xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/display/dc/dcn10/amdgpu_dcn10_optc.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: amdgpu_dcn10_optc.c,v 1.2 2021/12/18 23:45:03 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2012-15 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: AMD
25  *
26  */
27 
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: amdgpu_dcn10_optc.c,v 1.2 2021/12/18 23:45:03 riastradh Exp $");
31 
32 #include "reg_helper.h"
33 #include "dcn10_optc.h"
34 #include "dc.h"
35 
36 #define REG(reg)\
37 	optc1->tg_regs->reg
38 
39 #define CTX \
40 	optc1->base.ctx
41 
42 #undef FN
43 #define FN(reg_name, field_name) \
44 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
45 
46 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
47 
48 /**
49 * apply_front_porch_workaround  TODO FPGA still need?
50 *
51 * This is a workaround for a bug that has existed since R5xx and has not been
52 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
53 */
apply_front_porch_workaround(struct dc_crtc_timing * timing)54 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
55 {
56 	if (timing->flags.INTERLACE == 1) {
57 		if (timing->v_front_porch < 2)
58 			timing->v_front_porch = 2;
59 	} else {
60 		if (timing->v_front_porch < 1)
61 			timing->v_front_porch = 1;
62 	}
63 }
64 
optc1_program_global_sync(struct timing_generator * optc,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width)65 void optc1_program_global_sync(
66 		struct timing_generator *optc,
67 		int vready_offset,
68 		int vstartup_start,
69 		int vupdate_offset,
70 		int vupdate_width)
71 {
72 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
73 
74 	optc1->vready_offset = vready_offset;
75 	optc1->vstartup_start = vstartup_start;
76 	optc1->vupdate_offset = vupdate_offset;
77 	optc1->vupdate_width = vupdate_width;
78 
79 	if (optc1->vstartup_start == 0) {
80 		BREAK_TO_DEBUGGER();
81 		return;
82 	}
83 
84 	REG_SET(OTG_VSTARTUP_PARAM, 0,
85 		VSTARTUP_START, optc1->vstartup_start);
86 
87 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
88 			VUPDATE_OFFSET, optc1->vupdate_offset,
89 			VUPDATE_WIDTH, optc1->vupdate_width);
90 
91 	REG_SET(OTG_VREADY_PARAM, 0,
92 			VREADY_OFFSET, optc1->vready_offset);
93 }
94 
optc1_disable_stereo(struct timing_generator * optc)95 static void optc1_disable_stereo(struct timing_generator *optc)
96 {
97 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
98 
99 	REG_SET(OTG_STEREO_CONTROL, 0,
100 		OTG_STEREO_EN, 0);
101 
102 	REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
103 		OTG_3D_STRUCTURE_EN, 0,
104 		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
105 }
106 
optc1_setup_vertical_interrupt0(struct timing_generator * optc,uint32_t start_line,uint32_t end_line)107 void optc1_setup_vertical_interrupt0(
108 		struct timing_generator *optc,
109 		uint32_t start_line,
110 		uint32_t end_line)
111 {
112 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
113 
114 	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
115 			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
116 			OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
117 }
118 
optc1_setup_vertical_interrupt1(struct timing_generator * optc,uint32_t start_line)119 void optc1_setup_vertical_interrupt1(
120 		struct timing_generator *optc,
121 		uint32_t start_line)
122 {
123 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
124 
125 	REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
126 				OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
127 }
128 
optc1_setup_vertical_interrupt2(struct timing_generator * optc,uint32_t start_line)129 void optc1_setup_vertical_interrupt2(
130 		struct timing_generator *optc,
131 		uint32_t start_line)
132 {
133 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
134 
135 	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
136 			OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
137 }
138 
139 /**
140  * program_timing_generator   used by mode timing set
141  * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
142  * Including SYNC. Call BIOS command table to program Timings.
143  */
optc1_program_timing(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,const enum signal_type signal,bool use_vbios)144 void optc1_program_timing(
145 	struct timing_generator *optc,
146 	const struct dc_crtc_timing *dc_crtc_timing,
147 	int vready_offset,
148 	int vstartup_start,
149 	int vupdate_offset,
150 	int vupdate_width,
151 	const enum signal_type signal,
152 	bool use_vbios)
153 {
154 	struct dc_crtc_timing patched_crtc_timing;
155 	uint32_t asic_blank_end;
156 	uint32_t asic_blank_start;
157 	uint32_t v_total;
158 	uint32_t v_sync_end;
159 	uint32_t h_sync_polarity, v_sync_polarity;
160 	uint32_t start_point = 0;
161 	uint32_t field_num = 0;
162 	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
163 
164 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
165 
166 	optc1->signal = signal;
167 	optc1->vready_offset = vready_offset;
168 	optc1->vstartup_start = vstartup_start;
169 	optc1->vupdate_offset = vupdate_offset;
170 	optc1->vupdate_width = vupdate_width;
171 	patched_crtc_timing = *dc_crtc_timing;
172 	apply_front_porch_workaround(&patched_crtc_timing);
173 
174 	/* Load horizontal timing */
175 
176 	/* CRTC_H_TOTAL = vesa.h_total - 1 */
177 	REG_SET(OTG_H_TOTAL, 0,
178 			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
179 
180 	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
181 	REG_UPDATE_2(OTG_H_SYNC_A,
182 			OTG_H_SYNC_A_START, 0,
183 			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
184 
185 	/* blank_start = line end - front porch */
186 	asic_blank_start = patched_crtc_timing.h_total -
187 			patched_crtc_timing.h_front_porch;
188 
189 	/* blank_end = blank_start - active */
190 	asic_blank_end = asic_blank_start -
191 			patched_crtc_timing.h_border_right -
