kw_safestack:
1842     case lltok::kw_shadowcallstack:
1843     case lltok::kw_strictfp:
1844     case lltok::kw_uwtable:
1845     case lltok::kw_vscale_range:
1846       HaveError |=
1847           error(Lex.getLoc(), "invalid use of function-only attribute");
1848       break;
1849     }
1850 
1851     Lex.Lex();
1852   }
1853 }
1854 
1855 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1856 /// attributes.
parseOptionalReturnAttrs(AttrBuilder & B)1857 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1858   bool HaveError = false;
1859 
1860   B.clear();
1861 
1862   while (true) {
1863     lltok::Kind Token = Lex.getKind();
1864     switch (Token) {
1865     default:  // End of attributes.
1866       return HaveError;
1867     case lltok::StringConstant: {
1868       if (parseStringAttribute(B))
1869         return true;
1870       continue;
1871     }
1872     case lltok::kw_dereferenceable: {
1873       uint64_t Bytes;
1874       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1875         return true;
1876       B.addDereferenceableAttr(Bytes);
1877       continue;
1878     }
1879     case lltok::kw_dereferenceable_or_null: {
1880       uint64_t Bytes;
1881       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1882         return true;
1883       B.addDereferenceableOrNullAttr(Bytes);
1884       continue;
1885     }
1886     case lltok::kw_align: {
1887       MaybeAlign Alignment;
1888       if (parseOptionalAlignment(Alignment))
1889         return true;
1890       B.addAlignmentAttr(Alignment);
1891       continue;
1892     }
1893     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1894     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1895     case lltok::kw_noundef:
1896       B.addAttribute(Attribute::NoUndef);
1897       break;
1898     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1899     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1900     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1901 
1902     // error handling.
1903     case lltok::kw_byval:
1904     case lltok::kw_inalloca:
1905     case lltok::kw_nest:
1906     case lltok::kw_nocapture:
1907     case lltok::kw_returned:
1908     case lltok::kw_sret:
1909     case lltok::kw_swifterror:
1910     case lltok::kw_swiftself:
1911     case lltok::kw_swiftasync:
1912     case lltok::kw_immarg:
1913     case lltok::kw_byref:
1914       HaveError |=
1915           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1916       break;
1917 
1918     case lltok::kw_alignstack:
1919     case lltok::kw_alwaysinline:
1920     case lltok::kw_argmemonly:
1921     case lltok::kw_builtin:
1922     case lltok::kw_cold:
1923     case lltok::kw_inlinehint:
1924     case lltok::kw_jumptable:
1925     case lltok::kw_minsize:
1926     case lltok::kw_mustprogress:
1927     case lltok::kw_naked:
1928     case lltok::kw_nobuiltin:
1929     case lltok::kw_noduplicate:
1930     case lltok::kw_noimplicitfloat:
1931     case lltok::kw_noinline:
1932     case lltok::kw_nonlazybind:
1933     case lltok::kw_nomerge:
1934     case lltok::kw_noprofile:
1935     case lltok::kw_noredzone:
1936     case lltok::kw_noreturn:
1937     case lltok::kw_nocf_check:
1938     case lltok::kw_nounwind:
1939     case lltok::kw_optforfuzzing:
1940     case lltok::kw_optnone:
1941     case lltok::kw_optsize:
1942     case lltok::kw_returns_twice:
1943     case lltok::kw_sanitize_address:
1944     case lltok::kw_sanitize_hwaddress:
1945     case lltok::kw_sanitize_memtag:
1946     case lltok::kw_sanitize_memory:
1947     case lltok::kw_sanitize_thread:
1948     case lltok::kw_speculative_load_hardening:
1949     case lltok::kw_ssp:
1950     case lltok::kw_sspreq:
1951     case lltok::kw_sspstrong:
1952     case lltok::kw_safestack:
1953     case lltok::kw_shadowcallstack:
1954     case lltok::kw_strictfp:
1955     case lltok::kw_uwtable:
1956     case lltok::kw_vscale_range:
1957       HaveError |=
1958           error(Lex.getLoc(), "invalid use of function-only attribute");
1959       break;
1960     case lltok::kw_readnone:
1961     case lltok::kw_readonly:
1962       HaveError |=
1963           error(Lex.getLoc(), "invalid use of attribute on return type");
1964       break;
1965     case lltok::kw_preallocated:
1966       HaveError |=
1967           error(Lex.getLoc(),
1968                 "invalid use of parameter-only/call site-only attribute");
1969       break;
1970     }
1971 
1972     Lex.Lex();
1973   }
1974 }
1975 
parseOptionalLinkageAux(lltok::Kind Kind,bool & HasLinkage)1976 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1977   HasLinkage = true;
1978   switch (Kind) {
1979   default:
1980     HasLinkage = false;
1981     return GlobalValue::ExternalLinkage;
1982   case lltok::kw_private:
1983     return GlobalValue::PrivateLinkage;
1984   case lltok::kw_internal:
1985     return GlobalValue::InternalLinkage;
1986   case lltok::kw_weak:
1987     return GlobalValue::WeakAnyLinkage;
1988   case lltok::kw_weak_odr:
1989     return GlobalValue::WeakODRLinkage;
1990   case lltok::kw_linkonce:
1991     return GlobalValue::LinkOnceAnyLinkage;
1992   case lltok::kw_linkonce_odr:
1993     return GlobalValue::LinkOnceODRLinkage;
1994   case lltok::kw_available_externally:
1995     return GlobalValue::AvailableExternallyLinkage;
1996   case lltok::kw_appending:
1997     return GlobalValue::AppendingLinkage;
1998   case lltok::kw_common:
1999     return GlobalValue::CommonLinkage;
2000   case lltok::kw_extern_weak:
2001     return GlobalValue::ExternalWeakLinkage;
2002   case lltok::kw_external:
2003     return GlobalValue::ExternalLinkage;
2004   }
2005 }
2006 
2007 /// parseOptionalLinkage
2008 ///   ::= /*empty*/
2009 ///   ::= 'private'
2010 ///   ::= 'internal'
2011 ///   ::= 'weak'
2012 ///   ::= 'weak_odr'
2013 ///   ::= 'linkonce'
2014 ///   ::= 'linkonce_odr'
2015 ///   ::= 'available_externally'
2016 ///   ::= 'appending'
2017 ///   ::= 'common'
2018 ///   ::= 'extern_weak'
2019 ///   ::= 'external'
parseOptionalLinkage(unsigned & Res,bool & HasLinkage,unsigned & Visibility,unsigned & DLLStorageClass,bool & DSOLocal)2020 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
2021                                     unsigned &Visibility,
2022                                     unsigned &DLLStorageClass, bool &DSOLocal) {
2023   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
2024   if (HasLinkage)
2025     Lex.Lex();
2026   parseOptionalDSOLocal(DSOLocal);
2027   parseOptionalVisibility(Visibility);
2028   parseOptionalDLLStorageClass(DLLStorageClass);
2029 
2030   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2031     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2032   }
2033 
2034   return false;
2035 }
2036 
parseOptionalDSOLocal(bool & DSOLocal)2037 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2038   switch (Lex.getKind()) {
2039   default:
2040     DSOLocal = false;
2041     break;
2042   case lltok::kw_dso_local:
2043     DSOLocal = true;
2044     Lex.Lex();
2045     break;
2046   case lltok::kw_dso_preemptable:
2047     DSOLocal = false;
2048     Lex.Lex();
2049     break;
2050   }
2051 }
2052 
2053 /// parseOptionalVisibility
2054 ///   ::= /*empty*/
2055 ///   ::= 'default'
2056 ///   ::= 'hidden'
2057 ///   ::= 'protected'
2058 ///
parseOptionalVisibility(unsigned & Res)2059 void LLParser::parseOptionalVisibility(unsigned &Res) {
2060   switch (Lex.getKind()) {
2061   default:
2062     Res = GlobalValue::DefaultVisibility;
2063     return;
2064   case lltok::kw_default:
2065     Res = GlobalValue::DefaultVisibility;
2066     break;
2067   case lltok::kw_hidden:
2068     Res = GlobalValue::HiddenVisibility;
2069     break;
2070   case lltok::kw_protected:
2071     Res = GlobalValue::ProtectedVisibility;
2072     break;
2073   }
2074   Lex.Lex();
2075 }
2076 
2077 /// parseOptionalDLLStorageClass
2078 ///   ::= /*empty*/
2079 ///   ::= 'dllimport'
2080 ///   ::= 'dllexport'
2081 ///
parseOptionalDLLStorageClass(unsigned & Res)2082 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2083   switch (Lex.getKind()) {
2084   default:
2085     Res = GlobalValue::DefaultStorageClass;
2086     return;
2087   case lltok::kw_dllimport:
2088     Res = GlobalValue::DLLImportStorageClass;
2089     break;
2090   case lltok::kw_dllexport:
2091     Res = GlobalValue::DLLExportStorageClass;
2092     break;
2093   }
2094   Lex.Lex();
2095 }
2096 
2097 /// parseOptionalCallingConv
2098 ///   ::= /*empty*/
2099 ///   ::= 'ccc'
2100 ///   ::= 'fastcc'
2101 ///   ::= 'intel_ocl_bicc'
2102 ///   ::= 'coldcc'
2103 ///   ::= 'cfguard_checkcc'
2104 ///   ::= 'x86_stdcallcc'
2105 ///   ::= 'x86_fastcallcc'
2106 ///   ::= 'x86_thiscallcc'
2107 ///   ::= 'x86_vectorcallcc'
2108 ///   ::= 'arm_apcscc'
2109 ///   ::= 'arm_aapcscc'
2110 ///   ::= 'arm_aapcs_vfpcc'
2111 ///   ::= 'aarch64_vector_pcs'
2112 ///   ::= 'aarch64_sve_vector_pcs'
2113 ///   ::= 'msp430_intrcc'
2114 ///   ::= 'avr_intrcc'
2115 ///   ::= 'avr_signalcc'
2116 ///   ::= 'ptx_kernel'
2117 ///   ::= 'ptx_device'
2118 ///   ::= 'spir_func'
2119 ///   ::= 'spir_kernel'
2120 ///   ::= 'x86_64_sysvcc'
2121 ///   ::= 'win64cc'
2122 ///   ::= 'webkit_jscc'
2123 ///   ::= 'anyregcc'
2124 ///   ::= 'preserve_mostcc'
2125 ///   ::= 'preserve_allcc'
2126 ///   ::= 'ghccc'
2127 ///   ::= 'swiftcc'
2128 ///   ::= 'swifttailcc'
2129 ///   ::= 'x86_intrcc'
2130 ///   ::= 'hhvmcc'
2131 ///   ::= 'hhvm_ccc'
2132 ///   ::= 'cxx_fast_tlscc'
2133 ///   ::= 'amdgpu_vs'
2134 ///   ::= 'amdgpu_ls'
2135 ///   ::= 'amdgpu_hs'
2136 ///   ::= 'amdgpu_es'
2137 ///   ::= 'amdgpu_gs'
2138 ///   ::= 'amdgpu_ps'
2139 ///   ::= 'amdgpu_cs'
2140 ///   ::= 'amdgpu_kernel'
2141 ///   ::= 'tailcc'
2142 ///   ::= 'cc' UINT
2143 ///
parseOptionalCallingConv(unsigned & CC)2144 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2145   switch (Lex.getKind()) {
2146   default:                       CC = CallingConv::C; return false;
2147   case lltok::kw_ccc:            CC = CallingConv::C; break;
2148   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2149   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2150   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2151   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2152   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2153   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2154   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2155   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2156   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2157   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2158   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2159   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2160   case lltok::kw_aarch64_sve_vector_pcs:
2161     CC = CallingConv::AArch64_SVE_VectorCall;
2162     break;
2163   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2164   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2165   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2166   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2167   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2168   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2169   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2170   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2171   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2172   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2173   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2174   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2175   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2176   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2177   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2178   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2179   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
2180   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2181   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2182   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2183   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2184   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2185   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2186   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2187   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2188   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2189   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2190   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2191   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2192   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2193   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2194   case lltok::kw_cc: {
2195       Lex.Lex();
2196       return parseUInt32(CC);
2197     }
2198   }
2199 
2200   Lex.Lex();
2201   return false;
2202 }
2203 
2204 /// parseMetadataAttachment
2205 ///   ::= !dbg !42
parseMetadataAttachment(unsigned & Kind,MDNode * & MD)2206 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2207   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2208 
2209   std::string Name = Lex.getStrVal();
2210   Kind = M->getMDKindID(Name);
2211   Lex.Lex();
2212 
2213   return parseMDNode(MD);
2214 }
2215 
2216 /// parseInstructionMetadata
2217 ///   ::= !dbg !42 (',' !dbg !57)*
parseInstructionMetadata(Instruction & Inst)2218 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2219   do {
2220     if (Lex.getKind() != lltok::MetadataVar)
2221       return tokError("expected metadata after comma");
2222 
2223     unsigned MDK;
2224     MDNode *N;
2225     if (parseMetadataAttachment(MDK, N))
2226       return true;
2227 
2228     Inst.setMetadata(MDK, N);
2229     if (MDK == LLVMContext::MD_tbaa)
2230       InstsWithTBAATag.push_back(&Inst);
2231 
2232     // If this is the end of the list, we're done.
2233   } while (EatIfPresent(lltok::comma));
2234   return false;
2235 }
2236 
2237 /// parseGlobalObjectMetadataAttachment
2238 ///   ::= !dbg !57
parseGlobalObjectMetadataAttachment(GlobalObject & GO)2239 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2240   unsigned MDK;
2241   MDNode *N;
2242   if (parseMetadataAttachment(MDK, N))
2243     return true;
2244 
2245   GO.addMetadata(MDK, *N);
2246   return false;
2247 }
2248 
2249 /// parseOptionalFunctionMetadata
2250 ///   ::= (!dbg !57)*
parseOptionalFunctionMetadata(Function & F)2251 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2252   while (Lex.getKind() == lltok::MetadataVar)
2253     if (parseGlobalObjectMetadataAttachment(F))
2254       return true;
2255   return false;
2256 }
2257 
2258 /// parseOptionalAlignment
2259 ///   ::= /* empty */
2260 ///   ::= 'align' 4
parseOptionalAlignment(MaybeAlign & Alignment,bool AllowParens)2261 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2262   Alignment = None;
2263   if (!EatIfPresent(lltok::kw_align))
2264     return false;
2265   LocTy AlignLoc = Lex.getLoc();
2266   uint32_t Value = 0;
2267 
2268   LocTy ParenLoc = Lex.getLoc();
2269   bool HaveParens = false;
2270   if (AllowParens) {
2271     if (EatIfPresent(lltok::lparen))
2272       HaveParens = true;
2273   }
2274 
2275   if (parseUInt32(Value))
2276     return true;
2277 
2278   if (HaveParens && !EatIfPresent(lltok::rparen))
2279     return error(ParenLoc, "expected ')'");
2280 
2281   if (!isPowerOf2_32(Value))
2282     return error(AlignLoc, "alignment is not a power of two");
2283   if (Value > Value::MaximumAlignment)
2284     return error(AlignLoc, "huge alignments are not supported yet");
2285   Alignment = Align(Value);
2286   return false;
2287 }
2288 
2289 /// parseOptionalDerefAttrBytes
2290 ///   ::= /* empty */
2291 ///   ::= AttrKind '(' 4 ')'
2292 ///
2293 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
parseOptionalDerefAttrBytes(lltok::Kind AttrKind,uint64_t & Bytes)2294 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2295                                            uint64_t &Bytes) {
2296   assert((AttrKind == lltok::kw_dereferenceable ||
2297           AttrKind == lltok::kw_dereferenceable_or_null) &&
2298          "contract!");
2299 
2300   Bytes = 0;
2301   if (!EatIfPresent(AttrKind))
2302     return false;
2303   LocTy ParenLoc = Lex.getLoc();
2304   if (!EatIfPresent(lltok::lparen))
2305     return error(ParenLoc, "expected '('");
2306   LocTy DerefLoc = Lex.getLoc();
2307   if (parseUInt64(Bytes))
2308     return true;
2309   ParenLoc = Lex.getLoc();
2310   if (!EatIfPresent(lltok::rparen))
2311     return error(ParenLoc, "expected ')'");
2312   if (!Bytes)
2313     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2314   return false;
2315 }
2316 
2317 /// parseOptionalCommaAlign
2318 ///   ::=
2319 ///   ::= ',' align 4
2320 ///
2321 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2322 /// end.
parseOptionalCommaAlign(MaybeAlign & Alignment,bool & AteExtraComma)2323 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2324                                        bool &AteExtraComma) {
2325   AteExtraComma = false;
2326   while (EatIfPresent(lltok::comma)) {
2327     // Metadata at the end is an early exit.
2328     if (Lex.getKind() == lltok::MetadataVar) {
2329       AteExtraComma = true;
2330       return false;
2331     }
2332 
2333     if (Lex.getKind() != lltok::kw_align)
2334       return error(Lex.getLoc(), "expected metadata or 'align'");
2335 
2336     if (parseOptionalAlignment(Alignment))
2337       return true;
2338   }
2339 
2340   return false;
2341 }
2342 
2343 /// parseOptionalCommaAddrSpace
2344 ///   ::=
2345 ///   ::= ',' addrspace(1)
2346 ///
2347 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2348 /// end.
parseOptionalCommaAddrSpace(unsigned & AddrSpace,LocTy & Loc,bool & AteExtraComma)2349 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2350                                            bool &AteExtraComma) {
2351   AteExtraComma = false;
2352   while (EatIfPresent(lltok::comma)) {
2353     // Metadata at the end is an early exit.
2354     if (Lex.getKind() == lltok::MetadataVar) {
2355       AteExtraComma = true;
2356       return false;
2357     }
2358 
2359     Loc = Lex.getLoc();
2360     if (Lex.getKind() != lltok::kw_addrspace)
2361       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2362 
2363     if (parseOptionalAddrSpace(AddrSpace))
2364       return true;
2365   }
2366 
2367   return false;
2368 }
2369 
parseAllocSizeArguments(unsigned & BaseSizeArg,Optional<unsigned> & HowManyArg)2370 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2371                                        Optional<unsigned> &HowManyArg) {
2372   Lex.Lex();
2373 
2374   auto StartParen = Lex.getLoc();
2375   if (!EatIfPresent(lltok::lparen))
2376     return error(StartParen, "expected '('");
2377 
2378   if (parseUInt32(BaseSizeArg))
2379     return true;
2380 
2381   if (EatIfPresent(lltok::comma)) {
2382     auto HowManyAt = Lex.getLoc();
2383     unsigned HowMany;
2384     if (parseUInt32(HowMany))
2385       return true;
2386     if (HowMany == BaseSizeArg)
2387       return error(HowManyAt,
2388                    "'allocsize' indices can't refer to the same parameter");
2389     HowManyArg = HowMany;
2390   } else
2391     HowManyArg = None;
2392 
2393   auto EndParen = Lex.getLoc();
2394   if (!EatIfPresent(lltok::rparen))
2395     return error(EndParen, "expected ')'");
2396   return false;
2397 }
2398 
parseVScaleRangeArguments(unsigned & MinValue,unsigned & MaxValue)2399 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2400                                          unsigned &MaxValue) {
2401   Lex.Lex();
2402 
2403   auto StartParen = Lex.getLoc();
2404   if (!EatIfPresent(lltok::lparen))
2405     return error(StartParen, "expected '('");
2406 
2407   if (parseUInt32(MinValue))
2408     return true;
2409 
2410   if (EatIfPresent(lltok::comma)) {
2411     if (parseUInt32(MaxValue))
2412       return true;
2413   } else
2414     MaxValue = MinValue;
2415 
2416   auto EndParen = Lex.getLoc();
2417   if (!EatIfPresent(lltok::rparen))
2418     return error(EndParen, "expected ')'");
2419   return false;
2420 }
2421 
2422 /// parseScopeAndOrdering
2423 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2424 ///   else: ::=
2425 ///
2426 /// This sets Scope and Ordering to the parsed values.
parseScopeAndOrdering(bool IsAtomic,SyncScope::ID & SSID,AtomicOrdering & Ordering)2427 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2428                                      AtomicOrdering &Ordering) {
2429   if (!IsAtomic)
2430     return false;
2431 
2432   return parseScope(SSID) || parseOrdering(Ordering);
2433 }
2434 
2435 /// parseScope
2436 ///   ::= syncscope("singlethread" | "<target scope>")?
2437 ///
2438 /// This sets synchronization scope ID to the ID of the parsed value.
parseScope(SyncScope::ID & SSID)2439 bool LLParser::parseScope(SyncScope::ID &SSID) {
2440   SSID = SyncScope::System;
2441   if (EatIfPresent(lltok::kw_syncscope)) {
2442     auto StartParenAt = Lex.getLoc();
2443     if (!EatIfPresent(lltok::lparen))
2444       return error(StartParenAt, "Expected '(' in syncscope");
2445 
2446     std::string SSN;
2447     auto SSNAt = Lex.getLoc();
2448     if (parseStringConstant(SSN))
2449       return error(SSNAt, "Expected synchronization scope name");
2450 
2451     auto EndParenAt = Lex.getLoc();
2452     if (!EatIfPresent(lltok::rparen))
2453       return error(EndParenAt, "Expected ')' in syncscope");
2454 
2455     SSID = Context.getOrInsertSyncScopeID(SSN);
2456   }
2457 
2458   return false;
2459 }
2460 
2461 /// parseOrdering
2462 ///   ::= AtomicOrdering
2463 ///
2464 /// This sets Ordering to the parsed value.
parseOrdering(AtomicOrdering & Ordering)2465 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2466   switch (Lex.getKind()) {
2467   default:
2468     return tokError("Expected ordering on atomic instruction");
2469   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2470   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2471   // Not specified yet:
2472   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2473   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2474   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2475   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2476   case lltok::kw_seq_cst:
2477     Ordering = AtomicOrdering::SequentiallyConsistent;
2478     break;
2479   }
2480   Lex.Lex();
2481   return false;
2482 }
2483 
2484 /// parseOptionalStackAlignment
2485 ///   ::= /* empty */
2486 ///   ::= 'alignstack' '(' 4 ')'
parseOptionalStackAlignment(unsigned & Alignment)2487 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2488   Alignment = 0;
2489   if (!EatIfPresent(lltok::kw_alignstack))
2490     return false;
2491   LocTy ParenLoc = Lex.getLoc();
2492   if (!EatIfPresent(lltok::lparen))
2493     return error(ParenLoc, "expected '('");
2494   LocTy AlignLoc = Lex.getLoc();
2495   if (parseUInt32(Alignment))
2496     return true;
2497   ParenLoc = Lex.getLoc();
2498   if (!EatIfPresent(lltok::rparen))
2499     return error(ParenLoc, "expected ')'");
2500   if (!isPowerOf2_32(Alignment))
2501     return error(AlignLoc, "stack alignment is not a power of two");
2502   return false;
2503 }
2504 
2505 /// parseIndexList - This parses the index list for an insert/extractvalue
2506 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2507 /// comma at the end of the line and find that it is followed by metadata.
2508 /// Clients that don't allow metadata can call the version of this function that
2509 /// only takes one argument.
2510 ///
2511 /// parseIndexList
2512 ///    ::=  (',' uint32)+
2513 ///
parseIndexList(SmallVectorImpl<unsigned> & Indices,bool & AteExtraComma)2514 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2515                               bool &AteExtraComma) {
2516   AteExtraComma = false;
2517 
2518   if (Lex.getKind() != lltok::comma)
2519     return tokError("expected ',' as start of index list");
2520 
2521   while (EatIfPresent(lltok::comma)) {
2522     if (Lex.getKind() == lltok::MetadataVar) {
2523       if (Indices.empty())
2524         return tokError("expected index");
2525       AteExtraComma = true;
2526       return false;
2527     }
2528     unsigned Idx = 0;
2529     if (parseUInt32(Idx))
2530       return true;
2531     Indices.push_back(Idx);
2532   }
2533 
2534   return false;
2535 }
2536 
2537 //===----------------------------------------------------------------------===//
2538 // Type Parsing.
2539 //===----------------------------------------------------------------------===//
2540 
2541 /// parseType - parse a type.
parseType(Type * & Result,const Twine & Msg,bool AllowVoid)2542 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2543   SMLoc TypeLoc = Lex.getLoc();
2544   switch (Lex.getKind()) {
2545   default:
2546     return tokError(Msg);
2547   case lltok::Type:
2548     // Type ::= 'float' | 'void' (etc)
2549     Result = Lex.getTyVal();
2550     Lex.Lex();
2551     break;
2552   case lltok::lbrace:
2553     // Type ::= StructType
2554     if (parseAnonStructType(Result, false))
2555       return true;
2556     break;
2557   case lltok::lsquare:
2558     // Type ::= '[' ... ']'
2559     Lex.Lex(); // eat the lsquare.
2560     if (parseArrayVectorType(Result, false))
2561       return true;
2562     break;
2563   case lltok::less: // Either vector or packed struct.
2564     // Type ::= '<' ... '>'
2565     Lex.Lex();
2566     if (Lex.getKind() == lltok::lbrace) {
2567       if (parseAnonStructType(Result, true) ||
2568           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2569         return true;
2570     } else if (parseArrayVectorType(Result, true))
2571       return true;
2572     break;
2573   case lltok::LocalVar: {
2574     // Type ::= %foo
2575     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2576 
2577     // If the type hasn't been defined yet, create a forward definition and
2578     // remember where that forward def'n was seen (in case it never is defined).
2579     if (!Entry.first) {
2580       Entry.first = StructType::create(Context, Lex.getStrVal());
2581       Entry.second = Lex.getLoc();
2582     }
2583     Result = Entry.first;
2584     Lex.Lex();
2585     break;
2586   }
2587 
2588   case lltok::LocalVarID: {
2589     // Type ::= %4
2590     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2591 
2592     // If the type hasn't been defined yet, create a forward definition and
2593     // remember where that forward def'n was seen (in case it never is defined).
2594     if (!Entry.first) {
2595       Entry.first = StructType::create(Context);
2596       Entry.second = Lex.getLoc();
2597     }
2598     Result = Entry.first;
2599     Lex.Lex();
2600     break;
2601   }
2602   }
2603 
2604   if (Result->isPointerTy() && cast<PointerType>(Result)->isOpaque()) {
2605     unsigned AddrSpace;
2606     if (parseOptionalAddrSpace(AddrSpace))
2607       return true;
2608     Result = PointerType::get(getContext(), AddrSpace);
2609   }
2610 
2611   // parse the type suffixes.
2612   while (true) {
2613     switch (Lex.getKind()) {
2614     // End of type.
2615     default:
2616       if (!AllowVoid && Result->isVoidTy())
2617         return error(TypeLoc, "void type only allowed for function results");
2618       return false;
2619 
2620     // Type ::= Type '*'
2621     case lltok::star:
2622       if (Result->isLabelTy())
2623         return tokError("basic block pointers are invalid");
2624       if (Result->isVoidTy())
2625         return tokError("pointers to void are invalid - use i8* instead");
2626       if (!PointerType::isValidElementType(Result))
2627         return tokError("pointer to this type is invalid");
2628       Result = PointerType::getUnqual(Result);
2629       Lex.Lex();
2630       break;
2631 
2632     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2633     case lltok::kw_addrspace: {
2634       if (Result->isLabelTy())
2635         return tokError("basic block pointers are invalid");
2636       if (Result->isVoidTy())
2637         return tokError("pointers to void are invalid; use i8* instead");
2638       if (!PointerType::isValidElementType(Result))
2639         return tokError("pointer to this type is invalid");
2640       unsigned AddrSpace;
2641       if (parseOptionalAddrSpace(AddrSpace) ||
2642           parseToken(lltok::star, "expected '*' in address space"))
2643         return true;
2644 
2645       Result = PointerType::get(Result, AddrSpace);
2646       break;
2647     }
2648 
2649     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2650     case lltok::lparen:
2651       if (parseFunctionType(Result))
2652         return true;
2653       break;
2654     }
2655   }
2656 }
2657 
2658 /// parseParameterList
2659 ///    ::= '(' ')'
2660 ///    ::= '(' Arg (',' Arg)* ')'
2661 ///  Arg
2662 ///    ::= Type OptionalAttributes Value OptionalAttributes
parseParameterList(SmallVectorImpl<ParamInfo> & ArgList,PerFunctionState & PFS,bool IsMustTailCall,bool InVarArgsFunc)2663 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2664                                   PerFunctionState &PFS, bool IsMustTailCall,
2665                                   bool InVarArgsFunc) {
2666   if (parseToken(lltok::lparen, "expected '(' in call"))
2667     return true;
2668 
2669   while (Lex.getKind() != lltok::rparen) {
2670     // If this isn't the first argument, we need a comma.
2671     if (!ArgList.empty() &&
2672         parseToken(lltok::comma, "expected ',' in argument list"))
2673       return true;
2674 
2675     // parse an ellipsis if this is a musttail call in a variadic function.
2676     if (Lex.getKind() == lltok::dotdotdot) {
2677       const char *Msg = "unexpected ellipsis in argument list for ";
2678       if (!IsMustTailCall)
2679         return tokError(Twine(Msg) + "non-musttail call");
2680       if (!InVarArgsFunc)
2681         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2682       Lex.Lex();  // Lex the '...', it is purely for readability.
2683       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2684     }
2685 
2686     // parse the argument.
2687     LocTy ArgLoc;
2688     Type *ArgTy = nullptr;
2689     AttrBuilder ArgAttrs;
2690     Value *V;
2691     if (parseType(ArgTy, ArgLoc))
2692       return true;
2693 
2694     if (ArgTy->isMetadataTy()) {
2695       if (parseMetadataAsValue(V, PFS))
2696         return true;
2697     } else {
2698       // Otherwise, handle normal operands.
2699       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2700         return true;
2701     }
2702     ArgList.push_back(ParamInfo(
2703         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2704   }
2705 
2706   if (IsMustTailCall && InVarArgsFunc)
2707     return tokError("expected '...' at end of argument list for musttail call "
2708                     "in varargs function");
2709 
2710   Lex.Lex();  // Lex the ')'.
2711   return false;
2712 }
2713 
2714 /// parseRequiredTypeAttr
2715 ///   ::= attrname(<ty>)
parseRequiredTypeAttr(Type * & Result,lltok::Kind AttrName)2716 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2717   Result = nullptr;
2718   if (!EatIfPresent(AttrName))
2719     return true;
2720   if (!EatIfPresent(lltok::lparen))
2721     return error(Lex.getLoc(), "expected '('");
2722   if (parseType(Result))
2723     return true;
2724   if (!EatIfPresent(lltok::rparen))
2725     return error(Lex.getLoc(), "expected ')'");
2726   return false;
2727 }
2728 
2729 /// parsePreallocated
2730 ///   ::= preallocated(<ty>)
parsePreallocated(Type * & Result)2731 bool LLParser::parsePreallocated(Type *&Result) {
2732   return parseRequiredTypeAttr(Result, lltok::kw_preallocated);
2733 }
2734 
2735 /// parseInalloca
2736 ///   ::= inalloca(<ty>)
parseInalloca(Type * & Result)2737 bool LLParser::parseInalloca(Type *&Result) {
2738   return parseRequiredTypeAttr(Result, lltok::kw_inalloca);
2739 }
2740 
2741 /// parseByRef
2742 ///   ::= byref(<type>)
parseByRef(Type * & Result)2743 bool LLParser::parseByRef(Type *&Result) {
2744   return parseRequiredTypeAttr(Result, lltok::kw_byref);
2745 }
2746 
2747 /// parseOptionalOperandBundles
2748 ///    ::= /*empty*/
2749 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2750 ///
2751 /// OperandBundle
2752 ///    ::= bundle-tag '(' ')'
2753 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2754 ///
2755 /// bundle-tag ::= String Constant
parseOptionalOperandBundles(SmallVectorImpl<OperandBundleDef> & BundleList,PerFunctionState & PFS)2756 bool LLParser::parseOptionalOperandBundles(
2757     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2758   LocTy BeginLoc = Lex.getLoc();
2759   if (!EatIfPresent(lltok::lsquare))
2760     return false;
2761 
2762   while (Lex.getKind() != lltok::rsquare) {
2763     // If this isn't the first operand bundle, we need a comma.
2764     if (!BundleList.empty() &&
2765         parseToken(lltok::comma, "expected ',' in input list"))
2766       return true;
2767 
2768     std::string Tag;
2769     if (parseStringConstant(Tag))
2770       return true;
2771 
2772     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2773       return true;
2774 
2775     std::vector<Value *> Inputs;
2776     while (Lex.getKind() != lltok::rparen) {
2777       // If this isn't the first input, we need a comma.
2778       if (!Inputs.empty() &&
2779           parseToken(lltok::comma, "expected ',' in input list"))
2780         return true;
2781 
2782       Type *Ty = nullptr;
2783       Value *Input = nullptr;
2784       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2785         return true;
2786       Inputs.push_back(Input);
2787     }
2788 
2789     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2790 
2791     Lex.Lex(); // Lex the ')'.
2792   }
2793 
2794   if (BundleList.empty())
2795     return error(BeginLoc, "operand bundle set must not be empty");
2796 
2797   Lex.Lex(); // Lex the ']'.
2798   return false;
2799 }
2800 
2801 /// parseArgumentList - parse the argument list for a function type or function
2802 /// prototype.
