xref: /llvm-project/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp (revision 4a486e773e0ef1add4515ee47b038c274ced2e76)
1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetRegisterInfo
10 // class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCRegisterInfo.h"
15 #include "PPCFrameLowering.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RegisterScavenging.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetInstrInfo.h"
30 #include "llvm/CodeGen/VirtRegMap.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include <cstdlib>
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "reginfo"
46 
47 #define GET_REGINFO_TARGET_DESC
48 #include "PPCGenRegisterInfo.inc"
49 
50 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
51 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");
52 
53 static cl::opt<bool>
54 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
55          cl::desc("Enable use of a base pointer for complex stack frames"));
56 
57 static cl::opt<bool>
58 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
59          cl::desc("Force the use of a base pointer in every function"));
60 
61 static cl::opt<bool>
62 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
63          cl::desc("Enable spills from gpr to vsr rather than stack"));
64 
65 static cl::opt<bool>
66 StackPtrConst("ppc-stack-ptr-caller-preserved",
67                 cl::desc("Consider R1 caller preserved so stack saves of "
68                          "caller preserved registers can be LICM candidates"),
69                 cl::init(true), cl::Hidden);
70 
71 static cl::opt<unsigned>
72 MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
73                   cl::desc("Maximum search distance for definition of CR bit "
74                            "spill on ppc"),
75                   cl::Hidden, cl::init(100));
76 
77 // Copies/moves of physical accumulators are expensive operations
78 // that should be avoided whenever possible. MMA instructions are
79 // meant to be used in performance-sensitive computational kernels.
80 // This option is provided, at least for the time being, to give the
81 // user a tool to detect this expensive operation and either rework
82 // their code or report a compiler bug if that turns out to be the
83 // cause.
84 #ifndef NDEBUG
85 static cl::opt<bool>
86 ReportAccMoves("ppc-report-acc-moves",
87                cl::desc("Emit information about accumulator register spills "
88                         "and copies"),
89                cl::Hidden, cl::init(false));
90 #endif
91 
92 extern cl::opt<bool> DisableAutoPairedVecSt;
93 
94 static unsigned offsetMinAlignForOpcode(unsigned OpC);
95 
96 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
97   : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
98                        TM.isPPC64() ? 0 : 1,
99                        TM.isPPC64() ? 0 : 1),
100     TM(TM) {
101   ImmToIdxMap[PPC::LD]   = PPC::LDX;    ImmToIdxMap[PPC::STD]  = PPC::STDX;
102   ImmToIdxMap[PPC::LBZ]  = PPC::LBZX;   ImmToIdxMap[PPC::STB]  = PPC::STBX;
103   ImmToIdxMap[PPC::LHZ]  = PPC::LHZX;   ImmToIdxMap[PPC::LHA]  = PPC::LHAX;
104   ImmToIdxMap[PPC::LWZ]  = PPC::LWZX;   ImmToIdxMap[PPC::LWA]  = PPC::LWAX;
105   ImmToIdxMap[PPC::LFS]  = PPC::LFSX;   ImmToIdxMap[PPC::LFD]  = PPC::LFDX;
106   ImmToIdxMap[PPC::STH]  = PPC::STHX;   ImmToIdxMap[PPC::STW]  = PPC::STWX;
107   ImmToIdxMap[PPC::STFS] = PPC::STFSX;  ImmToIdxMap[PPC::STFD] = PPC::STFDX;
108   ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
109   ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
110 
111   // 64-bit
112   ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
113   ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
114   ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
115   ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
116   ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
117   ImmToIdxMap[PPC::LQ] = PPC::LQX_PSEUDO;
118   ImmToIdxMap[PPC::STQ] = PPC::STQX_PSEUDO;
119 
120   // VSX
121   ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
122   ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
123   ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
124   ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
125   ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
126   ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
