xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/IR/DIBuilder.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include <numeric>
23 using namespace llvm;
24 using namespace PatternMatch;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 /// Analyze 'Val', seeing if it is a simple linear expression.
29 /// If so, decompose it, returning some value X, such that Val is
30 /// X*Scale+Offset.
31 ///
decomposeSimpleLinearExpr(Value * Val,unsigned & Scale,uint64_t & Offset)32 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
33                                         uint64_t &Offset) {
34   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
35     Offset = CI->getZExtValue();
36     Scale  = 0;
37     return ConstantInt::get(Val->getType(), 0);
38   }
39 
40   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
41     // Cannot look past anything that might overflow.
42     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
43     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
44       Scale = 1;
45       Offset = 0;
46       return Val;
47     }
48 
49     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
50       if (I->getOpcode() == Instruction::Shl) {
51         // This is a value scaled by '1 << the shift amt'.
52         Scale = UINT64_C(1) << RHS->getZExtValue();
53         Offset = 0;
54         return I->getOperand(0);
55       }
56 
57       if (I->getOpcode() == Instruction::Mul) {
58         // This value is scaled by 'RHS'.
59         Scale = RHS->getZExtValue();
60         Offset = 0;
61         return I->getOperand(0);
62       }
63 
64       if (I->getOpcode() == Instruction::Add) {
65         // We have X+C.  Check to see if we really have (X*C2)+C1,
66         // where C1 is divisible by C2.
67         unsigned SubScale;
68         Value *SubVal =
69           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
70         Offset += RHS->getZExtValue();
71         Scale = SubScale;
72         return SubVal;
73       }
74     }
75   }
76 
77   // Otherwise, we can't look past this.
78   Scale = 1;
79   Offset = 0;
80   return Val;
81 }
82 
83 /// If we find a cast of an allocation instruction, try to eliminate the cast by
84 /// moving the type information into the alloc.
PromoteCastOfAllocation(BitCastInst & CI,AllocaInst & AI)85 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI,
86                                                        AllocaInst &AI) {
87   PointerType *PTy = cast<PointerType>(CI.getType());
88 
89   IRBuilderBase::InsertPointGuard Guard(Builder);
90   Builder.SetInsertPoint(&AI);
91 
92   // Get the type really allocated and the type casted to.
93   Type *AllocElTy = AI.getAllocatedType();
94   Type *CastElTy = PTy->getElementType();
95   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
96 
97   // This optimisation does not work for cases where the cast type
98   // is scalable and the allocated type is not. This because we need to
99   // know how many times the casted type fits into the allocated type.
100   // For the opposite case where the allocated type is scalable and the
101   // cast type is not this leads to poor code quality due to the
102   // introduction of 'vscale' into the calculations. It seems better to
103   // bail out for this case too until we've done a proper cost-benefit
104   // analysis.
105   bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy);
106   bool CastIsScalable = isa<ScalableVectorType>(CastElTy);
107   if (AllocIsScalable != CastIsScalable) return nullptr;
108 
109   Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
110   Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
111   if (CastElTyAlign < AllocElTyAlign) return nullptr;
112 
113   // If the allocation has multiple uses, only promote it if we are strictly
114   // increasing the alignment of the resultant allocation.  If we keep it the
115   // same, we open the door to infinite loops of various kinds.
116   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
117 
118   // The alloc and cast types should be either both fixed or both scalable.
119   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize();
120   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize();
121   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
122 
123   // If the allocation has multiple uses, only promote it if we're not
124   // shrinking the amount of memory being allocated.
125   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize();
126   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize();
127   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
128 
129   // See if we can satisfy the modulus by pulling a scale out of the array
130   // size argument.
131   unsigned ArraySizeScale;
132   uint64_t ArrayOffset;
133   Value *NumElements = // See if the array size is a decomposable linear expr.
134     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
135 
136   // If we can now satisfy the modulus, by using a non-1 scale, we really can
137   // do the xform.
138   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
139       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
140 
141   // We don't currently support arrays of scalable types.
142   assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0));
143 
144   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
145   Value *Amt = nullptr;
146   if (Scale == 1) {
147     Amt = NumElements;
148   } else {
149     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
150     // Insert before the alloca, not before the cast.
151     Amt = Builder.CreateMul(Amt, NumElements);
152   }
153 
154   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
155     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
156                                   Offset, true);
157     Amt = Builder.CreateAdd(Amt, Off);
158   }
159 
160   AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt);
161   New->setAlignment(AI.getAlign());
162   New->takeName(&AI);
163   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
164 
165   // If the allocation has multiple real uses, insert a cast and change all
166   // things that used it to use the new cast.  This will also hack on CI, but it
167   // will die soon.
168   if (!AI.hasOneUse()) {
169     // New is the allocation instruction, pointer typed. AI is the original
170     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
171     Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
172     replaceInstUsesWith(AI, NewCast);
173     eraseInstFromFunction(AI);
174   }
175   return replaceInstUsesWith(CI, New);
176 }
177 
178 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
179 /// true for, actually insert the code to evaluate the expression.
EvaluateInDifferentType(Value * V,Type * Ty,bool isSigned)180 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
181                                                  bool isSigned) {
182   if (Constant *C = dyn_cast<Constant>(V)) {
183     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
184     // If we got a constantexpr back, try to simplify it with DL info.
185     return ConstantFoldConstant(C, DL, &TLI);
186   }
187 
188   // Otherwise, it must be an instruction.
189   Instruction *I = cast<Instruction>(V);
190   Instruction *Res = nullptr;
191   unsigned Opc = I->getOpcode();
192   switch (Opc) {
193   case Instruction::Add:
194   case Instruction::Sub:
195   case Instruction::Mul:
196   case Instruction::And:
197   case Instruction::Or:
198   case Instruction::Xor:
199   case Instruction::AShr:
200   case Instruction::LShr:
201   case Instruction::Shl:
202   case Instruction::UDiv:
203   case Instruction::URem: {
204     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
205     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
206     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
207     break;
208   }
209   case Instruction::Trunc:
210   case Instruction::ZExt:
211   case Instruction::SExt:
212     // If the source type of the cast is the type we're trying for then we can
213     // just return the source.  There's no need to insert it because it is not
214     // new.
215     if (I->getOperand(0)->getType() == Ty)
216       return I->getOperand(0);
217 
218     // Otherwise, must be the same type of cast, so just reinsert a new one.
219     // This also handles the case of zext(trunc(x)) -> zext(x).
220     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
221                                       Opc == Instruction::SExt);
222     break;
223   case Instruction::Select: {
224     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
225     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
226     Res = SelectInst::Create(I->getOperand(0), True, False);
227     break;
228   }
229   case Instruction::PHI: {
230     PHINode *OPN = cast<PHINode>(I);
231     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
232     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
233       Value *V =
234           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
235       NPN->addIncoming(V, OPN->getIncomingBlock(i));
236     }
237     Res = NPN;
238     break;
239   }
240   default:
241     // TODO: Can handle more cases here.
242     llvm_unreachable("Unreachable!");
243   }
244 
245   Res->takeName(I);
246   return InsertNewInstWith(Res, *I);
247 }
248 
249 Instruction::CastOps
isEliminableCastPair(const CastInst * CI1,const CastInst * CI2)250 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
251                                        const CastInst *CI2) {
252   Type *SrcTy = CI1->getSrcTy();
253   Type *MidTy = CI1->getDestTy();
254   Type *DstTy = CI2->getDestTy();
255 
256   Instruction::CastOps firstOp = CI1->getOpcode();
257   Instruction::CastOps secondOp = CI2->getOpcode();
258   Type *SrcIntPtrTy =
259       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
260   Type *MidIntPtrTy =
261       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
262   Type *DstIntPtrTy =
263       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
264   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
265                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
266                                                 DstIntPtrTy);
267 
268   // We don't want to form an inttoptr or ptrtoint that converts to an integer
269   // type that differs from the pointer size.
270   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
271       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
272     Res = 0;
273 
274   return Instruction::CastOps(Res);
275 }
276 
277 /// Implement the transforms common to all CastInst visitors.
commonCastTransforms(CastInst & CI)278 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
279   Value *Src = CI.getOperand(0);
280 
281   // Try to eliminate a cast of a cast.
282   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
283     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
284       // The first cast (CSrc) is eliminable so we need to fix up or replace
285       // the second cast (CI). CSrc will then have a good chance of being dead.
286       auto *Ty = CI.getType();
287       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
288       // Point debug users of the dying cast to the new one.
289       if (CSrc->hasOneUse())
290         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
291       return Res;
292     }
293   }
294 
295   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
296     // We are casting a select. Try to fold the cast into the select if the
297     // select does not have a compare instruction with matching operand types
298     // or the select is likely better done in a narrow type.
299     // Creating a select with operands that are different sizes than its
300     // condition may inhibit other folds and lead to worse codegen.
301     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
302     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
303         (CI.getOpcode() == Instruction::Trunc &&
304          shouldChangeType(CI.getSrcTy(), CI.getType()))) {
305       if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
306         replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
307         return NV;
308       }
309     }
310   }
311 
312   // If we are casting a PHI, then fold the cast into the PHI.
313   if (auto *PN = dyn_cast<PHINode>(Src)) {
314     // Don't do this if it would create a PHI node with an illegal type from a
315     // legal type.
316     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
317         shouldChangeType(CI.getSrcTy(), CI.getType()))
318       if (Instruction *NV = foldOpIntoPhi(CI, PN))
319         return NV;
320   }
321 
322   return nullptr;
323 }
324 
325 /// Constants and extensions/truncates from the destination type are always
326 /// free to be evaluated in that type. This is a helper for canEvaluate*.
canAlwaysEvaluateInType(Value * V,Type * Ty)327 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
328   if (isa<Constant>(V))
329     return true;
330   Value *X;
331   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
332       X->getType() == Ty)
333     return true;
334 
335   return false;
336 }
337 
338 /// Filter out values that we can not evaluate in the destination type for free.
339 /// This is a helper for canEvaluate*.
canNotEvaluateInType(Value * V,Type * Ty)340 static bool canNotEvaluateInType(Value *V, Type *Ty) {
341   assert(!isa<Constant>(V) && "Constant should already be handled.");
342   if (!isa<Instruction>(V))
343     return true;
344   // We don't extend or shrink something that has multiple uses --  doing so
345   // would require duplicating the instruction which isn't profitable.
346   if (!V->hasOneUse())
347     return true;
348 
349   return false;
350 }
351 
352 /// Return true if we can evaluate the specified expression tree as type Ty
353 /// instead of its larger type, and arrive with the same value.
354 /// This is used by code that tries to eliminate truncates.
355 ///
356 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
357 /// can be computed by computing V in the smaller type.  If V is an instruction,
358 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
359 /// makes sense if x and y can be efficiently truncated.
360 ///
361 /// This function works on both vectors and scalars.
362 ///
canEvaluateTruncated(Value * V,Type * Ty,InstCombinerImpl & IC,Instruction * CxtI)363 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
364                                  Instruction *CxtI) {
365   if (canAlwaysEvaluateInType(V, Ty))
366     return true;
367   if (canNotEvaluateInType(V, Ty))
368     return false;
369 
370   auto *I = cast<Instruction>(V);
371   Type *OrigTy = V->getType();
372   switch (I->getOpcode()) {
373   case Instruction::Add:
374   case Instruction::Sub:
375   case Instruction::Mul:
376   case Instruction::And:
377   case Instruction::Or:
378   case Instruction::Xor:
379     // These operators can all arbitrarily be extended or truncated.