192 			patched_crtc_timing.h_addressable -
193 			patched_crtc_timing.h_border_left;
194 
195 	REG_UPDATE_2(OTG_H_BLANK_START_END,
196 			OTG_H_BLANK_START, asic_blank_start,
197 			OTG_H_BLANK_END, asic_blank_end);
198 
199 	/* h_sync polarity */
200 	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
201 			0 : 1;
202 
203 	REG_UPDATE(OTG_H_SYNC_A_CNTL,
204 			OTG_H_SYNC_A_POL, h_sync_polarity);
205 
206 	v_total = patched_crtc_timing.v_total - 1;
207 
208 	REG_SET(OTG_V_TOTAL, 0,
209 			OTG_V_TOTAL, v_total);
210 
211 	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
212 	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
213 	 */
214 	REG_SET(OTG_V_TOTAL_MAX, 0,
215 		OTG_V_TOTAL_MAX, v_total);
216 	REG_SET(OTG_V_TOTAL_MIN, 0,
217 		OTG_V_TOTAL_MIN, v_total);
218 
219 	/* v_sync_start = 0, v_sync_end = v_sync_width */
220 	v_sync_end = patched_crtc_timing.v_sync_width;
221 
222 	REG_UPDATE_2(OTG_V_SYNC_A,
223 			OTG_V_SYNC_A_START, 0,
224 			OTG_V_SYNC_A_END, v_sync_end);
225 
226 	/* blank_start = frame end - front porch */
227 	asic_blank_start = patched_crtc_timing.v_total -
228 			patched_crtc_timing.v_front_porch;
229 
230 	/* blank_end = blank_start - active */
231 	asic_blank_end = asic_blank_start -
232 			patched_crtc_timing.v_border_bottom -
233 			patched_crtc_timing.v_addressable -
234 			patched_crtc_timing.v_border_top;
235 
236 	REG_UPDATE_2(OTG_V_BLANK_START_END,
237 			OTG_V_BLANK_START, asic_blank_start,
238 			OTG_V_BLANK_END, asic_blank_end);
239 
240 	/* v_sync polarity */
241 	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
242 			0 : 1;
243 
244 	REG_UPDATE(OTG_V_SYNC_A_CNTL,
245 		OTG_V_SYNC_A_POL, v_sync_polarity);
246 
247 	if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
248 			optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
249 			optc1->signal == SIGNAL_TYPE_EDP) {
250 		start_point = 1;
251 		if (patched_crtc_timing.flags.INTERLACE == 1)
252 			field_num = 1;
253 	}
254 
255 	/* Interlace */
256 	if (REG(OTG_INTERLACE_CONTROL)) {
257 		if (patched_crtc_timing.flags.INTERLACE == 1)
258 			REG_UPDATE(OTG_INTERLACE_CONTROL,
259 					OTG_INTERLACE_ENABLE, 1);
260 		else
261 			REG_UPDATE(OTG_INTERLACE_CONTROL,
262 					OTG_INTERLACE_ENABLE, 0);
263 	}
264 
265 	/* VTG enable set to 0 first VInit */
266 	REG_UPDATE(CONTROL,
267 			VTG0_ENABLE, 0);
268 
269 	/* original code is using VTG offset to address OTG reg, seems wrong */
270 	REG_UPDATE_2(OTG_CONTROL,
271 			OTG_START_POINT_CNTL, start_point,
272 			OTG_FIELD_NUMBER_CNTL, field_num);
273 
274 	optc->funcs->program_global_sync(optc,
275 			vready_offset,
276 			vstartup_start,
277 			vupdate_offset,
278 			vupdate_width);
279 
280 	optc->funcs->set_vtg_params(optc, dc_crtc_timing);
281 
282 	/* TODO
283 	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
284 	 * program_horz_count_by_2
285 	 * for DVI 30bpp mode, 0 otherwise
286 	 * program_horz_count_by_2(optc, &patched_crtc_timing);
287 	 */
288 
289 	/* Enable stereo - only when we need to pack 3D frame. Other types
290 	 * of stereo handled in explicit call
291 	 */
292 
293 	if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
294 		h_div = H_TIMING_DIV_BY2;
295 
296 	REG_UPDATE(OTG_H_TIMING_CNTL,
297 		OTG_H_TIMING_DIV_BY2, h_div);
298 }
299 
optc1_set_vtg_params(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing)300 void optc1_set_vtg_params(struct timing_generator *optc,
301 		const struct dc_crtc_timing *dc_crtc_timing)
302 {
303 	struct dc_crtc_timing patched_crtc_timing;
304 	uint32_t asic_blank_end;
305 	uint32_t v_init;
306 	uint32_t v_fp2 = 0;
307 	int32_t vertical_line_start;
308 
309 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
310 
311 	patched_crtc_timing = *dc_crtc_timing;
312 	apply_front_porch_workaround(&patched_crtc_timing);
313 
314 	/* VCOUNT_INIT is the start of blank */
315 	v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
316 
317 	/* end of blank = v_init - active */
318 	asic_blank_end = v_init -
319 			patched_crtc_timing.v_border_bottom -
320 			patched_crtc_timing.v_addressable -
321 			patched_crtc_timing.v_border_top;
322 
323 	/* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
324 	vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
325 	if (vertical_line_start < 0)
326 		v_fp2 = -vertical_line_start;
327 
328 	/* Interlace */
329 	if (REG(OTG_INTERLACE_CONTROL)) {
330 		if (patched_crtc_timing.flags.INTERLACE == 1) {
331 			v_init = v_init / 2;
332 			if ((optc1->vstartup_start/2)*2 > asic_blank_end)
333 				v_fp2 = v_fp2 / 2;
334 		}
335 	}
336 
337 	REG_UPDATE_2(CONTROL,
338 			VTG0_FP2, v_fp2,
339 			VTG0_VCOUNT_INIT, v_init);
340 }
341 
optc1_set_blank_data_double_buffer(struct timing_generator * optc,bool enable)342 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
343 {
344 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
345 
346 	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
347 
348 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
349 			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
350 }
351 
352 /**
353  * unblank_crtc
354  * Call ASIC Control Object to UnBlank CRTC.
355  */
optc1_unblank_crtc(struct timing_generator * optc)356 static void optc1_unblank_crtc(struct timing_generator *optc)
357 {
358 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
359 
360 	REG_UPDATE_2(OTG_BLANK_CONTROL,
361 			OTG_BLANK_DATA_EN, 0,
362 			OTG_BLANK_DE_MODE, 0);
363 
364 	/* W/A for automated testing
365 	 * Automated testing will fail underflow test as there
366 	 * sporadic underflows which occur during the optc blank
367 	 * sequence.  As a w/a, clear underflow on unblank.
368 	 * This prevents the failure, but will not mask actual
369 	 * underflow that affect real use cases.
370 	 */
371 	optc1_clear_optc_underflow(optc);
372 }
373 
374 /**
375  * blank_crtc
376  * Call ASIC Control Object to Blank CRTC.