127   ImmToIdxMap[PPC::LXV] = PPC::LXVX;
128   ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
129   ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
130   ImmToIdxMap[PPC::STXV] = PPC::STXVX;
131   ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
132   ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;
133 
134   // SPE
135   ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
136   ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
137   ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
138   ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;
139 
140   // Power10
141   ImmToIdxMap[PPC::PLBZ]   = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8]   = PPC::LBZX8;
142   ImmToIdxMap[PPC::PLHZ]   = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8]   = PPC::LHZX8;
143   ImmToIdxMap[PPC::PLHA]   = PPC::LHAX; ImmToIdxMap[PPC::PLHA8]   = PPC::LHAX8;
144   ImmToIdxMap[PPC::PLWZ]   = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8]   = PPC::LWZX8;
145   ImmToIdxMap[PPC::PLWA]   = PPC::LWAX; ImmToIdxMap[PPC::PLWA8]   = PPC::LWAX;
146   ImmToIdxMap[PPC::PLD]    = PPC::LDX;  ImmToIdxMap[PPC::PSTD]   = PPC::STDX;
147 
148   ImmToIdxMap[PPC::PSTB]   = PPC::STBX; ImmToIdxMap[PPC::PSTB8]   = PPC::STBX8;
149   ImmToIdxMap[PPC::PSTH]   = PPC::STHX; ImmToIdxMap[PPC::PSTH8]   = PPC::STHX8;
150   ImmToIdxMap[PPC::PSTW]   = PPC::STWX; ImmToIdxMap[PPC::PSTW8]   = PPC::STWX8;
151 
152   ImmToIdxMap[PPC::PLFS]   = PPC::LFSX; ImmToIdxMap[PPC::PSTFS]   = PPC::STFSX;
153   ImmToIdxMap[PPC::PLFD]   = PPC::LFDX; ImmToIdxMap[PPC::PSTFD]   = PPC::STFDX;
154   ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX;
155   ImmToIdxMap[PPC::PLXSD]  = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD]  = PPC::STXSDX;
156   ImmToIdxMap[PPC::PLXV]   = PPC::LXVX; ImmToIdxMap[PPC::PSTXV]  = PPC::STXVX;
157 
158   ImmToIdxMap[PPC::LXVP]   = PPC::LXVPX;
159   ImmToIdxMap[PPC::STXVP]  = PPC::STXVPX;
160   ImmToIdxMap[PPC::PLXVP]  = PPC::LXVPX;
161   ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX;
162 }
163 
164 /// getPointerRegClass - Return the register class to use to hold pointers.
165 /// This is used for addressing modes.
166 const TargetRegisterClass *
167 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
168                                                                        const {
169   // Note that PPCInstrInfo::foldImmediate also directly uses this Kind value
170   // when it checks for ZERO folding.
171   if (Kind == 1) {
172     if (TM.isPPC64())
173       return &PPC::G8RC_NOX0RegClass;
174     return &PPC::GPRC_NOR0RegClass;
175   }
176 
177   if (TM.isPPC64())
178     return &PPC::G8RCRegClass;
179   return &PPC::GPRCRegClass;
180 }
181 
182 const MCPhysReg*
183 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
184   const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
185   if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
186     if (!TM.isPPC64() && Subtarget.isAIXABI())
187       report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
188     if (Subtarget.hasVSX()) {
189       if (Subtarget.pairedVectorMemops())
190         return CSR_64_AllRegs_VSRP_SaveList;
191       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
192         return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList;
193       return CSR_64_AllRegs_VSX_SaveList;
194     }
195     if (Subtarget.hasAltivec()) {
196       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
197         return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList;
198       return CSR_64_AllRegs_Altivec_SaveList;
199     }
200     return CSR_64_AllRegs_SaveList;
201   }
202 
203   // On PPC64, we might need to save r2 (but only if it is not reserved).
204   // We do not need to treat R2 as callee-saved when using PC-Relative calls
205   // because any direct uses of R2 will cause it to be reserved. If the function
206   // is a leaf or the only uses of R2 are implicit uses for calls, the calls
207   // will use the @notoc relocation which will cause this function to set the
208   // st_other bit to 1, thereby communicating to its caller that it arbitrarily
209   // clobbers the TOC.
210   bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
211                 !Subtarget.isUsingPCRelativeCalls();
212 
213   // Cold calling convention CSRs.