2803 ///   ::= '(' ArgTypeListI ')'
2804 /// ArgTypeListI
2805 ///   ::= /*empty*/
2806 ///   ::= '...'
2807 ///   ::= ArgTypeList ',' '...'
2808 ///   ::= ArgType (',' ArgType)*
2809 ///
parseArgumentList(SmallVectorImpl<ArgInfo> & ArgList,bool & IsVarArg)2810 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2811                                  bool &IsVarArg) {
2812   unsigned CurValID = 0;
2813   IsVarArg = false;
2814   assert(Lex.getKind() == lltok::lparen);
2815   Lex.Lex(); // eat the (.
2816 
2817   if (Lex.getKind() == lltok::rparen) {
2818     // empty
2819   } else if (Lex.getKind() == lltok::dotdotdot) {
2820     IsVarArg = true;
2821     Lex.Lex();
2822   } else {
2823     LocTy TypeLoc = Lex.getLoc();
2824     Type *ArgTy = nullptr;
2825     AttrBuilder Attrs;
2826     std::string Name;
2827 
2828     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2829       return true;
2830 
2831     if (ArgTy->isVoidTy())
2832       return error(TypeLoc, "argument can not have void type");
2833 
2834     if (Lex.getKind() == lltok::LocalVar) {
2835       Name = Lex.getStrVal();
2836       Lex.Lex();
2837     } else if (Lex.getKind() == lltok::LocalVarID) {
2838       if (Lex.getUIntVal() != CurValID)
2839         return error(TypeLoc, "argument expected to be numbered '%" +
2840                                   Twine(CurValID) + "'");
2841       ++CurValID;
2842       Lex.Lex();
2843     }
2844 
2845     if (!FunctionType::isValidArgumentType(ArgTy))
2846       return error(TypeLoc, "invalid type for function argument");
2847 
2848     ArgList.emplace_back(TypeLoc, ArgTy,
2849                          AttributeSet::get(ArgTy->getContext(), Attrs),
2850                          std::move(Name));
2851 
2852     while (EatIfPresent(lltok::comma)) {
2853       // Handle ... at end of arg list.
2854       if (EatIfPresent(lltok::dotdotdot)) {
2855         IsVarArg = true;
2856         break;
2857       }
2858 
2859       // Otherwise must be an argument type.
2860       TypeLoc = Lex.getLoc();
2861       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2862         return true;
2863 
2864       if (ArgTy->isVoidTy())
2865         return error(TypeLoc, "argument can not have void type");
2866 
2867       if (Lex.getKind() == lltok::LocalVar) {
2868         Name = Lex.getStrVal();
2869         Lex.Lex();
2870       } else {
2871         if (Lex.getKind() == lltok::LocalVarID) {
2872           if (Lex.getUIntVal() != CurValID)
2873             return error(TypeLoc, "argument expected to be numbered '%" +
2874                                       Twine(CurValID) + "'");
2875           Lex.Lex();
2876         }
2877         ++CurValID;
2878         Name = "";
2879       }
2880 
2881       if (!ArgTy->isFirstClassType())
2882         return error(TypeLoc, "invalid type for function argument");
2883 
2884       ArgList.emplace_back(TypeLoc, ArgTy,
2885                            AttributeSet::get(ArgTy->getContext(), Attrs),
2886                            std::move(Name));
2887     }
2888   }
2889 
2890   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2891 }
2892 
2893 /// parseFunctionType
2894 ///  ::= Type ArgumentList OptionalAttrs
parseFunctionType(Type * & Result)2895 bool LLParser::parseFunctionType(Type *&Result) {
2896   assert(Lex.getKind() == lltok::lparen);
2897 
2898   if (!FunctionType::isValidReturnType(Result))
2899     return tokError("invalid function return type");
2900 
2901   SmallVector<ArgInfo, 8> ArgList;
2902   bool IsVarArg;
2903   if (parseArgumentList(ArgList, IsVarArg))
2904     return true;
2905 
2906   // Reject names on the arguments lists.
2907   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2908     if (!ArgList[i].Name.empty())
2909       return error(ArgList[i].Loc, "argument name invalid in function type");
2910     if (ArgList[i].Attrs.hasAttributes())
2911       return error(ArgList[i].Loc,
2912                    "argument attributes invalid in function type");
2913   }
2914 
2915   SmallVector<Type*, 16> ArgListTy;
2916   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2917     ArgListTy.push_back(ArgList[i].Ty);
2918 
2919   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2920   return false;
2921 }
2922 
2923 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2924 /// other structs.
parseAnonStructType(Type * & Result,bool Packed)2925 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2926   SmallVector<Type*, 8> Elts;
2927   if (parseStructBody(Elts))
2928     return true;
2929 
2930   Result = StructType::get(Context, Elts, Packed);
2931   return false;
2932 }
2933 
2934 /// parseStructDefinition - parse a struct in a 'type' definition.
parseStructDefinition(SMLoc TypeLoc,StringRef Name,std::pair<Type *,LocTy> & Entry,Type * & ResultTy)2935 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2936                                      std::pair<Type *, LocTy> &Entry,
2937                                      Type *&ResultTy) {
2938   // If the type was already defined, diagnose the redefinition.
2939   if (Entry.first && !Entry.second.isValid())
2940     return error(TypeLoc, "redefinition of type");
2941 
2942   // If we have opaque, just return without filling in the definition for the
2943   // struct.  This counts as a definition as far as the .ll file goes.
2944   if (EatIfPresent(lltok::kw_opaque)) {
2945     // This type is being defined, so clear the location to indicate this.
2946     Entry.second = SMLoc();
2947 
2948     // If this type number has never been uttered, create it.
2949     if (!Entry.first)
2950       Entry.first = StructType::create(Context, Name);
2951     ResultTy = Entry.first;
2952     return false;
2953   }
2954 
2955   // If the type starts with '<', then it is either a packed struct or a vector.
2956   bool isPacked = EatIfPresent(lltok::less);
2957 
2958   // If we don't have a struct, then we have a random type alias, which we
2959   // accept for compatibility with old files.  These types are not allowed to be
2960   // forward referenced and not allowed to be recursive.
2961   if (Lex.getKind() != lltok::lbrace) {
2962     if (Entry.first)
2963       return error(TypeLoc, "forward references to non-struct type");
2964 
2965     ResultTy = nullptr;
2966     if (isPacked)
2967       return parseArrayVectorType(ResultTy, true);
2968     return parseType(ResultTy);
2969   }
2970 
2971   // This type is being defined, so clear the location to indicate this.
2972   Entry.second = SMLoc();
2973 
2974   // If this type number has never been uttered, create it.
2975   if (!Entry.first)
2976     Entry.first = StructType::create(Context, Name);
2977 
2978   StructType *STy = cast<StructType>(Entry.first);
2979 
2980   SmallVector<Type*, 8> Body;
2981   if (parseStructBody(Body) ||
2982       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2983     return true;
2984 
2985   STy->setBody(Body, isPacked);
2986   ResultTy = STy;
2987   return false;
2988 }
2989 
2990 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2991 ///   StructType
2992 ///     ::= '{' '}'
2993 ///     ::= '{' Type (',' Type)* '}'
2994 ///     ::= '<' '{' '}' '>'
2995 ///     ::= '<' '{' Type (',' Type)* '}' '>'
parseStructBody(SmallVectorImpl<Type * > & Body)2996 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2997   assert(Lex.getKind() == lltok::lbrace);
2998   Lex.Lex(); // Consume the '{'
2999 
3000   // Handle the empty struct.
3001   if (EatIfPresent(lltok::rbrace))
3002     return false;
3003 
3004   LocTy EltTyLoc = Lex.getLoc();
3005   Type *Ty = nullptr;
3006   if (parseType(Ty))
3007     return true;
3008   Body.push_back(Ty);
3009 
3010   if (!StructType::isValidElementType(Ty))
3011     return error(EltTyLoc, "invalid element type for struct");
3012 
3013   while (EatIfPresent(lltok::comma)) {
3014     EltTyLoc = Lex.getLoc();
3015     if (parseType(Ty))
3016       return true;
3017 
3018     if (!StructType::isValidElementType(Ty))
3019       return error(EltTyLoc, "invalid element type for struct");
3020 
3021     Body.push_back(Ty);
3022   }
3023 
3024   return parseToken(lltok::rbrace, "expected '}' at end of struct");
3025 }
3026 
3027 /// parseArrayVectorType - parse an array or vector type, assuming the first
3028 /// token has already been consumed.
3029 ///   Type
3030 ///     ::= '[' APSINTVAL 'x' Types ']'
3031 ///     ::= '<' APSINTVAL 'x' Types '>'
3032 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
parseArrayVectorType(Type * & Result,bool IsVector)3033 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3034   bool Scalable = false;
3035 
3036   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3037     Lex.Lex(); // consume the 'vscale'
3038     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3039       return true;
3040 
3041     Scalable = true;
3042   }
3043 
3044   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3045       Lex.getAPSIntVal().getBitWidth() > 64)
3046     return tokError("expected number in address space");
3047 
3048   LocTy SizeLoc = Lex.getLoc();
3049   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3050   Lex.Lex();
3051 
3052   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3053     return true;
3054 
3055   LocTy TypeLoc = Lex.getLoc();
3056   Type *EltTy = nullptr;
3057   if (parseType(EltTy))
3058     return true;
3059 
3060   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3061                  "expected end of sequential type"))
3062     return true;
3063 
3064   if (IsVector) {
3065     if (Size == 0)
3066       return error(SizeLoc, "zero element vector is illegal");
3067     if ((unsigned)Size != Size)
3068       return error(SizeLoc, "size too large for vector");
3069     if (!VectorType::isValidElementType(EltTy))
3070       return error(TypeLoc, "invalid vector element type");
3071     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3072   } else {
3073     if (!ArrayType::isValidElementType(EltTy))
3074       return error(TypeLoc, "invalid array element type");
3075     Result = ArrayType::get(EltTy, Size);
3076   }
3077   return false;
3078 }
3079 
3080 //===----------------------------------------------------------------------===//
3081 // Function Semantic Analysis.
3082 //===----------------------------------------------------------------------===//
3083 
PerFunctionState(LLParser & p,Function & f,int functionNumber)3084 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3085                                              int functionNumber)
3086   : P(p), F(f), FunctionNumber(functionNumber) {
3087 
3088   // Insert unnamed arguments into the NumberedVals list.
3089   for (Argument &A : F.args())
3090     if (!A.hasName())
3091       NumberedVals.push_back(&A);
3092 }
3093 
~PerFunctionState()3094 LLParser::PerFunctionState::~PerFunctionState() {
3095   // If there were any forward referenced non-basicblock values, delete them.
3096 
3097   for (const auto &P : ForwardRefVals) {
3098     if (isa<BasicBlock>(P.second.first))
3099       continue;
3100     P.second.first->replaceAllUsesWith(
3101         UndefValue::get(P.second.first->getType()));
3102     P.second.first->deleteValue();
3103   }
3104 
3105   for (const auto &P : ForwardRefValIDs) {
3106     if (isa<BasicBlock>(P.second.first))
3107       continue;
3108     P.second.first->replaceAllUsesWith(
3109         UndefValue::get(P.second.first->getType()));
3110     P.second.first->deleteValue();
3111   }
3112 }
3113 
finishFunction()3114 bool LLParser::PerFunctionState::finishFunction() {
3115   if (!ForwardRefVals.empty())
3116     return P.error(ForwardRefVals.begin()->second.second,
3117                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3118                        "'");
3119   if (!ForwardRefValIDs.empty())
3120     return P.error(ForwardRefValIDs.begin()->second.second,
3121                    "use of undefined value '%" +
3122                        Twine(ForwardRefValIDs.begin()->first) + "'");
3123   return false;
3124 }
3125 
3126 /// getVal - Get a value with the specified name or ID, creating a
3127 /// forward reference record if needed.  This can return null if the value
3128 /// exists but does not have the right type.
getVal(const std::string & Name,Type * Ty,LocTy Loc,bool IsCall)3129 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3130                                           LocTy Loc, bool IsCall) {
3131   // Look this name up in the normal function symbol table.
3132   Value *Val = F.getValueSymbolTable()->lookup(Name);
3133 
3134   // If this is a forward reference for the value, see if we already created a
3135   // forward ref record.
3136   if (!Val) {
3137     auto I = ForwardRefVals.find(Name);
3138     if (I != ForwardRefVals.end())
3139       Val = I->second.first;
3140   }
3141 
3142   // If we have the value in the symbol table or fwd-ref table, return it.
3143   if (Val)
3144     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3145 
3146   // Don't make placeholders with invalid type.
3147   if (!Ty->isFirstClassType()) {
3148     P.error(Loc, "invalid use of a non-first-class type");
3149     return nullptr;
3150   }
3151 
3152   // Otherwise, create a new forward reference for this value and remember it.
3153   Value *FwdVal;
3154   if (Ty->isLabelTy()) {
3155     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3156   } else {
3157     FwdVal = new Argument(Ty, Name);
3158   }
3159 
3160   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3161   return FwdVal;
3162 }
3163 
getVal(unsigned ID,Type * Ty,LocTy Loc,bool IsCall)3164 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3165                                           bool IsCall) {
3166   // Look this name up in the normal function symbol table.
3167   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3168 
3169   // If this is a forward reference for the value, see if we already created a
3170   // forward ref record.
3171   if (!Val) {
3172     auto I = ForwardRefValIDs.find(ID);
3173     if (I != ForwardRefValIDs.end())
3174       Val = I->second.first;
3175   }
3176 
3177   // If we have the value in the symbol table or fwd-ref table, return it.
3178   if (Val)
3179     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3180 
3181   if (!Ty->isFirstClassType()) {
3182     P.error(Loc, "invalid use of a non-first-class type");
3183     return nullptr;
3184   }
3185 
3186   // Otherwise, create a new forward reference for this value and remember it.
3187   Value *FwdVal;
3188   if (Ty->isLabelTy()) {
3189     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3190   } else {
3191     FwdVal = new Argument(Ty);
3192   }
3193 
3194   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3195   return FwdVal;
3196 }
3197 
3198 /// setInstName - After an instruction is parsed and inserted into its
3199 /// basic block, this installs its name.
setInstName(int NameID,const std::string & NameStr,LocTy NameLoc,Instruction * Inst)3200 bool LLParser::PerFunctionState::setInstName(int NameID,
3201                                              const std::string &NameStr,
3202                                              LocTy NameLoc, Instruction *Inst) {
3203   // If this instruction has void type, it cannot have a name or ID specified.
3204   if (Inst->getType()->isVoidTy()) {
3205     if (NameID != -1 || !NameStr.empty())
3206       return P.error(NameLoc, "instructions returning void cannot have a name");
3207     return false;
3208   }
3209 
3210   // If this was a numbered instruction, verify that the instruction is the
3211   // expected value and resolve any forward references.
3212   if (NameStr.empty()) {
3213     // If neither a name nor an ID was specified, just use the next ID.
3214     if (NameID == -1)
3215       NameID = NumberedVals.size();
3216 
3217     if (unsigned(NameID) != NumberedVals.size())
3218       return P.error(NameLoc, "instruction expected to be numbered '%" +
3219                                   Twine(NumberedVals.size()) + "'");
3220 
3221     auto FI = ForwardRefValIDs.find(NameID);
3222     if (FI != ForwardRefValIDs.end()) {
3223       Value *Sentinel = FI->second.first;
3224       if (Sentinel->getType() != Inst->getType())
3225         return P.error(NameLoc, "instruction forward referenced with type '" +
3226                                     getTypeString(FI->second.first->getType()) +
3227                                     "'");
3228 
3229       Sentinel->replaceAllUsesWith(Inst);
3230       Sentinel->deleteValue();
3231       ForwardRefValIDs.erase(FI);
3232     }
3233 
3234     NumberedVals.push_back(Inst);
3235     return false;
3236   }
3237 
3238   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3239   auto FI = ForwardRefVals.find(NameStr);
3240   if (FI != ForwardRefVals.end()) {
3241     Value *Sentinel = FI->second.first;
3242     if (Sentinel->getType() != Inst->getType())
3243       return P.error(NameLoc, "instruction forward referenced with type '" +
3244                                   getTypeString(FI->second.first->getType()) +
3245                                   "'");
3246 
3247     Sentinel->replaceAllUsesWith(Inst);
3248     Sentinel->deleteValue();
3249     ForwardRefVals.erase(FI);
3250   }
3251 
3252   // Set the name on the instruction.
3253   Inst->setName(NameStr);
3254 
3255   if (Inst->getName() != NameStr)
3256     return P.error(NameLoc, "multiple definition of local value named '" +
3257                                 NameStr + "'");
3258   return false;
3259 }
3260 
3261 /// getBB - Get a basic block with the specified name or ID, creating a
3262 /// forward reference record if needed.
getBB(const std::string & Name,LocTy Loc)3263 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3264                                               LocTy Loc) {
3265   return dyn_cast_or_null<BasicBlock>(
3266       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3267 }
3268 
getBB(unsigned ID,LocTy Loc)3269 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3270   return dyn_cast_or_null<BasicBlock>(
3271       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3272 }
3273 
3274 /// defineBB - Define the specified basic block, which is either named or
3275 /// unnamed.  If there is an error, this returns null otherwise it returns
3276 /// the block being defined.
defineBB(const std::string & Name,int NameID,LocTy Loc)3277 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3278                                                  int NameID, LocTy Loc) {
3279   BasicBlock *BB;
3280   if (Name.empty()) {
3281     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3282       P.error(Loc, "label expected to be numbered '" +
3283                        Twine(NumberedVals.size()) + "'");
3284       return nullptr;
3285     }
3286     BB = getBB(NumberedVals.size(), Loc);
3287     if (!BB) {
3288       P.error(Loc, "unable to create block numbered '" +
3289                        Twine(NumberedVals.size()) + "'");
3290       return nullptr;
3291     }
3292   } else {
3293     BB = getBB(Name, Loc);
3294     if (!BB) {
3295       P.error(Loc, "unable to create block named '" + Name + "'");
3296       return nullptr;
3297     }
3298   }
3299 
3300   // Move the block to the end of the function.  Forward ref'd blocks are
3301   // inserted wherever they happen to be referenced.
3302   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3303 
3304   // Remove the block from forward ref sets.
3305   if (Name.empty()) {
3306     ForwardRefValIDs.erase(NumberedVals.size());
3307     NumberedVals.push_back(BB);
3308   } else {
3309     // BB forward references are already in the function symbol table.
3310     ForwardRefVals.erase(Name);
3311   }
3312 
3313   return BB;
3314 }
3315 
3316 //===----------------------------------------------------------------------===//
3317 // Constants.
3318 //===----------------------------------------------------------------------===//
3319 
3320 /// parseValID - parse an abstract value that doesn't necessarily have a
3321 /// type implied.  For example, if we parse "4" we don't know what integer type
3322 /// it has.  The value will later be combined with its type and checked for
3323 /// sanity.  PFS is used to convert function-local operands of metadata (since
3324 /// metadata operands are not just parsed here but also converted to values).
3325 /// PFS can be null when we are not parsing metadata values inside a function.
parseValID(ValID & ID,PerFunctionState * PFS)3326 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) {
3327   ID.Loc = Lex.getLoc();
3328   switch (Lex.getKind()) {
3329   default:
3330     return tokError("expected value token");
3331   case lltok::GlobalID:  // @42
3332     ID.UIntVal = Lex.getUIntVal();
3333     ID.Kind = ValID::t_GlobalID;
3334     break;
3335   case lltok::GlobalVar:  // @foo
3336     ID.StrVal = Lex.getStrVal();
3337     ID.Kind = ValID::t_GlobalName;
3338     break;
3339   case lltok::LocalVarID:  // %42
3340     ID.UIntVal = Lex.getUIntVal();
3341     ID.Kind = ValID::t_LocalID;
3342     break;
3343   case lltok::LocalVar:  // %foo
3344     ID.StrVal = Lex.getStrVal();
3345     ID.Kind = ValID::t_LocalName;
3346     break;
3347   case lltok::APSInt:
3348     ID.APSIntVal = Lex.getAPSIntVal();
3349     ID.Kind = ValID::t_APSInt;
3350     break;
3351   case lltok::APFloat:
3352     ID.APFloatVal = Lex.getAPFloatVal();
3353     ID.Kind = ValID::t_APFloat;
3354     break;
3355   case lltok::kw_true:
3356     ID.ConstantVal = ConstantInt::getTrue(Context);
3357     ID.Kind = ValID::t_Constant;
3358     break;
3359   case lltok::kw_false:
3360     ID.ConstantVal = ConstantInt::getFalse(Context);
3361     ID.Kind = ValID::t_Constant;
3362     break;
3363   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3364   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3365   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3366   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3367   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3368 
3369   case lltok::lbrace: {
3370     // ValID ::= '{' ConstVector '}'
3371     Lex.Lex();
3372     SmallVector<Constant*, 16> Elts;
3373     if (parseGlobalValueVector(Elts) ||
3374         parseToken(lltok::rbrace, "expected end of struct constant"))
3375       return true;
3376 
3377     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3378     ID.UIntVal = Elts.size();
3379     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3380            Elts.size() * sizeof(Elts[0]));
3381     ID.Kind = ValID::t_ConstantStruct;
3382     return false;
3383   }
3384   case lltok::less: {
3385     // ValID ::= '<' ConstVector '>'         --> Vector.
3386     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3387     Lex.Lex();
3388     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3389 
3390     SmallVector<Constant*, 16> Elts;
3391     LocTy FirstEltLoc = Lex.getLoc();
3392     if (parseGlobalValueVector(Elts) ||
3393         (isPackedStruct &&
3394          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3395         parseToken(lltok::greater, "expected end of constant"))
3396       return true;
3397 
3398     if (isPackedStruct) {
3399       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3400       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3401              Elts.size() * sizeof(Elts[0]));
3402       ID.UIntVal = Elts.size();
3403       ID.Kind = ValID::t_PackedConstantStruct;
3404       return false;
3405     }
3406 
3407     if (Elts.empty())
3408       return error(ID.Loc, "constant vector must not be empty");
3409 
3410     if (!Elts[0]->getType()->isIntegerTy() &&
3411         !Elts[0]->getType()->isFloatingPointTy() &&
3412         !Elts[0]->getType()->isPointerTy())
3413       return error(
3414           FirstEltLoc,
3415           "vector elements must have integer, pointer or floating point type");
3416 
3417     // Verify that all the vector elements have the same type.
3418     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3419       if (Elts[i]->getType() != Elts[0]->getType())
3420         return error(FirstEltLoc, "vector element #" + Twine(i) +
3421                                       " is not of type '" +
3422                                       getTypeString(Elts[0]->getType()));
3423 
3424     ID.ConstantVal = ConstantVector::get(Elts);
3425     ID.Kind = ValID::t_Constant;
3426     return false;
3427   }
3428   case lltok::lsquare: {   // Array Constant
3429     Lex.Lex();
3430     SmallVector<Constant*, 16> Elts;
3431     LocTy FirstEltLoc = Lex.getLoc();
3432     if (parseGlobalValueVector(Elts) ||
3433         parseToken(lltok::rsquare, "expected end of array constant"))
3434       return true;
3435 
3436     // Handle empty element.
3437     if (Elts.empty()) {
3438       // Use undef instead of an array because it's inconvenient to determine
3439       // the element type at this point, there being no elements to examine.
3440       ID.Kind = ValID::t_EmptyArray;
3441       return false;
3442     }
3443 
3444     if (!Elts[0]->getType()->isFirstClassType())
3445       return error(FirstEltLoc, "invalid array element type: " +
3446                                     getTypeString(Elts[0]->getType()));
3447 
3448     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3449 
3450     // Verify all elements are correct type!
3451     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3452       if (Elts[i]->getType() != Elts[0]->getType())
3453         return error(FirstEltLoc, "array element #" + Twine(i) +
3454                                       " is not of type '" +
3455                                       getTypeString(Elts[0]->getType()));
3456     }
3457 
3458     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3459     ID.Kind = ValID::t_Constant;
3460     return false;
3461   }
3462   case lltok::kw_c:  // c "foo"
3463     Lex.Lex();
3464     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3465                                                   false);
3466     if (parseToken(lltok::StringConstant, "expected string"))
3467       return true;
3468     ID.Kind = ValID::t_Constant;
3469     return false;
3470 
3471   case lltok::kw_asm: {
3472     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3473     //             STRINGCONSTANT
3474     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3475     Lex.Lex();
3476     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3477         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3478         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3479         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3480         parseStringConstant(ID.StrVal) ||
3481         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3482         parseToken(lltok::StringConstant, "expected constraint string"))
3483       return true;
3484     ID.StrVal2 = Lex.getStrVal();
3485     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3486                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3487     ID.Kind = ValID::t_InlineAsm;
3488     return false;
3489   }
3490 
3491   case lltok::kw_blockaddress: {
3492     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3493     Lex.Lex();
3494 
3495     ValID Fn, Label;
3496 
3497     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3498         parseValID(Fn) ||
3499         parseToken(lltok::comma,
3500                    "expected comma in block address expression") ||
3501         parseValID(Label) ||
3502         parseToken(lltok::rparen, "expected ')' in block address expression"))
3503       return true;
3504 
3505     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3506       return error(Fn.Loc, "expected function name in blockaddress");
3507     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3508       return error(Label.Loc, "expected basic block name in blockaddress");
3509 
3510     // Try to find the function (but skip it if it's forward-referenced).
3511     GlobalValue *GV = nullptr;
3512     if (Fn.Kind == ValID::t_GlobalID) {
3513       if (Fn.UIntVal < NumberedVals.size())
3514         GV = NumberedVals[Fn.UIntVal];
3515     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3516       GV = M->getNamedValue(Fn.StrVal);
3517     }
3518     Function *F = nullptr;
3519     if (GV) {
3520       // Confirm that it's actually a function with a definition.
3521       if (!isa<Function>(GV))
3522         return error(Fn.Loc, "expected function name in blockaddress");
3523       F = cast<Function>(GV);
3524       if (F->isDeclaration())
3525         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3526     }
3527 
3528     if (!F) {
3529       // Make a global variable as a placeholder for this reference.
3530       GlobalValue *&FwdRef =
3531           ForwardRefBlockAddresses.insert(std::make_pair(
3532                                               std::move(Fn),
3533                                               std::map<ValID, GlobalValue *>()))
3534               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3535               .first->second;
3536       if (!FwdRef)
3537         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3538                                     GlobalValue::InternalLinkage, nullptr, "");
3539       ID.ConstantVal = FwdRef;
3540       ID.Kind = ValID::t_Constant;
3541       return false;
3542     }
3543 
3544     // We found the function; now find the basic block.  Don't use PFS, since we
3545     // might be inside a constant expression.
3546     BasicBlock *BB;
3547     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3548       if (Label.Kind == ValID::t_LocalID)
3549         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3550       else
3551         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3552       if (!BB)
3553         return error(Label.Loc, "referenced value is not a basic block");
3554     } else {
3555       if (Label.Kind == ValID::t_LocalID)
3556         return error(Label.Loc, "cannot take address of numeric label after "
3557                                 "the function is defined");
3558       BB = dyn_cast_or_null<BasicBlock>(
3559           F->getValueSymbolTable()->lookup(Label.StrVal));
3560       if (!BB)
3561         return error(Label.Loc, "referenced value is not a basic block");
3562     }
3563 
3564     ID.ConstantVal = BlockAddress::get(F, BB);
3565     ID.Kind = ValID::t_Constant;
3566     return false;
3567   }
3568 
3569   case lltok::kw_dso_local_equivalent: {
3570     // ValID ::= 'dso_local_equivalent' @foo
3571     Lex.Lex();
3572 
3573     ValID Fn;
3574 
3575     if (parseValID(Fn))
3576       return true;
3577 
3578     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3579       return error(Fn.Loc,
3580                    "expected global value name in dso_local_equivalent");
3581 
3582     // Try to find the function (but skip it if it's forward-referenced).
3583     GlobalValue *GV = nullptr;
3584     if (Fn.Kind == ValID::t_GlobalID) {
3585       if (Fn.UIntVal < NumberedVals.size())
3586         GV = NumberedVals[Fn.UIntVal];
3587     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3588       GV = M->getNamedValue(Fn.StrVal);
3589     }
3590 
3591     assert(GV && "Could not find a corresponding global variable");
3592 
3593     if (!GV->getValueType()->isFunctionTy())
3594       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3595                            "in dso_local_equivalent");
3596 
3597     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3598     ID.Kind = ValID::t_Constant;
3599     return false;
3600   }
3601 
3602   case lltok::kw_trunc:
3603   case lltok::kw_zext:
3604   case lltok::kw_sext:
3605   case lltok::kw_fptrunc:
3606   case lltok::kw_fpext:
3607   case lltok::kw_bitcast:
3608   case lltok::kw_addrspacecast:
3609   case lltok::kw_uitofp:
3610   case lltok::kw_sitofp:
3611   case lltok::kw_fptoui:
3612   case lltok::kw_fptosi:
3613   case lltok::kw_inttoptr:
3614   case lltok::kw_ptrtoint: {
3615     unsigned Opc = Lex.getUIntVal();
3616     Type *DestTy = nullptr;
3617     Constant *SrcVal;
3618     Lex.Lex();
3619     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3620         parseGlobalTypeAndValue(SrcVal) ||
3621         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3622         parseType(DestTy) ||
3623         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3624       return true;
3625     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3626       return error(ID.Loc, "invalid cast opcode for cast from '" +
3627                                getTypeString(SrcVal->getType()) + "' to '" +
3628                                getTypeString(DestTy) + "'");
3629     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3630                                                  SrcVal, DestTy);
3631     ID.Kind = ValID::t_Constant;
3632     return false;
3633   }
3634   case lltok::kw_extractvalue: {
3635     Lex.Lex();
3636     Constant *Val;
3637     SmallVector<unsigned, 4> Indices;
3638     if (parseToken(lltok::lparen,
3639                    "expected '(' in extractvalue constantexpr") ||
3640         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3641         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3642       return true;
3643 
3644     if (!Val->getType()->isAggregateType())
3645       return error(ID.Loc, "extractvalue operand must be aggregate type");
3646     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3647       return error(ID.Loc, "invalid indices for extractvalue");
3648     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3649     ID.Kind = ValID::t_Constant;
3650     return false;
3651   }
3652   case lltok::kw_insertvalue: {
3653     Lex.Lex();
3654     Constant *Val0, *Val1;
3655     SmallVector<unsigned, 4> Indices;
3656     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3657         parseGlobalTypeAndValue(Val0) ||
3658         parseToken(lltok::comma,
3659                    "expected comma in insertvalue constantexpr") ||
3660         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3661         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3662       return true;
3663     if (!Val0->getType()->isAggregateType())
3664       return error(ID.Loc, "insertvalue operand must be aggregate type");
3665     Type *IndexedType =
3666         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3667     if (!IndexedType)
3668       return error(ID.Loc, "invalid indices for insertvalue");
3669     if (IndexedType != Val1->getType())
3670       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3671                                getTypeString(Val1->getType()) +
3672                                "' instead of '" + getTypeString(IndexedType) +
3673                                "'");
3674     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3675     ID.Kind = ValID::t_Constant;
3676     return false;
3677   }
3678   case lltok::kw_icmp:
3679   case lltok::kw_fcmp: {
3680     unsigned PredVal, Opc = Lex.getUIntVal();
3681     Constant *Val0, *Val1;
3682     Lex.Lex();
3683     if (parseCmpPredicate(PredVal, Opc) ||
3684         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3685         parseGlobalTypeAndValue(Val0) ||
3686         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3687         parseGlobalTypeAndValue(Val1) ||
3688         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3689       return true;
3690 
3691     if (Val0->getType() != Val1->getType())
3692       return error(ID.Loc, "compare operands must have the same type");
3693 
3694     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3695 
3696     if (Opc == Instruction::FCmp) {
3697       if (!Val0->getType()->isFPOrFPVectorTy())
3698         return error(ID.Loc, "fcmp requires floating point operands");
3699       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3700     } else {
3701       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3702       if (!Val0->getType()->isIntOrIntVectorTy() &&
3703           !Val0->getType()->isPtrOrPtrVectorTy())
3704         return error(ID.Loc, "icmp requires pointer or integer operands");
3705       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3706     }
3707     ID.Kind = ValID::t_Constant;
3708     return false;
3709   }
3710 
3711   // Unary Operators.
3712   case lltok::kw_fneg: {
3713     unsigned Opc = Lex.getUIntVal();
3714     Constant *Val;
3715     Lex.Lex();
3716     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3717         parseGlobalTypeAndValue(Val) ||
3718         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3719       return true;
3720 
3721     // Check that the type is valid for the operator.