380     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
381            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
382 
383   case Instruction::UDiv:
384   case Instruction::URem: {
385     // UDiv and URem can be truncated if all the truncated bits are zero.
386     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
387     uint32_t BitWidth = Ty->getScalarSizeInBits();
388     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
389     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
390     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
391         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
392       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
393              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
394     }
395     break;
396   }
397   case Instruction::Shl: {
398     // If we are truncating the result of this SHL, and if it's a shift of an
399     // inrange amount, we can always perform a SHL in a smaller type.
400     uint32_t BitWidth = Ty->getScalarSizeInBits();
401     KnownBits AmtKnownBits =
402         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
403     if (AmtKnownBits.getMaxValue().ult(BitWidth))
404       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
405              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
406     break;
407   }
408   case Instruction::LShr: {
409     // If this is a truncate of a logical shr, we can truncate it to a smaller
410     // lshr iff we know that the bits we would otherwise be shifting in are
411     // already zeros.
412     // TODO: It is enough to check that the bits we would be shifting in are
413     //       zero - use AmtKnownBits.getMaxValue().
414     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
415     uint32_t BitWidth = Ty->getScalarSizeInBits();
416     KnownBits AmtKnownBits =
417         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
418     APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
419     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
420         IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
421       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
422              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
423     }
424     break;
425   }
426   case Instruction::AShr: {
427     // If this is a truncate of an arithmetic shr, we can truncate it to a
428     // smaller ashr iff we know that all the bits from the sign bit of the
429     // original type and the sign bit of the truncate type are similar.
430     // TODO: It is enough to check that the bits we would be shifting in are
431     //       similar to sign bit of the truncate type.
432     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
433     uint32_t BitWidth = Ty->getScalarSizeInBits();
434     KnownBits AmtKnownBits =
435         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
436     unsigned ShiftedBits = OrigBitWidth - BitWidth;
437     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
438         ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
439       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
440              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
441     break;
442   }
443   case Instruction::Trunc:
444     // trunc(trunc(x)) -> trunc(x)
445     return true;
446   case Instruction::ZExt:
447   case Instruction::SExt:
448     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
449     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
450     return true;
451   case Instruction::Select: {
452     SelectInst *SI = cast<SelectInst>(I);
453     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
454            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
455   }
456   case Instruction::PHI: {
457     // We can change a phi if we can change all operands.  Note that we never
458     // get into trouble with cyclic PHIs here because we only consider
459     // instructions with a single use.
460     PHINode *PN = cast<PHINode>(I);
461     for (Value *IncValue : PN->incoming_values())
462       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
463         return false;
464     return true;
465   }
466   default:
467     // TODO: Can handle more cases here.
468     break;
469   }
470 
471   return false;
472 }
473 
474 /// Given a vector that is bitcast to an integer, optionally logically
475 /// right-shifted, and truncated, convert it to an extractelement.
476 /// Example (big endian):
477 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
478 ///   --->
479 ///   extractelement <4 x i32> %X, 1
foldVecTruncToExtElt(TruncInst & Trunc,InstCombinerImpl & IC)480 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
481                                          InstCombinerImpl &IC) {
482   Value *TruncOp = Trunc.getOperand(0);
483   Type *DestType = Trunc.getType();
484   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
485     return nullptr;
486 
487   Value *VecInput = nullptr;
488   ConstantInt *ShiftVal = nullptr;
489   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
490                                   m_LShr(m_BitCast(m_Value(VecInput)),
491                                          m_ConstantInt(ShiftVal)))) ||
492       !isa<VectorType>(VecInput->getType()))
493     return nullptr;
494 
495   VectorType *VecType = cast<VectorType>(VecInput->getType());
496   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
497   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
498   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
499 
500   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
501     return nullptr;
502 
503   // If the element type of the vector doesn't match the result type,
504   // bitcast it to a vector type that we can extract from.
505   unsigned NumVecElts = VecWidth / DestWidth;
506   if (VecType->getElementType() != DestType) {
507     VecType = FixedVectorType::get(DestType, NumVecElts);
508     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
509   }
510 
511   unsigned Elt = ShiftAmount / DestWidth;
512   if (IC.getDataLayout().isBigEndian())
513     Elt = NumVecElts - 1 - Elt;
514 
515   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
516 }
517 
518 /// Funnel/Rotate left/right may occur in a wider type than necessary because of
519 /// type promotion rules. Try to narrow the inputs and convert to funnel shift.
narrowFunnelShift(TruncInst & Trunc)520 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
521   assert((isa<VectorType>(Trunc.getSrcTy()) ||
522           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
523          "Don't narrow to an illegal scalar type");
524 
525   // Bail out on strange types. It is possible to handle some of these patterns
526   // even with non-power-of-2 sizes, but it is not a likely scenario.
527   Type *DestTy = Trunc.getType();
528   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
529   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
530   if (!isPowerOf2_32(NarrowWidth))
531     return nullptr;
532 
533   // First, find an or'd pair of opposite shifts:
534   // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
535   BinaryOperator *Or0, *Or1;
536   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
537     return nullptr;
538 
539   Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
540   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
541       !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
542       Or0->getOpcode() == Or1->getOpcode())
543     return nullptr;
544 
545   // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
546   if (Or0->getOpcode() == BinaryOperator::LShr) {
547     std::swap(Or0, Or1);
548     std::swap(ShVal0, ShVal1);
549     std::swap(ShAmt0, ShAmt1);
550   }
551   assert(Or0->getOpcode() == BinaryOperator::Shl &&
552          Or1->getOpcode() == BinaryOperator::LShr &&
553          "Illegal or(shift,shift) pair");
554 
555   // Match the shift amount operands for a funnel/rotate pattern. This always
556   // matches a subtraction on the R operand.
557   auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
558     // The shift amounts may add up to the narrow bit width:
559     // (shl ShVal0, L) | (lshr ShVal1, Width - L)
560     // If this is a funnel shift (different operands are shifted), then the
561     // shift amount can not over-shift (create poison) in the narrow type.
562     unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
563     APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
564     if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
565       if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
566         return L;
567 
568     // The following patterns currently only work for rotation patterns.
569     // TODO: Add more general funnel-shift compatible patterns.
570     if (ShVal0 != ShVal1)
571       return nullptr;
572 
573     // The shift amount may be masked with negation:
574     // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
575     Value *X;
576     unsigned Mask = Width - 1;
577     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
578         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
579       return X;
580 
581     // Same as above, but the shift amount may be extended after masking:
582     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
583         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
584       return X;
585 
586     return nullptr;
587   };
588 
589   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
590   bool IsFshl = true; // Sub on LSHR.
591   if (!ShAmt) {
592     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
593     IsFshl = false; // Sub on SHL.
594   }
595   if (!ShAmt)
596     return nullptr;
597 
598   // The right-shifted value must have high zeros in the wide type (for example
599   // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
600   // truncated, so those do not matter.
601   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
602   if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
603     return nullptr;
604 
605   // We have an unnecessarily wide rotate!
606   // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt))
607   // Narrow the inputs and convert to funnel shift intrinsic:
608   // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
609   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
610   Value *X, *Y;
611   X = Y = Builder.CreateTrunc(ShVal0, DestTy);
612   if (ShVal0 != ShVal1)
613     Y = Builder.CreateTrunc(ShVal1, DestTy);
614   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
615   Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
616   return CallInst::Create(F, {X, Y, NarrowShAmt});
617 }
618 
619 /// Try to narrow the width of math or bitwise logic instructions by pulling a
620 /// truncate ahead of binary operators.
621 /// TODO: Transforms for truncated shifts should be moved into here.
narrowBinOp(TruncInst & Trunc)622 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
623   Type *SrcTy = Trunc.getSrcTy();
624   Type *DestTy = Trunc.getType();
625   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
626     return nullptr;
627 
628   BinaryOperator *BinOp;
629   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
630     return nullptr;
631 
632   Value *BinOp0 = BinOp->getOperand(0);
633   Value *BinOp1 = BinOp->getOperand(1);
634   switch (BinOp->getOpcode()) {
635   case Instruction::And:
636   case Instruction::Or:
637   case Instruction::Xor:
638   case Instruction::Add:
639   case Instruction::Sub:
640   case Instruction::Mul: {
641     Constant *C;
642     if (match(BinOp0, m_Constant(C))) {
643       // trunc (binop C, X) --> binop (trunc C', X)
644       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
645       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
646       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
647     }
648     if (match(BinOp1, m_Constant(C))) {
649       // trunc (binop X, C) --> binop (trunc X, C')
650       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
651       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
652       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
653     }
654     Value *X;
655     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
656       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
657       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
658       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
659     }
660     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
661       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
662       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
663       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
664     }
665     break;
666   }
667 
668   default: break;
669   }
670 
671   if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
672     return NarrowOr;
673 
674   return nullptr;
675 }
676 
677 /// Try to narrow the width of a splat shuffle. This could be generalized to any
678 /// shuffle with a constant operand, but we limit the transform to avoid
679 /// creating a shuffle type that targets may not be able to lower effectively.
shrinkSplatShuffle(TruncInst & Trunc,InstCombiner::BuilderTy & Builder)680 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
681                                        InstCombiner::BuilderTy &Builder) {
682   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
683   if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
684       is_splat(Shuf->getShuffleMask()) &&
685       Shuf->getType() == Shuf->getOperand(0)->getType()) {
686     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
687     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
688     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
689     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask());
690   }
691 
692   return nullptr;
693 }
694 
695 /// Try to narrow the width of an insert element. This could be generalized for
696 /// any vector constant, but we limit the transform to insertion into undef to
697 /// avoid potential backend problems from unsupported insertion widths. This
698 /// could also be extended to handle the case of inserting a scalar constant
699 /// into a vector variable.
shrinkInsertElt(CastInst & Trunc,InstCombiner::BuilderTy & Builder)700 static Instruction *shrinkInsertElt(CastInst &Trunc,
701                                     InstCombiner::BuilderTy &Builder) {
702   Instruction::CastOps Opcode = Trunc.getOpcode();
703   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
704          "Unexpected instruction for shrinking");
705 
706   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
707   if (!InsElt || !InsElt->hasOneUse())
708     return nullptr;
709 
710   Type *DestTy = Trunc.getType();
711   Type *DestScalarTy = DestTy->getScalarType();
712   Value *VecOp = InsElt->getOperand(0);
713   Value *ScalarOp = InsElt->getOperand(1);
714   Value *Index = InsElt->getOperand(2);
715 
716   if (match(VecOp, m_Undef())) {
717     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
718     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
719     UndefValue *NarrowUndef = UndefValue::get(DestTy);
720     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
721     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
722   }
723 
724   return nullptr;
725 }
726 
visitTrunc(TruncInst & Trunc)727 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
728   if (Instruction *Result = commonCastTransforms(Trunc))
729     return Result;
730 
731   Value *Src = Trunc.getOperand(0);
732   Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
733   unsigned DestWidth = DestTy->getScalarSizeInBits();
734   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
735 
736   // Attempt to truncate the entire input expression tree to the destination
737   // type.   Only do this if the dest type is a simple type, don't convert the
738   // expression tree to something weird like i93 unless the source is also
739   // strange.