214   if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
215     if (Subtarget.isAIXABI())
216       report_fatal_error("Cold calling unimplemented on AIX.");
217     if (TM.isPPC64()) {
218       if (Subtarget.pairedVectorMemops())
219         return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList
220                       : CSR_SVR64_ColdCC_VSRP_SaveList;
221       if (Subtarget.hasAltivec())
222         return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
223                       : CSR_SVR64_ColdCC_Altivec_SaveList;
224       return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
225                     : CSR_SVR64_ColdCC_SaveList;
226     }
227     // 32-bit targets.
228     if (Subtarget.pairedVectorMemops())
229       return CSR_SVR32_ColdCC_VSRP_SaveList;
230     else if (Subtarget.hasAltivec())
231       return CSR_SVR32_ColdCC_Altivec_SaveList;
232     else if (Subtarget.hasSPE())
233       return CSR_SVR32_ColdCC_SPE_SaveList;
234     return CSR_SVR32_ColdCC_SaveList;
235   }
236   // Standard calling convention CSRs.
237   if (TM.isPPC64()) {
238     if (Subtarget.pairedVectorMemops()) {
239       if (Subtarget.isAIXABI()) {
240         if (!TM.getAIXExtendedAltivecABI())
241           return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
242         return SaveR2 ? CSR_AIX64_R2_VSRP_SaveList : CSR_AIX64_VSRP_SaveList;
243       }
244       return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList;
245     }
246     if (Subtarget.hasAltivec() &&
247         (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) {
248       return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
249                     : CSR_PPC64_Altivec_SaveList;
250     }
251     return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
252   }
253   // 32-bit targets.
254   if (Subtarget.isAIXABI()) {
255     if (Subtarget.pairedVectorMemops())
256       return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_VSRP_SaveList
257                                            : CSR_AIX32_SaveList;
258     if (Subtarget.hasAltivec())
259       return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList
260                                            : CSR_AIX32_SaveList;
261     return CSR_AIX32_SaveList;
262   }
263   if (Subtarget.pairedVectorMemops())
264     return CSR_SVR432_VSRP_SaveList;
265   if (Subtarget.hasAltivec())
266     return CSR_SVR432_Altivec_SaveList;
267   else if (Subtarget.hasSPE()) {
268     if (TM.isPositionIndependent() && !TM.isPPC64())
269       return CSR_SVR432_SPE_NO_S30_31_SaveList;
270     return CSR_SVR432_SPE_SaveList;
271    }
272   return CSR_SVR432_SaveList;
273 }
274 
275 const uint32_t *
276 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
277                                       CallingConv::ID CC) const {
278   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
279   if (CC == CallingConv::AnyReg) {
280     if (Subtarget.hasVSX()) {
281       if (Subtarget.pairedVectorMemops())
282         return CSR_64_AllRegs_VSRP_RegMask;
283       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
284         return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask;
285       return CSR_64_AllRegs_VSX_RegMask;
286     }
287     if (Subtarget.hasAltivec()) {
288       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
289         return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask;
290       return CSR_64_AllRegs_Altivec_RegMask;
291     }
292     return CSR_64_AllRegs_RegMask;
293   }
294 
295   if (Subtarget.isAIXABI()) {
296     if (Subtarget.pairedVectorMemops()) {
297       if (!TM.getAIXExtendedAltivecABI())
298         return TM.isPPC64() ? CSR_PPC64_RegMask : CSR_AIX32_RegMask;
299       return TM.isPPC64() ? CSR_AIX64_VSRP_RegMask : CSR_AIX32_VSRP_RegMask;
300     }
301     return TM.isPPC64()
302                ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
303                       ? CSR_PPC64_Altivec_RegMask
304                       : CSR_PPC64_RegMask)
305                : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
306                       ? CSR_AIX32_Altivec_RegMask
307                       : CSR_AIX32_RegMask);
308   }
309 
310   if (CC == CallingConv::Cold) {
311     if (TM.isPPC64())
312       return Subtarget.pairedVectorMemops()
313                  ? CSR_SVR64_ColdCC_VSRP_RegMask