3722     switch (Opc) {
3723     case Instruction::FNeg:
3724       if (!Val->getType()->isFPOrFPVectorTy())
3725         return error(ID.Loc, "constexpr requires fp operands");
3726       break;
3727     default: llvm_unreachable("Unknown unary operator!");
3728     }
3729     unsigned Flags = 0;
3730     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3731     ID.ConstantVal = C;
3732     ID.Kind = ValID::t_Constant;
3733     return false;
3734   }
3735   // Binary Operators.
3736   case lltok::kw_add:
3737   case lltok::kw_fadd:
3738   case lltok::kw_sub:
3739   case lltok::kw_fsub:
3740   case lltok::kw_mul:
3741   case lltok::kw_fmul:
3742   case lltok::kw_udiv:
3743   case lltok::kw_sdiv:
3744   case lltok::kw_fdiv:
3745   case lltok::kw_urem:
3746   case lltok::kw_srem:
3747   case lltok::kw_frem:
3748   case lltok::kw_shl:
3749   case lltok::kw_lshr:
3750   case lltok::kw_ashr: {
3751     bool NUW = false;
3752     bool NSW = false;
3753     bool Exact = false;
3754     unsigned Opc = Lex.getUIntVal();
3755     Constant *Val0, *Val1;
3756     Lex.Lex();
3757     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3758         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3759       if (EatIfPresent(lltok::kw_nuw))
3760         NUW = true;
3761       if (EatIfPresent(lltok::kw_nsw)) {
3762         NSW = true;
3763         if (EatIfPresent(lltok::kw_nuw))
3764           NUW = true;
3765       }
3766     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3767                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3768       if (EatIfPresent(lltok::kw_exact))
3769         Exact = true;
3770     }
3771     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3772         parseGlobalTypeAndValue(Val0) ||
3773         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3774         parseGlobalTypeAndValue(Val1) ||
3775         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3776       return true;
3777     if (Val0->getType() != Val1->getType())
3778       return error(ID.Loc, "operands of constexpr must have same type");
3779     // Check that the type is valid for the operator.
3780     switch (Opc) {
3781     case Instruction::Add:
3782     case Instruction::Sub:
3783     case Instruction::Mul:
3784     case Instruction::UDiv:
3785     case Instruction::SDiv:
3786     case Instruction::URem:
3787     case Instruction::SRem:
3788     case Instruction::Shl:
3789     case Instruction::AShr:
3790     case Instruction::LShr:
3791       if (!Val0->getType()->isIntOrIntVectorTy())
3792         return error(ID.Loc, "constexpr requires integer operands");
3793       break;
3794     case Instruction::FAdd:
3795     case Instruction::FSub:
3796     case Instruction::FMul:
3797     case Instruction::FDiv:
3798     case Instruction::FRem:
3799       if (!Val0->getType()->isFPOrFPVectorTy())
3800         return error(ID.Loc, "constexpr requires fp operands");
3801       break;
3802     default: llvm_unreachable("Unknown binary operator!");
3803     }
3804     unsigned Flags = 0;
3805     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3806     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3807     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3808     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3809     ID.ConstantVal = C;
3810     ID.Kind = ValID::t_Constant;
3811     return false;
3812   }
3813 
3814   // Logical Operations
3815   case lltok::kw_and:
3816   case lltok::kw_or:
3817   case lltok::kw_xor: {
3818     unsigned Opc = Lex.getUIntVal();
3819     Constant *Val0, *Val1;
3820     Lex.Lex();
3821     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3822         parseGlobalTypeAndValue(Val0) ||
3823         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3824         parseGlobalTypeAndValue(Val1) ||
3825         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3826       return true;
3827     if (Val0->getType() != Val1->getType())
3828       return error(ID.Loc, "operands of constexpr must have same type");
3829     if (!Val0->getType()->isIntOrIntVectorTy())
3830       return error(ID.Loc,
3831                    "constexpr requires integer or integer vector operands");
3832     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3833     ID.Kind = ValID::t_Constant;
3834     return false;
3835   }
3836 
3837   case lltok::kw_getelementptr:
3838   case lltok::kw_shufflevector:
3839   case lltok::kw_insertelement:
3840   case lltok::kw_extractelement:
3841   case lltok::kw_select: {
3842     unsigned Opc = Lex.getUIntVal();
3843     SmallVector<Constant*, 16> Elts;
3844     bool InBounds = false;
3845     Type *Ty;
3846     Lex.Lex();
3847 
3848     if (Opc == Instruction::GetElementPtr)
3849       InBounds = EatIfPresent(lltok::kw_inbounds);
3850 
3851     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3852       return true;
3853 
3854     LocTy ExplicitTypeLoc = Lex.getLoc();
3855     if (Opc == Instruction::GetElementPtr) {
3856       if (parseType(Ty) ||
3857           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3858         return true;
3859     }
3860 
3861     Optional<unsigned> InRangeOp;
3862     if (parseGlobalValueVector(
3863             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3864         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3865       return true;
3866 
3867     if (Opc == Instruction::GetElementPtr) {
3868       if (Elts.size() == 0 ||
3869           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3870         return error(ID.Loc, "base of getelementptr must be a pointer");
3871 
3872       Type *BaseType = Elts[0]->getType();
3873       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3874       if (Ty != BasePointerType->getElementType()) {
3875         return error(
3876             ExplicitTypeLoc,
3877             typeComparisonErrorMessage(
3878                 "explicit pointee type doesn't match operand's pointee type",
3879                 Ty, BasePointerType->getElementType()));
3880       }
3881 
3882       unsigned GEPWidth =
3883           BaseType->isVectorTy()
3884               ? cast<FixedVectorType>(BaseType)->getNumElements()
3885               : 0;
3886 
3887       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3888       for (Constant *Val : Indices) {
3889         Type *ValTy = Val->getType();
3890         if (!ValTy->isIntOrIntVectorTy())
3891           return error(ID.Loc, "getelementptr index must be an integer");
3892         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3893           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3894           if (GEPWidth && (ValNumEl != GEPWidth))
3895             return error(
3896                 ID.Loc,
3897                 "getelementptr vector index has a wrong number of elements");
3898           // GEPWidth may have been unknown because the base is a scalar,
3899           // but it is known now.
3900           GEPWidth = ValNumEl;
3901         }
3902       }
3903 
3904       SmallPtrSet<Type*, 4> Visited;
3905       if (!Indices.empty() && !Ty->isSized(&Visited))
3906         return error(ID.Loc, "base element of getelementptr must be sized");
3907 
3908       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3909         return error(ID.Loc, "invalid getelementptr indices");
3910 
3911       if (InRangeOp) {
3912         if (*InRangeOp == 0)
3913           return error(ID.Loc,
3914                        "inrange keyword may not appear on pointer operand");
3915         --*InRangeOp;
3916       }
3917 
3918       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3919                                                       InBounds, InRangeOp);
3920     } else if (Opc == Instruction::Select) {
3921       if (Elts.size() != 3)
3922         return error(ID.Loc, "expected three operands to select");
3923       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3924                                                               Elts[2]))
3925         return error(ID.Loc, Reason);
3926       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3927     } else if (Opc == Instruction::ShuffleVector) {
3928       if (Elts.size() != 3)
3929         return error(ID.Loc, "expected three operands to shufflevector");
3930       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3931         return error(ID.Loc, "invalid operands to shufflevector");
3932       SmallVector<int, 16> Mask;
3933       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3934       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3935     } else if (Opc == Instruction::ExtractElement) {
3936       if (Elts.size() != 2)
3937         return error(ID.Loc, "expected two operands to extractelement");
3938       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3939         return error(ID.Loc, "invalid extractelement operands");
3940       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3941     } else {
3942       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3943       if (Elts.size() != 3)
3944         return error(ID.Loc, "expected three operands to insertelement");
3945       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3946         return error(ID.Loc, "invalid insertelement operands");
3947       ID.ConstantVal =
3948                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3949     }
3950 
3951     ID.Kind = ValID::t_Constant;
3952     return false;
3953   }
3954   }
3955 
3956   Lex.Lex();
3957   return false;
3958 }
3959 
3960 /// parseGlobalValue - parse a global value with the specified type.
parseGlobalValue(Type * Ty,Constant * & C)3961 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3962   C = nullptr;
3963   ValID ID;
3964   Value *V = nullptr;
3965   bool Parsed = parseValID(ID) ||
3966                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3967   if (V && !(C = dyn_cast<Constant>(V)))
3968     return error(ID.Loc, "global values must be constants");
3969   return Parsed;
3970 }
3971 
parseGlobalTypeAndValue(Constant * & V)3972 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3973   Type *Ty = nullptr;
3974   return parseType(Ty) || parseGlobalValue(Ty, V);
3975 }
3976 
parseOptionalComdat(StringRef GlobalName,Comdat * & C)3977 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3978   C = nullptr;
3979 
3980   LocTy KwLoc = Lex.getLoc();
3981   if (!EatIfPresent(lltok::kw_comdat))
3982     return false;
3983 
3984   if (EatIfPresent(lltok::lparen)) {
3985     if (Lex.getKind() != lltok::ComdatVar)
3986       return tokError("expected comdat variable");
3987     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3988     Lex.Lex();
3989     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3990       return true;
3991   } else {
3992     if (GlobalName.empty())
3993       return tokError("comdat cannot be unnamed");
3994     C = getComdat(std::string(GlobalName), KwLoc);
3995   }
3996 
3997   return false;
3998 }
3999 
4000 /// parseGlobalValueVector
4001 ///   ::= /*empty*/
4002 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
parseGlobalValueVector(SmallVectorImpl<Constant * > & Elts,Optional<unsigned> * InRangeOp)4003 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
4004                                       Optional<unsigned> *InRangeOp) {
4005   // Empty list.
4006   if (Lex.getKind() == lltok::rbrace ||
4007       Lex.getKind() == lltok::rsquare ||
4008       Lex.getKind() == lltok::greater ||
4009       Lex.getKind() == lltok::rparen)
4010     return false;
4011 
4012   do {
4013     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
4014       *InRangeOp = Elts.size();
4015 
4016     Constant *C;
4017     if (parseGlobalTypeAndValue(C))
4018       return true;
4019     Elts.push_back(C);
4020   } while (EatIfPresent(lltok::comma));
4021 
4022   return false;
4023 }
4024 
parseMDTuple(MDNode * & MD,bool IsDistinct)4025 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4026   SmallVector<Metadata *, 16> Elts;
4027   if (parseMDNodeVector(Elts))
4028     return true;
4029 
4030   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4031   return false;
4032 }
4033 
4034 /// MDNode:
4035 ///  ::= !{ ... }
4036 ///  ::= !7
4037 ///  ::= !DILocation(...)
parseMDNode(MDNode * & N)4038 bool LLParser::parseMDNode(MDNode *&N) {
4039   if (Lex.getKind() == lltok::MetadataVar)
4040     return parseSpecializedMDNode(N);
4041 
4042   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4043 }
4044 
parseMDNodeTail(MDNode * & N)4045 bool LLParser::parseMDNodeTail(MDNode *&N) {
4046   // !{ ... }
4047   if (Lex.getKind() == lltok::lbrace)
4048     return parseMDTuple(N);
4049 
4050   // !42
4051   return parseMDNodeID(N);
4052 }
4053 
4054 namespace {
4055 
4056 /// Structure to represent an optional metadata field.
4057 template <class FieldTy> struct MDFieldImpl {
4058   typedef MDFieldImpl ImplTy;
4059   FieldTy Val;
4060   bool Seen;
4061 
assign__anon9931e35d0111::MDFieldImpl4062   void assign(FieldTy Val) {
4063     Seen = true;
4064     this->Val = std::move(Val);
4065   }
4066 
MDFieldImpl__anon9931e35d0111::MDFieldImpl4067   explicit MDFieldImpl(FieldTy Default)
4068       : Val(std::move(Default)), Seen(false) {}
4069 };
4070 
4071 /// Structure to represent an optional metadata field that
4072 /// can be of either type (A or B) and encapsulates the
4073 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4074 /// to reimplement the specifics for representing each Field.
4075 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4076   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4077   FieldTypeA A;
4078   FieldTypeB B;
4079   bool Seen;
4080 
4081   enum {
4082     IsInvalid = 0,
4083     IsTypeA = 1,
4084     IsTypeB = 2
4085   } WhatIs;
4086 
assign__anon9931e35d0111::MDEitherFieldImpl4087   void assign(FieldTypeA A) {
4088     Seen = true;
4089     this->A = std::move(A);
4090     WhatIs = IsTypeA;
4091   }
4092 
assign__anon9931e35d0111::MDEitherFieldImpl4093   void assign(FieldTypeB B) {
4094     Seen = true;
4095     this->B = std::move(B);
4096     WhatIs = IsTypeB;
4097   }
4098 
MDEitherFieldImpl__anon9931e35d0111::MDEitherFieldImpl4099   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4100       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4101         WhatIs(IsInvalid) {}
4102 };
4103 
4104 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4105   uint64_t Max;
4106 
MDUnsignedField__anon9931e35d0111::MDUnsignedField4107   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4108       : ImplTy(Default), Max(Max) {}
4109 };
4110 
4111 struct LineField : public MDUnsignedField {
LineField__anon9931e35d0111::LineField4112   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4113 };
4114 
4115 struct ColumnField : public MDUnsignedField {
ColumnField__anon9931e35d0111::ColumnField4116   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4117 };
4118 
4119 struct DwarfTagField : public MDUnsignedField {
DwarfTagField__anon9931e35d0111::DwarfTagField4120   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
DwarfTagField__anon9931e35d0111::DwarfTagField4121   DwarfTagField(dwarf::Tag DefaultTag)
4122       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4123 };
4124 
4125 struct DwarfMacinfoTypeField : public MDUnsignedField {
DwarfMacinfoTypeField__anon9931e35d0111::DwarfMacinfoTypeField4126   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
DwarfMacinfoTypeField__anon9931e35d0111::DwarfMacinfoTypeField4127   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4128     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4129 };
4130 
4131 struct DwarfAttEncodingField : public MDUnsignedField {
DwarfAttEncodingField__anon9931e35d0111::DwarfAttEncodingField4132   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4133 };
4134 
4135 struct DwarfVirtualityField : public MDUnsignedField {
DwarfVirtualityField__anon9931e35d0111::DwarfVirtualityField4136   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4137 };
4138 
4139 struct DwarfLangField : public MDUnsignedField {
DwarfLangField__anon9931e35d0111::DwarfLangField4140   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4141 };
4142 
4143 struct DwarfCCField : public MDUnsignedField {
DwarfCCField__anon9931e35d0111::DwarfCCField4144   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4145 };
4146 
4147 struct EmissionKindField : public MDUnsignedField {
EmissionKindField__anon9931e35d0111::EmissionKindField4148   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4149 };
4150 
4151 struct NameTableKindField : public MDUnsignedField {
NameTableKindField__anon9931e35d0111::NameTableKindField4152   NameTableKindField()
4153       : MDUnsignedField(
4154             0, (unsigned)
4155                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4156 };
4157 
4158 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
DIFlagField__anon9931e35d0111::DIFlagField4159   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4160 };
4161 
4162 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
DISPFlagField__anon9931e35d0111::DISPFlagField4163   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4164 };
4165 
4166 struct MDAPSIntField : public MDFieldImpl<APSInt> {
MDAPSIntField__anon9931e35d0111::MDAPSIntField4167   MDAPSIntField() : ImplTy(APSInt()) {}
4168 };
4169 
4170 struct MDSignedField : public MDFieldImpl<int64_t> {
4171   int64_t Min;
4172   int64_t Max;
4173 
MDSignedField__anon9931e35d0111::MDSignedField4174   MDSignedField(int64_t Default = 0)
4175       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
MDSignedField__anon9931e35d0111::MDSignedField4176   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4177       : ImplTy(Default), Min(Min), Max(Max) {}
4178 };
4179 
4180 struct MDBoolField : public MDFieldImpl<bool> {
MDBoolField__anon9931e35d0111::MDBoolField4181   MDBoolField(bool Default = false) : ImplTy(Default) {}
4182 };
4183 
4184 struct MDField : public MDFieldImpl<Metadata *> {
4185   bool AllowNull;
4186 
MDField__anon9931e35d0111::MDField4187   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4188 };
4189 
4190 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
MDConstant__anon9931e35d0111::MDConstant4191   MDConstant() : ImplTy(nullptr) {}
4192 };
4193 
4194 struct MDStringField : public MDFieldImpl<MDString *> {
4195   bool AllowEmpty;
MDStringField__anon9931e35d0111::MDStringField4196   MDStringField(bool AllowEmpty = true)
4197       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4198 };
4199 
4200 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
MDFieldList__anon9931e35d0111::MDFieldList4201   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4202 };
4203 
4204 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
ChecksumKindField__anon9931e35d0111::ChecksumKindField4205   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4206 };
4207 
4208 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
MDSignedOrMDField__anon9931e35d0111::MDSignedOrMDField4209   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4210       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4211 
MDSignedOrMDField__anon9931e35d0111::MDSignedOrMDField4212   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4213                     bool AllowNull = true)
4214       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4215 
isMDSignedField__anon9931e35d0111::MDSignedOrMDField4216   bool isMDSignedField() const { return WhatIs == IsTypeA; }
isMDField__anon9931e35d0111::MDSignedOrMDField4217   bool isMDField() const { return WhatIs == IsTypeB; }
getMDSignedValue__anon9931e35d0111::MDSignedOrMDField4218   int64_t getMDSignedValue() const {
4219     assert(isMDSignedField() && "Wrong field type");
4220     return A.Val;
4221   }
getMDFieldValue__anon9931e35d0111::MDSignedOrMDField4222   Metadata *getMDFieldValue() const {
4223     assert(isMDField() && "Wrong field type");
4224     return B.Val;
4225   }
4226 };
4227 
4228 struct MDSignedOrUnsignedField
4229     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
MDSignedOrUnsignedField__anon9931e35d0111::MDSignedOrUnsignedField4230   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4231 
isMDSignedField__anon9931e35d0111::MDSignedOrUnsignedField4232   bool isMDSignedField() const { return WhatIs == IsTypeA; }
isMDUnsignedField__anon9931e35d0111::MDSignedOrUnsignedField4233   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
getMDSignedValue__anon9931e35d0111::MDSignedOrUnsignedField4234   int64_t getMDSignedValue() const {
4235     assert(isMDSignedField() && "Wrong field type");
4236     return A.Val;
4237   }
getMDUnsignedValue__anon9931e35d0111::MDSignedOrUnsignedField4238   uint64_t getMDUnsignedValue() const {
4239     assert(isMDUnsignedField() && "Wrong field type");
4240     return B.Val;
4241   }
4242 };
4243 
4244 } // end anonymous namespace
4245 
4246 namespace llvm {
4247 
4248 template <>
parseMDField(LocTy Loc,StringRef Name,MDAPSIntField & Result)4249 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4250   if (Lex.getKind() != lltok::APSInt)
4251     return tokError("expected integer");
4252 
4253   Result.assign(Lex.getAPSIntVal());
4254   Lex.Lex();
4255   return false;
4256 }
4257 
4258 template <>
parseMDField(LocTy Loc,StringRef Name,MDUnsignedField & Result)4259 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4260                             MDUnsignedField &Result) {
4261   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4262     return tokError("expected unsigned integer");
4263 
4264   auto &U = Lex.getAPSIntVal();
4265   if (U.ugt(Result.Max))
4266     return tokError("value for '" + Name + "' too large, limit is " +
4267                     Twine(Result.Max));
4268   Result.assign(U.getZExtValue());
4269   assert(Result.Val <= Result.Max && "Expected value in range");
4270   Lex.Lex();
4271   return false;
4272 }
4273 
4274 template <>
parseMDField(LocTy Loc,StringRef Name,LineField & Result)4275 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4276   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4277 }
4278 template <>
parseMDField(LocTy Loc,StringRef Name,ColumnField & Result)4279 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4280   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4281 }
4282 
4283 template <>
parseMDField(LocTy Loc,StringRef Name,DwarfTagField & Result)4284 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4285   if (Lex.getKind() == lltok::APSInt)
4286     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4287 
4288   if (Lex.getKind() != lltok::DwarfTag)
4289     return tokError("expected DWARF tag");
4290 
4291   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4292   if (Tag == dwarf::DW_TAG_invalid)
4293     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4294   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4295 
4296   Result.assign(Tag);
4297   Lex.Lex();
4298   return false;
4299 }
4300 
4301 template <>
parseMDField(LocTy Loc,StringRef Name,DwarfMacinfoTypeField & Result)4302 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4303                             DwarfMacinfoTypeField &Result) {
4304   if (Lex.getKind() == lltok::APSInt)
4305     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4306 
4307   if (Lex.getKind() != lltok::DwarfMacinfo)
4308     return tokError("expected DWARF macinfo type");
4309 
4310   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4311   if (Macinfo == dwarf::DW_MACINFO_invalid)
4312     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4313                     Lex.getStrVal() + "'");
4314   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4315 
4316   Result.assign(Macinfo);
4317   Lex.Lex();
4318   return false;
4319 }
4320 
4321 template <>
parseMDField(LocTy Loc,StringRef Name,DwarfVirtualityField & Result)4322 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4323                             DwarfVirtualityField &Result) {
4324   if (Lex.getKind() == lltok::APSInt)
4325     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4326 
4327   if (Lex.getKind() != lltok::DwarfVirtuality)
4328     return tokError("expected DWARF virtuality code");
4329 
4330   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4331   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4332     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4333                     Lex.getStrVal() + "'");
4334   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4335   Result.assign(Virtuality);
4336   Lex.Lex();
4337   return false;
4338 }
4339 
4340 template <>
parseMDField(LocTy Loc,StringRef Name,DwarfLangField & Result)4341 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4342   if (Lex.getKind() == lltok::APSInt)
4343     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4344 
4345   if (Lex.getKind() != lltok::DwarfLang)
4346     return tokError("expected DWARF language");
4347 
4348   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4349   if (!Lang)
4350     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4351                     "'");
4352   assert(Lang <= Result.Max && "Expected valid DWARF language");
4353   Result.assign(Lang);
4354   Lex.Lex();
4355   return false;
4356 }
4357 
4358 template <>
parseMDField(LocTy Loc,StringRef Name,DwarfCCField & Result)4359 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4360   if (Lex.getKind() == lltok::APSInt)
4361     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4362 
4363   if (Lex.getKind() != lltok::DwarfCC)
4364     return tokError("expected DWARF calling convention");
4365 
4366   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4367   if (!CC)
4368     return tokError("invalid DWARF calling convention" + Twine(" '") +
4369                     Lex.getStrVal() + "'");
4370   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4371   Result.assign(CC);
4372   Lex.Lex();
4373   return false;
4374 }
4375 
4376 template <>
parseMDField(LocTy Loc,StringRef Name,EmissionKindField & Result)4377 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4378                             EmissionKindField &Result) {
4379   if (Lex.getKind() == lltok::APSInt)
4380     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4381 
4382   if (Lex.getKind() != lltok::EmissionKind)
4383     return tokError("expected emission kind");
4384 
4385   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4386   if (!Kind)
4387     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4388                     "'");
4389   assert(*Kind <= Result.Max && "Expected valid emission kind");
4390   Result.assign(*Kind);
4391   Lex.Lex();
4392   return false;
4393 }
4394 
4395 template <>
parseMDField(LocTy Loc,StringRef Name,NameTableKindField & Result)4396 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4397                             NameTableKindField &Result) {
4398   if (Lex.getKind() == lltok::APSInt)
4399     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4400 
4401   if (Lex.getKind() != lltok::NameTableKind)
4402     return tokError("expected nameTable kind");
4403 
4404   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4405   if (!Kind)
4406     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4407                     "'");
4408   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4409   Result.assign((unsigned)*Kind);
4410   Lex.Lex();
4411   return false;
4412 }
4413 
4414 template <>
parseMDField(LocTy Loc,StringRef Name,DwarfAttEncodingField & Result)4415 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4416                             DwarfAttEncodingField &Result) {
4417   if (Lex.getKind() == lltok::APSInt)
4418     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4419 
4420   if (Lex.getKind() != lltok::DwarfAttEncoding)
4421     return tokError("expected DWARF type attribute encoding");
4422 
4423   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4424   if (!Encoding)
4425     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4426                     Lex.getStrVal() + "'");
4427   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4428   Result.assign(Encoding);
4429   Lex.Lex();
4430   return false;
4431 }
4432 
4433 /// DIFlagField
4434 ///  ::= uint32
4435 ///  ::= DIFlagVector
4436 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4437 template <>
parseMDField(LocTy Loc,StringRef Name,DIFlagField & Result)4438 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4439 
4440   // parser for a single flag.
4441   auto parseFlag = [&](DINode::DIFlags &Val) {
4442     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4443       uint32_t TempVal = static_cast<uint32_t>(Val);
4444       bool Res = parseUInt32(TempVal);
4445       Val = static_cast<DINode::DIFlags>(TempVal);
4446       return Res;
4447     }
4448 
4449     if (Lex.getKind() != lltok::DIFlag)
4450       return tokError("expected debug info flag");
4451 
4452     Val = DINode::getFlag(Lex.getStrVal());
4453     if (!Val)
4454       return tokError(Twine("invalid debug info flag flag '") +
4455                       Lex.getStrVal() + "'");
4456     Lex.Lex();
4457     return false;
4458   };
4459 
4460   // parse the flags and combine them together.
4461   DINode::DIFlags Combined = DINode::FlagZero;
4462   do {
4463     DINode::DIFlags Val;
4464     if (parseFlag(Val))
4465       return true;
4466     Combined |= Val;
4467   } while (EatIfPresent(lltok::bar));
4468 
4469   Result.assign(Combined);
4470   return false;
4471 }
4472 
4473 /// DISPFlagField
4474 ///  ::= uint32
4475 ///  ::= DISPFlagVector
4476 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4477 template <>
parseMDField(LocTy Loc,StringRef Name,DISPFlagField & Result)4478 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4479 
4480   // parser for a single flag.
4481   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4482     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4483       uint32_t TempVal = static_cast<uint32_t>(Val);
4484       bool Res = parseUInt32(TempVal);
4485       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4486       return Res;
4487     }
4488 
4489     if (Lex.getKind() != lltok::DISPFlag)
4490       return tokError("expected debug info flag");
4491 
4492     Val = DISubprogram::getFlag(Lex.getStrVal());
4493     if (!Val)
4494       return tokError(Twine("invalid subprogram debug info flag '") +
4495                       Lex.getStrVal() + "'");
4496     Lex.Lex();
4497     return false;
4498   };
4499 
4500   // parse the flags and combine them together.
4501   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4502   do {
4503     DISubprogram::DISPFlags Val;
4504     if (parseFlag(Val))
4505       return true;
4506     Combined |= Val;
4507   } while (EatIfPresent(lltok::bar));
4508 
4509   Result.assign(Combined);
4510   return false;
4511 }
4512 
4513 template <>
parseMDField(LocTy Loc,StringRef Name,MDSignedField & Result)4514 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4515   if (Lex.getKind() != lltok::APSInt)
4516     return tokError("expected signed integer");
4517 
4518   auto &S = Lex.getAPSIntVal();
4519   if (S < Result.Min)
4520     return tokError("value for '" + Name + "' too small, limit is " +
4521                     Twine(Result.Min));
4522   if (S > Result.Max)
4523     return tokError("value for '" + Name + "' too large, limit is " +
4524                     Twine(Result.Max));
4525   Result.assign(S.getExtValue());
4526   assert(Result.Val >= Result.Min && "Expected value in range");
4527   assert(Result.Val <= Result.Max && "Expected value in range");
4528   Lex.Lex();
4529   return false;
4530 }
4531 
4532 template <>
parseMDField(LocTy Loc,StringRef Name,MDBoolField & Result)4533 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4534   switch (Lex.getKind()) {
4535   default:
4536     return tokError("expected 'true' or 'false'");
4537   case lltok::kw_true:
4538     Result.assign(true);
4539     break;
4540   case lltok::kw_false:
4541     Result.assign(false);
4542     break;
4543   }
4544   Lex.Lex();
4545   return false;
4546 }
4547 
4548 template <>
parseMDField(LocTy Loc,StringRef Name,MDField & Result)4549 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4550   if (Lex.getKind() == lltok::kw_null) {
4551     if (!Result.AllowNull)
4552       return tokError("'" + Name + "' cannot be null");
4553     Lex.Lex();
4554     Result.assign(nullptr);
4555     return false;
4556   }
4557 
4558   Metadata *MD;
4559   if (parseMetadata(MD, nullptr))
4560     return true;
4561 
4562   Result.assign(MD);
4563   return false;
4564 }
4565 
4566 template <>
parseMDField(LocTy Loc,StringRef Name,MDSignedOrMDField & Result)4567 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4568                             MDSignedOrMDField &Result) {
4569   // Try to parse a signed int.
4570   if (Lex.getKind() == lltok::APSInt) {
4571     MDSignedField Res = Result.A;
4572     if (!parseMDField(Loc, Name, Res)) {
4573       Result.assign(Res);
4574       return false;
4575     }
4576     return true;
4577   }
4578 
4579   // Otherwise, try to parse as an MDField.
4580   MDField Res = Result.B;
4581   if (!parseMDField(Loc, Name, Res)) {
4582     Result.assign(Res);
4583     return false;
4584   }
4585 
4586   return true;
4587 }
4588 
4589 template <>
parseMDField(LocTy Loc,StringRef Name,MDStringField & Result)4590 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4591   LocTy ValueLoc = Lex.getLoc();
4592   std::string S;
4593   if (parseStringConstant(S))
4594     return true;
4595 
4596   if (!Result.AllowEmpty && S.empty())
4597     return error(ValueLoc, "'" + Name + "' cannot be empty");
4598 
4599   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4600   return false;
4601 }
4602 
4603 template <>
parseMDField(LocTy Loc,StringRef Name,MDFieldList & Result)4604 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4605   SmallVector<Metadata *, 4> MDs;
4606   if (parseMDNodeVector(MDs))
4607     return true;
4608 
4609   Result.assign(std::move(MDs));
4610   return false;
4611 }
4612 
4613 template <>
parseMDField(LocTy Loc,StringRef Name,ChecksumKindField & Result)4614 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4615                             ChecksumKindField &Result) {
4616   Optional<DIFile::ChecksumKind> CSKind =
4617       DIFile::getChecksumKind(Lex.getStrVal());
4618 
4619   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4620     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4621                     "'");
4622 
4623   Result.assign(*CSKind);
4624   Lex.Lex();
4625   return false;
4626 }
4627 
4628 } // end namespace llvm
4629 
4630 template <class ParserTy>
parseMDFieldsImplBody(ParserTy ParseField)4631 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4632   do {
4633     if (Lex.getKind() != lltok::LabelStr)
4634       return tokError("expected field label here");
4635 
4636     if (ParseField())
4637       return true;
4638   } while (EatIfPresent(lltok::comma));
4639 
4640   return false;
4641 }
4642 
4643 template <class ParserTy>
parseMDFieldsImpl(ParserTy ParseField,LocTy & ClosingLoc)4644 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4645   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4646   Lex.Lex();
4647 
4648   if (parseToken(lltok::lparen, "expected '(' here"))
4649     return true;
4650   if (Lex.getKind() != lltok::rparen)
4651     if (parseMDFieldsImplBody(ParseField))
4652       return true;
4653 
4654   ClosingLoc = Lex.getLoc();
4655   return parseToken(lltok::rparen, "expected ')' here");
4656 }
4657 
4658 template <class FieldTy>
parseMDField(StringRef Name,FieldTy & Result)4659 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4660   if (Result.Seen)
4661     return tokError("field '" + Name + "' cannot be specified more than once");
4662 
4663   LocTy Loc = Lex.getLoc();
4664   Lex.Lex();
4665   return parseMDField(Loc, Name, Result);
4666 }
4667 
parseSpecializedMDNode(MDNode * & N,bool IsDistinct)4668 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4669   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4670 
4671 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4672   if (Lex.getStrVal() == #CLASS)                                               \
4673     return parse##CLASS(N, IsDistinct);
4674 #include "llvm/IR/Metadata.def"
4675 
4676   return tokError("expected metadata type");
4677 }
4678 
4679 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4680 #define NOP_FIELD(NAME, TYPE, INIT)
4681 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4682   if (!NAME.Seen)                                                              \
4683     return error(ClosingLoc, "missing required field '" #NAME "'");
4684 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4685   if (Lex.getStrVal() == #NAME)                                                \
4686     return parseMDField(#NAME, NAME);
4687 #define PARSE_MD_FIELDS()                                                      \
4688   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4689   do {                                                                         \
4690     LocTy ClosingLoc;                                                          \
4691     if (parseMDFieldsImpl(                                                     \
4692             [&]() -> bool {                                                    \
4693               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4694               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4695                               "'");                                            \
4696             },                                                                 \
4697             ClosingLoc))                                                       \
4698       return true;                                                             \
4699     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4700   } while (false)
4701 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4702   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4703 
4704 /// parseDILocationFields:
4705 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4706 ///   isImplicitCode: true)
parseDILocation(MDNode * & Result,bool IsDistinct)4707 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4708 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4709   OPTIONAL(line, LineField, );                                                 \
4710   OPTIONAL(column, ColumnField, );                                             \
4711   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4712   OPTIONAL(inlinedAt, MDField, );                                              \
4713   OPTIONAL(isImplicitCode, MDBoolField, (false));
4714   PARSE_MD_FIELDS();
4715 #undef VISIT_MD_FIELDS
4716 
4717   Result =
4718       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4719                                    inlinedAt.Val, isImplicitCode.Val));
4720   return false;
4721 }
4722 
4723 /// parseGenericDINode:
4724 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
parseGenericDINode(MDNode * & Result,bool IsDistinct)4725 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4726 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4727   REQUIRED(tag, DwarfTagField, );                                              \
4728   OPTIONAL(header, MDStringField, );                                           \
4729   OPTIONAL(operands, MDFieldList, );
4730   PARSE_MD_FIELDS();
4731 #undef VISIT_MD_FIELDS
4732 
4733   Result = GET_OR_DISTINCT(GenericDINode,
4734                            (Context, tag.Val, header.Val, operands.Val));
4735   return false;
4736 }
4737 
4738 /// parseDISubrange:
4739 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4740 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4741 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
parseDISubrange(MDNode * & Result,bool IsDistinct)4742 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4743 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4744   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4745   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4746   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4747   OPTIONAL(stride, MDSignedOrMDField, );
4748   PARSE_MD_FIELDS();
4749 #undef VISIT_MD_FIELDS
4750 
4751   Metadata *Count = nullptr;
4752   Metadata *LowerBound = nullptr;
4753   Metadata *UpperBound = nullptr;
4754   Metadata *Stride = nullptr;
4755 
4756   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4757     if (Bound.isMDSignedField())
4758       return ConstantAsMetadata::get(ConstantInt::getSigned(
4759           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4760     if (Bound.isMDField())
4761       return Bound.getMDFieldValue();
4762     return nullptr;
4763   };
4764 
4765   Count = convToMetadata(count);
4766   LowerBound = convToMetadata(lowerBound);
4767   UpperBound = convToMetadata(upperBound);
4768   Stride = convToMetadata(stride);
4769 
4770   Result = GET_OR_DISTINCT(DISubrange,
4771                            (Context, Count, LowerBound, UpperBound, Stride));
4772 
4773   return false;
4774 }
4775 
4776 /// parseDIGenericSubrange:
4777 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4778 ///   !node3)
parseDIGenericSubrange(MDNode * & Result,bool IsDistinct)4779 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4780 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4781   OPTIONAL(count, MDSignedOrMDField, );                                        \
4782   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4783   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4784   OPTIONAL(stride, MDSignedOrMDField, );
4785   PARSE_MD_FIELDS();
4786 #undef VISIT_MD_FIELDS
4787 
4788   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4789     if (Bound.isMDSignedField())
4790       return DIExpression::get(
4791           Context, {dwarf::DW_OP_consts,
4792                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4793     if (Bound.isMDField())
4794       return Bound.getMDFieldValue();
4795     return nullptr;
4796   };
4797 
4798   Metadata *Count = ConvToMetadata(count);
4799   Metadata *LowerBound = ConvToMetadata(lowerBound);
4800   Metadata *UpperBound = ConvToMetadata(upperBound);
4801   Metadata *Stride = ConvToMetadata(stride);
4802 
4803   Result = GET_OR_DISTINCT(DIGenericSubrange,
4804                            (Context, Count, LowerBound, UpperBound, Stride));
4805 
4806   return false;
4807 }
4808 
4809 /// parseDIEnumerator:
4810 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
parseDIEnumerator(MDNode * & Result,bool IsDistinct)4811 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4812 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4813   REQUIRED(name, MDStringField, );                                             \
4814   REQUIRED(value, MDAPSIntField, );                                            \
4815   OPTIONAL(isUnsigned, MDBoolField, (false));
4816   PARSE_MD_FIELDS();
4817 #undef VISIT_MD_FIELDS
4818 
4819   if (isUnsigned.Val && value.Val.isNegative())
4820     return tokError("unsigned enumerator with negative value");
4821 
4822   APSInt Value(value.Val);
4823   // Add a leading zero so that unsigned values with the msb set are not
4824   // mistaken for negative values when used for signed enumerators.