740   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
741       canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
742 
743     // If this cast is a truncate, evaluting in a different type always
744     // eliminates the cast, so it is always a win.
745     LLVM_DEBUG(
746         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
747                   " to avoid cast: "
748                << Trunc << '\n');
749     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
750     assert(Res->getType() == DestTy);
751     return replaceInstUsesWith(Trunc, Res);
752   }
753 
754   // For integer types, check if we can shorten the entire input expression to
755   // DestWidth * 2, which won't allow removing the truncate, but reducing the
756   // width may enable further optimizations, e.g. allowing for larger
757   // vectorization factors.
758   if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
759     if (DestWidth * 2 < SrcWidth) {
760       auto *NewDestTy = DestITy->getExtendedType();
761       if (shouldChangeType(SrcTy, NewDestTy) &&
762           canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
763         LLVM_DEBUG(
764             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
765                       " to reduce the width of operand of"
766                    << Trunc << '\n');
767         Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
768         return new TruncInst(Res, DestTy);
769       }
770     }
771   }
772 
773   // Test if the trunc is the user of a select which is part of a
774   // minimum or maximum operation. If so, don't do any more simplification.
775   // Even simplifying demanded bits can break the canonical form of a
776   // min/max.
777   Value *LHS, *RHS;
778   if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
779     if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
780       return nullptr;
781 
782   // See if we can simplify any instructions used by the input whose sole
783   // purpose is to compute bits we don't care about.
784   if (SimplifyDemandedInstructionBits(Trunc))
785     return &Trunc;
786 
787   if (DestWidth == 1) {
788     Value *Zero = Constant::getNullValue(SrcTy);
789     if (DestTy->isIntegerTy()) {
790       // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
791       // TODO: We canonicalize to more instructions here because we are probably
792       // lacking equivalent analysis for trunc relative to icmp. There may also
793       // be codegen concerns. If those trunc limitations were removed, we could
794       // remove this transform.
795       Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
796       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
797     }
798 
799     // For vectors, we do not canonicalize all truncs to icmp, so optimize
800     // patterns that would be covered within visitICmpInst.
801     Value *X;
802     Constant *C;
803     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
804       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
805       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
806       Constant *MaskC = ConstantExpr::getShl(One, C);
807       Value *And = Builder.CreateAnd(X, MaskC);
808       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
809     }
810     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
811                                    m_Deferred(X))))) {
812       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
813       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
814       Constant *MaskC = ConstantExpr::getShl(One, C);
815       MaskC = ConstantExpr::getOr(MaskC, One);
816       Value *And = Builder.CreateAnd(X, MaskC);
817       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
818     }
819   }
820 
821   Value *A;
822   Constant *C;
823   if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
824     unsigned AWidth = A->getType()->getScalarSizeInBits();
825     unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
826     auto *OldSh = cast<Instruction>(Src);
827     bool IsExact = OldSh->isExact();
828 
829     // If the shift is small enough, all zero bits created by the shift are
830     // removed by the trunc.
831     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
832                                     APInt(SrcWidth, MaxShiftAmt)))) {
833       // trunc (lshr (sext A), C) --> ashr A, C
834       if (A->getType() == DestTy) {
835         Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false);
836         Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
837         ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
838         ShAmt = Constant::mergeUndefsWith(ShAmt, C);
839         return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
840                        : BinaryOperator::CreateAShr(A, ShAmt);
841       }
842       // The types are mismatched, so create a cast after shifting:
843       // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
844       if (Src->hasOneUse()) {
845         Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false);
846         Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
847         ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
848         Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
849         return CastInst::CreateIntegerCast(Shift, DestTy, true);
850       }
851     }
852     // TODO: Mask high bits with 'and'.
853   }
854 
855   // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
856   if (match(Src, m_OneUse(m_Shr(m_Trunc(m_Value(A)), m_Constant(C))))) {
857     unsigned MaxShiftAmt = SrcWidth - DestWidth;
858 
859     // If the shift is small enough, all zero/sign bits created by the shift are
860     // removed by the trunc.
861     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
862                                     APInt(SrcWidth, MaxShiftAmt)))) {
863       auto *OldShift = cast<Instruction>(Src);
864       bool IsExact = OldShift->isExact();
865       auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true);
866       ShAmt = Constant::mergeUndefsWith(ShAmt, C);
867       Value *Shift =
868           OldShift->getOpcode() == Instruction::AShr
869               ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
870               : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
871       return CastInst::CreateTruncOrBitCast(Shift, DestTy);
872     }
873   }
874 
875   if (Instruction *I = narrowBinOp(Trunc))
876     return I;
877 
878   if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
879     return I;
880 
881   if (Instruction *I = shrinkInsertElt(Trunc, Builder))
882     return I;
883 
884   if (Src->hasOneUse() &&
885       (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
886     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
887     // dest type is native and cst < dest size.
888     if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
889         !match(A, m_Shr(m_Value(), m_Constant()))) {
890       // Skip shifts of shift by constants. It undoes a combine in
891       // FoldShiftByConstant and is the extend in reg pattern.
892       APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
893       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
894         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
895         return BinaryOperator::Create(Instruction::Shl, NewTrunc,
896                                       ConstantExpr::getTrunc(C, DestTy));
897       }
898     }
899   }
900 
901   if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
902     return I;
903 
904   // Whenever an element is extracted from a vector, and then truncated,
905   // canonicalize by converting it to a bitcast followed by an
906   // extractelement.
907   //
908   // Example (little endian):
909   //   trunc (extractelement <4 x i64> %X, 0) to i32
910   //   --->
911   //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
912   Value *VecOp;
913   ConstantInt *Cst;
914   if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
915     auto *VecOpTy = cast<VectorType>(VecOp->getType());
916     auto VecElts = VecOpTy->getElementCount();
917 
918     // A badly fit destination size would result in an invalid cast.
919     if (SrcWidth % DestWidth == 0) {
920       uint64_t TruncRatio = SrcWidth / DestWidth;
921       uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
922       uint64_t VecOpIdx = Cst->getZExtValue();
923       uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
924                                          : VecOpIdx * TruncRatio;
925       assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
926              "overflow 32-bits");
927 
928       auto *BitCastTo =
929           VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
930       Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
931       return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
932     }
933   }
934 
935   return nullptr;
936 }
937 
transformZExtICmp(ICmpInst * Cmp,ZExtInst & Zext,bool DoTransform)938 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext,
939                                                  bool DoTransform) {
940   // If we are just checking for a icmp eq of a single bit and zext'ing it
941   // to an integer, then shift the bit to the appropriate place and then
942   // cast to integer to avoid the comparison.
943   const APInt *Op1CV;
944   if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
945 
946     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
947     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
948     if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
949         (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
950       if (!DoTransform) return Cmp;
951 
952       Value *In = Cmp->getOperand(0);
953       Value *Sh = ConstantInt::get(In->getType(),
954                                    In->getType()->getScalarSizeInBits() - 1);
955       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
956       if (In->getType() != Zext.getType())
957         In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
958 
959       if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) {
960         Constant *One = ConstantInt::get(In->getType(), 1);
961         In = Builder.CreateXor(In, One, In->getName() + ".not");
962       }
963 
964       return replaceInstUsesWith(Zext, In);
965     }
966 
967     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
968     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
969     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
970     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
971     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
972     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
973     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
974     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
975     if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
976         // This only works for EQ and NE
977         Cmp->isEquality()) {
978       // If Op1C some other power of two, convert:
979       KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
980 
981       APInt KnownZeroMask(~Known.Zero);
982       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
983         if (!DoTransform) return Cmp;
984 
985         bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
986         if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
987           // (X&4) == 2 --> false
988           // (X&4) != 2 --> true
989           Constant *Res = ConstantInt::get(Zext.getType(), isNE);
990           return replaceInstUsesWith(Zext, Res);
991         }
992 
993         uint32_t ShAmt = KnownZeroMask.logBase2();
994         Value *In = Cmp->getOperand(0);
995         if (ShAmt) {
996           // Perform a logical shr by shiftamt.
997           // Insert the shift to put the result in the low bit.
998           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
999                                   In->getName() + ".lobit");
1000         }
1001 
1002         if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
1003           Constant *One = ConstantInt::get(In->getType(), 1);
1004           In = Builder.CreateXor(In, One);
1005         }
1006 
1007         if (Zext.getType() == In->getType())
1008           return replaceInstUsesWith(Zext, In);
1009 
1010         Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
1011         return replaceInstUsesWith(Zext, IntCast);
1012       }
1013     }
1014   }
1015 
1016   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
1017   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
1018   // may lead to additional simplifications.
1019   if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
1020     if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
1021       Value *LHS = Cmp->getOperand(0);
1022       Value *RHS = Cmp->getOperand(1);
1023 
1024       KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
1025       KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);
1026 
1027       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
1028         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
1029         APInt UnknownBit = ~KnownBits;
1030         if (UnknownBit.countPopulation() == 1) {
1031           if (!DoTransform) return Cmp;
1032 
1033           Value *Result = Builder.CreateXor(LHS, RHS);
1034 
1035           // Mask off any bits that are set and won't be shifted away.
1036           if (KnownLHS.One.uge(UnknownBit))
1037             Result = Builder.CreateAnd(Result,
1038                                         ConstantInt::get(ITy, UnknownBit));
1039 
1040           // Shift the bit we're testing down to the lsb.
1041           Result = Builder.CreateLShr(
1042                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
1043 
1044           if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
1045             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
1046           Result->takeName(Cmp);
1047           return replaceInstUsesWith(Zext, Result);
1048         }
1049       }
1050     }
1051   }
1052 
1053   return nullptr;
1054 }
1055 
1056 /// Determine if the specified value can be computed in the specified wider type
1057 /// and produce the same low bits. If not, return false.
1058 ///
1059 /// If this function returns true, it can also return a non-zero number of bits
1060 /// (in BitsToClear) which indicates that the value it computes is correct for
1061 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
1062 /// out.  For example, to promote something like:
1063 ///
1064 ///   %B = trunc i64 %A to i32
1065 ///   %C = lshr i32 %B, 8
1066 ///   %E = zext i32 %C to i64
1067 ///
1068 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1069 /// set to 8 to indicate that the promoted value needs to have bits 24-31
1070 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
1071 /// clear the top bits anyway, doing this has no extra cost.
1072 ///
1073 /// This function works on both vectors and scalars.
canEvaluateZExtd(Value * V,Type * Ty,unsigned & BitsToClear,InstCombinerImpl & IC,Instruction * CxtI)1074 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1075                              InstCombinerImpl &IC, Instruction *CxtI) {
1076   BitsToClear = 0;
1077   if (canAlwaysEvaluateInType(V, Ty))
1078     return true;
1079   if (canNotEvaluateInType(V, Ty))
1080     return false;
1081 
1082   auto *I = cast<Instruction>(V);
1083   unsigned Tmp;
1084   switch (I->getOpcode()) {
1085   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1086   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1087   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1088     return true;
1089   case Instruction::And:
1090   case Instruction::Or:
1091   case Instruction::Xor:
1092   case Instruction::Add:
1093   case Instruction::Sub:
1094   case Instruction::Mul:
1095     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1096         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1097       return false;
1098     // These can all be promoted if neither operand has 'bits to clear'.