377  */
378 
optc1_blank_crtc(struct timing_generator * optc)379 static void optc1_blank_crtc(struct timing_generator *optc)
380 {
381 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
382 
383 	REG_UPDATE_2(OTG_BLANK_CONTROL,
384 			OTG_BLANK_DATA_EN, 1,
385 			OTG_BLANK_DE_MODE, 0);
386 
387 	optc1_set_blank_data_double_buffer(optc, false);
388 }
389 
optc1_set_blank(struct timing_generator * optc,bool enable_blanking)390 void optc1_set_blank(struct timing_generator *optc,
391 		bool enable_blanking)
392 {
393 	if (enable_blanking)
394 		optc1_blank_crtc(optc);
395 	else
396 		optc1_unblank_crtc(optc);
397 }
398 
optc1_is_blanked(struct timing_generator * optc)399 bool optc1_is_blanked(struct timing_generator *optc)
400 {
401 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
402 	uint32_t blank_en;
403 	uint32_t blank_state;
404 
405 	REG_GET_2(OTG_BLANK_CONTROL,
406 			OTG_BLANK_DATA_EN, &blank_en,
407 			OTG_CURRENT_BLANK_STATE, &blank_state);
408 
409 	return blank_en && blank_state;
410 }
411 
optc1_enable_optc_clock(struct timing_generator * optc,bool enable)412 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
413 {
414 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
415 
416 	if (enable) {
417 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
418 				OPTC_INPUT_CLK_EN, 1,
419 				OPTC_INPUT_CLK_GATE_DIS, 1);
420 
421 		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
422 				OPTC_INPUT_CLK_ON, 1,
423 				1, 1000);
424 
425 		/* Enable clock */
426 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
427 				OTG_CLOCK_EN, 1,
428 				OTG_CLOCK_GATE_DIS, 1);
429 		REG_WAIT(OTG_CLOCK_CONTROL,
430 				OTG_CLOCK_ON, 1,
431 				1, 1000);
432 	} else  {
433 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
434 				OTG_CLOCK_GATE_DIS, 0,
435 				OTG_CLOCK_EN, 0);
436 
437 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
438 				OPTC_INPUT_CLK_GATE_DIS, 0,
439 				OPTC_INPUT_CLK_EN, 0);
440 	}
441 }
442 
443 /**
444  * Enable CRTC
445  * Enable CRTC - call ASIC Control Object to enable Timing generator.
446  */
optc1_enable_crtc(struct timing_generator * optc)447 static bool optc1_enable_crtc(struct timing_generator *optc)
448 {
449 	/* TODO FPGA wait for answer
450 	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
451 	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
452 	 */
453 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
454 
455 	/* opp instance for OTG. For DCN1.0, ODM is remoed.
456 	 * OPP and OPTC should 1:1 mapping
457 	 */
458 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
459 			OPTC_SRC_SEL, optc->inst);
460 
461 	/* VTG enable first is for HW workaround */
462 	REG_UPDATE(CONTROL,
463 			VTG0_ENABLE, 1);
464 
465 	REG_SEQ_START();
466 
467 	/* Enable CRTC */
468 	REG_UPDATE_2(OTG_CONTROL,
469 			OTG_DISABLE_POINT_CNTL, 3,
470 			OTG_MASTER_EN, 1);
471 
472 	REG_SEQ_SUBMIT();
473 	REG_SEQ_WAIT_DONE();
474 
475 	return true;
476 }
477 
478 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
optc1_disable_crtc(struct timing_generator * optc)479 bool optc1_disable_crtc(struct timing_generator *optc)
480 {
481 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
482 
483 	/* disable otg request until end of the first line
484 	 * in the vertical blank region
485 	 */
486 	REG_UPDATE_2(OTG_CONTROL,
487 			OTG_DISABLE_POINT_CNTL, 3,
488 			OTG_MASTER_EN, 0);
489 
490 	REG_UPDATE(CONTROL,
491 			VTG0_ENABLE, 0);
492 
493 	/* CRTC disabled, so disable  clock. */
494 	REG_WAIT(OTG_CLOCK_CONTROL,
495 			OTG_BUSY, 0,
496 			1, 100000);
497 
498 	return true;
499 }
500 
501 
optc1_program_blank_color(struct timing_generator * optc,const struct tg_color * black_color)502 void optc1_program_blank_color(
503 		struct timing_generator *optc,
504 		const struct tg_color *black_color)
505 {
506 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
507 
508 	REG_SET_3(OTG_BLACK_COLOR, 0,
509 			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
510 			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
511 			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
512 }
513 
optc1_validate_timing(struct timing_generator * optc,const struct dc_crtc_timing * timing)514 bool optc1_validate_timing(
515 	struct timing_generator *optc,
516 	const struct dc_crtc_timing *timing)
517 {
518 	uint32_t v_blank;
519 	uint32_t h_blank;
520 	uint32_t min_v_blank;
521 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
522 
523 	ASSERT(timing != NULL);
524 
525 	v_blank = (timing->v_total - timing->v_addressable -
526 					timing->v_border_top - timing->v_border_bottom);
527 
528 	h_blank = (timing->h_total - timing->h_addressable -
529 		timing->h_border_right -
530 		timing->h_border_left);
531 
532 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
533 		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
534 		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
535 		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
536 		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
537 		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
538 		return false;
539 
540 	/* Temporarily blocking interlacing mode until it's supported */
541 	if (timing->flags.INTERLACE == 1)
542 		return false;
543 
544 	/* Check maximum number of pixels supported by Timing Generator
545 	 * (Currently will never fail, in order to fail needs display which
546 	 * needs more than 8192 horizontal and
547 	 * more than 8192 vertical total pixels)
548 	 */
549 	if (timing->h_total > optc1->max_h_total ||
550 		timing->v_total > optc1->max_v_total)
551 		return false;
552 
553 
554 	if (h_blank < optc1->min_h_blank)
555 		return false;
556 
557 	if (timing->h_sync_width  < optc1->min_h_sync_width ||
558 		 timing->v_sync_width  < optc1->min_v_sync_width)
559 		return false;
560 
561 	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
562 
563 	if (v_blank < min_v_blank)
564 		return false;
565 
566 	return true;
567 
568 }
569 
570 /*
571  * get_vblank_counter
572  *
573  * @brief
574  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
575  * holds the counter of frames.
576  *
577  * @param
578  * struct timing_generator *optc - [in] timing generator which controls the
579  * desired CRTC
580  *
581  * @return
582  * Counter of frames, which should equal to number of vblanks.