4825   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4826     Value = Value.zext(Value.getBitWidth() + 1);
4827 
4828   Result =
4829       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4830 
4831   return false;
4832 }
4833 
4834 /// parseDIBasicType:
4835 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4836 ///                    encoding: DW_ATE_encoding, flags: 0)
parseDIBasicType(MDNode * & Result,bool IsDistinct)4837 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4838 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4839   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4840   OPTIONAL(name, MDStringField, );                                             \
4841   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4842   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4843   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4844   OPTIONAL(flags, DIFlagField, );
4845   PARSE_MD_FIELDS();
4846 #undef VISIT_MD_FIELDS
4847 
4848   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4849                                          align.Val, encoding.Val, flags.Val));
4850   return false;
4851 }
4852 
4853 /// parseDIStringType:
4854 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
parseDIStringType(MDNode * & Result,bool IsDistinct)4855 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4856 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4857   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4858   OPTIONAL(name, MDStringField, );                                             \
4859   OPTIONAL(stringLength, MDField, );                                           \
4860   OPTIONAL(stringLengthExpression, MDField, );                                 \
4861   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4862   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4863   OPTIONAL(encoding, DwarfAttEncodingField, );
4864   PARSE_MD_FIELDS();
4865 #undef VISIT_MD_FIELDS
4866 
4867   Result = GET_OR_DISTINCT(DIStringType,
4868                            (Context, tag.Val, name.Val, stringLength.Val,
4869                             stringLengthExpression.Val, size.Val, align.Val,
4870                             encoding.Val));
4871   return false;
4872 }
4873 
4874 /// parseDIDerivedType:
4875 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4876 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4877 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4878 ///                      dwarfAddressSpace: 3)
parseDIDerivedType(MDNode * & Result,bool IsDistinct)4879 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4880 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4881   REQUIRED(tag, DwarfTagField, );                                              \
4882   OPTIONAL(name, MDStringField, );                                             \
4883   OPTIONAL(file, MDField, );                                                   \
4884   OPTIONAL(line, LineField, );                                                 \
4885   OPTIONAL(scope, MDField, );                                                  \
4886   REQUIRED(baseType, MDField, );                                               \
4887   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4888   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4889   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4890   OPTIONAL(flags, DIFlagField, );                                              \
4891   OPTIONAL(extraData, MDField, );                                              \
4892   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4893   PARSE_MD_FIELDS();
4894 #undef VISIT_MD_FIELDS
4895 
4896   Optional<unsigned> DWARFAddressSpace;
4897   if (dwarfAddressSpace.Val != UINT32_MAX)
4898     DWARFAddressSpace = dwarfAddressSpace.Val;
4899 
4900   Result = GET_OR_DISTINCT(DIDerivedType,
4901                            (Context, tag.Val, name.Val, file.Val, line.Val,
4902                             scope.Val, baseType.Val, size.Val, align.Val,
4903                             offset.Val, DWARFAddressSpace, flags.Val,
4904                             extraData.Val));
4905   return false;
4906 }
4907 
parseDICompositeType(MDNode * & Result,bool IsDistinct)4908 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4909 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4910   REQUIRED(tag, DwarfTagField, );                                              \
4911   OPTIONAL(name, MDStringField, );                                             \
4912   OPTIONAL(file, MDField, );                                                   \
4913   OPTIONAL(line, LineField, );                                                 \
4914   OPTIONAL(scope, MDField, );                                                  \
4915   OPTIONAL(baseType, MDField, );                                               \
4916   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4917   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4918   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4919   OPTIONAL(flags, DIFlagField, );                                              \
4920   OPTIONAL(elements, MDField, );                                               \
4921   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4922   OPTIONAL(vtableHolder, MDField, );                                           \
4923   OPTIONAL(templateParams, MDField, );                                         \
4924   OPTIONAL(identifier, MDStringField, );                                       \
4925   OPTIONAL(discriminator, MDField, );                                          \
4926   OPTIONAL(dataLocation, MDField, );                                           \
4927   OPTIONAL(associated, MDField, );                                             \
4928   OPTIONAL(allocated, MDField, );                                              \
4929   OPTIONAL(rank, MDSignedOrMDField, );
4930   PARSE_MD_FIELDS();
4931 #undef VISIT_MD_FIELDS
4932 
4933   Metadata *Rank = nullptr;
4934   if (rank.isMDSignedField())
4935     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4936         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4937   else if (rank.isMDField())
4938     Rank = rank.getMDFieldValue();
4939 
4940   // If this has an identifier try to build an ODR type.
4941   if (identifier.Val)
4942     if (auto *CT = DICompositeType::buildODRType(
4943             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4944             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4945             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4946             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4947             Rank)) {
4948       Result = CT;
4949       return false;
4950     }
4951 
4952   // Create a new node, and save it in the context if it belongs in the type
4953   // map.
4954   Result = GET_OR_DISTINCT(
4955       DICompositeType,
4956       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4957        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4958        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4959        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4960        Rank));
4961   return false;
4962 }
4963 
parseDISubroutineType(MDNode * & Result,bool IsDistinct)4964 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4965 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4966   OPTIONAL(flags, DIFlagField, );                                              \
4967   OPTIONAL(cc, DwarfCCField, );                                                \
4968   REQUIRED(types, MDField, );
4969   PARSE_MD_FIELDS();
4970 #undef VISIT_MD_FIELDS
4971 
4972   Result = GET_OR_DISTINCT(DISubroutineType,
4973                            (Context, flags.Val, cc.Val, types.Val));
4974   return false;
4975 }
4976 
4977 /// parseDIFileType:
4978 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4979 ///                   checksumkind: CSK_MD5,
4980 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4981 ///                   source: "source file contents")
parseDIFile(MDNode * & Result,bool IsDistinct)4982 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4983   // The default constructed value for checksumkind is required, but will never
4984   // be used, as the parser checks if the field was actually Seen before using
4985   // the Val.
4986 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4987   REQUIRED(filename, MDStringField, );                                         \
4988   REQUIRED(directory, MDStringField, );                                        \
4989   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4990   OPTIONAL(checksum, MDStringField, );                                         \
4991   OPTIONAL(source, MDStringField, );
4992   PARSE_MD_FIELDS();
4993 #undef VISIT_MD_FIELDS
4994 
4995   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4996   if (checksumkind.Seen && checksum.Seen)
4997     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4998   else if (checksumkind.Seen || checksum.Seen)
4999     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
5000 
5001   Optional<MDString *> OptSource;
5002   if (source.Seen)
5003     OptSource = source.Val;
5004   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
5005                                     OptChecksum, OptSource));
5006   return false;
5007 }
5008 
5009 /// parseDICompileUnit:
5010 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
5011 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
5012 ///                      splitDebugFilename: "abc.debug",
5013 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
5014 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
5015 ///                      sysroot: "/", sdk: "MacOSX.sdk")
parseDICompileUnit(MDNode * & Result,bool IsDistinct)5016 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5017   if (!IsDistinct)
5018     return Lex.Error("missing 'distinct', required for !DICompileUnit");
5019 
5020 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5021   REQUIRED(language, DwarfLangField, );                                        \
5022   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
5023   OPTIONAL(producer, MDStringField, );                                         \
5024   OPTIONAL(isOptimized, MDBoolField, );                                        \
5025   OPTIONAL(flags, MDStringField, );                                            \
5026   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
5027   OPTIONAL(splitDebugFilename, MDStringField, );                               \
5028   OPTIONAL(emissionKind, EmissionKindField, );                                 \
5029   OPTIONAL(enums, MDField, );                                                  \
5030   OPTIONAL(retainedTypes, MDField, );                                          \
5031   OPTIONAL(globals, MDField, );                                                \
5032   OPTIONAL(imports, MDField, );                                                \
5033   OPTIONAL(macros, MDField, );                                                 \
5034   OPTIONAL(dwoId, MDUnsignedField, );                                          \
5035   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5036   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5037   OPTIONAL(nameTableKind, NameTableKindField, );                               \
5038   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5039   OPTIONAL(sysroot, MDStringField, );                                          \
5040   OPTIONAL(sdk, MDStringField, );
5041   PARSE_MD_FIELDS();
5042 #undef VISIT_MD_FIELDS
5043 
5044   Result = DICompileUnit::getDistinct(
5045       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5046       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5047       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5048       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5049       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5050   return false;
5051 }
5052 
5053 /// parseDISubprogram:
5054 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5055 ///                     file: !1, line: 7, type: !2, isLocal: false,
5056 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5057 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5058 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5059 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5060 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
parseDISubprogram(MDNode * & Result,bool IsDistinct)5061 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5062   auto Loc = Lex.getLoc();
5063 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5064   OPTIONAL(scope, MDField, );                                                  \
5065   OPTIONAL(name, MDStringField, );                                             \
5066   OPTIONAL(linkageName, MDStringField, );                                      \
5067   OPTIONAL(file, MDField, );                                                   \
5068   OPTIONAL(line, LineField, );                                                 \
5069   OPTIONAL(type, MDField, );                                                   \
5070   OPTIONAL(isLocal, MDBoolField, );                                            \
5071   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5072   OPTIONAL(scopeLine, LineField, );                                            \
5073   OPTIONAL(containingType, MDField, );                                         \
5074   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5075   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5076   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5077   OPTIONAL(flags, DIFlagField, );                                              \
5078   OPTIONAL(spFlags, DISPFlagField, );                                          \
5079   OPTIONAL(isOptimized, MDBoolField, );                                        \
5080   OPTIONAL(unit, MDField, );                                                   \
5081   OPTIONAL(templateParams, MDField, );                                         \
5082   OPTIONAL(declaration, MDField, );                                            \
5083   OPTIONAL(retainedNodes, MDField, );                                          \
5084   OPTIONAL(thrownTypes, MDField, );
5085   PARSE_MD_FIELDS();
5086 #undef VISIT_MD_FIELDS
5087 
5088   // An explicit spFlags field takes precedence over individual fields in
5089   // older IR versions.
5090   DISubprogram::DISPFlags SPFlags =
5091       spFlags.Seen ? spFlags.Val
5092                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5093                                              isOptimized.Val, virtuality.Val);
5094   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5095     return Lex.Error(
5096         Loc,
5097         "missing 'distinct', required for !DISubprogram that is a Definition");
5098   Result = GET_OR_DISTINCT(
5099       DISubprogram,
5100       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5101        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5102        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5103        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5104   return false;
5105 }
5106 
5107 /// parseDILexicalBlock:
5108 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
parseDILexicalBlock(MDNode * & Result,bool IsDistinct)5109 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5110 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5111   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5112   OPTIONAL(file, MDField, );                                                   \
5113   OPTIONAL(line, LineField, );                                                 \
5114   OPTIONAL(column, ColumnField, );
5115   PARSE_MD_FIELDS();
5116 #undef VISIT_MD_FIELDS
5117 
5118   Result = GET_OR_DISTINCT(
5119       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5120   return false;
5121 }
5122 
5123 /// parseDILexicalBlockFile:
5124 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
parseDILexicalBlockFile(MDNode * & Result,bool IsDistinct)5125 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5126 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5127   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5128   OPTIONAL(file, MDField, );                                                   \
5129   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5130   PARSE_MD_FIELDS();
5131 #undef VISIT_MD_FIELDS
5132 
5133   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5134                            (Context, scope.Val, file.Val, discriminator.Val));
5135   return false;
5136 }
5137 
5138 /// parseDICommonBlock:
5139 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
parseDICommonBlock(MDNode * & Result,bool IsDistinct)5140 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5141 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5142   REQUIRED(scope, MDField, );                                                  \
5143   OPTIONAL(declaration, MDField, );                                            \
5144   OPTIONAL(name, MDStringField, );                                             \
5145   OPTIONAL(file, MDField, );                                                   \
5146   OPTIONAL(line, LineField, );
5147   PARSE_MD_FIELDS();
5148 #undef VISIT_MD_FIELDS
5149 
5150   Result = GET_OR_DISTINCT(DICommonBlock,
5151                            (Context, scope.Val, declaration.Val, name.Val,
5152                             file.Val, line.Val));
5153   return false;
5154 }
5155 
5156 /// parseDINamespace:
5157 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
parseDINamespace(MDNode * & Result,bool IsDistinct)5158 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5159 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5160   REQUIRED(scope, MDField, );                                                  \
5161   OPTIONAL(name, MDStringField, );                                             \
5162   OPTIONAL(exportSymbols, MDBoolField, );
5163   PARSE_MD_FIELDS();
5164 #undef VISIT_MD_FIELDS
5165 
5166   Result = GET_OR_DISTINCT(DINamespace,
5167                            (Context, scope.Val, name.Val, exportSymbols.Val));
5168   return false;
5169 }
5170 
5171 /// parseDIMacro:
5172 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5173 ///   "SomeValue")
parseDIMacro(MDNode * & Result,bool IsDistinct)5174 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5175 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5176   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5177   OPTIONAL(line, LineField, );                                                 \
5178   REQUIRED(name, MDStringField, );                                             \
5179   OPTIONAL(value, MDStringField, );
5180   PARSE_MD_FIELDS();
5181 #undef VISIT_MD_FIELDS
5182 
5183   Result = GET_OR_DISTINCT(DIMacro,
5184                            (Context, type.Val, line.Val, name.Val, value.Val));
5185   return false;
5186 }
5187 
5188 /// parseDIMacroFile:
5189 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
parseDIMacroFile(MDNode * & Result,bool IsDistinct)5190 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5191 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5192   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5193   OPTIONAL(line, LineField, );                                                 \
5194   REQUIRED(file, MDField, );                                                   \
5195   OPTIONAL(nodes, MDField, );
5196   PARSE_MD_FIELDS();
5197 #undef VISIT_MD_FIELDS
5198 
5199   Result = GET_OR_DISTINCT(DIMacroFile,
5200                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5201   return false;
5202 }
5203 
5204 /// parseDIModule:
5205 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5206 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5207 ///   file: !1, line: 4, isDecl: false)
parseDIModule(MDNode * & Result,bool IsDistinct)5208 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5209 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5210   REQUIRED(scope, MDField, );                                                  \
5211   REQUIRED(name, MDStringField, );                                             \
5212   OPTIONAL(configMacros, MDStringField, );                                     \
5213   OPTIONAL(includePath, MDStringField, );                                      \
5214   OPTIONAL(apinotes, MDStringField, );                                         \
5215   OPTIONAL(file, MDField, );                                                   \
5216   OPTIONAL(line, LineField, );                                                 \
5217   OPTIONAL(isDecl, MDBoolField, );
5218   PARSE_MD_FIELDS();
5219 #undef VISIT_MD_FIELDS
5220 
5221   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5222                                       configMacros.Val, includePath.Val,
5223                                       apinotes.Val, line.Val, isDecl.Val));
5224   return false;
5225 }
5226 
5227 /// parseDITemplateTypeParameter:
5228 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
parseDITemplateTypeParameter(MDNode * & Result,bool IsDistinct)5229 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5230 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5231   OPTIONAL(name, MDStringField, );                                             \
5232   REQUIRED(type, MDField, );                                                   \
5233   OPTIONAL(defaulted, MDBoolField, );
5234   PARSE_MD_FIELDS();
5235 #undef VISIT_MD_FIELDS
5236 
5237   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5238                            (Context, name.Val, type.Val, defaulted.Val));
5239   return false;
5240 }
5241 
5242 /// parseDITemplateValueParameter:
5243 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5244 ///                                 name: "V", type: !1, defaulted: false,
5245 ///                                 value: i32 7)
parseDITemplateValueParameter(MDNode * & Result,bool IsDistinct)5246 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5247 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5248   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5249   OPTIONAL(name, MDStringField, );                                             \
5250   OPTIONAL(type, MDField, );                                                   \
5251   OPTIONAL(defaulted, MDBoolField, );                                          \
5252   REQUIRED(value, MDField, );
5253 
5254   PARSE_MD_FIELDS();
5255 #undef VISIT_MD_FIELDS
5256 
5257   Result = GET_OR_DISTINCT(
5258       DITemplateValueParameter,
5259       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5260   return false;
5261 }
5262 
5263 /// parseDIGlobalVariable:
5264 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5265 ///                         file: !1, line: 7, type: !2, isLocal: false,
5266 ///                         isDefinition: true, templateParams: !3,
5267 ///                         declaration: !4, align: 8)
parseDIGlobalVariable(MDNode * & Result,bool IsDistinct)5268 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5269 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5270   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5271   OPTIONAL(scope, MDField, );                                                  \
5272   OPTIONAL(linkageName, MDStringField, );                                      \
5273   OPTIONAL(file, MDField, );                                                   \
5274   OPTIONAL(line, LineField, );                                                 \
5275   OPTIONAL(type, MDField, );                                                   \
5276   OPTIONAL(isLocal, MDBoolField, );                                            \
5277   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5278   OPTIONAL(templateParams, MDField, );                                         \
5279   OPTIONAL(declaration, MDField, );                                            \
5280   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5281   PARSE_MD_FIELDS();
5282 #undef VISIT_MD_FIELDS
5283 
5284   Result =
5285       GET_OR_DISTINCT(DIGlobalVariable,
5286                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5287                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5288                        declaration.Val, templateParams.Val, align.Val));
5289   return false;
5290 }
5291 
5292 /// parseDILocalVariable:
5293 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5294 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5295 ///                        align: 8)
5296 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5297 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5298 ///                        align: 8)
parseDILocalVariable(MDNode * & Result,bool IsDistinct)5299 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5300 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5301   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5302   OPTIONAL(name, MDStringField, );                                             \
5303   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5304   OPTIONAL(file, MDField, );                                                   \
5305   OPTIONAL(line, LineField, );                                                 \
5306   OPTIONAL(type, MDField, );                                                   \
5307   OPTIONAL(flags, DIFlagField, );                                              \
5308   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5309   PARSE_MD_FIELDS();
5310 #undef VISIT_MD_FIELDS
5311 
5312   Result = GET_OR_DISTINCT(DILocalVariable,
5313                            (Context, scope.Val, name.Val, file.Val, line.Val,
5314                             type.Val, arg.Val, flags.Val, align.Val));
5315   return false;
5316 }
5317 
5318 /// parseDILabel:
5319 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
parseDILabel(MDNode * & Result,bool IsDistinct)5320 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5321 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5322   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5323   REQUIRED(name, MDStringField, );                                             \
5324   REQUIRED(file, MDField, );                                                   \
5325   REQUIRED(line, LineField, );
5326   PARSE_MD_FIELDS();
5327 #undef VISIT_MD_FIELDS
5328 
5329   Result = GET_OR_DISTINCT(DILabel,
5330                            (Context, scope.Val, name.Val, file.Val, line.Val));
5331   return false;
5332 }
5333 
5334 /// parseDIExpression:
5335 ///   ::= !DIExpression(0, 7, -1)
parseDIExpression(MDNode * & Result,bool IsDistinct)5336 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5337   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5338   Lex.Lex();
5339 
5340   if (parseToken(lltok::lparen, "expected '(' here"))
5341     return true;
5342 
5343   SmallVector<uint64_t, 8> Elements;
5344   if (Lex.getKind() != lltok::rparen)
5345     do {
5346       if (Lex.getKind() == lltok::DwarfOp) {
5347         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5348           Lex.Lex();
5349           Elements.push_back(Op);
5350           continue;
5351         }
5352         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5353       }
5354 
5355       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5356         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5357           Lex.Lex();
5358           Elements.push_back(Op);
5359           continue;
5360         }
5361         return tokError(Twine("invalid DWARF attribute encoding '") +
5362                         Lex.getStrVal() + "'");
5363       }
5364 
5365       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5366         return tokError("expected unsigned integer");
5367 
5368       auto &U = Lex.getAPSIntVal();
5369       if (U.ugt(UINT64_MAX))
5370         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5371       Elements.push_back(U.getZExtValue());
5372       Lex.Lex();
5373     } while (EatIfPresent(lltok::comma));
5374 
5375   if (parseToken(lltok::rparen, "expected ')' here"))
5376     return true;
5377 
5378   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5379   return false;
5380 }
5381 
parseDIArgList(MDNode * & Result,bool IsDistinct)5382 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5383   return parseDIArgList(Result, IsDistinct, nullptr);
5384 }
5385 /// ParseDIArgList:
5386 ///   ::= !DIArgList(i32 7, i64 %0)
parseDIArgList(MDNode * & Result,bool IsDistinct,PerFunctionState * PFS)5387 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5388                               PerFunctionState *PFS) {
5389   assert(PFS && "Expected valid function state");
5390   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5391   Lex.Lex();
5392 
5393   if (parseToken(lltok::lparen, "expected '(' here"))
5394     return true;
5395 
5396   SmallVector<ValueAsMetadata *, 4> Args;
5397   if (Lex.getKind() != lltok::rparen)
5398     do {
5399       Metadata *MD;
5400       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5401         return true;
5402       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5403     } while (EatIfPresent(lltok::comma));
5404 
5405   if (parseToken(lltok::rparen, "expected ')' here"))
5406     return true;
5407 
5408   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5409   return false;
5410 }
5411 
5412 /// parseDIGlobalVariableExpression:
5413 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
parseDIGlobalVariableExpression(MDNode * & Result,bool IsDistinct)5414 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5415                                                bool IsDistinct) {
5416 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5417   REQUIRED(var, MDField, );                                                    \
5418   REQUIRED(expr, MDField, );
5419   PARSE_MD_FIELDS();
5420 #undef VISIT_MD_FIELDS
5421 
5422   Result =
5423       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5424   return false;
5425 }
5426 
5427 /// parseDIObjCProperty:
5428 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5429 ///                       getter: "getFoo", attributes: 7, type: !2)
parseDIObjCProperty(MDNode * & Result,bool IsDistinct)5430 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5431 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5432   OPTIONAL(name, MDStringField, );                                             \
5433   OPTIONAL(file, MDField, );                                                   \
5434   OPTIONAL(line, LineField, );                                                 \
5435   OPTIONAL(setter, MDStringField, );                                           \
5436   OPTIONAL(getter, MDStringField, );                                           \
5437   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5438   OPTIONAL(type, MDField, );
5439   PARSE_MD_FIELDS();
5440 #undef VISIT_MD_FIELDS
5441 
5442   Result = GET_OR_DISTINCT(DIObjCProperty,
5443                            (Context, name.Val, file.Val, line.Val, setter.Val,
5444                             getter.Val, attributes.Val, type.Val));
5445   return false;
5446 }
5447 
5448 /// parseDIImportedEntity:
5449 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5450 ///                         line: 7, name: "foo")
parseDIImportedEntity(MDNode * & Result,bool IsDistinct)5451 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5452 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5453   REQUIRED(tag, DwarfTagField, );                                              \
5454   REQUIRED(scope, MDField, );                                                  \
5455   OPTIONAL(entity, MDField, );                                                 \
5456   OPTIONAL(file, MDField, );                                                   \
5457   OPTIONAL(line, LineField, );                                                 \
5458   OPTIONAL(name, MDStringField, );
5459   PARSE_MD_FIELDS();
5460 #undef VISIT_MD_FIELDS
5461 
5462   Result = GET_OR_DISTINCT(
5463       DIImportedEntity,
5464       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5465   return false;
5466 }
5467 
5468 #undef PARSE_MD_FIELD
5469 #undef NOP_FIELD
5470 #undef REQUIRE_FIELD
5471 #undef DECLARE_FIELD
5472 
5473 /// parseMetadataAsValue
5474 ///  ::= metadata i32 %local
5475 ///  ::= metadata i32 @global
5476 ///  ::= metadata i32 7
5477 ///  ::= metadata !0
5478 ///  ::= metadata !{...}
5479 ///  ::= metadata !"string"
parseMetadataAsValue(Value * & V,PerFunctionState & PFS)5480 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5481   // Note: the type 'metadata' has already been parsed.
5482   Metadata *MD;
5483   if (parseMetadata(MD, &PFS))
5484     return true;
5485 
5486   V = MetadataAsValue::get(Context, MD);
5487   return false;
5488 }
5489 
5490 /// parseValueAsMetadata
5491 ///  ::= i32 %local
5492 ///  ::= i32 @global
5493 ///  ::= i32 7
parseValueAsMetadata(Metadata * & MD,const Twine & TypeMsg,PerFunctionState * PFS)5494 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5495                                     PerFunctionState *PFS) {
5496   Type *Ty;
5497   LocTy Loc;
5498   if (parseType(Ty, TypeMsg, Loc))
5499     return true;
5500   if (Ty->isMetadataTy())
5501     return error(Loc, "invalid metadata-value-metadata roundtrip");
5502 
5503   Value *V;
5504   if (parseValue(Ty, V, PFS))
5505     return true;
5506 
5507   MD = ValueAsMetadata::get(V);
5508   return false;
5509 }
5510 
5511 /// parseMetadata
5512 ///  ::= i32 %local
5513 ///  ::= i32 @global
5514 ///  ::= i32 7
5515 ///  ::= !42
5516 ///  ::= !{...}
5517 ///  ::= !"string"
5518 ///  ::= !DILocation(...)
parseMetadata(Metadata * & MD,PerFunctionState * PFS)5519 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5520   if (Lex.getKind() == lltok::MetadataVar) {
5521     MDNode *N;
5522     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5523     // so parsing this requires a Function State.
5524     if (Lex.getStrVal() == "DIArgList") {
5525       if (parseDIArgList(N, false, PFS))
5526         return true;
5527     } else if (parseSpecializedMDNode(N)) {
5528       return true;
5529     }
5530     MD = N;
5531     return false;
5532   }
5533 
5534   // ValueAsMetadata:
5535   // <type> <value>
5536   if (Lex.getKind() != lltok::exclaim)
5537     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5538 
5539   // '!'.
5540   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5541   Lex.Lex();
5542 
5543   // MDString:
5544   //   ::= '!' STRINGCONSTANT
5545   if (Lex.getKind() == lltok::StringConstant) {
5546     MDString *S;
5547     if (parseMDString(S))
5548       return true;
5549     MD = S;
5550     return false;
5551   }
5552 
5553   // MDNode:
5554   // !{ ... }
5555   // !7
5556   MDNode *N;
5557   if (parseMDNodeTail(N))
5558     return true;
5559   MD = N;
5560   return false;
5561 }
5562 
5563 //===----------------------------------------------------------------------===//
5564 // Function Parsing.
5565 //===----------------------------------------------------------------------===//
5566 
convertValIDToValue(Type * Ty,ValID & ID,Value * & V,PerFunctionState * PFS,bool IsCall)5567 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5568                                    PerFunctionState *PFS, bool IsCall) {
5569   if (Ty->isFunctionTy())
5570     return error(ID.Loc, "functions are not values, refer to them as pointers");
5571 
5572   switch (ID.Kind) {
5573   case ValID::t_LocalID:
5574     if (!PFS)
5575       return error(ID.Loc, "invalid use of function-local name");
5576     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5577     return V == nullptr;
5578   case ValID::t_LocalName:
5579     if (!PFS)
5580       return error(ID.Loc, "invalid use of function-local name");
5581     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5582     return V == nullptr;
5583   case ValID::t_InlineAsm: {
5584     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5585       return error(ID.Loc, "invalid type for inline asm constraint string");
5586     V = InlineAsm::get(
5587         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5588         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5589     return false;
5590   }
5591   case ValID::t_GlobalName:
5592     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5593     return V == nullptr;
5594   case ValID::t_GlobalID:
5595     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5596     return V == nullptr;
5597   case ValID::t_APSInt:
5598     if (!Ty->isIntegerTy())
5599       return error(ID.Loc, "integer constant must have integer type");
5600     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5601     V = ConstantInt::get(Context, ID.APSIntVal);
5602     return false;
5603   case ValID::t_APFloat:
5604     if (!Ty->isFloatingPointTy() ||
5605         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5606       return error(ID.Loc, "floating point constant invalid for type");
5607 
5608     // The lexer has no type info, so builds all half, bfloat, float, and double
5609     // FP constants as double.  Fix this here.  Long double does not need this.
5610     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5611       // Check for signaling before potentially converting and losing that info.
5612       bool IsSNAN = ID.APFloatVal.isSignaling();
5613       bool Ignored;
5614       if (Ty->isHalfTy())
5615         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5616                               &Ignored);
5617       else if (Ty->isBFloatTy())
5618         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5619                               &Ignored);
5620       else if (Ty->isFloatTy())
5621         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5622                               &Ignored);
5623       if (IsSNAN) {
5624         // The convert call above may quiet an SNaN, so manufacture another
5625         // SNaN. The bitcast works because the payload (significand) parameter
5626         // is truncated to fit.
5627         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5628         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5629                                          ID.APFloatVal.isNegative(), &Payload);
5630       }
5631     }
5632     V = ConstantFP::get(Context, ID.APFloatVal);
5633 
5634     if (V->getType() != Ty)
5635       return error(ID.Loc, "floating point constant does not have type '" +
5636                                getTypeString(Ty) + "'");
5637 
5638     return false;
5639   case ValID::t_Null:
5640     if (!Ty->isPointerTy())
5641       return error(ID.Loc, "null must be a pointer type");
5642     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5643     return false;
5644   case ValID::t_Undef:
5645     // FIXME: LabelTy should not be a first-class type.