314                  : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
315                                            : CSR_SVR64_ColdCC_RegMask);
316     else
317       return Subtarget.pairedVectorMemops()
318                  ? CSR_SVR32_ColdCC_VSRP_RegMask
319                  : (Subtarget.hasAltivec()
320                         ? CSR_SVR32_ColdCC_Altivec_RegMask
321                         : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask
322                                               : CSR_SVR32_ColdCC_RegMask));
323   }
324 
325   if (TM.isPPC64())
326     return Subtarget.pairedVectorMemops()
327                ? CSR_SVR464_VSRP_RegMask
328                : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
329                                          : CSR_PPC64_RegMask);
330   else
331     return Subtarget.pairedVectorMemops()
332                ? CSR_SVR432_VSRP_RegMask
333                : (Subtarget.hasAltivec()
334                       ? CSR_SVR432_Altivec_RegMask
335                       : (Subtarget.hasSPE()
336                              ? (TM.isPositionIndependent()
337                                      ? CSR_SVR432_SPE_NO_S30_31_RegMask
338                                      : CSR_SVR432_SPE_RegMask)
339                              : CSR_SVR432_RegMask));
340 }
341 
342 const uint32_t*
343 PPCRegisterInfo::getNoPreservedMask() const {
344   return CSR_NoRegs_RegMask;
345 }
346 
347 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
348   for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
349     Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
350 }
351 
352 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
353   BitVector Reserved(getNumRegs());
354   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
355   const PPCFrameLowering *TFI = getFrameLowering(MF);
356 
357   // The ZERO register is not really a register, but the representation of r0
358   // when used in instructions that treat r0 as the constant 0.
359   markSuperRegs(Reserved, PPC::ZERO);
360 
361   // The FP register is also not really a register, but is the representation
362   // of the frame pointer register used by ISD::FRAMEADDR.
363   markSuperRegs(Reserved, PPC::FP);
364 
365   // The BP register is also not really a register, but is the representation
366   // of the base pointer register used by setjmp.
367   markSuperRegs(Reserved, PPC::BP);
368 
369   // The counter registers must be reserved so that counter-based loops can
370   // be correctly formed (and the mtctr instructions are not DCE'd).
371   markSuperRegs(Reserved, PPC::CTR);
372   markSuperRegs(Reserved, PPC::CTR8);
373 
374   markSuperRegs(Reserved, PPC::R1);
375   markSuperRegs(Reserved, PPC::LR);
376   markSuperRegs(Reserved, PPC::LR8);
377   markSuperRegs(Reserved, PPC::RM);
378 
379   markSuperRegs(Reserved, PPC::VRSAVE);
380 
381   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
382   bool UsesTOCBasePtr = FuncInfo->usesTOCBasePtr();
383   // The SVR4 ABI reserves r2 and r13
384   if (Subtarget.isSVR4ABI() || Subtarget.isAIXABI()) {
385     // We only reserve r2 if we need to use the TOC pointer. If we have no
386     // explicit uses of the TOC pointer (meaning we're a leaf function with
387     // no constant-pool loads, etc.) and we have no potential uses inside an
388     // inline asm block, then we can treat r2 has an ordinary callee-saved
389     // register.
390     if (!TM.isPPC64() || UsesTOCBasePtr || MF.hasInlineAsm())
391       markSuperRegs(Reserved, PPC::R2); // System-reserved register.
392 
393     if (Subtarget.isSVR4ABI())
394       markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register.
395   }
396 
397   // On PPC64, r13 is the thread pointer. Never allocate this register.
398   if (TM.isPPC64())
399     markSuperRegs(Reserved, PPC::R13);
400 
401   if (TFI->needsFP(MF))
402     markSuperRegs(Reserved, PPC::R31);
403 
404   bool IsPositionIndependent = TM.isPositionIndependent();
405   if (hasBasePointer(MF)) {
406     if (Subtarget.is32BitELFABI() && IsPositionIndependent)
407       markSuperRegs(Reserved, PPC::R29);
408     else
409       markSuperRegs(Reserved, PPC::R30);
410   }
411 
412   if (Subtarget.is32BitELFABI() && IsPositionIndependent)
413     markSuperRegs(Reserved, PPC::R30);
414 
415   // Reserve Altivec registers when Altivec is unavailable.