583  */
optc1_get_vblank_counter(struct timing_generator * optc)584 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
585 {
586 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
587 	uint32_t frame_count;
588 
589 	REG_GET(OTG_STATUS_FRAME_COUNT,
590 		OTG_FRAME_COUNT, &frame_count);
591 
592 	return frame_count;
593 }
594 
optc1_lock(struct timing_generator * optc)595 void optc1_lock(struct timing_generator *optc)
596 {
597 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
598 	uint32_t regval = 0;
599 
600 	regval = REG_READ(OTG_CONTROL);
601 
602 	/* otg is not running, do not need to be locked */
603 	if ((regval & 0x1) == 0x0)
604 		return;
605 
606 	REG_SET(OTG_GLOBAL_CONTROL0, 0,
607 			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
608 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
609 			OTG_MASTER_UPDATE_LOCK, 1);
610 
611 	/* Should be fast, status does not update on maximus */
612 	if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
613 
614 		REG_WAIT(OTG_MASTER_UPDATE_LOCK,
615 				UPDATE_LOCK_STATUS, 1,
616 				1, 10);
617 	}
618 }
619 
optc1_unlock(struct timing_generator * optc)620 void optc1_unlock(struct timing_generator *optc)
621 {
622 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
623 
624 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
625 			OTG_MASTER_UPDATE_LOCK, 0);
626 }
627 
optc1_get_position(struct timing_generator * optc,struct crtc_position * position)628 void optc1_get_position(struct timing_generator *optc,
629 		struct crtc_position *position)
630 {
631 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
632 
633 	REG_GET_2(OTG_STATUS_POSITION,
634 			OTG_HORZ_COUNT, &position->horizontal_count,
635 			OTG_VERT_COUNT, &position->vertical_count);
636 
637 	REG_GET(OTG_NOM_VERT_POSITION,
638 			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
639 }
640 
optc1_is_counter_moving(struct timing_generator * optc)641 bool optc1_is_counter_moving(struct timing_generator *optc)
642 {
643 	struct crtc_position position1, position2;
644 
645 	optc->funcs->get_position(optc, &position1);
646 	optc->funcs->get_position(optc, &position2);
647 
648 	if (position1.horizontal_count == position2.horizontal_count &&
649 		position1.vertical_count == position2.vertical_count)
650 		return false;
651 	else
652 		return true;
653 }
654 
optc1_did_triggered_reset_occur(struct timing_generator * optc)655 bool optc1_did_triggered_reset_occur(
656 	struct timing_generator *optc)
657 {
658 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
659 	uint32_t occurred_force, occurred_vsync;
660 
661 	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
662 		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
663 
664 	REG_GET(OTG_VERT_SYNC_CONTROL,
665 		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
666 
667 	return occurred_vsync != 0 || occurred_force != 0;
668 }
669 
optc1_disable_reset_trigger(struct timing_generator * optc)670 void optc1_disable_reset_trigger(struct timing_generator *optc)
671 {
672 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
673 
674 	REG_WRITE(OTG_TRIGA_CNTL, 0);
675 
676 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
677 		OTG_FORCE_COUNT_NOW_CLEAR, 1);
678 
679 	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
680 		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
681 }
682 
optc1_enable_reset_trigger(struct timing_generator * optc,int source_tg_inst)683 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
684 {
685 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
686 	uint32_t falling_edge;
687 
688 	REG_GET(OTG_V_SYNC_A_CNTL,
689 			OTG_V_SYNC_A_POL, &falling_edge);
690 
691 	if (falling_edge)
692 		REG_SET_3(OTG_TRIGA_CNTL, 0,
693 				/* vsync signal from selected OTG pipe based
694 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
695 				 */
696 				OTG_TRIGA_SOURCE_SELECT, 20,
697 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
698 				/* always detect falling edge */
699 				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
700 	else
701 		REG_SET_3(OTG_TRIGA_CNTL, 0,
702 				/* vsync signal from selected OTG pipe based
703 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
704 				 */
705 				OTG_TRIGA_SOURCE_SELECT, 20,
706 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
707 				/* always detect rising edge */
708 				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
709 
710 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
711 			/* force H count to H_TOTAL and V count to V_TOTAL in
712 			 * progressive mode and V_TOTAL-1 in interlaced mode
713 			 */
714 			OTG_FORCE_COUNT_NOW_MODE, 2);
715 }
716 
optc1_enable_crtc_reset(struct timing_generator * optc,int source_tg_inst,struct crtc_trigger_info * crtc_tp)717 void optc1_enable_crtc_reset(
718 		struct timing_generator *optc,
719 		int source_tg_inst,
720 		struct crtc_trigger_info *crtc_tp)
721 {
722 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
723 	uint32_t falling_edge = 0;
724 	uint32_t rising_edge = 0;
725 
726 	switch (crtc_tp->event) {
727 
728 	case CRTC_EVENT_VSYNC_RISING:
729 		rising_edge = 1;
730 		break;
731 
732 	case CRTC_EVENT_VSYNC_FALLING:
733 		falling_edge = 1;
734 		break;
735 	}
736 
737 	REG_SET_4(OTG_TRIGA_CNTL, 0,
738 		 /* vsync signal from selected OTG pipe based
739 		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
740 		  */
741 		  OTG_TRIGA_SOURCE_SELECT, 20,
742 		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
743 		  /* always detect falling edge */
744 		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
745 		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
746 
747 	switch (crtc_tp->delay) {
748 	case TRIGGER_DELAY_NEXT_LINE:
749 		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
750 				OTG_AUTO_FORCE_VSYNC_MODE, 1);
751 		break;
752 	case TRIGGER_DELAY_NEXT_PIXEL:
753 		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