5646     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5647       return error(ID.Loc, "invalid type for undef constant");
5648     V = UndefValue::get(Ty);
5649     return false;
5650   case ValID::t_EmptyArray:
5651     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5652       return error(ID.Loc, "invalid empty array initializer");
5653     V = UndefValue::get(Ty);
5654     return false;
5655   case ValID::t_Zero:
5656     // FIXME: LabelTy should not be a first-class type.
5657     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5658       return error(ID.Loc, "invalid type for null constant");
5659     V = Constant::getNullValue(Ty);
5660     return false;
5661   case ValID::t_None:
5662     if (!Ty->isTokenTy())
5663       return error(ID.Loc, "invalid type for none constant");
5664     V = Constant::getNullValue(Ty);
5665     return false;
5666   case ValID::t_Poison:
5667     // FIXME: LabelTy should not be a first-class type.
5668     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5669       return error(ID.Loc, "invalid type for poison constant");
5670     V = PoisonValue::get(Ty);
5671     return false;
5672   case ValID::t_Constant:
5673     if (ID.ConstantVal->getType() != Ty)
5674       return error(ID.Loc, "constant expression type mismatch");
5675     V = ID.ConstantVal;
5676     return false;
5677   case ValID::t_ConstantStruct:
5678   case ValID::t_PackedConstantStruct:
5679     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5680       if (ST->getNumElements() != ID.UIntVal)
5681         return error(ID.Loc,
5682                      "initializer with struct type has wrong # elements");
5683       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5684         return error(ID.Loc, "packed'ness of initializer and type don't match");
5685 
5686       // Verify that the elements are compatible with the structtype.
5687       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5688         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5689           return error(
5690               ID.Loc,
5691               "element " + Twine(i) +
5692                   " of struct initializer doesn't match struct element type");
5693 
5694       V = ConstantStruct::get(
5695           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5696     } else
5697       return error(ID.Loc, "constant expression type mismatch");
5698     return false;
5699   }
5700   llvm_unreachable("Invalid ValID");
5701 }
5702 
parseConstantValue(Type * Ty,Constant * & C)5703 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5704   C = nullptr;
5705   ValID ID;
5706   auto Loc = Lex.getLoc();
5707   if (parseValID(ID, /*PFS=*/nullptr))
5708     return true;
5709   switch (ID.Kind) {
5710   case ValID::t_APSInt:
5711   case ValID::t_APFloat:
5712   case ValID::t_Undef:
5713   case ValID::t_Constant:
5714   case ValID::t_ConstantStruct:
5715   case ValID::t_PackedConstantStruct: {
5716     Value *V;
5717     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5718       return true;
5719     assert(isa<Constant>(V) && "Expected a constant value");
5720     C = cast<Constant>(V);
5721     return false;
5722   }
5723   case ValID::t_Null:
5724     C = Constant::getNullValue(Ty);
5725     return false;
5726   default:
5727     return error(Loc, "expected a constant value");
5728   }
5729 }
5730 
parseValue(Type * Ty,Value * & V,PerFunctionState * PFS)5731 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5732   V = nullptr;
5733   ValID ID;
5734   return parseValID(ID, PFS) ||
5735          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5736 }
5737 
parseTypeAndValue(Value * & V,PerFunctionState * PFS)5738 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5739   Type *Ty = nullptr;
5740   return parseType(Ty) || parseValue(Ty, V, PFS);
5741 }
5742 
parseTypeAndBasicBlock(BasicBlock * & BB,LocTy & Loc,PerFunctionState & PFS)5743 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5744                                       PerFunctionState &PFS) {
5745   Value *V;
5746   Loc = Lex.getLoc();
5747   if (parseTypeAndValue(V, PFS))
5748     return true;
5749   if (!isa<BasicBlock>(V))
5750     return error(Loc, "expected a basic block");
5751   BB = cast<BasicBlock>(V);
5752   return false;
5753 }
5754 
5755 /// FunctionHeader
5756 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5757 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5758 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5759 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
parseFunctionHeader(Function * & Fn,bool IsDefine)5760 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5761   // parse the linkage.
5762   LocTy LinkageLoc = Lex.getLoc();
5763   unsigned Linkage;
5764   unsigned Visibility;
5765   unsigned DLLStorageClass;
5766   bool DSOLocal;
5767   AttrBuilder RetAttrs;
5768   unsigned CC;
5769   bool HasLinkage;
5770   Type *RetType = nullptr;
5771   LocTy RetTypeLoc = Lex.getLoc();
5772   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5773                            DSOLocal) ||
5774       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5775       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5776     return true;
5777 
5778   // Verify that the linkage is ok.
5779   switch ((GlobalValue::LinkageTypes)Linkage) {
5780   case GlobalValue::ExternalLinkage:
5781     break; // always ok.
5782   case GlobalValue::ExternalWeakLinkage:
5783     if (IsDefine)
5784       return error(LinkageLoc, "invalid linkage for function definition");
5785     break;
5786   case GlobalValue::PrivateLinkage:
5787   case GlobalValue::InternalLinkage:
5788   case GlobalValue::AvailableExternallyLinkage:
5789   case GlobalValue::LinkOnceAnyLinkage:
5790   case GlobalValue::LinkOnceODRLinkage:
5791   case GlobalValue::WeakAnyLinkage:
5792   case GlobalValue::WeakODRLinkage:
5793     if (!IsDefine)
5794       return error(LinkageLoc, "invalid linkage for function declaration");
5795     break;
5796   case GlobalValue::AppendingLinkage:
5797   case GlobalValue::CommonLinkage:
5798     return error(LinkageLoc, "invalid function linkage type");
5799   }
5800 
5801   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5802     return error(LinkageLoc,
5803                  "symbol with local linkage must have default visibility");
5804 
5805   if (!FunctionType::isValidReturnType(RetType))
5806     return error(RetTypeLoc, "invalid function return type");
5807 
5808   LocTy NameLoc = Lex.getLoc();
5809 
5810   std::string FunctionName;
5811   if (Lex.getKind() == lltok::GlobalVar) {
5812     FunctionName = Lex.getStrVal();
5813   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5814     unsigned NameID = Lex.getUIntVal();
5815 
5816     if (NameID != NumberedVals.size())
5817       return tokError("function expected to be numbered '%" +
5818                       Twine(NumberedVals.size()) + "'");
5819   } else {
5820     return tokError("expected function name");
5821   }
5822 
5823   Lex.Lex();
5824 
5825   if (Lex.getKind() != lltok::lparen)
5826     return tokError("expected '(' in function argument list");
5827 
5828   SmallVector<ArgInfo, 8> ArgList;
5829   bool IsVarArg;
5830   AttrBuilder FuncAttrs;
5831   std::vector<unsigned> FwdRefAttrGrps;
5832   LocTy BuiltinLoc;
5833   std::string Section;
5834   std::string Partition;
5835   MaybeAlign Alignment;
5836   std::string GC;
5837   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5838   unsigned AddrSpace = 0;
5839   Constant *Prefix = nullptr;
5840   Constant *Prologue = nullptr;
5841   Constant *PersonalityFn = nullptr;
5842   Comdat *C;
5843 
5844   if (parseArgumentList(ArgList, IsVarArg) ||
5845       parseOptionalUnnamedAddr(UnnamedAddr) ||
5846       parseOptionalProgramAddrSpace(AddrSpace) ||
5847       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5848                                  BuiltinLoc) ||
5849       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5850       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5851       parseOptionalComdat(FunctionName, C) ||
5852       parseOptionalAlignment(Alignment) ||
5853       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5854       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5855       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5856       (EatIfPresent(lltok::kw_personality) &&
5857        parseGlobalTypeAndValue(PersonalityFn)))
5858     return true;
5859 
5860   if (FuncAttrs.contains(Attribute::Builtin))
5861     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5862 
5863   // If the alignment was parsed as an attribute, move to the alignment field.
5864   if (FuncAttrs.hasAlignmentAttr()) {
5865     Alignment = FuncAttrs.getAlignment();
5866     FuncAttrs.removeAttribute(Attribute::Alignment);
5867   }
5868 
5869   // Okay, if we got here, the function is syntactically valid.  Convert types
5870   // and do semantic checks.
5871   std::vector<Type*> ParamTypeList;
5872   SmallVector<AttributeSet, 8> Attrs;
5873 
5874   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5875     ParamTypeList.push_back(ArgList[i].Ty);
5876     Attrs.push_back(ArgList[i].Attrs);
5877   }
5878 
5879   AttributeList PAL =
5880       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5881                          AttributeSet::get(Context, RetAttrs), Attrs);
5882 
5883   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5884     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5885 
5886   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5887   PointerType *PFT = PointerType::get(FT, AddrSpace);
5888 
5889   Fn = nullptr;
5890   if (!FunctionName.empty()) {
5891     // If this was a definition of a forward reference, remove the definition
5892     // from the forward reference table and fill in the forward ref.
5893     auto FRVI = ForwardRefVals.find(FunctionName);
5894     if (FRVI != ForwardRefVals.end()) {
5895       Fn = M->getFunction(FunctionName);
5896       if (!Fn)
5897         return error(FRVI->second.second, "invalid forward reference to "
5898                                           "function as global value!");
5899       if (Fn->getType() != PFT)
5900         return error(FRVI->second.second,
5901                      "invalid forward reference to "
5902                      "function '" +
5903                          FunctionName +
5904                          "' with wrong type: "
5905                          "expected '" +
5906                          getTypeString(PFT) + "' but was '" +
5907                          getTypeString(Fn->getType()) + "'");
5908       ForwardRefVals.erase(FRVI);
5909     } else if ((Fn = M->getFunction(FunctionName))) {
5910       // Reject redefinitions.
5911       return error(NameLoc,
5912                    "invalid redefinition of function '" + FunctionName + "'");
5913     } else if (M->getNamedValue(FunctionName)) {
5914       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5915     }
5916 
5917   } else {
5918     // If this is a definition of a forward referenced function, make sure the
5919     // types agree.
5920     auto I = ForwardRefValIDs.find(NumberedVals.size());
5921     if (I != ForwardRefValIDs.end()) {
5922       Fn = cast<Function>(I->second.first);
5923       if (Fn->getType() != PFT)
5924         return error(NameLoc, "type of definition and forward reference of '@" +
5925                                   Twine(NumberedVals.size()) +
5926                                   "' disagree: "
5927                                   "expected '" +
5928                                   getTypeString(PFT) + "' but was '" +
5929                                   getTypeString(Fn->getType()) + "'");
5930       ForwardRefValIDs.erase(I);
5931     }
5932   }
5933 
5934   if (!Fn)
5935     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5936                           FunctionName, M);
5937   else // Move the forward-reference to the correct spot in the module.
5938     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5939 
5940   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5941 
5942   if (FunctionName.empty())
5943     NumberedVals.push_back(Fn);
5944 
5945   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5946   maybeSetDSOLocal(DSOLocal, *Fn);
5947   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5948   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5949   Fn->setCallingConv(CC);
5950   Fn->setAttributes(PAL);
5951   Fn->setUnnamedAddr(UnnamedAddr);
5952   Fn->setAlignment(MaybeAlign(Alignment));
5953   Fn->setSection(Section);
5954   Fn->setPartition(Partition);
5955   Fn->setComdat(C);
5956   Fn->setPersonalityFn(PersonalityFn);
5957   if (!GC.empty()) Fn->setGC(GC);
5958   Fn->setPrefixData(Prefix);
5959   Fn->setPrologueData(Prologue);
5960   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5961 
5962   // Add all of the arguments we parsed to the function.
5963   Function::arg_iterator ArgIt = Fn->arg_begin();
5964   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5965     // If the argument has a name, insert it into the argument symbol table.
5966     if (ArgList[i].Name.empty()) continue;
5967 
5968     // Set the name, if it conflicted, it will be auto-renamed.
5969     ArgIt->setName(ArgList[i].Name);
5970 
5971     if (ArgIt->getName() != ArgList[i].Name)
5972       return error(ArgList[i].Loc,
5973                    "redefinition of argument '%" + ArgList[i].Name + "'");
5974   }
5975 
5976   if (IsDefine)
5977     return false;
5978 
5979   // Check the declaration has no block address forward references.
5980   ValID ID;
5981   if (FunctionName.empty()) {
5982     ID.Kind = ValID::t_GlobalID;
5983     ID.UIntVal = NumberedVals.size() - 1;
5984   } else {
5985     ID.Kind = ValID::t_GlobalName;
5986     ID.StrVal = FunctionName;
5987   }
5988   auto Blocks = ForwardRefBlockAddresses.find(ID);
5989   if (Blocks != ForwardRefBlockAddresses.end())
5990     return error(Blocks->first.Loc,
5991                  "cannot take blockaddress inside a declaration");
5992   return false;
5993 }
5994 
resolveForwardRefBlockAddresses()5995 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5996   ValID ID;
5997   if (FunctionNumber == -1) {
5998     ID.Kind = ValID::t_GlobalName;
5999     ID.StrVal = std::string(F.getName());
6000   } else {
6001     ID.Kind = ValID::t_GlobalID;
6002     ID.UIntVal = FunctionNumber;
6003   }
6004 
6005   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
6006   if (Blocks == P.ForwardRefBlockAddresses.end())
6007     return false;
6008 
6009   for (const auto &I : Blocks->second) {
6010     const ValID &BBID = I.first;
6011     GlobalValue *GV = I.second;
6012 
6013     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6014            "Expected local id or name");
6015     BasicBlock *BB;
6016     if (BBID.Kind == ValID::t_LocalName)
6017       BB = getBB(BBID.StrVal, BBID.Loc);
6018     else
6019       BB = getBB(BBID.UIntVal, BBID.Loc);
6020     if (!BB)
6021       return P.error(BBID.Loc, "referenced value is not a basic block");
6022 
6023     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
6024     GV->eraseFromParent();
6025   }
6026 
6027   P.ForwardRefBlockAddresses.erase(Blocks);
6028   return false;
6029 }
6030 
6031 /// parseFunctionBody
6032 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
parseFunctionBody(Function & Fn)6033 bool LLParser::parseFunctionBody(Function &Fn) {
6034   if (Lex.getKind() != lltok::lbrace)
6035     return tokError("expected '{' in function body");
6036   Lex.Lex();  // eat the {.
6037 
6038   int FunctionNumber = -1;
6039   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
6040 
6041   PerFunctionState PFS(*this, Fn, FunctionNumber);
6042 
6043   // Resolve block addresses and allow basic blocks to be forward-declared
6044   // within this function.
6045   if (PFS.resolveForwardRefBlockAddresses())
6046     return true;
6047   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
6048 
6049   // We need at least one basic block.
6050   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6051     return tokError("function body requires at least one basic block");
6052 
6053   while (Lex.getKind() != lltok::rbrace &&
6054          Lex.getKind() != lltok::kw_uselistorder)
6055     if (parseBasicBlock(PFS))
6056       return true;
6057 
6058   while (Lex.getKind() != lltok::rbrace)
6059     if (parseUseListOrder(&PFS))
6060       return true;
6061 
6062   // Eat the }.
6063   Lex.Lex();
6064 
6065   // Verify function is ok.
6066   return PFS.finishFunction();
6067 }
6068 
6069 /// parseBasicBlock
6070 ///   ::= (LabelStr|LabelID)? Instruction*
parseBasicBlock(PerFunctionState & PFS)6071 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6072   // If this basic block starts out with a name, remember it.
6073   std::string Name;
6074   int NameID = -1;
6075   LocTy NameLoc = Lex.getLoc();
6076   if (Lex.getKind() == lltok::LabelStr) {
6077     Name = Lex.getStrVal();
6078     Lex.Lex();
6079   } else if (Lex.getKind() == lltok::LabelID) {
6080     NameID = Lex.getUIntVal();
6081     Lex.Lex();
6082   }
6083 
6084   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6085   if (!BB)
6086     return true;
6087 
6088   std::string NameStr;
6089 
6090   // parse the instructions in this block until we get a terminator.
6091   Instruction *Inst;
6092   do {
6093     // This instruction may have three possibilities for a name: a) none
6094     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6095     LocTy NameLoc = Lex.getLoc();
6096     int NameID = -1;
6097     NameStr = "";
6098 
6099     if (Lex.getKind() == lltok::LocalVarID) {
6100       NameID = Lex.getUIntVal();
6101       Lex.Lex();
6102       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6103         return true;
6104     } else if (Lex.getKind() == lltok::LocalVar) {
6105       NameStr = Lex.getStrVal();
6106       Lex.Lex();
6107       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6108         return true;
6109     }
6110 
6111     switch (parseInstruction(Inst, BB, PFS)) {
6112     default:
6113       llvm_unreachable("Unknown parseInstruction result!");
6114     case InstError: return true;
6115     case InstNormal:
6116       BB->getInstList().push_back(Inst);
6117 
6118       // With a normal result, we check to see if the instruction is followed by
6119       // a comma and metadata.
6120       if (EatIfPresent(lltok::comma))
6121         if (parseInstructionMetadata(*Inst))
6122           return true;
6123       break;
6124     case InstExtraComma:
6125       BB->getInstList().push_back(Inst);
6126 
6127       // If the instruction parser ate an extra comma at the end of it, it
6128       // *must* be followed by metadata.
6129       if (parseInstructionMetadata(*Inst))
6130         return true;
6131       break;
6132     }
6133 
6134     // Set the name on the instruction.
6135     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6136       return true;
6137   } while (!Inst->isTerminator());
6138 
6139   return false;
6140 }
6141 
6142 //===----------------------------------------------------------------------===//
6143 // Instruction Parsing.
6144 //===----------------------------------------------------------------------===//
6145 
6146 /// parseInstruction - parse one of the many different instructions.
6147 ///
parseInstruction(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)6148 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6149                                PerFunctionState &PFS) {
6150   lltok::Kind Token = Lex.getKind();
6151   if (Token == lltok::Eof)
6152     return tokError("found end of file when expecting more instructions");
6153   LocTy Loc = Lex.getLoc();
6154   unsigned KeywordVal = Lex.getUIntVal();
6155   Lex.Lex();  // Eat the keyword.
6156 
6157   switch (Token) {
6158   default:
6159     return error(Loc, "expected instruction opcode");
6160   // Terminator Instructions.
6161   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6162   case lltok::kw_ret:
6163     return parseRet(Inst, BB, PFS);
6164   case lltok::kw_br:
6165     return parseBr(Inst, PFS);
6166   case lltok::kw_switch:
6167     return parseSwitch(Inst, PFS);
6168   case lltok::kw_indirectbr:
6169     return parseIndirectBr(Inst, PFS);
6170   case lltok::kw_invoke:
6171     return parseInvoke(Inst, PFS);
6172   case lltok::kw_resume:
6173     return parseResume(Inst, PFS);
6174   case lltok::kw_cleanupret:
6175     return parseCleanupRet(Inst, PFS);
6176   case lltok::kw_catchret:
6177     return parseCatchRet(Inst, PFS);
6178   case lltok::kw_catchswitch:
6179     return parseCatchSwitch(Inst, PFS);
6180   case lltok::kw_catchpad:
6181     return parseCatchPad(Inst, PFS);
6182   case lltok::kw_cleanuppad:
6183     return parseCleanupPad(Inst, PFS);
6184   case lltok::kw_callbr:
6185     return parseCallBr(Inst, PFS);
6186   // Unary Operators.
6187   case lltok::kw_fneg: {
6188     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6189     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6190     if (Res != 0)
6191       return Res;
6192     if (FMF.any())
6193       Inst->setFastMathFlags(FMF);
6194     return false;
6195   }
6196   // Binary Operators.
6197   case lltok::kw_add:
6198   case lltok::kw_sub:
6199   case lltok::kw_mul:
6200   case lltok::kw_shl: {
6201     bool NUW = EatIfPresent(lltok::kw_nuw);
6202     bool NSW = EatIfPresent(lltok::kw_nsw);
6203     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6204 
6205     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6206       return true;
6207 
6208     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6209     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6210     return false;
6211   }
6212   case lltok::kw_fadd:
6213   case lltok::kw_fsub:
6214   case lltok::kw_fmul:
6215   case lltok::kw_fdiv:
6216   case lltok::kw_frem: {
6217     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6218     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6219     if (Res != 0)
6220       return Res;
6221     if (FMF.any())
6222       Inst->setFastMathFlags(FMF);
6223     return 0;
6224   }
6225 
6226   case lltok::kw_sdiv:
6227   case lltok::kw_udiv:
6228   case lltok::kw_lshr:
6229   case lltok::kw_ashr: {
6230     bool Exact = EatIfPresent(lltok::kw_exact);
6231 
6232     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6233       return true;
6234     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6235     return false;
6236   }
6237 
6238   case lltok::kw_urem:
6239   case lltok::kw_srem:
6240     return parseArithmetic(Inst, PFS, KeywordVal,
6241                            /*IsFP*/ false);
6242   case lltok::kw_and:
6243   case lltok::kw_or:
6244   case lltok::kw_xor:
6245     return parseLogical(Inst, PFS, KeywordVal);
6246   case lltok::kw_icmp:
6247     return parseCompare(Inst, PFS, KeywordVal);
6248   case lltok::kw_fcmp: {
6249     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6250     int Res = parseCompare(Inst, PFS, KeywordVal);
6251     if (Res != 0)
6252       return Res;
6253     if (FMF.any())
6254       Inst->setFastMathFlags(FMF);
6255     return 0;
6256   }
6257 
6258   // Casts.
6259   case lltok::kw_trunc:
6260   case lltok::kw_zext:
6261   case lltok::kw_sext:
6262   case lltok::kw_fptrunc:
6263   case lltok::kw_fpext:
6264   case lltok::kw_bitcast:
6265   case lltok::kw_addrspacecast:
6266   case lltok::kw_uitofp:
6267   case lltok::kw_sitofp:
6268   case lltok::kw_fptoui:
6269   case lltok::kw_fptosi:
6270   case lltok::kw_inttoptr:
6271   case lltok::kw_ptrtoint:
6272     return parseCast(Inst, PFS, KeywordVal);
6273   // Other.
6274   case lltok::kw_select: {
6275     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6276     int Res = parseSelect(Inst, PFS);
6277     if (Res != 0)
6278       return Res;
6279     if (FMF.any()) {
6280       if (!isa<FPMathOperator>(Inst))
6281         return error(Loc, "fast-math-flags specified for select without "
6282                           "floating-point scalar or vector return type");
6283       Inst->setFastMathFlags(FMF);
6284     }
6285     return 0;
6286   }
6287   case lltok::kw_va_arg:
6288     return parseVAArg(Inst, PFS);
6289   case lltok::kw_extractelement:
6290     return parseExtractElement(Inst, PFS);
6291   case lltok::kw_insertelement:
6292     return parseInsertElement(Inst, PFS);
6293   case lltok::kw_shufflevector:
6294     return parseShuffleVector(Inst, PFS);
6295   case lltok::kw_phi: {
6296     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6297     int Res = parsePHI(Inst, PFS);
6298     if (Res != 0)
6299       return Res;
6300     if (FMF.any()) {
6301       if (!isa<FPMathOperator>(Inst))
6302         return error(Loc, "fast-math-flags specified for phi without "
6303                           "floating-point scalar or vector return type");
6304       Inst->setFastMathFlags(FMF);
6305     }
6306     return 0;
6307   }
6308   case lltok::kw_landingpad:
6309     return parseLandingPad(Inst, PFS);
6310   case lltok::kw_freeze:
6311     return parseFreeze(Inst, PFS);
6312   // Call.
6313   case lltok::kw_call:
6314     return parseCall(Inst, PFS, CallInst::TCK_None);
6315   case lltok::kw_tail:
6316     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6317   case lltok::kw_musttail:
6318     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6319   case lltok::kw_notail:
6320     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6321   // Memory.
6322   case lltok::kw_alloca:
6323     return parseAlloc(Inst, PFS);
6324   case lltok::kw_load:
6325     return parseLoad(Inst, PFS);
6326   case lltok::kw_store:
6327     return parseStore(Inst, PFS);
6328   case lltok::kw_cmpxchg:
6329     return parseCmpXchg(Inst, PFS);
6330   case lltok::kw_atomicrmw:
6331     return parseAtomicRMW(Inst, PFS);
6332   case lltok::kw_fence:
6333     return parseFence(Inst, PFS);
6334   case lltok::kw_getelementptr:
6335     return parseGetElementPtr(Inst, PFS);
6336   case lltok::kw_extractvalue:
6337     return parseExtractValue(Inst, PFS);
6338   case lltok::kw_insertvalue:
6339     return parseInsertValue(Inst, PFS);
6340   }
6341 }
6342 
6343 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
parseCmpPredicate(unsigned & P,unsigned Opc)6344 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6345   if (Opc == Instruction::FCmp) {
6346     switch (Lex.getKind()) {
6347     default:
6348       return tokError("expected fcmp predicate (e.g. 'oeq')");
6349     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6350     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6351     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6352     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6353     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6354     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6355     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6356     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6357     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6358     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6359     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6360     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6361     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6362     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6363     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6364     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6365     }
6366   } else {
6367     switch (Lex.getKind()) {
6368     default:
6369       return tokError("expected icmp predicate (e.g. 'eq')");
6370     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6371     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6372     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6373     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6374     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6375     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6376     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6377     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6378     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6379     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6380     }
6381   }
6382   Lex.Lex();
6383   return false;
6384 }
6385 
6386 //===----------------------------------------------------------------------===//
6387 // Terminator Instructions.
6388 //===----------------------------------------------------------------------===//
6389 
6390 /// parseRet - parse a return instruction.
6391 ///   ::= 'ret' void (',' !dbg, !1)*
6392 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
parseRet(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)6393 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6394                         PerFunctionState &PFS) {
6395   SMLoc TypeLoc = Lex.getLoc();
6396   Type *Ty = nullptr;
6397   if (parseType(Ty, true /*void allowed*/))
6398     return true;
6399 
6400   Type *ResType = PFS.getFunction().getReturnType();
6401 
6402   if (Ty->isVoidTy()) {
6403     if (!ResType->isVoidTy())
6404       return error(TypeLoc, "value doesn't match function result type '" +
6405                                 getTypeString(ResType) + "'");
6406 
6407     Inst = ReturnInst::Create(Context);
6408     return false;
6409   }
6410 
6411   Value *RV;
6412   if (parseValue(Ty, RV, PFS))
6413     return true;
6414 
6415   if (ResType != RV->getType())
6416     return error(TypeLoc, "value doesn't match function result type '" +
6417                               getTypeString(ResType) + "'");
6418 
6419   Inst = ReturnInst::Create(Context, RV);
6420   return false;
6421 }
6422 
6423 /// parseBr
6424 ///   ::= 'br' TypeAndValue
6425 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
parseBr(Instruction * & Inst,PerFunctionState & PFS)6426 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6427   LocTy Loc, Loc2;
6428   Value *Op0;
6429   BasicBlock *Op1, *Op2;
6430   if (parseTypeAndValue(Op0, Loc, PFS))
6431     return true;
6432 
6433   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6434     Inst = BranchInst::Create(BB);
6435     return false;
6436   }
6437 
6438   if (Op0->getType() != Type::getInt1Ty(Context))
6439     return error(Loc, "branch condition must have 'i1' type");
6440 
6441   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6442       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6443       parseToken(lltok::comma, "expected ',' after true destination") ||
6444       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6445     return true;
6446 
6447   Inst = BranchInst::Create(Op1, Op2, Op0);
6448   return false;
6449 }
6450 
6451 /// parseSwitch
6452 ///  Instruction
6453 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6454 ///  JumpTable
6455 ///    ::= (TypeAndValue ',' TypeAndValue)*
parseSwitch(Instruction * & Inst,PerFunctionState & PFS)6456 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6457   LocTy CondLoc, BBLoc;
6458   Value *Cond;
6459   BasicBlock *DefaultBB;
6460   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6461       parseToken(lltok::comma, "expected ',' after switch condition") ||
6462       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6463       parseToken(lltok::lsquare, "expected '[' with switch table"))
6464     return true;
6465 
6466   if (!Cond->getType()->isIntegerTy())
6467     return error(CondLoc, "switch condition must have integer type");
6468 
6469   // parse the jump table pairs.
6470   SmallPtrSet<Value*, 32> SeenCases;
6471   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6472   while (Lex.getKind() != lltok::rsquare) {
6473     Value *Constant;
6474     BasicBlock *DestBB;
6475 
6476     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6477         parseToken(lltok::comma, "expected ',' after case value") ||
6478         parseTypeAndBasicBlock(DestBB, PFS))
6479       return true;
6480 
6481     if (!SeenCases.insert(Constant).second)
6482       return error(CondLoc, "duplicate case value in switch");
6483     if (!isa<ConstantInt>(Constant))
6484       return error(CondLoc, "case value is not a constant integer");
6485 
6486     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6487   }
6488 
6489   Lex.Lex();  // Eat the ']'.
6490 
6491   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6492   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6493     SI->addCase(Table[i].first, Table[i].second);
6494   Inst = SI;
6495   return false;
6496 }
6497 
6498 /// parseIndirectBr
6499 ///  Instruction
6500 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
parseIndirectBr(Instruction * & Inst,PerFunctionState & PFS)6501 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6502   LocTy AddrLoc;
6503   Value *Address;
6504   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6505       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6506       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6507     return true;
6508 
6509   if (!Address->getType()->isPointerTy())
6510     return error(AddrLoc, "indirectbr address must have pointer type");
6511 
6512   // parse the destination list.
6513   SmallVector<BasicBlock*, 16> DestList;
6514 
6515   if (Lex.getKind() != lltok::rsquare) {
6516     BasicBlock *DestBB;
6517     if (parseTypeAndBasicBlock(DestBB, PFS))
6518       return true;
6519     DestList.push_back(DestBB);
6520 
6521     while (EatIfPresent(lltok::comma)) {
6522       if (parseTypeAndBasicBlock(DestBB, PFS))
6523         return true;
6524       DestList.push_back(DestBB);
6525     }
6526   }
6527 
6528   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6529     return true;
6530 
6531   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6532   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6533     IBI->addDestination(DestList[i]);
6534   Inst = IBI;
6535   return false;
6536 }
6537 
6538 /// parseInvoke
6539 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6540 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
parseInvoke(Instruction * & Inst,PerFunctionState & PFS)6541 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6542   LocTy CallLoc = Lex.getLoc();
6543   AttrBuilder RetAttrs, FnAttrs;
6544   std::vector<unsigned> FwdRefAttrGrps;
6545   LocTy NoBuiltinLoc;
6546   unsigned CC;
6547   unsigned InvokeAddrSpace;
6548   Type *RetType = nullptr;
6549   LocTy RetTypeLoc;
6550   ValID CalleeID;
6551   SmallVector<ParamInfo, 16> ArgList;
6552   SmallVector<OperandBundleDef, 2> BundleList;
6553 
6554   BasicBlock *NormalBB, *UnwindBB;
6555   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6556       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6557       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6558       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6559       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6560                                  NoBuiltinLoc) ||
6561       parseOptionalOperandBundles(BundleList, PFS) ||
6562       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6563       parseTypeAndBasicBlock(NormalBB, PFS) ||
6564       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6565       parseTypeAndBasicBlock(UnwindBB, PFS))
6566     return true;
6567 
6568   // If RetType is a non-function pointer type, then this is the short syntax
6569   // for the call, which means that RetType is just the return type.  Infer the
6570   // rest of the function argument types from the arguments that are present.
6571   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6572   if (!Ty) {
6573     // Pull out the types of all of the arguments...
6574     std::vector<Type*> ParamTypes;
6575     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6576       ParamTypes.push_back(ArgList[i].V->getType());
6577 
6578     if (!FunctionType::isValidReturnType(RetType))
6579       return error(RetTypeLoc, "Invalid result type for LLVM function");
6580 
6581     Ty = FunctionType::get(RetType, ParamTypes, false);
6582   }
6583 
6584   CalleeID.FTy = Ty;
6585 
6586   // Look up the callee.
6587   Value *Callee;
6588   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6589                           Callee, &PFS, /*IsCall=*/true))
6590     return true;
6591 
6592   // Set up the Attribute for the function.
6593   SmallVector<Value *, 8> Args;
6594   SmallVector<AttributeSet, 8> ArgAttrs;
6595 
6596   // Loop through FunctionType's arguments and ensure they are specified
6597   // correctly.  Also, gather any parameter attributes.