1099     if (BitsToClear == 0 && Tmp == 0)
1100       return true;
1101 
1102     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1103     // other side, BitsToClear is ok.
1104     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1105       // We use MaskedValueIsZero here for generality, but the case we care
1106       // about the most is constant RHS.
1107       unsigned VSize = V->getType()->getScalarSizeInBits();
1108       if (IC.MaskedValueIsZero(I->getOperand(1),
1109                                APInt::getHighBitsSet(VSize, BitsToClear),
1110                                0, CxtI)) {
1111         // If this is an And instruction and all of the BitsToClear are
1112         // known to be zero we can reset BitsToClear.
1113         if (I->getOpcode() == Instruction::And)
1114           BitsToClear = 0;
1115         return true;
1116       }
1117     }
1118 
1119     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1120     return false;
1121 
1122   case Instruction::Shl: {
1123     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1124     // upper bits we can reduce BitsToClear by the shift amount.
1125     const APInt *Amt;
1126     if (match(I->getOperand(1), m_APInt(Amt))) {
1127       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1128         return false;
1129       uint64_t ShiftAmt = Amt->getZExtValue();
1130       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1131       return true;
1132     }
1133     return false;
1134   }
1135   case Instruction::LShr: {
1136     // We can promote lshr(x, cst) if we can promote x.  This requires the
1137     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1138     const APInt *Amt;
1139     if (match(I->getOperand(1), m_APInt(Amt))) {
1140       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1141         return false;
1142       BitsToClear += Amt->getZExtValue();
1143       if (BitsToClear > V->getType()->getScalarSizeInBits())
1144         BitsToClear = V->getType()->getScalarSizeInBits();
1145       return true;
1146     }
1147     // Cannot promote variable LSHR.
1148     return false;
1149   }
1150   case Instruction::Select:
1151     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1152         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1153         // TODO: If important, we could handle the case when the BitsToClear are
1154         // known zero in the disagreeing side.
1155         Tmp != BitsToClear)
1156       return false;
1157     return true;
1158 
1159   case Instruction::PHI: {
1160     // We can change a phi if we can change all operands.  Note that we never
1161     // get into trouble with cyclic PHIs here because we only consider
1162     // instructions with a single use.
1163     PHINode *PN = cast<PHINode>(I);
1164     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1165       return false;
1166     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1167       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1168           // TODO: If important, we could handle the case when the BitsToClear
1169           // are known zero in the disagreeing input.
1170           Tmp != BitsToClear)
1171         return false;
1172     return true;
1173   }
1174   default:
1175     // TODO: Can handle more cases here.
1176     return false;
1177   }
1178 }
1179 
visitZExt(ZExtInst & CI)1180 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) {
1181   // If this zero extend is only used by a truncate, let the truncate be
1182   // eliminated before we try to optimize this zext.
1183   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1184     return nullptr;
1185 
1186   // If one of the common conversion will work, do it.
1187   if (Instruction *Result = commonCastTransforms(CI))
1188     return Result;
1189 
1190   Value *Src = CI.getOperand(0);
1191   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1192 
1193   // Try to extend the entire expression tree to the wide destination type.
1194   unsigned BitsToClear;
1195   if (shouldChangeType(SrcTy, DestTy) &&
1196       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1197     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1198            "Can't clear more bits than in SrcTy");
1199 
1200     // Okay, we can transform this!  Insert the new expression now.
1201     LLVM_DEBUG(
1202         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1203                   " to avoid zero extend: "
1204                << CI << '\n');
1205     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1206     assert(Res->getType() == DestTy);
1207 
1208     // Preserve debug values referring to Src if the zext is its last use.
1209     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1210       if (SrcOp->hasOneUse())
1211         replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1212 
1213     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1214     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1215 
1216     // If the high bits are already filled with zeros, just replace this
1217     // cast with the result.
1218     if (MaskedValueIsZero(Res,
1219                           APInt::getHighBitsSet(DestBitSize,
1220                                                 DestBitSize-SrcBitsKept),
1221                              0, &CI))
1222       return replaceInstUsesWith(CI, Res);
1223 
1224     // We need to emit an AND to clear the high bits.
1225     Constant *C = ConstantInt::get(Res->getType(),
1226                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1227     return BinaryOperator::CreateAnd(Res, C);
1228   }
1229 
1230   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1231   // types and if the sizes are just right we can convert this into a logical
1232   // 'and' which will be much cheaper than the pair of casts.
1233   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1234     // TODO: Subsume this into EvaluateInDifferentType.
1235 
1236     // Get the sizes of the types involved.  We know that the intermediate type
1237     // will be smaller than A or C, but don't know the relation between A and C.
1238     Value *A = CSrc->getOperand(0);
1239     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1240     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1241     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1242     // If we're actually extending zero bits, then if
1243     // SrcSize <  DstSize: zext(a & mask)
1244     // SrcSize == DstSize: a & mask
1245     // SrcSize  > DstSize: trunc(a) & mask
1246     if (SrcSize < DstSize) {
1247       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1248       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1249       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1250       return new ZExtInst(And, CI.getType());
1251     }
1252 
1253     if (SrcSize == DstSize) {
1254       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1255       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1256                                                            AndValue));
1257     }
1258     if (SrcSize > DstSize) {
1259       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1260       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1261       return BinaryOperator::CreateAnd(Trunc,
1262                                        ConstantInt::get(Trunc->getType(),
1263                                                         AndValue));
1264     }
1265   }
1266 
1267   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
1268     return transformZExtICmp(Cmp, CI);
1269 
1270   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1271   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1272     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1273     // of the (zext icmp) can be eliminated. If so, immediately perform the
1274     // according elimination.
1275     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1276     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1277     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1278         LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType() &&
1279         (transformZExtICmp(LHS, CI, false) ||
1280          transformZExtICmp(RHS, CI, false))) {
1281       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1282       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1283       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1284       Value *Or = Builder.CreateOr(LCast, RCast, CI.getName());
1285       if (auto *OrInst = dyn_cast<Instruction>(Or))
1286         Builder.SetInsertPoint(OrInst);
1287 
1288       // Perform the elimination.
1289       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1290         transformZExtICmp(LHS, *LZExt);
1291       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1292         transformZExtICmp(RHS, *RZExt);
1293 
1294       return replaceInstUsesWith(CI, Or);
1295     }
1296   }
1297 
1298   // zext(trunc(X) & C) -> (X & zext(C)).
1299   Constant *C;
1300   Value *X;
1301   if (SrcI &&
1302       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1303       X->getType() == CI.getType())
1304     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1305 
1306   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1307   Value *And;
1308   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1309       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1310       X->getType() == CI.getType()) {
1311     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1312     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1313   }
1314 
1315   return nullptr;
1316 }
1317 
1318 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
transformSExtICmp(ICmpInst * ICI,Instruction & CI)1319 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI,
1320                                                  Instruction &CI) {
1321   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1322   ICmpInst::Predicate Pred = ICI->getPredicate();
1323 
1324   // Don't bother if Op1 isn't of vector or integer type.
1325   if (!Op1->getType()->isIntOrIntVectorTy())
1326     return nullptr;
1327 
1328   if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1329       (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1330     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1331     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1332     Value *Sh = ConstantInt::get(Op0->getType(),
1333                                  Op0->getType()->getScalarSizeInBits() - 1);
1334     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1335     if (In->getType() != CI.getType())
1336       In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1337 
1338     if (Pred == ICmpInst::ICMP_SGT)
1339       In = Builder.CreateNot(In, In->getName() + ".not");
1340     return replaceInstUsesWith(CI, In);
1341   }
1342 
1343   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1344     // If we know that only one bit of the LHS of the icmp can be set and we
1345     // have an equality comparison with zero or a power of 2, we can transform
1346     // the icmp and sext into bitwise/integer operations.
1347     if (ICI->hasOneUse() &&
1348         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1349       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1350 
1351       APInt KnownZeroMask(~Known.Zero);
1352       if (KnownZeroMask.isPowerOf2()) {
1353         Value *In = ICI->getOperand(0);
1354 
1355         // If the icmp tests for a known zero bit we can constant fold it.
1356         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1357           Value *V = Pred == ICmpInst::ICMP_NE ?
1358                        ConstantInt::getAllOnesValue(CI.getType()) :
1359                        ConstantInt::getNullValue(CI.getType());
1360           return replaceInstUsesWith(CI, V);
1361         }
1362 
1363         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1364           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1365           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1366           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1367           // Perform a right shift to place the desired bit in the LSB.
1368           if (ShiftAmt)
1369             In = Builder.CreateLShr(In,
1370                                     ConstantInt::get(In->getType(), ShiftAmt));
1371 
1372           // At this point "In" is either 1 or 0. Subtract 1 to turn
1373           // {1, 0} -> {0, -1}.
1374           In = Builder.CreateAdd(In,
1375                                  ConstantInt::getAllOnesValue(In->getType()),
1376                                  "sext");
1377         } else {
1378           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1379           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1380           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1381           // Perform a left shift to place the desired bit in the MSB.
1382           if (ShiftAmt)
1383             In = Builder.CreateShl(In,
1384                                    ConstantInt::get(In->getType(), ShiftAmt));
1385 
1386           // Distribute the bit over the whole bit width.
1387           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1388                                   KnownZeroMask.getBitWidth() - 1), "sext");
1389         }
1390 
1391         if (CI.getType() == In->getType())
1392           return replaceInstUsesWith(CI, In);
1393         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1394       }
1395     }
1396   }
1397 
1398   return nullptr;
1399 }
1400 
1401 /// Return true if we can take the specified value and return it as type Ty
1402 /// without inserting any new casts and without changing the value of the common
1403 /// low bits.  This is used by code that tries to promote integer operations to
1404 /// a wider types will allow us to eliminate the extension.
1405 ///
1406 /// This function works on both vectors and scalars.
1407 ///
canEvaluateSExtd(Value * V,Type * Ty)1408 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1409   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1410          "Can't sign extend type to a smaller type");
1411   if (canAlwaysEvaluateInType(V, Ty))
1412     return true;
1413   if (canNotEvaluateInType(V, Ty))
1414     return false;
1415 
1416   auto *I = cast<Instruction>(V);
1417   switch (I->getOpcode()) {
1418   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1419   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1420   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1421     return true;
1422   case Instruction::And:
1423   case Instruction::Or:
1424   case Instruction::Xor:
1425   case Instruction::Add:
1426   case Instruction::Sub:
1427   case Instruction::Mul:
1428     // These operators can all arbitrarily be extended if their inputs can.
1429     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1430            canEvaluateSExtd(I->getOperand(1), Ty);
1431 
1432   //case Instruction::Shl:   TODO
1433   //case Instruction::LShr:  TODO
1434 
1435   case Instruction::Select:
1436     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1437            canEvaluateSExtd(I->getOperand(2), Ty);
1438 
1439   case Instruction::PHI: {
1440     // We can change a phi if we can change all operands.  Note that we never
1441     // get into trouble with cyclic PHIs here because we only consider
1442     // instructions with a single use.
1443     PHINode *PN = cast<PHINode>(I);
1444     for (Value *IncValue : PN->incoming_values())
1445       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1446     return true;
1447   }
1448   default:
1449     // TODO: Can handle more cases here.
1450     break;
1451   }
1452 
1453   return false;
1454 }
1455 
visitSExt(SExtInst & CI)1456 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) {
1457   // If this sign extend is only used by a truncate, let the truncate be
1458   // eliminated before we try to optimize this sext.