754 			/* force H count to H_TOTAL and V count to V_TOTAL in
755 			 * progressive mode and V_TOTAL-1 in interlaced mode
756 			 */
757 			OTG_FORCE_COUNT_NOW_MODE, 2);
758 		break;
759 	}
760 }
761 
optc1_wait_for_state(struct timing_generator * optc,enum crtc_state state)762 void optc1_wait_for_state(struct timing_generator *optc,
763 		enum crtc_state state)
764 {
765 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
766 
767 	switch (state) {
768 	case CRTC_STATE_VBLANK:
769 		REG_WAIT(OTG_STATUS,
770 				OTG_V_BLANK, 1,
771 				1, 100000); /* 1 vupdate at 10hz */
772 		break;
773 
774 	case CRTC_STATE_VACTIVE:
775 		REG_WAIT(OTG_STATUS,
776 				OTG_V_ACTIVE_DISP, 1,
777 				1, 100000); /* 1 vupdate at 10hz */
778 		break;
779 
780 	default:
781 		break;
782 	}
783 }
784 
optc1_set_early_control(struct timing_generator * optc,uint32_t early_cntl)785 void optc1_set_early_control(
786 	struct timing_generator *optc,
787 	uint32_t early_cntl)
788 {
789 	/* asic design change, do not need this control
790 	 * empty for share caller logic
791 	 */
792 }
793 
794 
optc1_set_static_screen_control(struct timing_generator * optc,uint32_t event_triggers,uint32_t num_frames)795 void optc1_set_static_screen_control(
796 	struct timing_generator *optc,
797 	uint32_t event_triggers,
798 	uint32_t num_frames)
799 {
800 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
801 
802 	// By register spec, it only takes 8 bit value
803 	if (num_frames > 0xFF)
804 		num_frames = 0xFF;
805 
806 	/* Bit 8 is no longer applicable in RV for PSR case,
807 	 * set bit 8 to 0 if given
808 	 */
809 	if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
810 			!= 0)
811 		event_triggers = event_triggers &
812 		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
813 
814 	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
815 			OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
816 			OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
817 }
818 
optc1_setup_manual_trigger(struct timing_generator * optc)819 void optc1_setup_manual_trigger(struct timing_generator *optc)
820 {
821 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
822 
823 	REG_SET(OTG_GLOBAL_CONTROL2, 0,
824 			MANUAL_FLOW_CONTROL_SEL, optc->inst);
825 
826 	REG_SET_8(OTG_TRIGA_CNTL, 0,
827 			OTG_TRIGA_SOURCE_SELECT, 22,
828 			OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
829 			OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
830 			OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
831 			OTG_TRIGA_POLARITY_SELECT, 0,
832 			OTG_TRIGA_FREQUENCY_SELECT, 0,
833 			OTG_TRIGA_DELAY, 0,
834 			OTG_TRIGA_CLEAR, 1);
835 }
836 
optc1_program_manual_trigger(struct timing_generator * optc)837 void optc1_program_manual_trigger(struct timing_generator *optc)
838 {
839 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
840 
841 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
842 			MANUAL_FLOW_CONTROL, 1);
843 
844 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
845 			MANUAL_FLOW_CONTROL, 0);
846 }
847 
848 
849 /**
850  *****************************************************************************
851  *  Function: set_drr
852  *
853  *  @brief
854  *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
855  *
856  *****************************************************************************
857  */
optc1_set_drr(struct timing_generator * optc,const struct drr_params * params)858 void optc1_set_drr(
859 	struct timing_generator *optc,
860 	const struct drr_params *params)
861 {
862 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
863 
864 	if (params != NULL &&
865 		params->vertical_total_max > 0 &&
866 		params->vertical_total_min > 0) {
867 
868 		if (params->vertical_total_mid != 0) {
869 
870 			REG_SET(OTG_V_TOTAL_MID, 0,
871 				OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
872 
873 			REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
874 					OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
875 					OTG_VTOTAL_MID_FRAME_NUM,
876 					(uint8_t)params->vertical_total_mid_frame_num);
877 
878 		}
879 
880 		REG_SET(OTG_V_TOTAL_MAX, 0,
881 			OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
882 
883 		REG_SET(OTG_V_TOTAL_MIN, 0,
884 			OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
885 
886 		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
887 				OTG_V_TOTAL_MIN_SEL, 1,
888 				OTG_V_TOTAL_MAX_SEL, 1,
889 				OTG_FORCE_LOCK_ON_EVENT, 0,
890 				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
891 				OTG_SET_V_TOTAL_MIN_MASK, 0);
892 
893 		// Setup manual flow control for EOF via TRIG_A
894 		optc->funcs->setup_manual_trigger(optc);
895 
896 	} else {
897 		REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
898 				OTG_SET_V_TOTAL_MIN_MASK, 0,
899 				OTG_V_TOTAL_MIN_SEL, 0,
900 				OTG_V_TOTAL_MAX_SEL, 0,
901 				OTG_FORCE_LOCK_ON_EVENT, 0);
902 
903 		REG_SET(OTG_V_TOTAL_MIN, 0,
904 			OTG_V_TOTAL_MIN, 0);
905 
906 		REG_SET(OTG_V_TOTAL_MAX, 0,
907 			OTG_V_TOTAL_MAX, 0);
908 	}
909 }
910 
optc1_set_test_pattern(struct timing_generator * optc,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)911 static void optc1_set_test_pattern(
912 	struct timing_generator *optc,
913 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
914 	 * because this is not DP-specific (which is probably somewhere in DP
915 	 * encoder) */
916 	enum controller_dp_test_pattern test_pattern,
917 	enum dc_color_depth color_depth)
918 {
919 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
920 	enum test_pattern_color_format bit_depth;
921 	enum test_pattern_dyn_range dyn_range;
922 	enum test_pattern_mode mode;
923 	uint32_t pattern_mask;
924 	uint32_t pattern_data;
925 	/* color ramp generator mixes 16-bits color */
926 	uint32_t src_bpc = 16;
927 	/* requested bpc */
928 	uint32_t dst_bpc;
929 	uint32_t index;
930 	/* RGB values of the color bars.