6598   FunctionType::param_iterator I = Ty->param_begin();
6599   FunctionType::param_iterator E = Ty->param_end();
6600   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6601     Type *ExpectedTy = nullptr;
6602     if (I != E) {
6603       ExpectedTy = *I++;
6604     } else if (!Ty->isVarArg()) {
6605       return error(ArgList[i].Loc, "too many arguments specified");
6606     }
6607 
6608     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6609       return error(ArgList[i].Loc, "argument is not of expected type '" +
6610                                        getTypeString(ExpectedTy) + "'");
6611     Args.push_back(ArgList[i].V);
6612     ArgAttrs.push_back(ArgList[i].Attrs);
6613   }
6614 
6615   if (I != E)
6616     return error(CallLoc, "not enough parameters specified for call");
6617 
6618   if (FnAttrs.hasAlignmentAttr())
6619     return error(CallLoc, "invoke instructions may not have an alignment");
6620 
6621   // Finish off the Attribute and check them
6622   AttributeList PAL =
6623       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6624                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6625 
6626   InvokeInst *II =
6627       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6628   II->setCallingConv(CC);
6629   II->setAttributes(PAL);
6630   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6631   Inst = II;
6632   return false;
6633 }
6634 
6635 /// parseResume
6636 ///   ::= 'resume' TypeAndValue
parseResume(Instruction * & Inst,PerFunctionState & PFS)6637 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6638   Value *Exn; LocTy ExnLoc;
6639   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6640     return true;
6641 
6642   ResumeInst *RI = ResumeInst::Create(Exn);
6643   Inst = RI;
6644   return false;
6645 }
6646 
parseExceptionArgs(SmallVectorImpl<Value * > & Args,PerFunctionState & PFS)6647 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6648                                   PerFunctionState &PFS) {
6649   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6650     return true;
6651 
6652   while (Lex.getKind() != lltok::rsquare) {
6653     // If this isn't the first argument, we need a comma.
6654     if (!Args.empty() &&
6655         parseToken(lltok::comma, "expected ',' in argument list"))
6656       return true;
6657 
6658     // parse the argument.
6659     LocTy ArgLoc;
6660     Type *ArgTy = nullptr;
6661     if (parseType(ArgTy, ArgLoc))
6662       return true;
6663 
6664     Value *V;
6665     if (ArgTy->isMetadataTy()) {
6666       if (parseMetadataAsValue(V, PFS))
6667         return true;
6668     } else {
6669       if (parseValue(ArgTy, V, PFS))
6670         return true;
6671     }
6672     Args.push_back(V);
6673   }
6674 
6675   Lex.Lex();  // Lex the ']'.
6676   return false;
6677 }
6678 
6679 /// parseCleanupRet
6680 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
parseCleanupRet(Instruction * & Inst,PerFunctionState & PFS)6681 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6682   Value *CleanupPad = nullptr;
6683 
6684   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6685     return true;
6686 
6687   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6688     return true;
6689 
6690   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6691     return true;
6692 
6693   BasicBlock *UnwindBB = nullptr;
6694   if (Lex.getKind() == lltok::kw_to) {
6695     Lex.Lex();
6696     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6697       return true;
6698   } else {
6699     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6700       return true;
6701     }
6702   }
6703 
6704   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6705   return false;
6706 }
6707 
6708 /// parseCatchRet
6709 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
parseCatchRet(Instruction * & Inst,PerFunctionState & PFS)6710 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6711   Value *CatchPad = nullptr;
6712 
6713   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6714     return true;
6715 
6716   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6717     return true;
6718 
6719   BasicBlock *BB;
6720   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6721       parseTypeAndBasicBlock(BB, PFS))
6722     return true;
6723 
6724   Inst = CatchReturnInst::Create(CatchPad, BB);
6725   return false;
6726 }
6727 
6728 /// parseCatchSwitch
6729 ///   ::= 'catchswitch' within Parent
parseCatchSwitch(Instruction * & Inst,PerFunctionState & PFS)6730 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6731   Value *ParentPad;
6732 
6733   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6734     return true;
6735 
6736   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6737       Lex.getKind() != lltok::LocalVarID)
6738     return tokError("expected scope value for catchswitch");
6739 
6740   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6741     return true;
6742 
6743   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6744     return true;
6745 
6746   SmallVector<BasicBlock *, 32> Table;
6747   do {
6748     BasicBlock *DestBB;
6749     if (parseTypeAndBasicBlock(DestBB, PFS))
6750       return true;
6751     Table.push_back(DestBB);
6752   } while (EatIfPresent(lltok::comma));
6753 
6754   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6755     return true;
6756 
6757   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6758     return true;
6759 
6760   BasicBlock *UnwindBB = nullptr;
6761   if (EatIfPresent(lltok::kw_to)) {
6762     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6763       return true;
6764   } else {
6765     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6766       return true;
6767   }
6768 
6769   auto *CatchSwitch =
6770       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6771   for (BasicBlock *DestBB : Table)
6772     CatchSwitch->addHandler(DestBB);
6773   Inst = CatchSwitch;
6774   return false;
6775 }
6776 
6777 /// parseCatchPad
6778 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
parseCatchPad(Instruction * & Inst,PerFunctionState & PFS)6779 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6780   Value *CatchSwitch = nullptr;
6781 
6782   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6783     return true;
6784 
6785   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6786     return tokError("expected scope value for catchpad");
6787 
6788   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6789     return true;
6790 
6791   SmallVector<Value *, 8> Args;
6792   if (parseExceptionArgs(Args, PFS))
6793     return true;
6794 
6795   Inst = CatchPadInst::Create(CatchSwitch, Args);
6796   return false;
6797 }
6798 
6799 /// parseCleanupPad
6800 ///   ::= 'cleanuppad' within Parent ParamList
parseCleanupPad(Instruction * & Inst,PerFunctionState & PFS)6801 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6802   Value *ParentPad = nullptr;
6803 
6804   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6805     return true;
6806 
6807   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6808       Lex.getKind() != lltok::LocalVarID)
6809     return tokError("expected scope value for cleanuppad");
6810 
6811   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6812     return true;
6813 
6814   SmallVector<Value *, 8> Args;
6815   if (parseExceptionArgs(Args, PFS))
6816     return true;
6817 
6818   Inst = CleanupPadInst::Create(ParentPad, Args);
6819   return false;
6820 }
6821 
6822 //===----------------------------------------------------------------------===//
6823 // Unary Operators.
6824 //===----------------------------------------------------------------------===//
6825 
6826 /// parseUnaryOp
6827 ///  ::= UnaryOp TypeAndValue ',' Value
6828 ///
6829 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6830 /// operand is allowed.
parseUnaryOp(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,bool IsFP)6831 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6832                             unsigned Opc, bool IsFP) {
6833   LocTy Loc; Value *LHS;
6834   if (parseTypeAndValue(LHS, Loc, PFS))
6835     return true;
6836 
6837   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6838                     : LHS->getType()->isIntOrIntVectorTy();
6839 
6840   if (!Valid)
6841     return error(Loc, "invalid operand type for instruction");
6842 
6843   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6844   return false;
6845 }
6846 
6847 /// parseCallBr
6848 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6849 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6850 ///       '[' LabelList ']'
parseCallBr(Instruction * & Inst,PerFunctionState & PFS)6851 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6852   LocTy CallLoc = Lex.getLoc();
6853   AttrBuilder RetAttrs, FnAttrs;
6854   std::vector<unsigned> FwdRefAttrGrps;
6855   LocTy NoBuiltinLoc;
6856   unsigned CC;
6857   Type *RetType = nullptr;
6858   LocTy RetTypeLoc;
6859   ValID CalleeID;
6860   SmallVector<ParamInfo, 16> ArgList;
6861   SmallVector<OperandBundleDef, 2> BundleList;
6862 
6863   BasicBlock *DefaultDest;
6864   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6865       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6866       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6867       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6868                                  NoBuiltinLoc) ||
6869       parseOptionalOperandBundles(BundleList, PFS) ||
6870       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6871       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6872       parseToken(lltok::lsquare, "expected '[' in callbr"))
6873     return true;
6874 
6875   // parse the destination list.
6876   SmallVector<BasicBlock *, 16> IndirectDests;
6877 
6878   if (Lex.getKind() != lltok::rsquare) {
6879     BasicBlock *DestBB;
6880     if (parseTypeAndBasicBlock(DestBB, PFS))
6881       return true;
6882     IndirectDests.push_back(DestBB);
6883 
6884     while (EatIfPresent(lltok::comma)) {
6885       if (parseTypeAndBasicBlock(DestBB, PFS))
6886         return true;
6887       IndirectDests.push_back(DestBB);
6888     }
6889   }
6890 
6891   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6892     return true;
6893 
6894   // If RetType is a non-function pointer type, then this is the short syntax
6895   // for the call, which means that RetType is just the return type.  Infer the
6896   // rest of the function argument types from the arguments that are present.
6897   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6898   if (!Ty) {
6899     // Pull out the types of all of the arguments...
6900     std::vector<Type *> ParamTypes;
6901     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6902       ParamTypes.push_back(ArgList[i].V->getType());
6903 
6904     if (!FunctionType::isValidReturnType(RetType))
6905       return error(RetTypeLoc, "Invalid result type for LLVM function");
6906 
6907     Ty = FunctionType::get(RetType, ParamTypes, false);
6908   }
6909 
6910   CalleeID.FTy = Ty;
6911 
6912   // Look up the callee.
6913   Value *Callee;
6914   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6915                           /*IsCall=*/true))
6916     return true;
6917 
6918   // Set up the Attribute for the function.
6919   SmallVector<Value *, 8> Args;
6920   SmallVector<AttributeSet, 8> ArgAttrs;
6921 
6922   // Loop through FunctionType's arguments and ensure they are specified
6923   // correctly.  Also, gather any parameter attributes.
6924   FunctionType::param_iterator I = Ty->param_begin();
6925   FunctionType::param_iterator E = Ty->param_end();
6926   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6927     Type *ExpectedTy = nullptr;
6928     if (I != E) {
6929       ExpectedTy = *I++;
6930     } else if (!Ty->isVarArg()) {
6931       return error(ArgList[i].Loc, "too many arguments specified");
6932     }
6933 
6934     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6935       return error(ArgList[i].Loc, "argument is not of expected type '" +
6936                                        getTypeString(ExpectedTy) + "'");
6937     Args.push_back(ArgList[i].V);
6938     ArgAttrs.push_back(ArgList[i].Attrs);
6939   }
6940 
6941   if (I != E)
6942     return error(CallLoc, "not enough parameters specified for call");
6943 
6944   if (FnAttrs.hasAlignmentAttr())
6945     return error(CallLoc, "callbr instructions may not have an alignment");
6946 
6947   // Finish off the Attribute and check them
6948   AttributeList PAL =
6949       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6950                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6951 
6952   CallBrInst *CBI =
6953       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6954                          BundleList);
6955   CBI->setCallingConv(CC);
6956   CBI->setAttributes(PAL);
6957   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6958   Inst = CBI;
6959   return false;
6960 }
6961 
6962 //===----------------------------------------------------------------------===//
6963 // Binary Operators.
6964 //===----------------------------------------------------------------------===//
6965 
6966 /// parseArithmetic
6967 ///  ::= ArithmeticOps TypeAndValue ',' Value
6968 ///
6969 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6970 /// operand is allowed.
parseArithmetic(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,bool IsFP)6971 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6972                                unsigned Opc, bool IsFP) {
6973   LocTy Loc; Value *LHS, *RHS;
6974   if (parseTypeAndValue(LHS, Loc, PFS) ||
6975       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6976       parseValue(LHS->getType(), RHS, PFS))
6977     return true;
6978 
6979   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6980                     : LHS->getType()->isIntOrIntVectorTy();
6981 
6982   if (!Valid)
6983     return error(Loc, "invalid operand type for instruction");
6984 
6985   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6986   return false;
6987 }
6988 
6989 /// parseLogical
6990 ///  ::= ArithmeticOps TypeAndValue ',' Value {
parseLogical(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)6991 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6992                             unsigned Opc) {
6993   LocTy Loc; Value *LHS, *RHS;
6994   if (parseTypeAndValue(LHS, Loc, PFS) ||
6995       parseToken(lltok::comma, "expected ',' in logical operation") ||
6996       parseValue(LHS->getType(), RHS, PFS))
6997     return true;
6998 
6999   if (!LHS->getType()->isIntOrIntVectorTy())
7000     return error(Loc,
7001                  "instruction requires integer or integer vector operands");
7002 
7003   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7004   return false;
7005 }
7006 
7007 /// parseCompare
7008 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
7009 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
parseCompare(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)7010 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7011                             unsigned Opc) {
7012   // parse the integer/fp comparison predicate.
7013   LocTy Loc;
7014   unsigned Pred;
7015   Value *LHS, *RHS;
7016   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
7017       parseToken(lltok::comma, "expected ',' after compare value") ||
7018       parseValue(LHS->getType(), RHS, PFS))
7019     return true;
7020 
7021   if (Opc == Instruction::FCmp) {
7022     if (!LHS->getType()->isFPOrFPVectorTy())
7023       return error(Loc, "fcmp requires floating point operands");
7024     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7025   } else {
7026     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7027     if (!LHS->getType()->isIntOrIntVectorTy() &&
7028         !LHS->getType()->isPtrOrPtrVectorTy())
7029       return error(Loc, "icmp requires integer operands");
7030     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7031   }
7032   return false;
7033 }
7034 
7035 //===----------------------------------------------------------------------===//
7036 // Other Instructions.
7037 //===----------------------------------------------------------------------===//
7038 
7039 /// parseCast
7040 ///   ::= CastOpc TypeAndValue 'to' Type
parseCast(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)7041 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7042                          unsigned Opc) {
7043   LocTy Loc;
7044   Value *Op;
7045   Type *DestTy = nullptr;
7046   if (parseTypeAndValue(Op, Loc, PFS) ||
7047       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7048       parseType(DestTy))
7049     return true;
7050 
7051   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7052     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7053     return error(Loc, "invalid cast opcode for cast from '" +
7054                           getTypeString(Op->getType()) + "' to '" +
7055                           getTypeString(DestTy) + "'");
7056   }
7057   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7058   return false;
7059 }
7060 
7061 /// parseSelect
7062 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
parseSelect(Instruction * & Inst,PerFunctionState & PFS)7063 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7064   LocTy Loc;
7065   Value *Op0, *Op1, *Op2;
7066   if (parseTypeAndValue(Op0, Loc, PFS) ||
7067       parseToken(lltok::comma, "expected ',' after select condition") ||
7068       parseTypeAndValue(Op1, PFS) ||
7069       parseToken(lltok::comma, "expected ',' after select value") ||
7070       parseTypeAndValue(Op2, PFS))
7071     return true;
7072 
7073   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7074     return error(Loc, Reason);
7075 
7076   Inst = SelectInst::Create(Op0, Op1, Op2);
7077   return false;
7078 }
7079 
7080 /// parseVAArg
7081 ///   ::= 'va_arg' TypeAndValue ',' Type
parseVAArg(Instruction * & Inst,PerFunctionState & PFS)7082 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7083   Value *Op;
7084   Type *EltTy = nullptr;
7085   LocTy TypeLoc;
7086   if (parseTypeAndValue(Op, PFS) ||
7087       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7088       parseType(EltTy, TypeLoc))
7089     return true;
7090 
7091   if (!EltTy->isFirstClassType())
7092     return error(TypeLoc, "va_arg requires operand with first class type");
7093 
7094   Inst = new VAArgInst(Op, EltTy);
7095   return false;
7096 }
7097 
7098 /// parseExtractElement
7099 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
parseExtractElement(Instruction * & Inst,PerFunctionState & PFS)7100 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7101   LocTy Loc;
7102   Value *Op0, *Op1;
7103   if (parseTypeAndValue(Op0, Loc, PFS) ||
7104       parseToken(lltok::comma, "expected ',' after extract value") ||
7105       parseTypeAndValue(Op1, PFS))
7106     return true;
7107 
7108   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7109     return error(Loc, "invalid extractelement operands");
7110 
7111   Inst = ExtractElementInst::Create(Op0, Op1);
7112   return false;
7113 }
7114 
7115 /// parseInsertElement
7116 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
parseInsertElement(Instruction * & Inst,PerFunctionState & PFS)7117 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7118   LocTy Loc;
7119   Value *Op0, *Op1, *Op2;
7120   if (parseTypeAndValue(Op0, Loc, PFS) ||
7121       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7122       parseTypeAndValue(Op1, PFS) ||
7123       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7124       parseTypeAndValue(Op2, PFS))
7125     return true;
7126 
7127   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7128     return error(Loc, "invalid insertelement operands");
7129 
7130   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7131   return false;
7132 }
7133 
7134 /// parseShuffleVector
7135 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
parseShuffleVector(Instruction * & Inst,PerFunctionState & PFS)7136 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7137   LocTy Loc;
7138   Value *Op0, *Op1, *Op2;
7139   if (parseTypeAndValue(Op0, Loc, PFS) ||
7140       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7141       parseTypeAndValue(Op1, PFS) ||
7142       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7143       parseTypeAndValue(Op2, PFS))
7144     return true;
7145 
7146   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7147     return error(Loc, "invalid shufflevector operands");
7148 
7149   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7150   return false;
7151 }
7152 
7153 /// parsePHI
7154 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
parsePHI(Instruction * & Inst,PerFunctionState & PFS)7155 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7156   Type *Ty = nullptr;  LocTy TypeLoc;
7157   Value *Op0, *Op1;
7158 
7159   if (parseType(Ty, TypeLoc) ||
7160       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7161       parseValue(Ty, Op0, PFS) ||
7162       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7163       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7164       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7165     return true;
7166 
7167   bool AteExtraComma = false;
7168   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7169 
7170   while (true) {
7171     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7172 
7173     if (!EatIfPresent(lltok::comma))
7174       break;
7175 
7176     if (Lex.getKind() == lltok::MetadataVar) {
7177       AteExtraComma = true;
7178       break;
7179     }
7180 
7181     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7182         parseValue(Ty, Op0, PFS) ||
7183         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7184         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7185         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7186       return true;
7187   }
7188 
7189   if (!Ty->isFirstClassType())
7190     return error(TypeLoc, "phi node must have first class type");
7191 
7192   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7193   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7194     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7195   Inst = PN;
7196   return AteExtraComma ? InstExtraComma : InstNormal;
7197 }
7198 
7199 /// parseLandingPad
7200 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7201 /// Clause
7202 ///   ::= 'catch' TypeAndValue
7203 ///   ::= 'filter'
7204 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
parseLandingPad(Instruction * & Inst,PerFunctionState & PFS)7205 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7206   Type *Ty = nullptr; LocTy TyLoc;
7207 
7208   if (parseType(Ty, TyLoc))
7209     return true;
7210 
7211   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7212   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7213 
7214   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7215     LandingPadInst::ClauseType CT;
7216     if (EatIfPresent(lltok::kw_catch))
7217       CT = LandingPadInst::Catch;
7218     else if (EatIfPresent(lltok::kw_filter))
7219       CT = LandingPadInst::Filter;
7220     else
7221       return tokError("expected 'catch' or 'filter' clause type");
7222 
7223     Value *V;
7224     LocTy VLoc;
7225     if (parseTypeAndValue(V, VLoc, PFS))
7226       return true;
7227 
7228     // A 'catch' type expects a non-array constant. A filter clause expects an
7229     // array constant.
7230     if (CT == LandingPadInst::Catch) {
7231       if (isa<ArrayType>(V->getType()))
7232         error(VLoc, "'catch' clause has an invalid type");
7233     } else {
7234       if (!isa<ArrayType>(V->getType()))
7235         error(VLoc, "'filter' clause has an invalid type");
7236     }
7237 
7238     Constant *CV = dyn_cast<Constant>(V);
7239     if (!CV)
7240       return error(VLoc, "clause argument must be a constant");
7241     LP->addClause(CV);
7242   }
7243 
7244   Inst = LP.release();
7245   return false;
7246 }
7247 
7248 /// parseFreeze
7249 ///   ::= 'freeze' Type Value
parseFreeze(Instruction * & Inst,PerFunctionState & PFS)7250 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7251   LocTy Loc;
7252   Value *Op;
7253   if (parseTypeAndValue(Op, Loc, PFS))
7254     return true;
7255 
7256   Inst = new FreezeInst(Op);
7257   return false;
7258 }
7259 
7260 /// parseCall
7261 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7262 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7263 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7264 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7265 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7266 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7267 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7268 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
parseCall(Instruction * & Inst,PerFunctionState & PFS,CallInst::TailCallKind TCK)7269 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7270                          CallInst::TailCallKind TCK) {
7271   AttrBuilder RetAttrs, FnAttrs;
7272   std::vector<unsigned> FwdRefAttrGrps;
7273   LocTy BuiltinLoc;
7274   unsigned CallAddrSpace;
7275   unsigned CC;
7276   Type *RetType = nullptr;
7277   LocTy RetTypeLoc;
7278   ValID CalleeID;
7279   SmallVector<ParamInfo, 16> ArgList;
7280   SmallVector<OperandBundleDef, 2> BundleList;
7281   LocTy CallLoc = Lex.getLoc();
7282 
7283   if (TCK != CallInst::TCK_None &&
7284       parseToken(lltok::kw_call,
7285                  "expected 'tail call', 'musttail call', or 'notail call'"))
7286     return true;
7287 
7288   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7289 
7290   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7291       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7292       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7293       parseValID(CalleeID) ||
7294       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7295                          PFS.getFunction().isVarArg()) ||
7296       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7297       parseOptionalOperandBundles(BundleList, PFS))
7298     return true;
7299 
7300   // If RetType is a non-function pointer type, then this is the short syntax
7301   // for the call, which means that RetType is just the return type.  Infer the
7302   // rest of the function argument types from the arguments that are present.
7303   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7304   if (!Ty) {
7305     // Pull out the types of all of the arguments...
7306     std::vector<Type*> ParamTypes;
7307     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7308       ParamTypes.push_back(ArgList[i].V->getType());
7309 
7310     if (!FunctionType::isValidReturnType(RetType))
7311       return error(RetTypeLoc, "Invalid result type for LLVM function");
7312 
7313     Ty = FunctionType::get(RetType, ParamTypes, false);
7314   }
7315 
7316   CalleeID.FTy = Ty;
7317 
7318   // Look up the callee.
7319   Value *Callee;
7320   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7321                           &PFS, /*IsCall=*/true))
7322     return true;
7323 
7324   // Set up the Attribute for the function.
7325   SmallVector<AttributeSet, 8> Attrs;
7326 
7327   SmallVector<Value*, 8> Args;
7328 
7329   // Loop through FunctionType's arguments and ensure they are specified
7330   // correctly.  Also, gather any parameter attributes.
7331   FunctionType::param_iterator I = Ty->param_begin();
7332   FunctionType::param_iterator E = Ty->param_end();
7333   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7334     Type *ExpectedTy = nullptr;
7335     if (I != E) {
7336       ExpectedTy = *I++;
7337     } else if (!Ty->isVarArg()) {
7338       return error(ArgList[i].Loc, "too many arguments specified");
7339     }
7340 
7341     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7342       return error(ArgList[i].Loc, "argument is not of expected type '" +
7343                                        getTypeString(ExpectedTy) + "'");
7344     Args.push_back(ArgList[i].V);
7345     Attrs.push_back(ArgList[i].Attrs);
7346   }
7347 
7348   if (I != E)
7349     return error(CallLoc, "not enough parameters specified for call");
7350 
7351   if (FnAttrs.hasAlignmentAttr())
7352     return error(CallLoc, "call instructions may not have an alignment");
7353 
7354   // Finish off the Attribute and check them
7355   AttributeList PAL =
7356       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7357                          AttributeSet::get(Context, RetAttrs), Attrs);
7358 
7359   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7360   CI->setTailCallKind(TCK);
7361   CI->setCallingConv(CC);
7362   if (FMF.any()) {
7363     if (!isa<FPMathOperator>(CI)) {
7364       CI->deleteValue();
7365       return error(CallLoc, "fast-math-flags specified for call without "
7366                             "floating-point scalar or vector return type");
7367     }
7368     CI->setFastMathFlags(FMF);
7369   }
7370   CI->setAttributes(PAL);
7371   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7372   Inst = CI;
7373   return false;
7374 }
7375 
7376 //===----------------------------------------------------------------------===//
7377 // Memory Instructions.
7378 //===----------------------------------------------------------------------===//
7379 
7380 /// parseAlloc
7381 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7382 ///       (',' 'align' i32)? (',', 'addrspace(n))?
parseAlloc(Instruction * & Inst,PerFunctionState & PFS)7383 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7384   Value *Size = nullptr;
7385   LocTy SizeLoc, TyLoc, ASLoc;
7386   MaybeAlign Alignment;
7387   unsigned AddrSpace = 0;
7388   Type *Ty = nullptr;
7389 
7390   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7391   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7392 
7393   if (parseType(Ty, TyLoc))
7394     return true;
7395 
7396   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7397     return error(TyLoc, "invalid type for alloca");
7398 
7399   bool AteExtraComma = false;
7400   if (EatIfPresent(lltok::comma)) {
7401     if (Lex.getKind() == lltok::kw_align) {
7402       if (parseOptionalAlignment(Alignment))
7403         return true;
7404       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7405         return true;
7406     } else if (Lex.getKind() == lltok::kw_addrspace) {
7407       ASLoc = Lex.getLoc();
7408       if (parseOptionalAddrSpace(AddrSpace))
7409         return true;
7410     } else if (Lex.getKind() == lltok::MetadataVar) {
7411       AteExtraComma = true;
7412     } else {
7413       if (parseTypeAndValue(Size, SizeLoc, PFS))
7414         return true;
7415       if (EatIfPresent(lltok::comma)) {
7416         if (Lex.getKind() == lltok::kw_align) {
7417           if (parseOptionalAlignment(Alignment))
7418             return true;
7419           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7420             return true;
7421         } else if (Lex.getKind() == lltok::kw_addrspace) {
7422           ASLoc = Lex.getLoc();
7423           if (parseOptionalAddrSpace(AddrSpace))
7424             return true;
7425         } else if (Lex.getKind() == lltok::MetadataVar) {
7426           AteExtraComma = true;
7427         }
7428       }
7429     }
7430   }
7431 
7432   if (Size && !Size->getType()->isIntegerTy())
7433     return error(SizeLoc, "element count must have integer type");
7434 
7435   SmallPtrSet<Type *, 4> Visited;
7436   if (!Alignment && !Ty->isSized(&Visited))
7437     return error(TyLoc, "Cannot allocate unsized type");
7438   if (!Alignment)
7439     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7440   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7441   AI->setUsedWithInAlloca(IsInAlloca);
7442   AI->setSwiftError(IsSwiftError);
7443   Inst = AI;
7444   return AteExtraComma ? InstExtraComma : InstNormal;
7445 }
7446 
7447 /// parseLoad
7448 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7449 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7450 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
parseLoad(Instruction * & Inst,PerFunctionState & PFS)7451 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7452   Value *Val; LocTy Loc;
7453   MaybeAlign Alignment;
7454   bool AteExtraComma = false;
7455   bool isAtomic = false;
7456   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7457   SyncScope::ID SSID = SyncScope::System;
7458 
7459   if (Lex.getKind() == lltok::kw_atomic) {
7460     isAtomic = true;
7461     Lex.Lex();
7462   }
7463 
7464   bool isVolatile = false;
7465   if (Lex.getKind() == lltok::kw_volatile) {
7466     isVolatile = true;
7467     Lex.Lex();
7468   }
7469 
7470   Type *Ty;
7471   LocTy ExplicitTypeLoc = Lex.getLoc();
7472   if (parseType(Ty) ||
7473       parseToken(lltok::comma, "expected comma after load's type") ||
7474       parseTypeAndValue(Val, Loc, PFS) ||
7475       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7476       parseOptionalCommaAlign(Alignment, AteExtraComma))
7477     return true;
7478 
7479   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7480     return error(Loc, "load operand must be a pointer to a first class type");
7481   if (isAtomic && !Alignment)
7482     return error(Loc, "atomic load must have explicit non-zero alignment");
7483   if (Ordering == AtomicOrdering::Release ||
7484       Ordering == AtomicOrdering::AcquireRelease)
7485     return error(Loc, "atomic load cannot use Release ordering");
7486 
7487   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7488     return error(
7489         ExplicitTypeLoc,
7490         typeComparisonErrorMessage(
7491             "explicit pointee type doesn't match operand's pointee type", Ty,
7492             cast<PointerType>(Val->getType())->getElementType()));
7493   }
7494   SmallPtrSet<Type *, 4> Visited;
7495   if (!Alignment && !Ty->isSized(&Visited))
7496     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7497   if (!Alignment)
7498     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7499   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7500   return AteExtraComma ? InstExtraComma : InstNormal;
7501 }
7502 
7503 /// parseStore
7504 
7505 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7506 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7507 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
parseStore(Instruction * & Inst,PerFunctionState & PFS)7508 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7509   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7510   MaybeAlign Alignment;
7511   bool AteExtraComma = false;
7512   bool isAtomic = false;
7513   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7514   SyncScope::ID SSID = SyncScope::System;
7515 
7516   if (Lex.getKind() == lltok::kw_atomic) {
7517     isAtomic = true;
7518     Lex.Lex();
7519   }
7520 
7521   bool isVolatile = false;
7522   if (Lex.getKind() == lltok::kw_volatile) {
7523     isVolatile = true;
7524     Lex.Lex();
7525   }
7526 
7527   if (parseTypeAndValue(Val, Loc, PFS) ||
7528       parseToken(lltok::comma, "expected ',' after store operand") ||
7529       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7530       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7531       parseOptionalCommaAlign(Alignment, AteExtraComma))
7532     return true;
7533 
7534   if (!Ptr->getType()->isPointerTy())
7535     return error(PtrLoc, "store operand must be a pointer");
7536   if (!Val->getType()->isFirstClassType())
7537     return error(Loc, "store operand must be a first class value");
7538   if (!cast<PointerType>(Ptr->getType())
7539            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7540     return error(Loc, "stored value and pointer type do not match");
7541   if (isAtomic && !Alignment)
7542     return error(Loc, "atomic store must have explicit non-zero alignment");
7543   if (Ordering == AtomicOrdering::Acquire ||
7544       Ordering == AtomicOrdering::AcquireRelease)
7545     return error(Loc, "atomic store cannot use Acquire ordering");
7546   SmallPtrSet<Type *, 4> Visited;
7547   if (!Alignment && !Val->getType()->isSized(&Visited))
7548     return error(Loc, "storing unsized types is not allowed");
7549   if (!Alignment)
7550     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7551 
7552   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7553   return AteExtraComma ? InstExtraComma : InstNormal;
7554 }
7555 
7556 /// parseCmpXchg
7557 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7558 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7559 ///       'Align'?
parseCmpXchg(Instruction * & Inst,PerFunctionState & PFS)7560 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7561   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7562   bool AteExtraComma = false;
7563   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7564   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7565   SyncScope::ID SSID = SyncScope::System;
7566   bool isVolatile = false;
7567   bool isWeak = false;
7568   MaybeAlign Alignment;
7569 
7570   if (EatIfPresent(lltok::kw_weak))
7571     isWeak = true;
7572 
7573   if (EatIfPresent(lltok::kw_volatile))
7574     isVolatile = true;
7575 
7576   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7577       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7578       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7579       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7580       parseTypeAndValue(New, NewLoc, PFS) ||
7581       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7582       parseOrdering(FailureOrdering) ||
7583       parseOptionalCommaAlign(Alignment, AteExtraComma))
7584     return true;
7585 
7586   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7587     return tokError("invalid cmpxchg success ordering");
7588   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7589     return tokError("invalid cmpxchg failure ordering");
7590   if (!Ptr->getType()->isPointerTy())
7591     return error(PtrLoc, "cmpxchg operand must be a pointer");
7592   if (!cast<PointerType>(Ptr->getType())
7593            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7594     return error(CmpLoc, "compare value and pointer type do not match");
7595   if (!cast<PointerType>(Ptr->getType())
7596            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7597     return error(NewLoc, "new value and pointer type do not match");
7598   if (Cmp->getType() != New->getType())
7599     return error(NewLoc, "compare value and new value type do not match");
7600   if (!New->getType()->isFirstClassType())
7601     return error(NewLoc, "cmpxchg operand must be a first class value");
7602 
7603   const Align DefaultAlignment(
7604       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7605           Cmp->getType()));
7606 
7607   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7608       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7609       FailureOrdering, SSID);
7610   CXI->setVolatile(isVolatile);
7611   CXI->setWeak(isWeak);
7612 
7613   Inst = CXI;
7614   return AteExtraComma ? InstExtraComma : InstNormal;
7615 }
7616 
7617 /// parseAtomicRMW
7618 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7619 ///       'singlethread'? AtomicOrdering
parseAtomicRMW(Instruction * & Inst,PerFunctionState & PFS)7620 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7621   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7622   bool AteExtraComma = false;
7623   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7624   SyncScope::ID SSID = SyncScope::System;
7625   bool isVolatile = false;
7626   bool IsFP = false;
7627   AtomicRMWInst::BinOp Operation;
7628   MaybeAlign Alignment;
7629 
7630   if (EatIfPresent(lltok::kw_volatile))
7631     isVolatile = true;
7632 
7633   switch (Lex.getKind()) {
7634   default:
7635     return tokError("expected binary operation in atomicrmw");
7636   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7637   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7638   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7639   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7640   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7641   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7642   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7643   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7644   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7645   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7646   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7647   case lltok::kw_fadd:
7648     Operation = AtomicRMWInst::FAdd;
7649     IsFP = true;
7650     break;
7651   case lltok::kw_fsub:
7652     Operation = AtomicRMWInst::FSub;
7653     IsFP = true;
7654     break;
7655   }
7656   Lex.Lex();  // Eat the operation.
7657 
7658   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7659       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7660       parseTypeAndValue(Val, ValLoc, PFS) ||
7661       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7662       parseOptionalCommaAlign(Alignment, AteExtraComma))
7663     return true;
7664 
7665   if (Ordering == AtomicOrdering::Unordered)
7666     return tokError("atomicrmw cannot be unordered");
7667   if (!Ptr->getType()->isPointerTy())
7668     return error(PtrLoc, "atomicrmw operand must be a pointer");
7669   if (!cast<PointerType>(Ptr->getType())
7670            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7671     return error(ValLoc, "atomicrmw value and pointer type do not match");
7672 
7673   if (Operation == AtomicRMWInst::Xchg) {
7674     if (!Val->getType()->isIntegerTy() &&
7675         !Val->getType()->isFloatingPointTy()) {
7676       return error(ValLoc,
7677                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7678                        " operand must be an integer or floating point type");
7679     }
7680   } else if (IsFP) {
7681     if (!Val->getType()->isFloatingPointTy()) {
7682       return error(ValLoc, "atomicrmw " +
7683                                AtomicRMWInst::getOperationName(Operation) +
7684                                " operand must be a floating point type");
7685     }
7686   } else {
7687     if (!Val->getType()->isIntegerTy()) {
7688       return error(ValLoc, "atomicrmw " +
7689                                AtomicRMWInst::getOperationName(Operation) +
7690                                " operand must be an integer");
7691     }
7692   }
7693 
7694   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7695   if (Size < 8 || (Size & (Size - 1)))
7696     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7697                          " integer");
7698   const Align DefaultAlignment(
7699       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7700           Val->getType()));
7701   AtomicRMWInst *RMWI =
7702       new AtomicRMWInst(Operation, Ptr, Val,
7703                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7704   RMWI->setVolatile(isVolatile);
7705   Inst = RMWI;
7706   return AteExtraComma ? InstExtraComma : InstNormal;
7707 }
7708 
7709 /// parseFence
7710 ///   ::= 'fence' 'singlethread'? AtomicOrdering
parseFence(Instruction * & Inst,PerFunctionState & PFS)7711 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7712   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7713   SyncScope::ID SSID = SyncScope::System;
7714   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7715     return true;
7716 
7717   if (Ordering == AtomicOrdering::Unordered)
7718     return tokError("fence cannot be unordered");
7719   if (Ordering == AtomicOrdering::Monotonic)
7720     return tokError("fence cannot be monotonic");
7721 
7722   Inst = new FenceInst(Context, Ordering, SSID);
7723   return InstNormal;
7724 }
7725 
7726 /// parseGetElementPtr
7727 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
parseGetElementPtr(Instruction * & Inst,PerFunctionState & PFS)7728 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7729   Value *Ptr = nullptr;
7730   Value *Val = nullptr;
7731   LocTy Loc, EltLoc;
7732 
7733   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7734 
7735   Type *Ty = nullptr;
7736   LocTy ExplicitTypeLoc = Lex.getLoc();
7737   if (parseType(Ty) ||
7738       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7739       parseTypeAndValue(Ptr, Loc, PFS))
7740     return true;
7741 
7742   Type *BaseType = Ptr->getType();
7743   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7744   if (!BasePointerType)
7745     return error(Loc, "base of getelementptr must be a pointer");
7746 
7747   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7748     return error(
7749         ExplicitTypeLoc,
7750         typeComparisonErrorMessage(
7751             "explicit pointee type doesn't match operand's pointee type", Ty,
7752             BasePointerType->getElementType()));
7753   }
7754 
7755   SmallVector<Value*, 16> Indices;
7756   bool AteExtraComma = false;
7757   // GEP returns a vector of pointers if at least one of parameters is a vector.