1459   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1460     return nullptr;
1461 
1462   if (Instruction *I = commonCastTransforms(CI))
1463     return I;
1464 
1465   Value *Src = CI.getOperand(0);
1466   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1467 
1468   // If we know that the value being extended is positive, we can use a zext
1469   // instead.
1470   KnownBits Known = computeKnownBits(Src, 0, &CI);
1471   if (Known.isNonNegative())
1472     return CastInst::Create(Instruction::ZExt, Src, DestTy);
1473 
1474   // Try to extend the entire expression tree to the wide destination type.
1475   if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1476     // Okay, we can transform this!  Insert the new expression now.
1477     LLVM_DEBUG(
1478         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1479                   " to avoid sign extend: "
1480                << CI << '\n');
1481     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1482     assert(Res->getType() == DestTy);
1483 
1484     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1485     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1486 
1487     // If the high bits are already filled with sign bit, just replace this
1488     // cast with the result.
1489     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1490       return replaceInstUsesWith(CI, Res);
1491 
1492     // We need to emit a shl + ashr to do the sign extend.
1493     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1494     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1495                                       ShAmt);
1496   }
1497 
1498   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1499   // into shifts.
1500   Value *X;
1501   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1502     // sext(trunc(X)) --> ashr(shl(X, C), C)
1503     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1504     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1505     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1506     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1507   }
1508 
1509   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1510     return transformSExtICmp(ICI, CI);
1511 
1512   // If the input is a shl/ashr pair of a same constant, then this is a sign
1513   // extension from a smaller value.  If we could trust arbitrary bitwidth
1514   // integers, we could turn this into a truncate to the smaller bit and then
1515   // use a sext for the whole extension.  Since we don't, look deeper and check
1516   // for a truncate.  If the source and dest are the same type, eliminate the
1517   // trunc and extend and just do shifts.  For example, turn:
1518   //   %a = trunc i32 %i to i8
1519   //   %b = shl i8 %a, C
1520   //   %c = ashr i8 %b, C
1521   //   %d = sext i8 %c to i32
1522   // into:
1523   //   %a = shl i32 %i, 32-(8-C)
1524   //   %d = ashr i32 %a, 32-(8-C)
1525   Value *A = nullptr;
1526   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1527   Constant *BA = nullptr, *CA = nullptr;
1528   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1529                         m_Constant(CA))) &&
1530       BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1531     Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy);
1532     Constant *NumLowbitsLeft = ConstantExpr::getSub(
1533         ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1534     Constant *NewShAmt = ConstantExpr::getSub(
1535         ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1536         NumLowbitsLeft);
1537     NewShAmt =
1538         Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
1539     A = Builder.CreateShl(A, NewShAmt, CI.getName());
1540     return BinaryOperator::CreateAShr(A, NewShAmt);
1541   }
1542 
1543   return nullptr;
1544 }
1545 
1546 /// Return a Constant* for the specified floating-point constant if it fits
1547 /// in the specified FP type without changing its value.
fitsInFPType(ConstantFP * CFP,const fltSemantics & Sem)1548 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1549   bool losesInfo;
1550   APFloat F = CFP->getValueAPF();
1551   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1552   return !losesInfo;
1553 }
1554 
shrinkFPConstant(ConstantFP * CFP)1555 static Type *shrinkFPConstant(ConstantFP *CFP) {
1556   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1557     return nullptr;  // No constant folding of this.
1558   // See if the value can be truncated to half and then reextended.
1559   if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1560     return Type::getHalfTy(CFP->getContext());
1561   // See if the value can be truncated to float and then reextended.
1562   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1563     return Type::getFloatTy(CFP->getContext());
1564   if (CFP->getType()->isDoubleTy())
1565     return nullptr;  // Won't shrink.
1566   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1567     return Type::getDoubleTy(CFP->getContext());
1568   // Don't try to shrink to various long double types.
1569   return nullptr;
1570 }
1571 
1572 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1573 // type we can safely truncate all elements to.
1574 // TODO: Make these support undef elements.
shrinkFPConstantVector(Value * V)1575 static Type *shrinkFPConstantVector(Value *V) {
1576   auto *CV = dyn_cast<Constant>(V);
1577   auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
1578   if (!CV || !CVVTy)
1579     return nullptr;
1580 
1581   Type *MinType = nullptr;
1582 
1583   unsigned NumElts = CVVTy->getNumElements();
1584 
1585   // For fixed-width vectors we find the minimal type by looking
1586   // through the constant values of the vector.
1587   for (unsigned i = 0; i != NumElts; ++i) {
1588     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1589     if (!CFP)
1590       return nullptr;
1591 
1592     Type *T = shrinkFPConstant(CFP);
1593     if (!T)
1594       return nullptr;
1595 
1596     // If we haven't found a type yet or this type has a larger mantissa than
1597     // our previous type, this is our new minimal type.
1598     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1599       MinType = T;
1600   }
1601 
1602   // Make a vector type from the minimal type.
1603   return FixedVectorType::get(MinType, NumElts);
1604 }
1605 
1606 /// Find the minimum FP type we can safely truncate to.
getMinimumFPType(Value * V)1607 static Type *getMinimumFPType(Value *V) {
1608   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1609     return FPExt->getOperand(0)->getType();
1610 
1611   // If this value is a constant, return the constant in the smallest FP type
1612   // that can accurately represent it.  This allows us to turn
1613   // (float)((double)X+2.0) into x+2.0f.
1614   if (auto *CFP = dyn_cast<ConstantFP>(V))
1615     if (Type *T = shrinkFPConstant(CFP))
1616       return T;
1617 
1618   // We can only correctly find a minimum type for a scalable vector when it is
1619   // a splat. For splats of constant values the fpext is wrapped up as a
1620   // ConstantExpr.
1621   if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
1622     if (FPCExt->getOpcode() == Instruction::FPExt)
1623       return FPCExt->getOperand(0)->getType();
1624 
1625   // Try to shrink a vector of FP constants. This returns nullptr on scalable
1626   // vectors
1627   if (Type *T = shrinkFPConstantVector(V))
1628     return T;
1629 
1630   return V->getType();
1631 }
1632 
1633 /// Return true if the cast from integer to FP can be proven to be exact for all
1634 /// possible inputs (the conversion does not lose any precision).
isKnownExactCastIntToFP(CastInst & I)1635 static bool isKnownExactCastIntToFP(CastInst &I) {
1636   CastInst::CastOps Opcode = I.getOpcode();
1637   assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1638          "Unexpected cast");
1639   Value *Src = I.getOperand(0);
1640   Type *SrcTy = Src->getType();
1641   Type *FPTy = I.getType();
1642   bool IsSigned = Opcode == Instruction::SIToFP;
1643   int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1644 
1645   // Easy case - if the source integer type has less bits than the FP mantissa,
1646   // then the cast must be exact.
1647   int DestNumSigBits = FPTy->getFPMantissaWidth();
1648   if (SrcSize <= DestNumSigBits)
1649     return true;
1650 
1651   // Cast from FP to integer and back to FP is independent of the intermediate
1652   // integer width because of poison on overflow.
1653   Value *F;
1654   if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1655     // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1656     // potential rounding of negative FP input values.
1657     int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1658     if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1659       SrcNumSigBits++;
1660 
1661     // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1662     // significant bits than the destination (and make sure neither type is
1663     // weird -- ppc_fp128).
1664     if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1665         SrcNumSigBits <= DestNumSigBits)
1666       return true;
1667   }
1668 
1669   // TODO:
1670   // Try harder to find if the source integer type has less significant bits.
1671   // For example, compute number of sign bits or compute low bit mask.
1672   return false;
1673 }
1674 
visitFPTrunc(FPTruncInst & FPT)1675 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1676   if (Instruction *I = commonCastTransforms(FPT))
1677     return I;
1678 
1679   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1680   // simplify this expression to avoid one or more of the trunc/extend
1681   // operations if we can do so without changing the numerical results.
1682   //
1683   // The exact manner in which the widths of the operands interact to limit
1684   // what we can and cannot do safely varies from operation to operation, and
1685   // is explained below in the various case statements.
1686   Type *Ty = FPT.getType();
1687   auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1688   if (BO && BO->hasOneUse()) {
1689     Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
1690     Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
1691     unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1692     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1693     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1694     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1695     unsigned DstWidth = Ty->getFPMantissaWidth();
1696     switch (BO->getOpcode()) {
1697       default: break;
1698       case Instruction::FAdd:
1699       case Instruction::FSub:
1700         // For addition and subtraction, the infinitely precise result can
1701         // essentially be arbitrarily wide; proving that double rounding
1702         // will not occur because the result of OpI is exact (as we will for
1703         // FMul, for example) is hopeless.  However, we *can* nonetheless
1704         // frequently know that double rounding cannot occur (or that it is
1705         // innocuous) by taking advantage of the specific structure of
1706         // infinitely-precise results that admit double rounding.
1707         //
1708         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1709         // to represent both sources, we can guarantee that the double
1710         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1711         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1712         // for proof of this fact).
1713         //
1714         // Note: Figueroa does not consider the case where DstFormat !=
1715         // SrcFormat.  It's possible (likely even!) that this analysis
1716         // could be tightened for those cases, but they are rare (the main
1717         // case of interest here is (float)((double)float + float)).
1718         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1719           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1720           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1721           Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1722           RI->copyFastMathFlags(BO);
1723           return RI;
1724         }
1725         break;
1726       case Instruction::FMul:
1727         // For multiplication, the infinitely precise result has at most
1728         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1729         // that such a value can be exactly represented, then no double
1730         // rounding can possibly occur; we can safely perform the operation
1731         // in the destination format if it can represent both sources.
1732         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1733           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1734           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1735           return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1736         }
1737         break;
1738       case Instruction::FDiv:
1739         // For division, we use again use the bound from Figueroa's
1740         // dissertation.  I am entirely certain that this bound can be
1741         // tightened in the unbalanced operand case by an analysis based on
1742         // the diophantine rational approximation bound, but the well-known
1743         // condition used here is a good conservative first pass.
1744         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1745         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1746           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1747           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1748           return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1749         }
1750         break;
1751       case Instruction::FRem: {
1752         // Remainder is straightforward.  Remainder is always exact, so the
1753         // type of OpI doesn't enter into things at all.  We simply evaluate
1754         // in whichever source type is larger, then convert to the
1755         // destination type.
1756         if (SrcWidth == OpWidth)
1757           break;
1758         Value *LHS, *RHS;
1759         if (LHSWidth == SrcWidth) {
1760            LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1761            RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1762         } else {
1763            LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1764            RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1765         }
1766 
1767         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1768         return CastInst::CreateFPCast(ExactResult, Ty);
1769       }
1770     }
1771   }
1772 
1773   // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1774   Value *X;
1775   Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1776   if (Op && Op->hasOneUse()) {
1777     // FIXME: The FMF should propagate from the fptrunc, not the source op.
1778     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1779     if (isa<FPMathOperator>(Op))
1780       Builder.setFastMathFlags(Op->getFastMathFlags());
1781 
1782     if (match(Op, m_FNeg(m_Value(X)))) {
1783       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1784 
1785       return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1786     }
1787 
1788     // If we are truncating a select that has an extended operand, we can
1789     // narrow the other operand and do the select as a narrow op.