931 	 * Produce two RGB colors: RGB0 - white (all Fs)
932 	 * and RGB1 - black (all 0s)
933 	 * (three RGB components for two colors)
934 	 */
935 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
936 						0x0000, 0x0000};
937 	/* dest color (converted to the specified color format) */
938 	uint16_t dst_color[6];
939 	uint32_t inc_base;
940 
941 	/* translate to bit depth */
942 	switch (color_depth) {
943 	case COLOR_DEPTH_666:
944 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
945 	break;
946 	case COLOR_DEPTH_888:
947 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
948 	break;
949 	case COLOR_DEPTH_101010:
950 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
951 	break;
952 	case COLOR_DEPTH_121212:
953 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
954 	break;
955 	default:
956 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
957 	break;
958 	}
959 
960 	switch (test_pattern) {
961 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
962 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
963 	{
964 		dyn_range = (test_pattern ==
965 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
966 				TEST_PATTERN_DYN_RANGE_CEA :
967 				TEST_PATTERN_DYN_RANGE_VESA);
968 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
969 
970 		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
971 				OTG_TEST_PATTERN_VRES, 6,
972 				OTG_TEST_PATTERN_HRES, 6);
973 
974 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
975 				OTG_TEST_PATTERN_EN, 1,
976 				OTG_TEST_PATTERN_MODE, mode,
977 				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
978 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
979 	}
980 	break;
981 
982 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
983 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
984 	{
985 		mode = (test_pattern ==
986 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
987 			TEST_PATTERN_MODE_VERTICALBARS :
988 			TEST_PATTERN_MODE_HORIZONTALBARS);
989 
990 		switch (bit_depth) {
991 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
992 			dst_bpc = 6;
993 		break;
994 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
995 			dst_bpc = 8;
996 		break;
997 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
998 			dst_bpc = 10;
999 		break;
1000 		default:
1001 			dst_bpc = 8;
1002 		break;
1003 		}
1004 
1005 		/* adjust color to the required colorFormat */
1006 		for (index = 0; index < 6; index++) {
1007 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
1008 			 * (srcBpc - dstBpc);
1009 			 */
1010 			dst_color[index] =
1011 				src_color[index] >> (src_bpc - dst_bpc);
1012 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
1013 		 * lowest 6 are hardwired to ZERO
1014 		 * color bits should be left aligned aligned to MSB
1015 		 * XXXXXXXXXX000000 for 10 bit,
1016 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1017 		 */
1018 			dst_color[index] <<= (16 - dst_bpc);
1019 		}
1020 
1021 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1022 
1023 		/* We have to write the mask before data, similar to pipeline.
1024 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
1025 		 * and RGB1 to be cyan,
1026 		 * we need to make 7 writes:
1027 		 * MASK   DATA
1028 		 * 000001 00000000 00000000                     set mask to R0
1029 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1030 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1031 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1032 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1033 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1034 		 * 100000 11111111 00000000     B1 255, 0xFF00
1035 		 *
1036 		 * we will make a loop of 6 in which we prepare the mask,
1037 		 * then write, then prepare the color for next write.
1038 		 * first iteration will write mask only,
1039 		 * but each next iteration color prepared in
1040 		 * previous iteration will be written within new mask,
1041 		 * the last component will written separately,
1042 		 * mask is not changing between 6th and 7th write
1043 		 * and color will be prepared by last iteration
1044 		 */
1045 
1046 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
1047 		 * is B1, G1, R1, B0, G0, R0
1048 		 */
1049 		pattern_data = 0;
1050 		for (index = 0; index < 6; index++) {
1051 			/* prepare color mask, first write PATTERN_DATA
1052 			 * will have all zeros
1053 			 */
1054 			pattern_mask = (1 << index);
1055 
1056 			/* write color component */
1057 			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1058 					OTG_TEST_PATTERN_MASK, pattern_mask,
1059 					OTG_TEST_PATTERN_DATA, pattern_data);
1060 
1061 			/* prepare next color component,
1062 			 * will be written in the next iteration
1063 			 */
1064 			pattern_data = dst_color[index];
1065 		}
1066 		/* write last color component,
1067 		 * it's been already prepared in the loop
1068 		 */
1069 		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1070 				OTG_TEST_PATTERN_MASK, pattern_mask,
1071 				OTG_TEST_PATTERN_DATA, pattern_data);
1072 
1073 		/* enable test pattern */
1074 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1075 				OTG_TEST_PATTERN_EN, 1,
1076 				OTG_TEST_PATTERN_MODE, mode,
1077 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1078 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1079 	}
1080 	break;
1081 
1082 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1083 	{
1084 		mode = (bit_depth ==
1085 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1086 			TEST_PATTERN_MODE_DUALRAMP_RGB :
1087 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1088 
1089 		switch (bit_depth) {
1090 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1091 			dst_bpc = 6;
1092 		break;
1093 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1094 			dst_bpc = 8;
1095 		break;
1096 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1097 			dst_bpc = 10;
1098 		break;
1099 		default:
1100 			dst_bpc = 8;
1101 		break;
1102 		}
1103 
1104 		/* increment for the first ramp for one color gradation
1105 		 * 1 gradation for 6-bit color is 2^10
1106 		 * gradations in 16-bit color
1107 		 */
1108 		inc_base = (src_bpc - dst_bpc);
1109 
1110 		switch (bit_depth) {
1111 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1112 		{
1113 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1114 					OTG_TEST_PATTERN_INC0, inc_base,
1115 					OTG_TEST_PATTERN_INC1, 0,
1116 					OTG_TEST_PATTERN_HRES, 6,
1117 					OTG_TEST_PATTERN_VRES, 6,
1118 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1119 		}
1120 		break;
1121 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1122 		{
1123 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1124 					OTG_TEST_PATTERN_INC0, inc_base,
1125 					OTG_TEST_PATTERN_INC1, 0,
1126 					OTG_TEST_PATTERN_HRES, 8,
1127 					OTG_TEST_PATTERN_VRES, 6,
1128 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1129 		}
1130 		break;
1131 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1132 		{
1133 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1134 					OTG_TEST_PATTERN_INC0, inc_base,
1135 					OTG_TEST_PATTERN_INC1, inc_base + 2,