416   if (!Subtarget.hasAltivec())
417     for (MCRegister Reg : PPC::VRRCRegClass)
418       markSuperRegs(Reserved, Reg);
419 
420   if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
421       !TM.getAIXExtendedAltivecABI()) {
422     //  In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved
423     //  and cannot be used.
424     for (auto Reg : CSR_Altivec_SaveList) {
425       if (Reg == 0)
426         break;
427       markSuperRegs(Reserved, Reg);
428       for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) {
429         Reserved.set(*AS);
430       }
431     }
432   }
433 
434   assert(checkAllSuperRegsMarked(Reserved));
435   return Reserved;
436 }
437 
438 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF,
439                                        MCRegister PhysReg) const {
440   // CTR and LR registers are always reserved, but they are asm clobberable.
441   if (PhysReg == PPC::CTR || PhysReg == PPC::CTR8 || PhysReg == PPC::LR ||
442       PhysReg == PPC::LR8)
443     return true;
444 
445   return !getReservedRegs(MF).test(PhysReg);
446 }
447 
448 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
449   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
450   const PPCInstrInfo *InstrInfo =  Subtarget.getInstrInfo();
451   const MachineFrameInfo &MFI = MF.getFrameInfo();
452   const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
453 
454   LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName()
455                     << ".\n");
456   // If the callee saved info is invalid we have to default to true for safety.
457   if (!MFI.isCalleeSavedInfoValid()) {
458     LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n");
459     return true;
460   }
461 
462   // We will require the use of X-Forms because the frame is larger than what
463   // can be represented in signed 16 bits that fit in the immediate of a D-Form.
464   // If we need an X-Form then we need a register to store the address offset.
465   unsigned FrameSize = MFI.getStackSize();
466   // Signed 16 bits means that the FrameSize cannot be more than 15 bits.
467   if (FrameSize & ~0x7FFF) {
468     LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n");
469     return true;
470   }
471 
472   // The callee saved info is valid so it can be traversed.
473   // Checking for registers that need saving that do not have load or store
474   // forms where the address offset is an immediate.
475   for (const CalleeSavedInfo &CSI : Info) {
476     // If the spill is to a register no scavenging is required.
477     if (CSI.isSpilledToReg())
478       continue;
479 
480     int FrIdx = CSI.getFrameIdx();
481     Register Reg = CSI.getReg();
482 
483     const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
484     unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
485     if (!MFI.isFixedObjectIndex(FrIdx)) {
486       // This is not a fixed object. If it requires alignment then we may still
487       // need to use the XForm.
488       if (offsetMinAlignForOpcode(Opcode) > 1) {
489         LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
490                           << " for register " << printReg(Reg, this) << ".\n");
491         LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires "
492                           << "alignment.\n");
493         return true;
494       }
495     }
496 
497     // This is eiher:
498     // 1) A fixed frame index object which we know are aligned so
499     // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
500     // need to consider the alignment here.
501     // 2) A not fixed object but in that case we now know that the min required
502     // alignment is no more than 1 based on the previous check.
503     if (InstrInfo->isXFormMemOp(Opcode)) {
504       LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
505                         << " for register " << printReg(Reg, this) << ".\n");
506       LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n");
507       return true;
508     }
509 
510     // This is a spill/restore of a quadword.
511     if ((Opcode == PPC::RESTORE_QUADWORD) || (Opcode == PPC::SPILL_QUADWORD)) {
512       LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
513                         << " for register " << printReg(Reg, this) << ".\n");
514       LLVM_DEBUG(dbgs() << "TRUE - Memory operand is a quadword.\n");
515       return true;
516     }
517   }
518   LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n");
519   return false;
520 }
521 
522 bool PPCRegisterInfo::requiresVirtualBaseRegisters(
523     const MachineFunction &MF) const {
524   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
525   // Do not use virtual base registers when ROP protection is turned on.