1790     Value *Cond, *X, *Y;
1791     if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1792         X->getType() == Ty) {
1793       // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1794       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1795       Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1796       return replaceInstUsesWith(FPT, Sel);
1797     }
1798     if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1799         X->getType() == Ty) {
1800       // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1801       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1802       Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1803       return replaceInstUsesWith(FPT, Sel);
1804     }
1805   }
1806 
1807   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1808     switch (II->getIntrinsicID()) {
1809     default: break;
1810     case Intrinsic::ceil:
1811     case Intrinsic::fabs:
1812     case Intrinsic::floor:
1813     case Intrinsic::nearbyint:
1814     case Intrinsic::rint:
1815     case Intrinsic::round:
1816     case Intrinsic::roundeven:
1817     case Intrinsic::trunc: {
1818       Value *Src = II->getArgOperand(0);
1819       if (!Src->hasOneUse())
1820         break;
1821 
1822       // Except for fabs, this transformation requires the input of the unary FP
1823       // operation to be itself an fpext from the type to which we're
1824       // truncating.
1825       if (II->getIntrinsicID() != Intrinsic::fabs) {
1826         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1827         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1828           break;
1829       }
1830 
1831       // Do unary FP operation on smaller type.
1832       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1833       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1834       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1835                                                      II->getIntrinsicID(), Ty);
1836       SmallVector<OperandBundleDef, 1> OpBundles;
1837       II->getOperandBundlesAsDefs(OpBundles);
1838       CallInst *NewCI =
1839           CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1840       NewCI->copyFastMathFlags(II);
1841       return NewCI;
1842     }
1843     }
1844   }
1845 
1846   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1847     return I;
1848 
1849   Value *Src = FPT.getOperand(0);
1850   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1851     auto *FPCast = cast<CastInst>(Src);
1852     if (isKnownExactCastIntToFP(*FPCast))
1853       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1854   }
1855 
1856   return nullptr;
1857 }
1858 
visitFPExt(CastInst & FPExt)1859 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1860   // If the source operand is a cast from integer to FP and known exact, then
1861   // cast the integer operand directly to the destination type.
1862   Type *Ty = FPExt.getType();
1863   Value *Src = FPExt.getOperand(0);
1864   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1865     auto *FPCast = cast<CastInst>(Src);
1866     if (isKnownExactCastIntToFP(*FPCast))
1867       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1868   }
1869 
1870   return commonCastTransforms(FPExt);
1871 }
1872 
1873 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1874 /// This is safe if the intermediate type has enough bits in its mantissa to
1875 /// accurately represent all values of X.  For example, this won't work with
1876 /// i64 -> float -> i64.
foldItoFPtoI(CastInst & FI)1877 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1878   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1879     return nullptr;
1880 
1881   auto *OpI = cast<CastInst>(FI.getOperand(0));
1882   Value *X = OpI->getOperand(0);
1883   Type *XType = X->getType();
1884   Type *DestType = FI.getType();
1885   bool IsOutputSigned = isa<FPToSIInst>(FI);
1886 
1887   // Since we can assume the conversion won't overflow, our decision as to
1888   // whether the input will fit in the float should depend on the minimum
1889   // of the input range and output range.
1890 
1891   // This means this is also safe for a signed input and unsigned output, since
1892   // a negative input would lead to undefined behavior.
1893   if (!isKnownExactCastIntToFP(*OpI)) {
1894     // The first cast may not round exactly based on the source integer width
1895     // and FP width, but the overflow UB rules can still allow this to fold.
1896     // If the destination type is narrow, that means the intermediate FP value
1897     // must be large enough to hold the source value exactly.
1898     // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1899     int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned;
1900     if (OutputSize > OpI->getType()->getFPMantissaWidth())
1901       return nullptr;
1902   }
1903 
1904   if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1905     bool IsInputSigned = isa<SIToFPInst>(OpI);
1906     if (IsInputSigned && IsOutputSigned)
1907       return new SExtInst(X, DestType);
1908     return new ZExtInst(X, DestType);
1909   }
1910   if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1911     return new TruncInst(X, DestType);
1912 
1913   assert(XType == DestType && "Unexpected types for int to FP to int casts");
1914   return replaceInstUsesWith(FI, X);
1915 }
1916 
visitFPToUI(FPToUIInst & FI)1917 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
1918   if (Instruction *I = foldItoFPtoI(FI))
1919     return I;
1920 
1921   return commonCastTransforms(FI);
1922 }
1923 
visitFPToSI(FPToSIInst & FI)1924 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
1925   if (Instruction *I = foldItoFPtoI(FI))
1926     return I;
1927 
1928   return commonCastTransforms(FI);
1929 }
1930 
visitUIToFP(CastInst & CI)1931 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
1932   return commonCastTransforms(CI);
1933 }
1934 
visitSIToFP(CastInst & CI)1935 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
1936   return commonCastTransforms(CI);
1937 }
1938 
visitIntToPtr(IntToPtrInst & CI)1939 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
1940   // If the source integer type is not the intptr_t type for this target, do a
1941   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1942   // cast to be exposed to other transforms.
1943   unsigned AS = CI.getAddressSpace();
1944   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1945       DL.getPointerSizeInBits(AS)) {
1946     Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
1947         DL.getIntPtrType(CI.getContext(), AS));
1948     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1949     return new IntToPtrInst(P, CI.getType());
1950   }
1951 
1952   if (Instruction *I = commonCastTransforms(CI))
1953     return I;
1954 
1955   return nullptr;
1956 }
1957 
1958 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
commonPointerCastTransforms(CastInst & CI)1959 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) {
1960   Value *Src = CI.getOperand(0);
1961 
1962   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1963     // If casting the result of a getelementptr instruction with no offset, turn
1964     // this into a cast of the original pointer!
1965     if (GEP->hasAllZeroIndices() &&
1966         // If CI is an addrspacecast and GEP changes the poiner type, merging
1967         // GEP into CI would undo canonicalizing addrspacecast with different
1968         // pointer types, causing infinite loops.
1969         (!isa<AddrSpaceCastInst>(CI) ||
1970          GEP->getType() == GEP->getPointerOperandType())) {
1971       // Changing the cast operand is usually not a good idea but it is safe
1972       // here because the pointer operand is being replaced with another
1973       // pointer operand so the opcode doesn't need to change.
1974       return replaceOperand(CI, 0, GEP->getOperand(0));
1975     }
1976   }
1977 
1978   return commonCastTransforms(CI);
1979 }
1980 
visitPtrToInt(PtrToIntInst & CI)1981 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
1982   // If the destination integer type is not the intptr_t type for this target,
1983   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1984   // to be exposed to other transforms.
1985   Value *SrcOp = CI.getPointerOperand();
1986   Type *SrcTy = SrcOp->getType();
1987   Type *Ty = CI.getType();
1988   unsigned AS = CI.getPointerAddressSpace();
1989   unsigned TySize = Ty->getScalarSizeInBits();
1990   unsigned PtrSize = DL.getPointerSizeInBits(AS);
1991   if (TySize != PtrSize) {
1992     Type *IntPtrTy =
1993         SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
1994     Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
1995     return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1996   }
1997 
1998   Value *Vec, *Scalar, *Index;
1999   if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
2000                                         m_Value(Scalar), m_Value(Index)))) &&
2001       Vec->getType() == Ty) {
2002     assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
2003     // Convert the scalar to int followed by insert to eliminate one cast:
2004     // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
2005     Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
2006     return InsertElementInst::Create(Vec, NewCast, Index);
2007   }
2008 
2009   return commonPointerCastTransforms(CI);
2010 }
2011 
2012 /// This input value (which is known to have vector type) is being zero extended
2013 /// or truncated to the specified vector type. Since the zext/trunc is done
2014 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
2015 /// endianness will impact which end of the vector that is extended or
2016 /// truncated.
2017 ///
2018 /// A vector is always stored with index 0 at the lowest address, which
2019 /// corresponds to the most significant bits for a big endian stored integer and
2020 /// the least significant bits for little endian. A trunc/zext of an integer
2021 /// impacts the big end of the integer. Thus, we need to add/remove elements at
2022 /// the front of the vector for big endian targets, and the back of the vector
2023 /// for little endian targets.
2024 ///
2025 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2026 ///
2027 /// The source and destination vector types may have different element types.
2028 static Instruction *
optimizeVectorResizeWithIntegerBitCasts(Value * InVal,VectorType * DestTy,InstCombinerImpl & IC)2029 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2030                                         InstCombinerImpl &IC) {
2031   // We can only do this optimization if the output is a multiple of the input
2032   // element size, or the input is a multiple of the output element size.
2033   // Convert the input type to have the same element type as the output.
2034   VectorType *SrcTy = cast<VectorType>(InVal->getType());
2035 
2036   if (SrcTy->getElementType() != DestTy->getElementType()) {
2037     // The input types don't need to be identical, but for now they must be the
2038     // same size.  There is no specific reason we couldn't handle things like
2039     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2040     // there yet.
2041     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2042         DestTy->getElementType()->getPrimitiveSizeInBits())
2043       return nullptr;
2044 
2045     SrcTy =
2046         FixedVectorType::get(DestTy->getElementType(),
2047                              cast<FixedVectorType>(SrcTy)->getNumElements());
2048     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2049   }
2050 
2051   bool IsBigEndian = IC.getDataLayout().isBigEndian();
2052   unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2053   unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2054 
2055   assert(SrcElts != DestElts && "Element counts should be different.");
2056 
2057   // Now that the element types match, get the shuffle mask and RHS of the
2058   // shuffle to use, which depends on whether we're increasing or decreasing the
2059   // size of the input.
2060   SmallVector<int, 16> ShuffleMaskStorage;
2061   ArrayRef<int> ShuffleMask;
2062   Value *V2;
2063 
2064   // Produce an identify shuffle mask for the src vector.
2065   ShuffleMaskStorage.resize(SrcElts);
2066   std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0);
2067 
2068   if (SrcElts > DestElts) {
2069     // If we're shrinking the number of elements (rewriting an integer
2070     // truncate), just shuffle in the elements corresponding to the least
2071     // significant bits from the input and use undef as the second shuffle
2072     // input.
2073     V2 = UndefValue::get(SrcTy);
2074     // Make sure the shuffle mask selects the "least significant bits" by
2075     // keeping elements from back of the src vector for big endian, and from the
2076     // front for little endian.
2077     ShuffleMask = ShuffleMaskStorage;
2078     if (IsBigEndian)
2079       ShuffleMask = ShuffleMask.take_back(DestElts);
2080     else
2081       ShuffleMask = ShuffleMask.take_front(DestElts);
2082   } else {
2083     // If we're increasing the number of elements (rewriting an integer zext),
2084     // shuffle in all of the elements from InVal. Fill the rest of the result
2085     // elements with zeros from a constant zero.
2086     V2 = Constant::getNullValue(SrcTy);
2087     // Use first elt from V2 when indicating zero in the shuffle mask.
2088     uint32_t NullElt = SrcElts;
2089     // Extend with null values in the "most significant bits" by adding elements
2090     // in front of the src vector for big endian, and at the back for little
2091     // endian.