1136 					OTG_TEST_PATTERN_HRES, 8,
1137 					OTG_TEST_PATTERN_VRES, 5,
1138 					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1139 		}
1140 		break;
1141 		default:
1142 		break;
1143 		}
1144 
1145 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1146 
1147 		/* enable test pattern */
1148 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1149 
1150 		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1151 				OTG_TEST_PATTERN_EN, 1,
1152 				OTG_TEST_PATTERN_MODE, mode,
1153 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1154 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1155 	}
1156 	break;
1157 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1158 	{
1159 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1160 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1161 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1162 	}
1163 	break;
1164 	default:
1165 		break;
1166 
1167 	}
1168 }
1169 
optc1_get_crtc_scanoutpos(struct timing_generator * optc,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)1170 void optc1_get_crtc_scanoutpos(
1171 	struct timing_generator *optc,
1172 	uint32_t *v_blank_start,
1173 	uint32_t *v_blank_end,
1174 	uint32_t *h_position,
1175 	uint32_t *v_position)
1176 {
1177 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1178 	struct crtc_position position;
1179 
1180 	REG_GET_2(OTG_V_BLANK_START_END,
1181 			OTG_V_BLANK_START, v_blank_start,
1182 			OTG_V_BLANK_END, v_blank_end);
1183 
1184 	optc1_get_position(optc, &position);
1185 
1186 	*h_position = position.horizontal_count;
1187 	*v_position = position.vertical_count;
1188 }
1189 
optc1_enable_stereo(struct timing_generator * optc,const struct dc_crtc_timing * timing,struct crtc_stereo_flags * flags)1190 static void optc1_enable_stereo(struct timing_generator *optc,
1191 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1192 {
1193 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1194 
1195 	if (flags) {
1196 		uint32_t stereo_en;
1197 		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1198 
1199 		if (flags->PROGRAM_STEREO)
1200 			REG_UPDATE_3(OTG_STEREO_CONTROL,
1201 				OTG_STEREO_EN, stereo_en,
1202 				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1203 				OTG_STEREO_SYNC_OUTPUT_POLARITY, 0);
1204 
1205 		if (flags->PROGRAM_POLARITY)
1206 			REG_UPDATE(OTG_STEREO_CONTROL,
1207 				OTG_STEREO_EYE_FLAG_POLARITY,
1208 				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1209 
1210 		if (flags->DISABLE_STEREO_DP_SYNC)
1211 			REG_UPDATE(OTG_STEREO_CONTROL,
1212 				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1213 
1214 		if (flags->PROGRAM_STEREO)
1215 			REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1216 				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1217 				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1218 
1219 	}
1220 }
1221 
optc1_program_stereo(struct timing_generator * optc,const struct dc_crtc_timing * timing,struct crtc_stereo_flags * flags)1222 void optc1_program_stereo(struct timing_generator *optc,
1223 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1224 {
1225 	if (flags->PROGRAM_STEREO)
1226 		optc1_enable_stereo(optc, timing, flags);
1227 	else
1228 		optc1_disable_stereo(optc);
1229 }
1230 
1231 
optc1_is_stereo_left_eye(struct timing_generator * optc)1232 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1233 {
1234 	bool ret = false;
1235 	uint32_t left_eye = 0;
1236 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1237 
1238 	REG_GET(OTG_STEREO_STATUS,
1239 		OTG_STEREO_CURRENT_EYE, &left_eye);
1240 	if (left_eye == 1)
1241 		ret = true;
1242 	else
1243 		ret = false;
1244 
1245 	return ret;
1246 }
1247 
optc1_get_hw_timing(struct timing_generator * tg,struct dc_crtc_timing * hw_crtc_timing)1248 bool optc1_get_hw_timing(struct timing_generator *tg,
1249 		struct dc_crtc_timing *hw_crtc_timing)
1250 {
1251 	struct dcn_otg_state s = {0};
1252 
1253 	if (tg == NULL || hw_crtc_timing == NULL)
1254 		return false;
1255 
1256 	optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1257 
1258 	hw_crtc_timing->h_total = s.h_total + 1;
1259 	hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1260 	hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1261 	hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1262 
1263 	hw_crtc_timing->v_total = s.v_total + 1;
1264 	hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1265 	hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1266 	hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1267 
1268 	return true;
1269 }
1270 
1271 
optc1_read_otg_state(struct optc * optc1,struct dcn_otg_state * s)1272 void optc1_read_otg_state(struct optc *optc1,
1273 		struct dcn_otg_state *s)
1274 {
1275 	REG_GET(OTG_CONTROL,
1276 			OTG_MASTER_EN, &s->otg_enabled);
1277 
1278 	REG_GET_2(OTG_V_BLANK_START_END,
1279 			OTG_V_BLANK_START, &s->v_blank_start,
1280 			OTG_V_BLANK_END, &s->v_blank_end);
1281 
1282 	REG_GET(OTG_V_SYNC_A_CNTL,
1283 			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1284 
1285 	REG_GET(OTG_V_TOTAL,
1286 			OTG_V_TOTAL, &s->v_total);
1287 
1288 	REG_GET(OTG_V_TOTAL_MAX,
1289 			OTG_V_TOTAL_MAX, &s->v_total_max);
1290 
1291 	REG_GET(OTG_V_TOTAL_MIN,
1292 			OTG_V_TOTAL_MIN, &s->v_total_min);
1293 
1294 	REG_GET(OTG_V_TOTAL_CONTROL,
1295 			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1296 
1297 	REG_GET(OTG_V_TOTAL_CONTROL,
1298 			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1299 
1300 	REG_GET_2(OTG_V_SYNC_A,
1301 			OTG_V_SYNC_A_START, &s->v_sync_a_start,
1302 			OTG_V_SYNC_A_END, &s->v_sync_a_end);
1303 
1304 	REG_GET_2(OTG_H_BLANK_START_END,
1305 			OTG_H_BLANK_START, &s->h_blank_start,
1306 			OTG_H_BLANK_END, &s->h_blank_end);
1307 
1308 	REG_GET_2(OTG_H_SYNC_A,
1309 			OTG_H_SYNC_A_START, &s->h_sync_a_start,
1310 			OTG_H_SYNC_A_END, &s->h_sync_a_end);
1311 
1312 	REG_GET(OTG_H_SYNC_A_CNTL,
1313 			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1314 
1315 	REG_GET(OTG_H_TOTAL,
1316 			OTG_H_TOTAL, &s->h_total);
1317 
1318 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1319 			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1320 }
1321 
optc1_get_otg_active_size(struct timing_generator * optc,uint32_t * otg_active_width,uint32_t * otg_active_height)1322 bool optc1_get_otg_active_size(struct timing_generator *optc,
1323 		uint32_t *otg_active_width,
1324 		uint32_t *otg_active_height)
1325 {
1326 	uint32_t otg_enabled;
1327 	uint32_t v_blank_start;
1328 	uint32_t v_blank_end;
1329 	uint32_t h_blank_start;
1330 	uint32_t h_blank_end;
1331 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1332 
1333 
1334 	REG_GET(OTG_CONTROL,
1335 			OTG_MASTER_EN, &otg_enabled);
1336 
1337 	if (otg_enabled == 0)
1338 		return false;
1339 
1340 	REG_GET_2(OTG_V_BLANK_START_END,
1341 			OTG_V_BLANK_START, &v_blank_start,
1342 			OTG_V_BLANK_END, &v_blank_end);
1343 
1344 	REG_GET_2(OTG_H_BLANK_START_END,
1345 			OTG_H_BLANK_START, &h_blank_start,
1346 			OTG_H_BLANK_END, &h_blank_end);
1347 
1348 	*otg_active_width = v_blank_start - v_blank_end;
1349 	*otg_active_height = h_blank_start - h_blank_end;
1350 	return true;