7758   // All vector parameters should have the same vector width.
7759   ElementCount GEPWidth = BaseType->isVectorTy()
7760                               ? cast<VectorType>(BaseType)->getElementCount()
7761                               : ElementCount::getFixed(0);
7762 
7763   while (EatIfPresent(lltok::comma)) {
7764     if (Lex.getKind() == lltok::MetadataVar) {
7765       AteExtraComma = true;
7766       break;
7767     }
7768     if (parseTypeAndValue(Val, EltLoc, PFS))
7769       return true;
7770     if (!Val->getType()->isIntOrIntVectorTy())
7771       return error(EltLoc, "getelementptr index must be an integer");
7772 
7773     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7774       ElementCount ValNumEl = ValVTy->getElementCount();
7775       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7776         return error(
7777             EltLoc,
7778             "getelementptr vector index has a wrong number of elements");
7779       GEPWidth = ValNumEl;
7780     }
7781     Indices.push_back(Val);
7782   }
7783 
7784   SmallPtrSet<Type*, 4> Visited;
7785   if (!Indices.empty() && !Ty->isSized(&Visited))
7786     return error(Loc, "base element of getelementptr must be sized");
7787 
7788   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7789     return error(Loc, "invalid getelementptr indices");
7790   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7791   if (InBounds)
7792     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7793   return AteExtraComma ? InstExtraComma : InstNormal;
7794 }
7795 
7796 /// parseExtractValue
7797 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
parseExtractValue(Instruction * & Inst,PerFunctionState & PFS)7798 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7799   Value *Val; LocTy Loc;
7800   SmallVector<unsigned, 4> Indices;
7801   bool AteExtraComma;
7802   if (parseTypeAndValue(Val, Loc, PFS) ||
7803       parseIndexList(Indices, AteExtraComma))
7804     return true;
7805 
7806   if (!Val->getType()->isAggregateType())
7807     return error(Loc, "extractvalue operand must be aggregate type");
7808 
7809   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7810     return error(Loc, "invalid indices for extractvalue");
7811   Inst = ExtractValueInst::Create(Val, Indices);
7812   return AteExtraComma ? InstExtraComma : InstNormal;
7813 }
7814 
7815 /// parseInsertValue
7816 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
parseInsertValue(Instruction * & Inst,PerFunctionState & PFS)7817 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7818   Value *Val0, *Val1; LocTy Loc0, Loc1;
7819   SmallVector<unsigned, 4> Indices;
7820   bool AteExtraComma;
7821   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7822       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7823       parseTypeAndValue(Val1, Loc1, PFS) ||
7824       parseIndexList(Indices, AteExtraComma))
7825     return true;
7826 
7827   if (!Val0->getType()->isAggregateType())
7828     return error(Loc0, "insertvalue operand must be aggregate type");
7829 
7830   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7831   if (!IndexedType)
7832     return error(Loc0, "invalid indices for insertvalue");
7833   if (IndexedType != Val1->getType())
7834     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7835                            getTypeString(Val1->getType()) + "' instead of '" +
7836                            getTypeString(IndexedType) + "'");
7837   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7838   return AteExtraComma ? InstExtraComma : InstNormal;
7839 }
7840 
7841 //===----------------------------------------------------------------------===//
7842 // Embedded metadata.
7843 //===----------------------------------------------------------------------===//
7844 
7845 /// parseMDNodeVector
7846 ///   ::= { Element (',' Element)* }
7847 /// Element
7848 ///   ::= 'null' | TypeAndValue
parseMDNodeVector(SmallVectorImpl<Metadata * > & Elts)7849 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7850   if (parseToken(lltok::lbrace, "expected '{' here"))
7851     return true;
7852 
7853   // Check for an empty list.
7854   if (EatIfPresent(lltok::rbrace))
7855     return false;
7856 
7857   do {
7858     // Null is a special case since it is typeless.
7859     if (EatIfPresent(lltok::kw_null)) {
7860       Elts.push_back(nullptr);
7861       continue;
7862     }
7863 
7864     Metadata *MD;
7865     if (parseMetadata(MD, nullptr))
7866       return true;
7867     Elts.push_back(MD);
7868   } while (EatIfPresent(lltok::comma));
7869 
7870   return parseToken(lltok::rbrace, "expected end of metadata node");
7871 }
7872 
7873 //===----------------------------------------------------------------------===//
7874 // Use-list order directives.
7875 //===----------------------------------------------------------------------===//
sortUseListOrder(Value * V,ArrayRef<unsigned> Indexes,SMLoc Loc)7876 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7877                                 SMLoc Loc) {
7878   if (V->use_empty())
7879     return error(Loc, "value has no uses");
7880 
7881   unsigned NumUses = 0;
7882   SmallDenseMap<const Use *, unsigned, 16> Order;
7883   for (const Use &U : V->uses()) {
7884     if (++NumUses > Indexes.size())
7885       break;
7886     Order[&U] = Indexes[NumUses - 1];
7887   }
7888   if (NumUses < 2)
7889     return error(Loc, "value only has one use");
7890   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7891     return error(Loc,
7892                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7893 
7894   V->sortUseList([&](const Use &L, const Use &R) {
7895     return Order.lookup(&L) < Order.lookup(&R);
7896   });
7897   return false;
7898 }
7899 
7900 /// parseUseListOrderIndexes
7901 ///   ::= '{' uint32 (',' uint32)+ '}'
parseUseListOrderIndexes(SmallVectorImpl<unsigned> & Indexes)7902 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7903   SMLoc Loc = Lex.getLoc();
7904   if (parseToken(lltok::lbrace, "expected '{' here"))
7905     return true;
7906   if (Lex.getKind() == lltok::rbrace)
7907     return Lex.Error("expected non-empty list of uselistorder indexes");
7908 
7909   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7910   // indexes should be distinct numbers in the range [0, size-1], and should
7911   // not be in order.
7912   unsigned Offset = 0;
7913   unsigned Max = 0;
7914   bool IsOrdered = true;
7915   assert(Indexes.empty() && "Expected empty order vector");
7916   do {
7917     unsigned Index;
7918     if (parseUInt32(Index))
7919       return true;
7920 
7921     // Update consistency checks.
7922     Offset += Index - Indexes.size();
7923     Max = std::max(Max, Index);
7924     IsOrdered &= Index == Indexes.size();
7925 
7926     Indexes.push_back(Index);
7927   } while (EatIfPresent(lltok::comma));
7928 
7929   if (parseToken(lltok::rbrace, "expected '}' here"))
7930     return true;
7931 
7932   if (Indexes.size() < 2)
7933     return error(Loc, "expected >= 2 uselistorder indexes");
7934   if (Offset != 0 || Max >= Indexes.size())
7935     return error(Loc,
7936                  "expected distinct uselistorder indexes in range [0, size)");
7937   if (IsOrdered)
7938     return error(Loc, "expected uselistorder indexes to change the order");
7939 
7940   return false;
7941 }
7942 
7943 /// parseUseListOrder
7944 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
parseUseListOrder(PerFunctionState * PFS)7945 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7946   SMLoc Loc = Lex.getLoc();
7947   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7948     return true;
7949 
7950   Value *V;
7951   SmallVector<unsigned, 16> Indexes;
7952   if (parseTypeAndValue(V, PFS) ||
7953       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7954       parseUseListOrderIndexes(Indexes))
7955     return true;
7956 
7957   return sortUseListOrder(V, Indexes, Loc);
7958 }
7959 
7960 /// parseUseListOrderBB
7961 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
parseUseListOrderBB()7962 bool LLParser::parseUseListOrderBB() {
7963   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7964   SMLoc Loc = Lex.getLoc();
7965   Lex.Lex();
7966 
7967   ValID Fn, Label;
7968   SmallVector<unsigned, 16> Indexes;
7969   if (parseValID(Fn) ||
7970       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7971       parseValID(Label) ||
7972       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7973       parseUseListOrderIndexes(Indexes))
7974     return true;
7975 
7976   // Check the function.
7977   GlobalValue *GV;
7978   if (Fn.Kind == ValID::t_GlobalName)
7979     GV = M->getNamedValue(Fn.StrVal);
7980   else if (Fn.Kind == ValID::t_GlobalID)
7981     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7982   else
7983     return error(Fn.Loc, "expected function name in uselistorder_bb");
7984   if (!GV)
7985     return error(Fn.Loc,
7986                  "invalid function forward reference in uselistorder_bb");
7987   auto *F = dyn_cast<Function>(GV);
7988   if (!F)
7989     return error(Fn.Loc, "expected function name in uselistorder_bb");
7990   if (F->isDeclaration())
7991     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7992 
7993   // Check the basic block.
7994   if (Label.Kind == ValID::t_LocalID)
7995     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7996   if (Label.Kind != ValID::t_LocalName)
7997     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7998   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7999   if (!V)
8000     return error(Label.Loc, "invalid basic block in uselistorder_bb");
8001   if (!isa<BasicBlock>(V))
8002     return error(Label.Loc, "expected basic block in uselistorder_bb");
8003 
8004   return sortUseListOrder(V, Indexes, Loc);
8005 }
8006 
8007 /// ModuleEntry
8008 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
8009 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
parseModuleEntry(unsigned ID)8010 bool LLParser::parseModuleEntry(unsigned ID) {
8011   assert(Lex.getKind() == lltok::kw_module);
8012   Lex.Lex();
8013 
8014   std::string Path;
8015   if (parseToken(lltok::colon, "expected ':' here") ||
8016       parseToken(lltok::lparen, "expected '(' here") ||
8017       parseToken(lltok::kw_path, "expected 'path' here") ||
8018       parseToken(lltok::colon, "expected ':' here") ||
8019       parseStringConstant(Path) ||
8020       parseToken(lltok::comma, "expected ',' here") ||
8021       parseToken(lltok::kw_hash, "expected 'hash' here") ||
8022       parseToken(lltok::colon, "expected ':' here") ||
8023       parseToken(lltok::lparen, "expected '(' here"))
8024     return true;
8025 
8026   ModuleHash Hash;
8027   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8028       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8029       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8030       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8031       parseUInt32(Hash[4]))
8032     return true;
8033 
8034   if (parseToken(lltok::rparen, "expected ')' here") ||
8035       parseToken(lltok::rparen, "expected ')' here"))
8036     return true;
8037 
8038   auto ModuleEntry = Index->addModule(Path, ID, Hash);
8039   ModuleIdMap[ID] = ModuleEntry->first();
8040 
8041   return false;
8042 }
8043 
8044 /// TypeIdEntry
8045 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
parseTypeIdEntry(unsigned ID)8046 bool LLParser::parseTypeIdEntry(unsigned ID) {
8047   assert(Lex.getKind() == lltok::kw_typeid);
8048   Lex.Lex();
8049 
8050   std::string Name;
8051   if (parseToken(lltok::colon, "expected ':' here") ||
8052       parseToken(lltok::lparen, "expected '(' here") ||
8053       parseToken(lltok::kw_name, "expected 'name' here") ||
8054       parseToken(lltok::colon, "expected ':' here") ||
8055       parseStringConstant(Name))
8056     return true;
8057 
8058   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8059   if (parseToken(lltok::comma, "expected ',' here") ||
8060       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8061     return true;
8062 
8063   // Check if this ID was forward referenced, and if so, update the
8064   // corresponding GUIDs.
8065   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8066   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8067     for (auto TIDRef : FwdRefTIDs->second) {
8068       assert(!*TIDRef.first &&
8069              "Forward referenced type id GUID expected to be 0");
8070       *TIDRef.first = GlobalValue::getGUID(Name);
8071     }
8072     ForwardRefTypeIds.erase(FwdRefTIDs);
8073   }
8074 
8075   return false;
8076 }
8077 
8078 /// TypeIdSummary
8079 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
parseTypeIdSummary(TypeIdSummary & TIS)8080 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8081   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8082       parseToken(lltok::colon, "expected ':' here") ||
8083       parseToken(lltok::lparen, "expected '(' here") ||
8084       parseTypeTestResolution(TIS.TTRes))
8085     return true;
8086 
8087   if (EatIfPresent(lltok::comma)) {
8088     // Expect optional wpdResolutions field
8089     if (parseOptionalWpdResolutions(TIS.WPDRes))
8090       return true;
8091   }
8092 
8093   if (parseToken(lltok::rparen, "expected ')' here"))
8094     return true;
8095 
8096   return false;
8097 }
8098 
8099 static ValueInfo EmptyVI =
8100     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8101 
8102 /// TypeIdCompatibleVtableEntry
8103 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8104 ///   TypeIdCompatibleVtableInfo
8105 ///   ')'
parseTypeIdCompatibleVtableEntry(unsigned ID)8106 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8107   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8108   Lex.Lex();
8109 
8110   std::string Name;
8111   if (parseToken(lltok::colon, "expected ':' here") ||
8112       parseToken(lltok::lparen, "expected '(' here") ||
8113       parseToken(lltok::kw_name, "expected 'name' here") ||
8114       parseToken(lltok::colon, "expected ':' here") ||
8115       parseStringConstant(Name))
8116     return true;
8117 
8118   TypeIdCompatibleVtableInfo &TI =
8119       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8120   if (parseToken(lltok::comma, "expected ',' here") ||
8121       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8122       parseToken(lltok::colon, "expected ':' here") ||
8123       parseToken(lltok::lparen, "expected '(' here"))
8124     return true;
8125 
8126   IdToIndexMapType IdToIndexMap;
8127   // parse each call edge
8128   do {
8129     uint64_t Offset;
8130     if (parseToken(lltok::lparen, "expected '(' here") ||
8131         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8132         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8133         parseToken(lltok::comma, "expected ',' here"))
8134       return true;
8135 
8136     LocTy Loc = Lex.getLoc();
8137     unsigned GVId;
8138     ValueInfo VI;
8139     if (parseGVReference(VI, GVId))
8140       return true;
8141 
8142     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8143     // forward reference. We will save the location of the ValueInfo needing an
8144     // update, but can only do so once the std::vector is finalized.
8145     if (VI == EmptyVI)
8146       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8147     TI.push_back({Offset, VI});
8148 
8149     if (parseToken(lltok::rparen, "expected ')' in call"))
8150       return true;
8151   } while (EatIfPresent(lltok::comma));
8152 
8153   // Now that the TI vector is finalized, it is safe to save the locations
8154   // of any forward GV references that need updating later.
8155   for (auto I : IdToIndexMap) {
8156     auto &Infos = ForwardRefValueInfos[I.first];
8157     for (auto P : I.second) {
8158       assert(TI[P.first].VTableVI == EmptyVI &&
8159              "Forward referenced ValueInfo expected to be empty");
8160       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8161     }
8162   }
8163 
8164   if (parseToken(lltok::rparen, "expected ')' here") ||
8165       parseToken(lltok::rparen, "expected ')' here"))
8166     return true;
8167 
8168   // Check if this ID was forward referenced, and if so, update the
8169   // corresponding GUIDs.
8170   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8171   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8172     for (auto TIDRef : FwdRefTIDs->second) {
8173       assert(!*TIDRef.first &&
8174              "Forward referenced type id GUID expected to be 0");
8175       *TIDRef.first = GlobalValue::getGUID(Name);
8176     }
8177     ForwardRefTypeIds.erase(FwdRefTIDs);
8178   }
8179 
8180   return false;
8181 }
8182 
8183 /// TypeTestResolution
8184 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8185 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8186 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8187 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8188 ///         [',' 'inlinesBits' ':' UInt64]? ')'
parseTypeTestResolution(TypeTestResolution & TTRes)8189 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8190   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8191       parseToken(lltok::colon, "expected ':' here") ||
8192       parseToken(lltok::lparen, "expected '(' here") ||
8193       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8194       parseToken(lltok::colon, "expected ':' here"))
8195     return true;
8196 
8197   switch (Lex.getKind()) {
8198   case lltok::kw_unknown:
8199     TTRes.TheKind = TypeTestResolution::Unknown;
8200     break;
8201   case lltok::kw_unsat:
8202     TTRes.TheKind = TypeTestResolution::Unsat;
8203     break;
8204   case lltok::kw_byteArray:
8205     TTRes.TheKind = TypeTestResolution::ByteArray;
8206     break;
8207   case lltok::kw_inline:
8208     TTRes.TheKind = TypeTestResolution::Inline;
8209     break;
8210   case lltok::kw_single:
8211     TTRes.TheKind = TypeTestResolution::Single;
8212     break;
8213   case lltok::kw_allOnes:
8214     TTRes.TheKind = TypeTestResolution::AllOnes;
8215     break;
8216   default:
8217     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8218   }
8219   Lex.Lex();
8220 
8221   if (parseToken(lltok::comma, "expected ',' here") ||
8222       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8223       parseToken(lltok::colon, "expected ':' here") ||
8224       parseUInt32(TTRes.SizeM1BitWidth))
8225     return true;
8226 
8227   // parse optional fields
8228   while (EatIfPresent(lltok::comma)) {
8229     switch (Lex.getKind()) {
8230     case lltok::kw_alignLog2:
8231       Lex.Lex();
8232       if (parseToken(lltok::colon, "expected ':'") ||
8233           parseUInt64(TTRes.AlignLog2))
8234         return true;
8235       break;
8236     case lltok::kw_sizeM1:
8237       Lex.Lex();
8238       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8239         return true;
8240       break;
8241     case lltok::kw_bitMask: {
8242       unsigned Val;
8243       Lex.Lex();
8244       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8245         return true;
8246       assert(Val <= 0xff);
8247       TTRes.BitMask = (uint8_t)Val;
8248       break;
8249     }
8250     case lltok::kw_inlineBits:
8251       Lex.Lex();
8252       if (parseToken(lltok::colon, "expected ':'") ||
8253           parseUInt64(TTRes.InlineBits))
8254         return true;
8255       break;
8256     default:
8257       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8258     }
8259   }
8260 
8261   if (parseToken(lltok::rparen, "expected ')' here"))
8262     return true;
8263 
8264   return false;
8265 }
8266 
8267 /// OptionalWpdResolutions
8268 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8269 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
parseOptionalWpdResolutions(std::map<uint64_t,WholeProgramDevirtResolution> & WPDResMap)8270 bool LLParser::parseOptionalWpdResolutions(
8271     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8272   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8273       parseToken(lltok::colon, "expected ':' here") ||
8274       parseToken(lltok::lparen, "expected '(' here"))
8275     return true;
8276 
8277   do {
8278     uint64_t Offset;
8279     WholeProgramDevirtResolution WPDRes;
8280     if (parseToken(lltok::lparen, "expected '(' here") ||
8281         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8282         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8283         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8284         parseToken(lltok::rparen, "expected ')' here"))
8285       return true;
8286     WPDResMap[Offset] = WPDRes;
8287   } while (EatIfPresent(lltok::comma));
8288 
8289   if (parseToken(lltok::rparen, "expected ')' here"))
8290     return true;
8291 
8292   return false;
8293 }
8294 
8295 /// WpdRes
8296 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8297 ///         [',' OptionalResByArg]? ')'
8298 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8299 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8300 ///         [',' OptionalResByArg]? ')'
8301 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8302 ///         [',' OptionalResByArg]? ')'
parseWpdRes(WholeProgramDevirtResolution & WPDRes)8303 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8304   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8305       parseToken(lltok::colon, "expected ':' here") ||
8306       parseToken(lltok::lparen, "expected '(' here") ||
8307       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8308       parseToken(lltok::colon, "expected ':' here"))
8309     return true;
8310 
8311   switch (Lex.getKind()) {
8312   case lltok::kw_indir:
8313     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8314     break;
8315   case lltok::kw_singleImpl:
8316     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8317     break;
8318   case lltok::kw_branchFunnel:
8319     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8320     break;
8321   default:
8322     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8323   }
8324   Lex.Lex();
8325 
8326   // parse optional fields
8327   while (EatIfPresent(lltok::comma)) {
8328     switch (Lex.getKind()) {
8329     case lltok::kw_singleImplName:
8330       Lex.Lex();
8331       if (parseToken(lltok::colon, "expected ':' here") ||
8332           parseStringConstant(WPDRes.SingleImplName))
8333         return true;
8334       break;
8335     case lltok::kw_resByArg:
8336       if (parseOptionalResByArg(WPDRes.ResByArg))
8337         return true;
8338       break;
8339     default:
8340       return error(Lex.getLoc(),
8341                    "expected optional WholeProgramDevirtResolution field");
8342     }
8343   }
8344 
8345   if (parseToken(lltok::rparen, "expected ')' here"))
8346     return true;
8347 
8348   return false;
8349 }
8350 
8351 /// OptionalResByArg
8352 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8353 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8354 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8355 ///                  'virtualConstProp' )
8356 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8357 ///                [',' 'bit' ':' UInt32]? ')'
parseOptionalResByArg(std::map<std::vector<uint64_t>,WholeProgramDevirtResolution::ByArg> & ResByArg)8358 bool LLParser::parseOptionalResByArg(
8359     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8360         &ResByArg) {
8361   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8362       parseToken(lltok::colon, "expected ':' here") ||
8363       parseToken(lltok::lparen, "expected '(' here"))
8364     return true;
8365 
8366   do {
8367     std::vector<uint64_t> Args;
8368     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8369         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8370         parseToken(lltok::colon, "expected ':' here") ||
8371         parseToken(lltok::lparen, "expected '(' here") ||
8372         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8373         parseToken(lltok::colon, "expected ':' here"))
8374       return true;
8375 
8376     WholeProgramDevirtResolution::ByArg ByArg;
8377     switch (Lex.getKind()) {
8378     case lltok::kw_indir:
8379       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8380       break;
8381     case lltok::kw_uniformRetVal:
8382       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8383       break;
8384     case lltok::kw_uniqueRetVal:
8385       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8386       break;
8387     case lltok::kw_virtualConstProp:
8388       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8389       break;
8390     default:
8391       return error(Lex.getLoc(),
8392                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8393     }
8394     Lex.Lex();
8395 
8396     // parse optional fields
8397     while (EatIfPresent(lltok::comma)) {
8398       switch (Lex.getKind()) {
8399       case lltok::kw_info:
8400         Lex.Lex();
8401         if (parseToken(lltok::colon, "expected ':' here") ||
8402             parseUInt64(ByArg.Info))
8403           return true;
8404         break;
8405       case lltok::kw_byte:
8406         Lex.Lex();
8407         if (parseToken(lltok::colon, "expected ':' here") ||
8408             parseUInt32(ByArg.Byte))
8409           return true;
8410         break;
8411       case lltok::kw_bit:
8412         Lex.Lex();
8413         if (parseToken(lltok::colon, "expected ':' here") ||
8414             parseUInt32(ByArg.Bit))
8415           return true;
8416         break;
8417       default:
8418         return error(Lex.getLoc(),
8419                      "expected optional whole program devirt field");
8420       }
8421     }
8422 
8423     if (parseToken(lltok::rparen, "expected ')' here"))
8424       return true;
8425 
8426     ResByArg[Args] = ByArg;
8427   } while (EatIfPresent(lltok::comma));
8428 
8429   if (parseToken(lltok::rparen, "expected ')' here"))
8430     return true;
8431 
8432   return false;
8433 }
8434 
8435 /// OptionalResByArg
8436 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
parseArgs(std::vector<uint64_t> & Args)8437 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8438   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8439       parseToken(lltok::colon, "expected ':' here") ||
8440       parseToken(lltok::lparen, "expected '(' here"))
8441     return true;
8442 
8443   do {
8444     uint64_t Val;
8445     if (parseUInt64(Val))
8446       return true;
8447     Args.push_back(Val);
8448   } while (EatIfPresent(lltok::comma));
8449 
8450   if (parseToken(lltok::rparen, "expected ')' here"))
8451     return true;
8452 
8453   return false;
8454 }
8455 
8456 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8457 
resolveFwdRef(ValueInfo * Fwd,ValueInfo & Resolved)8458 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8459   bool ReadOnly = Fwd->isReadOnly();
8460   bool WriteOnly = Fwd->isWriteOnly();
8461   assert(!(ReadOnly && WriteOnly));
8462   *Fwd = Resolved;
8463   if (ReadOnly)
8464     Fwd->setReadOnly();
8465   if (WriteOnly)
8466     Fwd->setWriteOnly();
8467 }
8468 
8469 /// Stores the given Name/GUID and associated summary into the Index.
8470 /// Also updates any forward references to the associated entry ID.
addGlobalValueToIndex(std::string Name,GlobalValue::GUID GUID,GlobalValue::LinkageTypes Linkage,unsigned ID,std::unique_ptr<GlobalValueSummary> Summary)8471 void LLParser::addGlobalValueToIndex(
8472     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8473     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8474   // First create the ValueInfo utilizing the Name or GUID.
8475   ValueInfo VI;
8476   if (GUID != 0) {
8477     assert(Name.empty());
8478     VI = Index->getOrInsertValueInfo(GUID);
8479   } else {
8480     assert(!Name.empty());
8481     if (M) {
8482       auto *GV = M->getNamedValue(Name);
8483       assert(GV);
8484       VI = Index->getOrInsertValueInfo(GV);
8485     } else {
8486       assert(
8487           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8488           "Need a source_filename to compute GUID for local");
8489       GUID = GlobalValue::getGUID(
8490           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8491       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8492     }
8493   }
8494 
8495   // Resolve forward references from calls/refs
8496   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8497   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8498     for (auto VIRef : FwdRefVIs->second) {
8499       assert(VIRef.first->getRef() == FwdVIRef &&
8500              "Forward referenced ValueInfo expected to be empty");
8501       resolveFwdRef(VIRef.first, VI);
8502     }
8503     ForwardRefValueInfos.erase(FwdRefVIs);
8504   }
8505 
8506   // Resolve forward references from aliases
8507   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8508   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8509     for (auto AliaseeRef : FwdRefAliasees->second) {
8510       assert(!AliaseeRef.first->hasAliasee() &&
8511              "Forward referencing alias already has aliasee");
8512       assert(Summary && "Aliasee must be a definition");
8513       AliaseeRef.first->setAliasee(VI, Summary.get());
8514     }
8515     ForwardRefAliasees.erase(FwdRefAliasees);
8516   }
8517 
8518   // Add the summary if one was provided.
8519   if (Summary)
8520     Index->addGlobalValueSummary(VI, std::move(Summary));
8521 
8522   // Save the associated ValueInfo for use in later references by ID.
8523   if (ID == NumberedValueInfos.size())
8524     NumberedValueInfos.push_back(VI);
8525   else {
8526     // Handle non-continuous numbers (to make test simplification easier).
8527     if (ID > NumberedValueInfos.size())
8528       NumberedValueInfos.resize(ID + 1);
8529     NumberedValueInfos[ID] = VI;
8530   }
8531 }
8532 
8533 /// parseSummaryIndexFlags
8534 ///   ::= 'flags' ':' UInt64
parseSummaryIndexFlags()8535 bool LLParser::parseSummaryIndexFlags() {
8536   assert(Lex.getKind() == lltok::kw_flags);
8537   Lex.Lex();
8538 
8539   if (parseToken(lltok::colon, "expected ':' here"))
8540     return true;
8541   uint64_t Flags;
8542   if (parseUInt64(Flags))
8543     return true;
8544   if (Index)
8545     Index->setFlags(Flags);
8546   return false;
8547 }
8548 
8549 /// parseBlockCount
8550 ///   ::= 'blockcount' ':' UInt64
parseBlockCount()8551 bool LLParser::parseBlockCount() {
8552   assert(Lex.getKind() == lltok::kw_blockcount);
8553   Lex.Lex();
8554 
8555   if (parseToken(lltok::colon, "expected ':' here"))
8556     return true;
8557   uint64_t BlockCount;
8558   if (parseUInt64(BlockCount))
8559     return true;
8560   if (Index)
8561     Index->setBlockCount(BlockCount);
8562   return false;
8563 }
8564 
8565 /// parseGVEntry
8566 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8567 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8568 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
parseGVEntry(unsigned ID)8569 bool LLParser::parseGVEntry(unsigned ID) {
8570   assert(Lex.getKind() == lltok::kw_gv);
8571   Lex.Lex();
8572 
8573   if (parseToken(lltok::colon, "expected ':' here") ||
8574       parseToken(lltok::lparen, "expected '(' here"))
8575     return true;
8576 
8577   std::string Name;
8578   GlobalValue::GUID GUID = 0;
8579   switch (Lex.getKind()) {
8580   case lltok::kw_name:
8581     Lex.Lex();
8582     if (parseToken(lltok::colon, "expected ':' here") ||
8583         parseStringConstant(Name))
8584       return true;
8585     // Can't create GUID/ValueInfo until we have the linkage.
8586     break;
8587   case lltok::kw_guid:
8588     Lex.Lex();
8589     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8590       return true;
8591     break;
8592   default:
8593     return error(Lex.getLoc(), "expected name or guid tag");
8594   }
8595 
8596   if (!EatIfPresent(lltok::comma)) {
8597     // No summaries. Wrap up.
8598     if (parseToken(lltok::rparen, "expected ')' here"))
8599       return true;
8600     // This was created for a call to an external or indirect target.
8601     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8602     // created for indirect calls with VP. A Name with no GUID came from
8603     // an external definition. We pass ExternalLinkage since that is only
8604     // used when the GUID must be computed from Name, and in that case
8605     // the symbol must have external linkage.