2092     unsigned DeltaElts = DestElts - SrcElts;
2093     if (IsBigEndian)
2094       ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2095     else
2096       ShuffleMaskStorage.append(DeltaElts, NullElt);
2097     ShuffleMask = ShuffleMaskStorage;
2098   }
2099 
2100   return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2101 }
2102 
isMultipleOfTypeSize(unsigned Value,Type * Ty)2103 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2104   return Value % Ty->getPrimitiveSizeInBits() == 0;
2105 }
2106 
getTypeSizeIndex(unsigned Value,Type * Ty)2107 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2108   return Value / Ty->getPrimitiveSizeInBits();
2109 }
2110 
2111 /// V is a value which is inserted into a vector of VecEltTy.
2112 /// Look through the value to see if we can decompose it into
2113 /// insertions into the vector.  See the example in the comment for
2114 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
2115 /// The type of V is always a non-zero multiple of VecEltTy's size.
2116 /// Shift is the number of bits between the lsb of V and the lsb of
2117 /// the vector.
2118 ///
2119 /// This returns false if the pattern can't be matched or true if it can,
2120 /// filling in Elements with the elements found here.
collectInsertionElements(Value * V,unsigned Shift,SmallVectorImpl<Value * > & Elements,Type * VecEltTy,bool isBigEndian)2121 static bool collectInsertionElements(Value *V, unsigned Shift,
2122                                      SmallVectorImpl<Value *> &Elements,
2123                                      Type *VecEltTy, bool isBigEndian) {
2124   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2125          "Shift should be a multiple of the element type size");
2126 
2127   // Undef values never contribute useful bits to the result.
2128   if (isa<UndefValue>(V)) return true;
2129 
2130   // If we got down to a value of the right type, we win, try inserting into the
2131   // right element.
2132   if (V->getType() == VecEltTy) {
2133     // Inserting null doesn't actually insert any elements.
2134     if (Constant *C = dyn_cast<Constant>(V))
2135       if (C->isNullValue())
2136         return true;
2137 
2138     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2139     if (isBigEndian)
2140       ElementIndex = Elements.size() - ElementIndex - 1;
2141 
2142     // Fail if multiple elements are inserted into this slot.
2143     if (Elements[ElementIndex])
2144       return false;
2145 
2146     Elements[ElementIndex] = V;
2147     return true;
2148   }
2149 
2150   if (Constant *C = dyn_cast<Constant>(V)) {
2151     // Figure out the # elements this provides, and bitcast it or slice it up
2152     // as required.
2153     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2154                                         VecEltTy);
2155     // If the constant is the size of a vector element, we just need to bitcast
2156     // it to the right type so it gets properly inserted.
2157     if (NumElts == 1)
2158       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2159                                       Shift, Elements, VecEltTy, isBigEndian);
2160 
2161     // Okay, this is a constant that covers multiple elements.  Slice it up into
2162     // pieces and insert each element-sized piece into the vector.
2163     if (!isa<IntegerType>(C->getType()))
2164       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2165                                        C->getType()->getPrimitiveSizeInBits()));
2166     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2167     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2168 
2169     for (unsigned i = 0; i != NumElts; ++i) {
2170       unsigned ShiftI = Shift+i*ElementSize;
2171       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
2172                                                                   ShiftI));
2173       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2174       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
2175                                     isBigEndian))
2176         return false;
2177     }
2178     return true;
2179   }
2180 
2181   if (!V->hasOneUse()) return false;
2182 
2183   Instruction *I = dyn_cast<Instruction>(V);
2184   if (!I) return false;
2185   switch (I->getOpcode()) {
2186   default: return false; // Unhandled case.
2187   case Instruction::BitCast:
2188     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2189                                     isBigEndian);
2190   case Instruction::ZExt:
2191     if (!isMultipleOfTypeSize(
2192                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2193                               VecEltTy))
2194       return false;
2195     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2196                                     isBigEndian);
2197   case Instruction::Or:
2198     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2199                                     isBigEndian) &&
2200            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2201                                     isBigEndian);
2202   case Instruction::Shl: {
2203     // Must be shifting by a constant that is a multiple of the element size.
2204     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2205     if (!CI) return false;
2206     Shift += CI->getZExtValue();
2207     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2208     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2209                                     isBigEndian);
2210   }
2211 
2212   }
2213 }
2214 
2215 
2216 /// If the input is an 'or' instruction, we may be doing shifts and ors to
2217 /// assemble the elements of the vector manually.
2218 /// Try to rip the code out and replace it with insertelements.  This is to
2219 /// optimize code like this:
2220 ///
2221 ///    %tmp37 = bitcast float %inc to i32
2222 ///    %tmp38 = zext i32 %tmp37 to i64
2223 ///    %tmp31 = bitcast float %inc5 to i32
2224 ///    %tmp32 = zext i32 %tmp31 to i64
2225 ///    %tmp33 = shl i64 %tmp32, 32
2226 ///    %ins35 = or i64 %tmp33, %tmp38
2227 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2228 ///
2229 /// Into two insertelements that do "buildvector{%inc, %inc5}".
optimizeIntegerToVectorInsertions(BitCastInst & CI,InstCombinerImpl & IC)2230 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2231                                                 InstCombinerImpl &IC) {
2232   auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2233   Value *IntInput = CI.getOperand(0);
2234 
2235   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2236   if (!collectInsertionElements(IntInput, 0, Elements,
2237                                 DestVecTy->getElementType(),
2238                                 IC.getDataLayout().isBigEndian()))
2239     return nullptr;
2240 
2241   // If we succeeded, we know that all of the element are specified by Elements
2242   // or are zero if Elements has a null entry.  Recast this as a set of
2243   // insertions.
2244   Value *Result = Constant::getNullValue(CI.getType());
2245   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2246     if (!Elements[i]) continue;  // Unset element.
2247 
2248     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2249                                             IC.Builder.getInt32(i));
2250   }
2251 
2252   return Result;
2253 }
2254 
2255 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2256 /// vector followed by extract element. The backend tends to handle bitcasts of
2257 /// vectors better than bitcasts of scalars because vector registers are
2258 /// usually not type-specific like scalar integer or scalar floating-point.
canonicalizeBitCastExtElt(BitCastInst & BitCast,InstCombinerImpl & IC)2259 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2260                                               InstCombinerImpl &IC) {
2261   // TODO: Create and use a pattern matcher for ExtractElementInst.
2262   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2263   if (!ExtElt || !ExtElt->hasOneUse())
2264     return nullptr;
2265 
2266   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2267   // type to extract from.
2268   Type *DestType = BitCast.getType();
2269   if (!VectorType::isValidElementType(DestType))
2270     return nullptr;
2271 
2272   auto *NewVecType = VectorType::get(DestType, ExtElt->getVectorOperandType());
2273   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2274                                          NewVecType, "bc");
2275   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2276 }
2277 
2278 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
foldBitCastBitwiseLogic(BitCastInst & BitCast,InstCombiner::BuilderTy & Builder)2279 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2280                                             InstCombiner::BuilderTy &Builder) {
2281   Type *DestTy = BitCast.getType();
2282   BinaryOperator *BO;
2283   if (!DestTy->isIntOrIntVectorTy() ||
2284       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2285       !BO->isBitwiseLogicOp())
2286     return nullptr;
2287 
2288   // FIXME: This transform is restricted to vector types to avoid backend
2289   // problems caused by creating potentially illegal operations. If a fix-up is
2290   // added to handle that situation, we can remove this check.
2291   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2292     return nullptr;
2293 
2294   Value *X;
2295   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2296       X->getType() == DestTy && !isa<Constant>(X)) {
2297     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2298     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2299     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2300   }
2301 
2302   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2303       X->getType() == DestTy && !isa<Constant>(X)) {
2304     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2305     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2306     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2307   }
2308 
2309   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2310   // constant. This eases recognition of special constants for later ops.
2311   // Example:
2312   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2313   Constant *C;
2314   if (match(BO->getOperand(1), m_Constant(C))) {
2315     // bitcast (logic X, C) --> logic (bitcast X, C')
2316     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2317     Value *CastedC = Builder.CreateBitCast(C, DestTy);
2318     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2319   }
2320 
2321   return nullptr;
2322 }
2323 
2324 /// Change the type of a select if we can eliminate a bitcast.
foldBitCastSelect(BitCastInst & BitCast,InstCombiner::BuilderTy & Builder)2325 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2326                                       InstCombiner::BuilderTy &Builder) {
2327   Value *Cond, *TVal, *FVal;
2328   if (!match(BitCast.getOperand(0),
2329              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2330     return nullptr;
2331 
2332   // A vector select must maintain the same number of elements in its operands.
2333   Type *CondTy = Cond->getType();
2334   Type *DestTy = BitCast.getType();
2335   if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
2336     if (!DestTy->isVectorTy() ||
2337         CondVTy->getElementCount() !=
2338             cast<VectorType>(DestTy)->getElementCount())
2339       return nullptr;
2340 
2341   // FIXME: This transform is restricted from changing the select between
2342   // scalars and vectors to avoid backend problems caused by creating
2343   // potentially illegal operations. If a fix-up is added to handle that
2344   // situation, we can remove this check.
2345   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2346     return nullptr;
2347 
2348   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2349   Value *X;
2350   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2351       !isa<Constant>(X)) {
2352     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2353     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2354     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2355   }
2356 
2357   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2358       !isa<Constant>(X)) {
2359     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2360     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2361     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2362   }
2363 
2364   return nullptr;
2365 }
2366 
2367 /// Check if all users of CI are StoreInsts.
hasStoreUsersOnly(CastInst & CI)2368 static bool hasStoreUsersOnly(CastInst &CI) {
2369   for (User *U : CI.users()) {
2370     if (!isa<StoreInst>(U))
2371       return false;
2372   }
2373   return true;
2374 }
2375 
2376 /// This function handles following case
2377 ///
2378 ///     A  ->  B    cast
2379 ///     PHI
2380 ///     B  ->  A    cast
2381 ///
2382 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2383 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
optimizeBitCastFromPhi(CastInst & CI,PHINode * PN)2384 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2385                                                       PHINode *PN) {
2386   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2387   if (hasStoreUsersOnly(CI))
2388     return nullptr;
2389 
2390   Value *Src = CI.getOperand(0);
2391   Type *SrcTy = Src->getType();         // Type B
2392   Type *DestTy = CI.getType();          // Type A
2393 
2394   SmallVector<PHINode *, 4> PhiWorklist;
2395   SmallSetVector<PHINode *, 4> OldPhiNodes;
2396 
2397   // Find all of the A->B casts and PHI nodes.
2398   // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2399   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2400   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2401   PhiWorklist.push_back(PN);
2402   OldPhiNodes.insert(PN);
2403   while (!PhiWorklist.empty()) {
2404     auto *OldPN = PhiWorklist.pop_back_val();
2405     for (Value *IncValue : OldPN->incoming_values()) {
2406       if (isa<Constant>(IncValue))
2407         continue;
2408 
2409       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2410         // If there is a sequence of one or more load instructions, each loaded
2411         // value is used as address of later load instruction, bitcast is
2412         // necessary to change the value type, don't optimize it. For
2413         // simplicity we give up if the load address comes from another load.
2414         Value *Addr = LI->getOperand(0);
2415         if (Addr == &CI || isa<LoadInst>(Addr))
2416           return nullptr;
2417         // Don't tranform "load <256 x i32>, <256 x i32>*" to
2418         // "load x86_amx, x86_amx*", because x86_amx* is invalid.