1351 }
1352 
optc1_clear_optc_underflow(struct timing_generator * optc)1353 void optc1_clear_optc_underflow(struct timing_generator *optc)
1354 {
1355 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1356 
1357 	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1358 }
1359 
optc1_tg_init(struct timing_generator * optc)1360 void optc1_tg_init(struct timing_generator *optc)
1361 {
1362 	optc1_set_blank_data_double_buffer(optc, true);
1363 	optc1_clear_optc_underflow(optc);
1364 }
1365 
optc1_is_tg_enabled(struct timing_generator * optc)1366 bool optc1_is_tg_enabled(struct timing_generator *optc)
1367 {
1368 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1369 	uint32_t otg_enabled = 0;
1370 
1371 	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1372 
1373 	return (otg_enabled != 0);
1374 
1375 }
1376 
optc1_is_optc_underflow_occurred(struct timing_generator * optc)1377 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1378 {
1379 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1380 	uint32_t underflow_occurred = 0;
1381 
1382 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1383 			OPTC_UNDERFLOW_OCCURRED_STATUS,
1384 			&underflow_occurred);
1385 
1386 	return (underflow_occurred == 1);
1387 }
1388 
optc1_configure_crc(struct timing_generator * optc,const struct crc_params * params)1389 bool optc1_configure_crc(struct timing_generator *optc,
1390 			  const struct crc_params *params)
1391 {
1392 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1393 
1394 	/* Cannot configure crc on a CRTC that is disabled */
1395 	if (!optc1_is_tg_enabled(optc))
1396 		return false;
1397 
1398 	REG_WRITE(OTG_CRC_CNTL, 0);
1399 
1400 	if (!params->enable)
1401 		return true;
1402 
1403 	/* Program frame boundaries */
1404 	/* Window A x axis start and end. */
1405 	REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1406 			OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1407 			OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1408 
1409 	/* Window A y axis start and end. */
1410 	REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1411 			OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1412 			OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1413 
1414 	/* Window B x axis start and end. */
1415 	REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1416 			OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1417 			OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1418 
1419 	/* Window B y axis start and end. */
1420 	REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1421 			OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1422 			OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1423 
1424 	/* Set crc mode and selection, and enable. Only using CRC0*/
1425 	REG_UPDATE_3(OTG_CRC_CNTL,
1426 			OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1427 			OTG_CRC0_SELECT, params->selection,
1428 			OTG_CRC_EN, 1);
1429 
1430 	return true;
1431 }
1432 
optc1_get_crc(struct timing_generator * optc,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)1433 bool optc1_get_crc(struct timing_generator *optc,
1434 		    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1435 {
1436 	uint32_t field = 0;
1437 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1438 
1439 	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1440 
1441 	/* Early return if CRC is not enabled for this CRTC */
1442 	if (!field)
1443 		return false;
1444 
1445 	REG_GET_2(OTG_CRC0_DATA_RG,
1446 			CRC0_R_CR, r_cr,
1447 			CRC0_G_Y, g_y);
1448 
1449 	REG_GET(OTG_CRC0_DATA_B,
1450 			CRC0_B_CB, b_cb);
1451 
1452 	return true;
1453 }
1454 
1455 static const struct timing_generator_funcs dcn10_tg_funcs = {
1456 		.validate_timing = optc1_validate_timing,
1457 		.program_timing = optc1_program_timing,
1458 		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1459 		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1460 		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1461 		.program_global_sync = optc1_program_global_sync,
1462 		.enable_crtc = optc1_enable_crtc,
1463 		.disable_crtc = optc1_disable_crtc,
1464 		/* used by enable_timing_synchronization. Not need for FPGA */
1465 		.is_counter_moving = optc1_is_counter_moving,
1466 		.get_position = optc1_get_position,
1467 		.get_frame_count = optc1_get_vblank_counter,
1468 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
1469 		.get_otg_active_size = optc1_get_otg_active_size,
1470 		.set_early_control = optc1_set_early_control,
1471 		/* used by enable_timing_synchronization. Not need for FPGA */
1472 		.wait_for_state = optc1_wait_for_state,
1473 		.set_blank = optc1_set_blank,
1474 		.is_blanked = optc1_is_blanked,
1475 		.set_blank_color = optc1_program_blank_color,
1476 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1477 		.enable_reset_trigger = optc1_enable_reset_trigger,
1478 		.enable_crtc_reset = optc1_enable_crtc_reset,
1479 		.disable_reset_trigger = optc1_disable_reset_trigger,
1480 		.lock = optc1_lock,
1481 		.unlock = optc1_unlock,
1482 		.enable_optc_clock = optc1_enable_optc_clock,
1483 		.set_drr = optc1_set_drr,
1484 		.set_static_screen_control = optc1_set_static_screen_control,
1485 		.set_test_pattern = optc1_set_test_pattern,
1486 		.program_stereo = optc1_program_stereo,
1487 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
1488 		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1489 		.tg_init = optc1_tg_init,
1490 		.is_tg_enabled = optc1_is_tg_enabled,
1491 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1492 		.clear_optc_underflow = optc1_clear_optc_underflow,
1493 		.get_crc = optc1_get_crc,
1494 		.configure_crc = optc1_configure_crc,
1495 		.set_vtg_params = optc1_set_vtg_params,
1496 		.program_manual_trigger = optc1_program_manual_trigger,
1497 		.setup_manual_trigger = optc1_setup_manual_trigger,
1498 		.get_hw_timing = optc1_get_hw_timing,
1499 };
1500 
dcn10_timing_generator_init(struct optc * optc1)1501 void dcn10_timing_generator_init(struct optc *optc1)
1502 {
1503 	optc1->base.funcs = &dcn10_tg_funcs;
1504 
1505 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1506 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1507 
1508 	optc1->min_h_blank = 32;
1509 	optc1->min_v_blank = 3;
1510 	optc1->min_v_blank_interlace = 5;
1511 	optc1->min_h_sync_width = 8;
1512 	optc1->min_v_sync_width = 1;
1513 }
1514 
1515 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1516  *
1517  * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1518  *   containter rate.
1519  *
1520  * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1521  *   halved to maintain the correct pixel rate.
1522  *
1523  * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1524  *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1525  *
1526  */
optc1_is_two_pixels_per_containter(const struct dc_crtc_timing * timing)1527 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1528 {
1529 	bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1530 
1531 	two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1532 			&& !timing->dsc_cfg.ycbcr422_simple);
1533 	return two_pix;
1534 }
1535 
1536