8606     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8607                           nullptr);
8608     return false;
8609   }
8610 
8611   // Have a list of summaries
8612   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8613       parseToken(lltok::colon, "expected ':' here") ||
8614       parseToken(lltok::lparen, "expected '(' here"))
8615     return true;
8616   do {
8617     switch (Lex.getKind()) {
8618     case lltok::kw_function:
8619       if (parseFunctionSummary(Name, GUID, ID))
8620         return true;
8621       break;
8622     case lltok::kw_variable:
8623       if (parseVariableSummary(Name, GUID, ID))
8624         return true;
8625       break;
8626     case lltok::kw_alias:
8627       if (parseAliasSummary(Name, GUID, ID))
8628         return true;
8629       break;
8630     default:
8631       return error(Lex.getLoc(), "expected summary type");
8632     }
8633   } while (EatIfPresent(lltok::comma));
8634 
8635   if (parseToken(lltok::rparen, "expected ')' here") ||
8636       parseToken(lltok::rparen, "expected ')' here"))
8637     return true;
8638 
8639   return false;
8640 }
8641 
8642 /// FunctionSummary
8643 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8644 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8645 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8646 ///         [',' OptionalRefs]? ')'
parseFunctionSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)8647 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8648                                     unsigned ID) {
8649   assert(Lex.getKind() == lltok::kw_function);
8650   Lex.Lex();
8651 
8652   StringRef ModulePath;
8653   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8654       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8655       /*NotEligibleToImport=*/false,
8656       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8657   unsigned InstCount;
8658   std::vector<FunctionSummary::EdgeTy> Calls;
8659   FunctionSummary::TypeIdInfo TypeIdInfo;
8660   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8661   std::vector<ValueInfo> Refs;
8662   // Default is all-zeros (conservative values).
8663   FunctionSummary::FFlags FFlags = {};
8664   if (parseToken(lltok::colon, "expected ':' here") ||
8665       parseToken(lltok::lparen, "expected '(' here") ||
8666       parseModuleReference(ModulePath) ||
8667       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8668       parseToken(lltok::comma, "expected ',' here") ||
8669       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8670       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8671     return true;
8672 
8673   // parse optional fields
8674   while (EatIfPresent(lltok::comma)) {
8675     switch (Lex.getKind()) {
8676     case lltok::kw_funcFlags:
8677       if (parseOptionalFFlags(FFlags))
8678         return true;
8679       break;
8680     case lltok::kw_calls:
8681       if (parseOptionalCalls(Calls))
8682         return true;
8683       break;
8684     case lltok::kw_typeIdInfo:
8685       if (parseOptionalTypeIdInfo(TypeIdInfo))
8686         return true;
8687       break;
8688     case lltok::kw_refs:
8689       if (parseOptionalRefs(Refs))
8690         return true;
8691       break;
8692     case lltok::kw_params:
8693       if (parseOptionalParamAccesses(ParamAccesses))
8694         return true;
8695       break;
8696     default:
8697       return error(Lex.getLoc(), "expected optional function summary field");
8698     }
8699   }
8700 
8701   if (parseToken(lltok::rparen, "expected ')' here"))
8702     return true;
8703 
8704   auto FS = std::make_unique<FunctionSummary>(
8705       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8706       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8707       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8708       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8709       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8710       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8711       std::move(ParamAccesses));
8712 
8713   FS->setModulePath(ModulePath);
8714 
8715   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8716                         ID, std::move(FS));
8717 
8718   return false;
8719 }
8720 
8721 /// VariableSummary
8722 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8723 ///         [',' OptionalRefs]? ')'
parseVariableSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)8724 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8725                                     unsigned ID) {
8726   assert(Lex.getKind() == lltok::kw_variable);
8727   Lex.Lex();
8728 
8729   StringRef ModulePath;
8730   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8731       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8732       /*NotEligibleToImport=*/false,
8733       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8734   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8735                                         /* WriteOnly */ false,
8736                                         /* Constant */ false,
8737                                         GlobalObject::VCallVisibilityPublic);
8738   std::vector<ValueInfo> Refs;
8739   VTableFuncList VTableFuncs;
8740   if (parseToken(lltok::colon, "expected ':' here") ||
8741       parseToken(lltok::lparen, "expected '(' here") ||
8742       parseModuleReference(ModulePath) ||
8743       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8744       parseToken(lltok::comma, "expected ',' here") ||
8745       parseGVarFlags(GVarFlags))
8746     return true;
8747 
8748   // parse optional fields
8749   while (EatIfPresent(lltok::comma)) {
8750     switch (Lex.getKind()) {
8751     case lltok::kw_vTableFuncs:
8752       if (parseOptionalVTableFuncs(VTableFuncs))
8753         return true;
8754       break;
8755     case lltok::kw_refs:
8756       if (parseOptionalRefs(Refs))
8757         return true;
8758       break;
8759     default:
8760       return error(Lex.getLoc(), "expected optional variable summary field");
8761     }
8762   }
8763 
8764   if (parseToken(lltok::rparen, "expected ')' here"))
8765     return true;
8766 
8767   auto GS =
8768       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8769 
8770   GS->setModulePath(ModulePath);
8771   GS->setVTableFuncs(std::move(VTableFuncs));
8772 
8773   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8774                         ID, std::move(GS));
8775 
8776   return false;
8777 }
8778 
8779 /// AliasSummary
8780 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8781 ///         'aliasee' ':' GVReference ')'
parseAliasSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)8782 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8783                                  unsigned ID) {
8784   assert(Lex.getKind() == lltok::kw_alias);
8785   LocTy Loc = Lex.getLoc();
8786   Lex.Lex();
8787 
8788   StringRef ModulePath;
8789   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8790       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8791       /*NotEligibleToImport=*/false,
8792       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8793   if (parseToken(lltok::colon, "expected ':' here") ||
8794       parseToken(lltok::lparen, "expected '(' here") ||
8795       parseModuleReference(ModulePath) ||
8796       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8797       parseToken(lltok::comma, "expected ',' here") ||
8798       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8799       parseToken(lltok::colon, "expected ':' here"))
8800     return true;
8801 
8802   ValueInfo AliaseeVI;
8803   unsigned GVId;
8804   if (parseGVReference(AliaseeVI, GVId))
8805     return true;
8806 
8807   if (parseToken(lltok::rparen, "expected ')' here"))
8808     return true;
8809 
8810   auto AS = std::make_unique<AliasSummary>(GVFlags);
8811 
8812   AS->setModulePath(ModulePath);
8813 
8814   // Record forward reference if the aliasee is not parsed yet.
8815   if (AliaseeVI.getRef() == FwdVIRef) {
8816     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8817   } else {
8818     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8819     assert(Summary && "Aliasee must be a definition");
8820     AS->setAliasee(AliaseeVI, Summary);
8821   }
8822 
8823   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8824                         ID, std::move(AS));
8825 
8826   return false;
8827 }
8828 
8829 /// Flag
8830 ///   ::= [0|1]
parseFlag(unsigned & Val)8831 bool LLParser::parseFlag(unsigned &Val) {
8832   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8833     return tokError("expected integer");
8834   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8835   Lex.Lex();
8836   return false;
8837 }
8838 
8839 /// OptionalFFlags
8840 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8841 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8842 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8843 ///        [',' 'noInline' ':' Flag]? ')'
8844 ///        [',' 'alwaysInline' ':' Flag]? ')'
8845 
parseOptionalFFlags(FunctionSummary::FFlags & FFlags)8846 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8847   assert(Lex.getKind() == lltok::kw_funcFlags);
8848   Lex.Lex();
8849 
8850   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8851       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8852     return true;
8853 
8854   do {
8855     unsigned Val = 0;
8856     switch (Lex.getKind()) {
8857     case lltok::kw_readNone:
8858       Lex.Lex();
8859       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8860         return true;
8861       FFlags.ReadNone = Val;
8862       break;
8863     case lltok::kw_readOnly:
8864       Lex.Lex();
8865       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8866         return true;
8867       FFlags.ReadOnly = Val;
8868       break;
8869     case lltok::kw_noRecurse:
8870       Lex.Lex();
8871       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8872         return true;
8873       FFlags.NoRecurse = Val;
8874       break;
8875     case lltok::kw_returnDoesNotAlias:
8876       Lex.Lex();
8877       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8878         return true;
8879       FFlags.ReturnDoesNotAlias = Val;
8880       break;
8881     case lltok::kw_noInline:
8882       Lex.Lex();
8883       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8884         return true;
8885       FFlags.NoInline = Val;
8886       break;
8887     case lltok::kw_alwaysInline:
8888       Lex.Lex();
8889       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8890         return true;
8891       FFlags.AlwaysInline = Val;
8892       break;
8893     default:
8894       return error(Lex.getLoc(), "expected function flag type");
8895     }
8896   } while (EatIfPresent(lltok::comma));
8897 
8898   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8899     return true;
8900 
8901   return false;
8902 }
8903 
8904 /// OptionalCalls
8905 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8906 /// Call ::= '(' 'callee' ':' GVReference
8907 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> & Calls)8908 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8909   assert(Lex.getKind() == lltok::kw_calls);
8910   Lex.Lex();
8911 
8912   if (parseToken(lltok::colon, "expected ':' in calls") |
8913       parseToken(lltok::lparen, "expected '(' in calls"))
8914     return true;
8915 
8916   IdToIndexMapType IdToIndexMap;
8917   // parse each call edge
8918   do {
8919     ValueInfo VI;
8920     if (parseToken(lltok::lparen, "expected '(' in call") ||
8921         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8922         parseToken(lltok::colon, "expected ':'"))
8923       return true;
8924 
8925     LocTy Loc = Lex.getLoc();
8926     unsigned GVId;
8927     if (parseGVReference(VI, GVId))
8928       return true;
8929 
8930     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8931     unsigned RelBF = 0;
8932     if (EatIfPresent(lltok::comma)) {
8933       // Expect either hotness or relbf
8934       if (EatIfPresent(lltok::kw_hotness)) {
8935         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8936           return true;
8937       } else {
8938         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8939             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8940           return true;
8941       }
8942     }
8943     // Keep track of the Call array index needing a forward reference.
8944     // We will save the location of the ValueInfo needing an update, but
8945     // can only do so once the std::vector is finalized.
8946     if (VI.getRef() == FwdVIRef)
8947       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8948     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8949 
8950     if (parseToken(lltok::rparen, "expected ')' in call"))
8951       return true;
8952   } while (EatIfPresent(lltok::comma));
8953 
8954   // Now that the Calls vector is finalized, it is safe to save the locations
8955   // of any forward GV references that need updating later.
8956   for (auto I : IdToIndexMap) {
8957     auto &Infos = ForwardRefValueInfos[I.first];
8958     for (auto P : I.second) {
8959       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8960              "Forward referenced ValueInfo expected to be empty");
8961       Infos.emplace_back(&Calls[P.first].first, P.second);
8962     }
8963   }
8964 
8965   if (parseToken(lltok::rparen, "expected ')' in calls"))
8966     return true;
8967 
8968   return false;
8969 }
8970 
8971 /// Hotness
8972 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
parseHotness(CalleeInfo::HotnessType & Hotness)8973 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8974   switch (Lex.getKind()) {
8975   case lltok::kw_unknown:
8976     Hotness = CalleeInfo::HotnessType::Unknown;
8977     break;
8978   case lltok::kw_cold:
8979     Hotness = CalleeInfo::HotnessType::Cold;
8980     break;
8981   case lltok::kw_none:
8982     Hotness = CalleeInfo::HotnessType::None;
8983     break;
8984   case lltok::kw_hot:
8985     Hotness = CalleeInfo::HotnessType::Hot;
8986     break;
8987   case lltok::kw_critical:
8988     Hotness = CalleeInfo::HotnessType::Critical;
8989     break;
8990   default:
8991     return error(Lex.getLoc(), "invalid call edge hotness");
8992   }
8993   Lex.Lex();
8994   return false;
8995 }
8996 
8997 /// OptionalVTableFuncs
8998 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8999 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
parseOptionalVTableFuncs(VTableFuncList & VTableFuncs)9000 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
9001   assert(Lex.getKind() == lltok::kw_vTableFuncs);
9002   Lex.Lex();
9003 
9004   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
9005       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
9006     return true;
9007 
9008   IdToIndexMapType IdToIndexMap;
9009   // parse each virtual function pair
9010   do {
9011     ValueInfo VI;
9012     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
9013         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
9014         parseToken(lltok::colon, "expected ':'"))
9015       return true;
9016 
9017     LocTy Loc = Lex.getLoc();
9018     unsigned GVId;
9019     if (parseGVReference(VI, GVId))
9020       return true;
9021 
9022     uint64_t Offset;
9023     if (parseToken(lltok::comma, "expected comma") ||
9024         parseToken(lltok::kw_offset, "expected offset") ||
9025         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9026       return true;
9027 
9028     // Keep track of the VTableFuncs array index needing a forward reference.
9029     // We will save the location of the ValueInfo needing an update, but
9030     // can only do so once the std::vector is finalized.
9031     if (VI == EmptyVI)
9032       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9033     VTableFuncs.push_back({VI, Offset});
9034 
9035     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9036       return true;
9037   } while (EatIfPresent(lltok::comma));
9038 
9039   // Now that the VTableFuncs vector is finalized, it is safe to save the
9040   // locations of any forward GV references that need updating later.
9041   for (auto I : IdToIndexMap) {
9042     auto &Infos = ForwardRefValueInfos[I.first];
9043     for (auto P : I.second) {
9044       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9045              "Forward referenced ValueInfo expected to be empty");
9046       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9047     }
9048   }
9049 
9050   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9051     return true;
9052 
9053   return false;
9054 }
9055 
9056 /// ParamNo := 'param' ':' UInt64
parseParamNo(uint64_t & ParamNo)9057 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9058   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9059       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9060     return true;
9061   return false;
9062 }
9063 
9064 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
parseParamAccessOffset(ConstantRange & Range)9065 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9066   APSInt Lower;
9067   APSInt Upper;
9068   auto ParseAPSInt = [&](APSInt &Val) {
9069     if (Lex.getKind() != lltok::APSInt)
9070       return tokError("expected integer");
9071     Val = Lex.getAPSIntVal();
9072     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9073     Val.setIsSigned(true);
9074     Lex.Lex();
9075     return false;
9076   };
9077   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9078       parseToken(lltok::colon, "expected ':' here") ||
9079       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9080       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9081       parseToken(lltok::rsquare, "expected ']' here"))
9082     return true;
9083 
9084   ++Upper;
9085   Range =
9086       (Lower == Upper && !Lower.isMaxValue())
9087           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9088           : ConstantRange(Lower, Upper);
9089 
9090   return false;
9091 }
9092 
9093 /// ParamAccessCall
9094 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
parseParamAccessCall(FunctionSummary::ParamAccess::Call & Call,IdLocListType & IdLocList)9095 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9096                                     IdLocListType &IdLocList) {
9097   if (parseToken(lltok::lparen, "expected '(' here") ||
9098       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9099       parseToken(lltok::colon, "expected ':' here"))
9100     return true;
9101 
9102   unsigned GVId;
9103   ValueInfo VI;
9104   LocTy Loc = Lex.getLoc();
9105   if (parseGVReference(VI, GVId))
9106     return true;
9107 
9108   Call.Callee = VI;
9109   IdLocList.emplace_back(GVId, Loc);
9110 
9111   if (parseToken(lltok::comma, "expected ',' here") ||
9112       parseParamNo(Call.ParamNo) ||
9113       parseToken(lltok::comma, "expected ',' here") ||
9114       parseParamAccessOffset(Call.Offsets))
9115     return true;
9116 
9117   if (parseToken(lltok::rparen, "expected ')' here"))
9118     return true;
9119 
9120   return false;
9121 }
9122 
9123 /// ParamAccess
9124 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9125 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
parseParamAccess(FunctionSummary::ParamAccess & Param,IdLocListType & IdLocList)9126 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9127                                 IdLocListType &IdLocList) {
9128   if (parseToken(lltok::lparen, "expected '(' here") ||
9129       parseParamNo(Param.ParamNo) ||
9130       parseToken(lltok::comma, "expected ',' here") ||
9131       parseParamAccessOffset(Param.Use))
9132     return true;
9133 
9134   if (EatIfPresent(lltok::comma)) {
9135     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9136         parseToken(lltok::colon, "expected ':' here") ||
9137         parseToken(lltok::lparen, "expected '(' here"))
9138       return true;
9139     do {
9140       FunctionSummary::ParamAccess::Call Call;
9141       if (parseParamAccessCall(Call, IdLocList))
9142         return true;
9143       Param.Calls.push_back(Call);
9144     } while (EatIfPresent(lltok::comma));
9145 
9146     if (parseToken(lltok::rparen, "expected ')' here"))
9147       return true;
9148   }
9149 
9150   if (parseToken(lltok::rparen, "expected ')' here"))
9151     return true;
9152 
9153   return false;
9154 }
9155 
9156 /// OptionalParamAccesses
9157 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
parseOptionalParamAccesses(std::vector<FunctionSummary::ParamAccess> & Params)9158 bool LLParser::parseOptionalParamAccesses(
9159     std::vector<FunctionSummary::ParamAccess> &Params) {
9160   assert(Lex.getKind() == lltok::kw_params);
9161   Lex.Lex();
9162 
9163   if (parseToken(lltok::colon, "expected ':' here") ||
9164       parseToken(lltok::lparen, "expected '(' here"))
9165     return true;
9166 
9167   IdLocListType VContexts;
9168   size_t CallsNum = 0;
9169   do {
9170     FunctionSummary::ParamAccess ParamAccess;
9171     if (parseParamAccess(ParamAccess, VContexts))
9172       return true;
9173     CallsNum += ParamAccess.Calls.size();
9174     assert(VContexts.size() == CallsNum);
9175     Params.emplace_back(std::move(ParamAccess));
9176   } while (EatIfPresent(lltok::comma));
9177 
9178   if (parseToken(lltok::rparen, "expected ')' here"))
9179     return true;
9180 
9181   // Now that the Params is finalized, it is safe to save the locations
9182   // of any forward GV references that need updating later.
9183   IdLocListType::const_iterator ItContext = VContexts.begin();
9184   for (auto &PA : Params) {
9185     for (auto &C : PA.Calls) {
9186       if (C.Callee.getRef() == FwdVIRef)
9187         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9188                                                             ItContext->second);
9189       ++ItContext;
9190     }
9191   }
9192   assert(ItContext == VContexts.end());
9193 
9194   return false;
9195 }
9196 
9197 /// OptionalRefs
9198 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
parseOptionalRefs(std::vector<ValueInfo> & Refs)9199 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9200   assert(Lex.getKind() == lltok::kw_refs);
9201   Lex.Lex();
9202 
9203   if (parseToken(lltok::colon, "expected ':' in refs") ||
9204       parseToken(lltok::lparen, "expected '(' in refs"))
9205     return true;
9206 
9207   struct ValueContext {
9208     ValueInfo VI;
9209     unsigned GVId;
9210     LocTy Loc;
9211   };
9212   std::vector<ValueContext> VContexts;
9213   // parse each ref edge
9214   do {
9215     ValueContext VC;
9216     VC.Loc = Lex.getLoc();
9217     if (parseGVReference(VC.VI, VC.GVId))
9218       return true;
9219     VContexts.push_back(VC);
9220   } while (EatIfPresent(lltok::comma));
9221 
9222   // Sort value contexts so that ones with writeonly
9223   // and readonly ValueInfo  are at the end of VContexts vector.
9224   // See FunctionSummary::specialRefCounts()
9225   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9226     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9227   });
9228 
9229   IdToIndexMapType IdToIndexMap;
9230   for (auto &VC : VContexts) {
9231     // Keep track of the Refs array index needing a forward reference.
9232     // We will save the location of the ValueInfo needing an update, but
9233     // can only do so once the std::vector is finalized.
9234     if (VC.VI.getRef() == FwdVIRef)
9235       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9236     Refs.push_back(VC.VI);
9237   }
9238 
9239   // Now that the Refs vector is finalized, it is safe to save the locations
9240   // of any forward GV references that need updating later.
9241   for (auto I : IdToIndexMap) {
9242     auto &Infos = ForwardRefValueInfos[I.first];
9243     for (auto P : I.second) {
9244       assert(Refs[P.first].getRef() == FwdVIRef &&
9245              "Forward referenced ValueInfo expected to be empty");
9246       Infos.emplace_back(&Refs[P.first], P.second);
9247     }
9248   }
9249 
9250   if (parseToken(lltok::rparen, "expected ')' in refs"))
9251     return true;
9252 
9253   return false;
9254 }
9255 
9256 /// OptionalTypeIdInfo
9257 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9258 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9259 ///         [',' TypeCheckedLoadConstVCalls]? ')'
parseOptionalTypeIdInfo(FunctionSummary::TypeIdInfo & TypeIdInfo)9260 bool LLParser::parseOptionalTypeIdInfo(
9261     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9262   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9263   Lex.Lex();
9264 
9265   if (parseToken(lltok::colon, "expected ':' here") ||
9266       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9267     return true;
9268 
9269   do {
9270     switch (Lex.getKind()) {
9271     case lltok::kw_typeTests:
9272       if (parseTypeTests(TypeIdInfo.TypeTests))
9273         return true;
9274       break;
9275     case lltok::kw_typeTestAssumeVCalls:
9276       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9277                            TypeIdInfo.TypeTestAssumeVCalls))
9278         return true;
9279       break;
9280     case lltok::kw_typeCheckedLoadVCalls:
9281       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9282                            TypeIdInfo.TypeCheckedLoadVCalls))
9283         return true;
9284       break;
9285     case lltok::kw_typeTestAssumeConstVCalls:
9286       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9287                               TypeIdInfo.TypeTestAssumeConstVCalls))
9288         return true;
9289       break;
9290     case lltok::kw_typeCheckedLoadConstVCalls:
9291       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9292                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9293         return true;
9294       break;
9295     default:
9296       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9297     }
9298   } while (EatIfPresent(lltok::comma));
9299 
9300   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9301     return true;
9302 
9303   return false;
9304 }
9305 
9306 /// TypeTests
9307 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9308 ///         [',' (SummaryID | UInt64)]* ')'
parseTypeTests(std::vector<GlobalValue::GUID> & TypeTests)9309 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9310   assert(Lex.getKind() == lltok::kw_typeTests);
9311   Lex.Lex();
9312 
9313   if (parseToken(lltok::colon, "expected ':' here") ||
9314       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9315     return true;
9316 
9317   IdToIndexMapType IdToIndexMap;
9318   do {
9319     GlobalValue::GUID GUID = 0;
9320     if (Lex.getKind() == lltok::SummaryID) {
9321       unsigned ID = Lex.getUIntVal();
9322       LocTy Loc = Lex.getLoc();
9323       // Keep track of the TypeTests array index needing a forward reference.
9324       // We will save the location of the GUID needing an update, but
9325       // can only do so once the std::vector is finalized.
9326       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9327       Lex.Lex();
9328     } else if (parseUInt64(GUID))
9329       return true;
9330     TypeTests.push_back(GUID);
9331   } while (EatIfPresent(lltok::comma));
9332 
9333   // Now that the TypeTests vector is finalized, it is safe to save the
9334   // locations of any forward GV references that need updating later.
9335   for (auto I : IdToIndexMap) {
9336     auto &Ids = ForwardRefTypeIds[I.first];
9337     for (auto P : I.second) {
9338       assert(TypeTests[P.first] == 0 &&
9339              "Forward referenced type id GUID expected to be 0");
9340       Ids.emplace_back(&TypeTests[P.first], P.second);
9341     }
9342   }
9343 
9344   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9345     return true;
9346 
9347   return false;
9348 }
9349 
9350 /// VFuncIdList
9351 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
parseVFuncIdList(lltok::Kind Kind,std::vector<FunctionSummary::VFuncId> & VFuncIdList)9352 bool LLParser::parseVFuncIdList(
9353     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9354   assert(Lex.getKind() == Kind);
9355   Lex.Lex();
9356 
9357   if (parseToken(lltok::colon, "expected ':' here") ||
9358       parseToken(lltok::lparen, "expected '(' here"))
9359     return true;
9360 
9361   IdToIndexMapType IdToIndexMap;
9362   do {
9363     FunctionSummary::VFuncId VFuncId;
9364     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9365       return true;
9366     VFuncIdList.push_back(VFuncId);
9367   } while (EatIfPresent(lltok::comma));
9368 
9369   if (parseToken(lltok::rparen, "expected ')' here"))
9370     return true;
9371 
9372   // Now that the VFuncIdList vector is finalized, it is safe to save the
9373   // locations of any forward GV references that need updating later.
9374   for (auto I : IdToIndexMap) {
9375     auto &Ids = ForwardRefTypeIds[I.first];
9376     for (auto P : I.second) {
9377       assert(VFuncIdList[P.first].GUID == 0 &&
9378              "Forward referenced type id GUID expected to be 0");
9379       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9380     }
9381   }
9382 
9383   return false;
9384 }
9385 
9386 /// ConstVCallList
9387 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
parseConstVCallList(lltok::Kind Kind,std::vector<FunctionSummary::ConstVCall> & ConstVCallList)9388 bool LLParser::parseConstVCallList(
9389     lltok::Kind Kind,
9390     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9391   assert(Lex.getKind() == Kind);
9392   Lex.Lex();
9393 
9394   if (parseToken(lltok::colon, "expected ':' here") ||
9395       parseToken(lltok::lparen, "expected '(' here"))
9396     return true;
9397 
9398   IdToIndexMapType IdToIndexMap;
9399   do {
9400     FunctionSummary::ConstVCall ConstVCall;
9401     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9402       return true;
9403     ConstVCallList.push_back(ConstVCall);
9404   } while (EatIfPresent(lltok::comma));
9405 
9406   if (parseToken(lltok::rparen, "expected ')' here"))
9407     return true;
9408 
9409   // Now that the ConstVCallList vector is finalized, it is safe to save the
9410   // locations of any forward GV references that need updating later.
9411   for (auto I : IdToIndexMap) {
9412     auto &Ids = ForwardRefTypeIds[I.first];
9413     for (auto P : I.second) {
9414       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9415              "Forward referenced type id GUID expected to be 0");
9416       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9417     }
9418   }
9419 
9420   return false;
9421 }
9422 
9423 /// ConstVCall
9424 ///   ::= '(' VFuncId ',' Args ')'
parseConstVCall(FunctionSummary::ConstVCall & ConstVCall,IdToIndexMapType & IdToIndexMap,unsigned Index)9425 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9426                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9427   if (parseToken(lltok::lparen, "expected '(' here") ||
9428       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9429     return true;
9430 
9431   if (EatIfPresent(lltok::comma))
9432     if (parseArgs(ConstVCall.Args))
9433       return true;
9434 
9435   if (parseToken(lltok::rparen, "expected ')' here"))
9436     return true;
9437 
9438   return false;
9439 }
9440 
9441 /// VFuncId
9442 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9443 ///         'offset' ':' UInt64 ')'
parseVFuncId(FunctionSummary::VFuncId & VFuncId,IdToIndexMapType & IdToIndexMap,unsigned Index)9444 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9445                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9446   assert(Lex.getKind() == lltok::kw_vFuncId);
9447   Lex.Lex();
9448 
9449   if (parseToken(lltok::colon, "expected ':' here") ||
9450       parseToken(lltok::lparen, "expected '(' here"))
9451     return true;
9452 
9453   if (Lex.getKind() == lltok::SummaryID) {
9454     VFuncId.GUID = 0;
9455     unsigned ID = Lex.getUIntVal();
9456     LocTy Loc = Lex.getLoc();
9457     // Keep track of the array index needing a forward reference.
9458     // We will save the location of the GUID needing an update, but
9459     // can only do so once the caller's std::vector is finalized.
9460     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9461     Lex.Lex();
9462   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9463              parseToken(lltok::colon, "expected ':' here") ||
9464              parseUInt64(VFuncId.GUID))
9465     return true;
9466 
9467   if (parseToken(lltok::comma, "expected ',' here") ||
9468       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9469       parseToken(lltok::colon, "expected ':' here") ||
9470       parseUInt64(VFuncId.Offset) ||
9471       parseToken(lltok::rparen, "expected ')' here"))
9472     return true;
9473 
9474   return false;
9475 }
9476 
9477 /// GVFlags
9478 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9479 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9480 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9481 ///         'canAutoHide' ':' Flag ',' ')'
parseGVFlags(GlobalValueSummary::GVFlags & GVFlags)9482 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9483   assert(Lex.getKind() == lltok::kw_flags);
9484   Lex.Lex();
9485 
9486   if (parseToken(lltok::colon, "expected ':' here") ||
9487       parseToken(lltok::lparen, "expected '(' here"))
9488     return true;
9489 
9490   do {
9491     unsigned Flag = 0;
9492     switch (Lex.getKind()) {
9493     case lltok::kw_linkage:
9494       Lex.Lex();
9495       if (parseToken(lltok::colon, "expected ':'"))
9496         return true;
9497       bool HasLinkage;
9498       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9499       assert(HasLinkage && "Linkage not optional in summary entry");
9500       Lex.Lex();
9501       break;
9502     case lltok::kw_visibility:
9503       Lex.Lex();
9504       if (parseToken(lltok::colon, "expected ':'"))
9505         return true;
9506       parseOptionalVisibility(Flag);
9507       GVFlags.Visibility = Flag;
9508       break;
9509     case lltok::kw_notEligibleToImport:
9510       Lex.Lex();
9511       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9512         return true;
9513       GVFlags.NotEligibleToImport = Flag;
9514       break;
9515     case lltok::kw_live:
9516       Lex.Lex();
9517       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9518         return true;
9519       GVFlags.Live = Flag;
9520       break;
9521     case lltok::kw_dsoLocal:
9522       Lex.Lex();
9523       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9524         return true;
9525       GVFlags.DSOLocal = Flag;
9526       break;
9527     case lltok::kw_canAutoHide:
9528       Lex.Lex();
9529       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9530         return true;
9531       GVFlags.CanAutoHide = Flag;
9532       break;
9533     default:
9534       return error(Lex.getLoc(), "expected gv flag type");
9535     }
9536   } while (EatIfPresent(lltok::comma));
9537 
9538   if (parseToken(lltok::rparen, "expected ')' here"))
9539     return true;
9540 
9541   return false;
9542 }
9543 
9544 /// GVarFlags
9545 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9546 ///                      ',' 'writeonly' ':' Flag
9547 ///                      ',' 'constant' ':' Flag ')'
parseGVarFlags(GlobalVarSummary::GVarFlags & GVarFlags)9548 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9549   assert(Lex.getKind() == lltok::kw_varFlags);
9550   Lex.Lex();
9551 
9552   if (parseToken(lltok::colon, "expected ':' here") ||
9553       parseToken(lltok::lparen, "expected '(' here"))
9554     return true;
9555 
9556   auto ParseRest = [this](unsigned int &Val) {
9557     Lex.Lex();
9558     if (parseToken(lltok::colon, "expected ':'"))
9559       return true;
9560     return parseFlag(Val);
9561   };
9562 
9563   do {
9564     unsigned Flag = 0;
9565     switch (Lex.getKind()) {
9566     case lltok::kw_readonly:
9567       if (ParseRest(Flag))
9568         return true;
9569       GVarFlags.MaybeReadOnly = Flag;
9570       break;
9571     case lltok::kw_writeonly:
9572       if (ParseRest(Flag))
9573         return true;
9574       GVarFlags.MaybeWriteOnly = Flag;
9575       break;
9576     case lltok::kw_constant:
9577       if (ParseRest(Flag))
9578         return true;
9579       GVarFlags.Constant = Flag;
9580       break;
9581     case lltok::kw_vcall_visibility:
9582       if (ParseRest(Flag))
9583         return true;
9584       GVarFlags.VCallVisibility = Flag;
9585       break;
9586     default:
9587       return error(Lex.getLoc(), "expected gvar flag type");
9588     }
9589   } while (EatIfPresent(lltok::comma));
9590   return parseToken(lltok::rparen, "expected ')' here");
9591 }
9592 
9593 /// ModuleReference
9594 ///   ::= 'module' ':' UInt
parseModuleReference(StringRef & ModulePath)9595 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9596   // parse module id.
9597   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9598       parseToken(lltok::colon, "expected ':' here") ||
9599       parseToken(lltok::SummaryID, "expected module ID"))
9600     return true;
9601 
9602   unsigned ModuleID = Lex.getUIntVal();
9603   auto I = ModuleIdMap.find(ModuleID);
9604   // We should have already parsed all module IDs
9605   assert(I != ModuleIdMap.end());
9606   ModulePath = I->second;
9607   return false;
9608 }
9609 
9610 /// GVReference
9611 ///   ::= SummaryID
parseGVReference(ValueInfo & VI,unsigned & GVId)9612 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9613   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9614   if (!ReadOnly)
9615     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9616   if (parseToken(lltok::SummaryID, "expected GV ID"))
9617     return true;
9618 
9619   GVId = Lex.getUIntVal();
9620   // Check if we already have a VI for this GV
9621   if (GVId < NumberedValueInfos.size()) {
9622     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9623     VI = NumberedValueInfos[GVId];
9624   } else
9625     // We will create a forward reference to the stored location.
9626     VI = ValueInfo(false, FwdVIRef);
9627 
9628   if (ReadOnly)
9629     VI.setReadOnly();
9630   if (WriteOnly)
9631     VI.setWriteOnly();
9632   return false;
9633 }
9634