2419         // TODO: Remove this check when bitcast between vector and x86_amx
2420         // is replaced with a specific intrinsic.
2421         if (DestTy->isX86_AMXTy())
2422           return nullptr;
2423         if (LI->hasOneUse() && LI->isSimple())
2424           continue;
2425         // If a LoadInst has more than one use, changing the type of loaded
2426         // value may create another bitcast.
2427         return nullptr;
2428       }
2429 
2430       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2431         if (OldPhiNodes.insert(PNode))
2432           PhiWorklist.push_back(PNode);
2433         continue;
2434       }
2435 
2436       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2437       // We can't handle other instructions.
2438       if (!BCI)
2439         return nullptr;
2440 
2441       // Verify it's a A->B cast.
2442       Type *TyA = BCI->getOperand(0)->getType();
2443       Type *TyB = BCI->getType();
2444       if (TyA != DestTy || TyB != SrcTy)
2445         return nullptr;
2446     }
2447   }
2448 
2449   // Check that each user of each old PHI node is something that we can
2450   // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2451   for (auto *OldPN : OldPhiNodes) {
2452     for (User *V : OldPN->users()) {
2453       if (auto *SI = dyn_cast<StoreInst>(V)) {
2454         if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2455           return nullptr;
2456       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2457         // Verify it's a B->A cast.
2458         Type *TyB = BCI->getOperand(0)->getType();
2459         Type *TyA = BCI->getType();
2460         if (TyA != DestTy || TyB != SrcTy)
2461           return nullptr;
2462       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2463         // As long as the user is another old PHI node, then even if we don't
2464         // rewrite it, the PHI web we're considering won't have any users
2465         // outside itself, so it'll be dead.
2466         if (OldPhiNodes.count(PHI) == 0)
2467           return nullptr;
2468       } else {
2469         return nullptr;
2470       }
2471     }
2472   }
2473 
2474   // For each old PHI node, create a corresponding new PHI node with a type A.
2475   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2476   for (auto *OldPN : OldPhiNodes) {
2477     Builder.SetInsertPoint(OldPN);
2478     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2479     NewPNodes[OldPN] = NewPN;
2480   }
2481 
2482   // Fill in the operands of new PHI nodes.
2483   for (auto *OldPN : OldPhiNodes) {
2484     PHINode *NewPN = NewPNodes[OldPN];
2485     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2486       Value *V = OldPN->getOperand(j);
2487       Value *NewV = nullptr;
2488       if (auto *C = dyn_cast<Constant>(V)) {
2489         NewV = ConstantExpr::getBitCast(C, DestTy);
2490       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2491         // Explicitly perform load combine to make sure no opposing transform
2492         // can remove the bitcast in the meantime and trigger an infinite loop.
2493         Builder.SetInsertPoint(LI);
2494         NewV = combineLoadToNewType(*LI, DestTy);
2495         // Remove the old load and its use in the old phi, which itself becomes
2496         // dead once the whole transform finishes.
2497         replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
2498         eraseInstFromFunction(*LI);
2499       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2500         NewV = BCI->getOperand(0);
2501       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2502         NewV = NewPNodes[PrevPN];
2503       }
2504       assert(NewV);
2505       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2506     }
2507   }
2508 
2509   // Traverse all accumulated PHI nodes and process its users,
2510   // which are Stores and BitcCasts. Without this processing
2511   // NewPHI nodes could be replicated and could lead to extra
2512   // moves generated after DeSSA.
2513   // If there is a store with type B, change it to type A.
2514 
2515 
2516   // Replace users of BitCast B->A with NewPHI. These will help
2517   // later to get rid off a closure formed by OldPHI nodes.
2518   Instruction *RetVal = nullptr;
2519   for (auto *OldPN : OldPhiNodes) {
2520     PHINode *NewPN = NewPNodes[OldPN];
2521     for (User *V : make_early_inc_range(OldPN->users())) {
2522       if (auto *SI = dyn_cast<StoreInst>(V)) {
2523         assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2524         Builder.SetInsertPoint(SI);
2525         auto *NewBC =
2526           cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2527         SI->setOperand(0, NewBC);
2528         Worklist.push(SI);
2529         assert(hasStoreUsersOnly(*NewBC));
2530       }
2531       else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2532         Type *TyB = BCI->getOperand(0)->getType();
2533         Type *TyA = BCI->getType();
2534         assert(TyA == DestTy && TyB == SrcTy);
2535         (void) TyA;
2536         (void) TyB;
2537         Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2538         if (BCI == &CI)
2539           RetVal = I;
2540       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2541         assert(OldPhiNodes.contains(PHI));
2542         (void) PHI;
2543       } else {
2544         llvm_unreachable("all uses should be handled");
2545       }
2546     }
2547   }
2548 
2549   return RetVal;
2550 }
2551 
visitBitCast(BitCastInst & CI)2552 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2553   // If the operands are integer typed then apply the integer transforms,
2554   // otherwise just apply the common ones.
2555   Value *Src = CI.getOperand(0);
2556   Type *SrcTy = Src->getType();
2557   Type *DestTy = CI.getType();
2558 
2559   // Get rid of casts from one type to the same type. These are useless and can
2560   // be replaced by the operand.
2561   if (DestTy == Src->getType())
2562     return replaceInstUsesWith(CI, Src);
2563 
2564   if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
2565     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2566     PointerType *DstPTy = cast<PointerType>(DestTy);
2567     Type *DstElTy = DstPTy->getElementType();
2568     Type *SrcElTy = SrcPTy->getElementType();
2569 
2570     // Casting pointers between the same type, but with different address spaces
2571     // is an addrspace cast rather than a bitcast.
2572     if ((DstElTy == SrcElTy) &&
2573         (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2574       return new AddrSpaceCastInst(Src, DestTy);
2575 
2576     // If we are casting a alloca to a pointer to a type of the same
2577     // size, rewrite the allocation instruction to allocate the "right" type.
2578     // There is no need to modify malloc calls because it is their bitcast that
2579     // needs to be cleaned up.
2580     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2581       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2582         return V;
2583 
2584     // When the type pointed to is not sized the cast cannot be
2585     // turned into a gep.
2586     Type *PointeeType =
2587         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2588     if (!PointeeType->isSized())
2589       return nullptr;
2590 
2591     // If the source and destination are pointers, and this cast is equivalent
2592     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2593     // This can enhance SROA and other transforms that want type-safe pointers.
2594     unsigned NumZeros = 0;
2595     while (SrcElTy && SrcElTy != DstElTy) {
2596       SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
2597       ++NumZeros;
2598     }
2599 
2600     // If we found a path from the src to dest, create the getelementptr now.
2601     if (SrcElTy == DstElTy) {
2602       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2603       GetElementPtrInst *GEP =
2604           GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs);
2605 
2606       // If the source pointer is dereferenceable, then assume it points to an
2607       // allocated object and apply "inbounds" to the GEP.
2608       bool CanBeNull, CanBeFreed;
2609       if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) {
2610         // In a non-default address space (not 0), a null pointer can not be
2611         // assumed inbounds, so ignore that case (dereferenceable_or_null).
2612         // The reason is that 'null' is not treated differently in these address
2613         // spaces, and we consequently ignore the 'gep inbounds' special case
2614         // for 'null' which allows 'inbounds' on 'null' if the indices are
2615         // zeros.
2616         if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
2617           GEP->setIsInBounds();
2618       }
2619       return GEP;
2620     }
2621   }
2622 
2623   if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2624     // Beware: messing with this target-specific oddity may cause trouble.
2625     if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2626       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2627       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2628                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2629     }
2630 
2631     if (isa<IntegerType>(SrcTy)) {
2632       // If this is a cast from an integer to vector, check to see if the input
2633       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2634       // the casts with a shuffle and (potentially) a bitcast.
2635       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2636         CastInst *SrcCast = cast<CastInst>(Src);
2637         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2638           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2639             if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2640                     BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2641               return I;
2642       }
2643 
2644       // If the input is an 'or' instruction, we may be doing shifts and ors to
2645       // assemble the elements of the vector manually.  Try to rip the code out
2646       // and replace it with insertelements.
2647       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2648         return replaceInstUsesWith(CI, V);
2649     }
2650   }
2651 
2652   if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2653     if (SrcVTy->getNumElements() == 1) {
2654       // If our destination is not a vector, then make this a straight
2655       // scalar-scalar cast.
2656       if (!DestTy->isVectorTy()) {
2657         Value *Elem =
2658           Builder.CreateExtractElement(Src,
2659                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2660         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2661       }
2662 
2663       // Otherwise, see if our source is an insert. If so, then use the scalar
2664       // component directly:
2665       // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2666       if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2667         return new BitCastInst(InsElt->getOperand(1), DestTy);
2668     }
2669   }
2670 
2671   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2672     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2673     // a bitcast to a vector with the same # elts.
2674     Value *ShufOp0 = Shuf->getOperand(0);
2675     Value *ShufOp1 = Shuf->getOperand(1);
2676     auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
2677     auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
2678     if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2679         cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
2680         ShufElts == SrcVecElts) {
2681       BitCastInst *Tmp;
2682       // If either of the operands is a cast from CI.getType(), then
2683       // evaluating the shuffle in the casted destination's type will allow
2684       // us to eliminate at least one cast.
2685       if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2686            Tmp->getOperand(0)->getType() == DestTy) ||
2687           ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2688            Tmp->getOperand(0)->getType() == DestTy)) {
2689         Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2690         Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2691         // Return a new shuffle vector.  Use the same element ID's, as we
2692         // know the vector types match #elts.
2693         return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2694       }
2695     }
2696 
2697     // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
2698     // a byte-swap:
2699     // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
2700     // TODO: We should match the related pattern for bitreverse.
2701     if (DestTy->isIntegerTy() &&
2702         DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2703         SrcTy->getScalarSizeInBits() == 8 &&
2704         ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() &&
2705         Shuf->isReverse()) {
2706       assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2707       assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
2708       Function *Bswap =
2709           Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
2710       Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2711       return CallInst::Create(Bswap, { ScalarX });
2712     }
2713   }
2714 
2715   // Handle the A->B->A cast, and there is an intervening PHI node.
2716   if (PHINode *PN = dyn_cast<PHINode>(Src))
2717     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2718       return I;
2719 
2720   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2721     return I;
2722 
2723   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2724     return I;
2725 
2726   if (Instruction *I = foldBitCastSelect(CI, Builder))
2727     return I;
2728 
2729   if (SrcTy->isPointerTy())
2730     return commonPointerCastTransforms(CI);
2731   return commonCastTransforms(CI);
2732 }
2733 
visitAddrSpaceCast(AddrSpaceCastInst & CI)2734 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2735   // If the destination pointer element type is not the same as the source's
2736   // first do a bitcast to the destination type, and then the addrspacecast.
2737   // This allows the cast to be exposed to other transforms.
2738   Value *Src = CI.getOperand(0);
2739   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2740   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2741 
2742   Type *DestElemTy = DestTy->getElementType();
2743   if (SrcTy->getElementType() != DestElemTy) {
2744     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2745     // Handle vectors of pointers.
2746     if (VectorType *VT = dyn_cast<VectorType>(CI.getType()))
2747       MidTy = VectorType::get(MidTy, VT->getElementCount());
2748 
2749     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2750     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2751   }
2752 
2753   return commonPointerCastTransforms(CI);
2754 }
2755