526   // Virtual base registers break the layout of the local variable space and may
527   // push the ROP Hash location past the 512 byte range of the ROP store
528   // instruction.
529   return !Subtarget.hasROPProtect();
530 }
531 
532 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
533                                                const MachineFunction &MF) const {
534   assert(PhysReg.isPhysical());
535   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
536   const MachineFrameInfo &MFI = MF.getFrameInfo();
537 
538   if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI())
539     return false;
540   if (PhysReg == Subtarget.getTOCPointerRegister())
541     // X2/R2 is guaranteed to be preserved within a function if it is reserved.
542     // The reason it's reserved is that it's the TOC pointer (and the function
543     // uses the TOC). In functions where it isn't reserved (i.e. leaf functions
544     // with no TOC access), we can't claim that it is preserved.
545     return (getReservedRegs(MF).test(PhysReg));
546   if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() &&
547       !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
548     // The value of the stack pointer does not change within a function after
549     // the prologue and before the epilogue if there are no dynamic allocations
550     // and no inline asm which clobbers X1/R1.
551     return true;
552   return false;
553 }
554 
555 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg,
556                                             ArrayRef<MCPhysReg> Order,
557                                             SmallVectorImpl<MCPhysReg> &Hints,
558                                             const MachineFunction &MF,
559                                             const VirtRegMap *VRM,
560                                             const LiveRegMatrix *Matrix) const {
561   const MachineRegisterInfo *MRI = &MF.getRegInfo();
562 
563   // Call the base implementation first to set any hints based on the usual
564   // heuristics and decide what the return value should be. We want to return
565   // the same value returned by the base implementation. If the base
566   // implementation decides to return true and force the allocation then we
567   // will leave it as such. On the other hand if the base implementation
568   // decides to return false the following code will not force the allocation
569   // as we are just looking to provide a hint.
570   bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
571       VirtReg, Order, Hints, MF, VRM, Matrix);
572 
573   // Don't use the allocation hints for ISAFuture.
574   // The WACC registers used in ISAFuture are unlike the ACC registers on
575   // Power 10 and so this logic to register allocation hints does not apply.
576   if (MF.getSubtarget<PPCSubtarget>().isISAFuture())
577     return BaseImplRetVal;
578 
579   // We are interested in instructions that copy values to ACC/UACC.
580   // The copy into UACC will be simply a COPY to a subreg so we
581   // want to allocate the corresponding physical subreg for the source.
582   // The copy into ACC will be a BUILD_UACC so we want to allocate
583   // the same number UACC for the source.
584   const TargetRegisterClass *RegClass = MRI->getRegClass(VirtReg);
585   for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) {
586     const MachineOperand *ResultOp = nullptr;
587     Register ResultReg;
588     switch (Use.getOpcode()) {
589     case TargetOpcode::COPY: {
590       ResultOp = &Use.getOperand(0);
591       ResultReg = ResultOp->getReg();
592       if (ResultReg.isVirtual() &&
593           MRI->getRegClass(ResultReg)->contains(PPC::UACC0) &&
594           VRM->hasPhys(ResultReg)) {
595         Register UACCPhys = VRM->getPhys(ResultReg);
596         Register HintReg;
597         if (RegClass->contains(PPC::VSRp0)) {
598           HintReg = getSubReg(UACCPhys, ResultOp->getSubReg());
599           // Ensure that the hint is a VSRp register.
600           if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31)
601             Hints.push_back(HintReg);
602         } else if (RegClass->contains(PPC::ACC0)) {
603           HintReg = PPC::ACC0 + (UACCPhys - PPC::UACC0);
604           if (HintReg >= PPC::ACC0 && HintReg <= PPC::ACC7)
605             Hints.push_back(HintReg);
606         }
607       }
608       break;
609     }
610     case PPC::BUILD_UACC: {
611       ResultOp = &Use.getOperand(0);
612       ResultReg = ResultOp->getReg();
613       if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) &&
614           VRM->hasPhys(ResultReg)) {
615         Register ACCPhys = VRM->getPhys(ResultReg);
616         assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) &&
617                "Expecting an ACC register for BUILD_UACC.");
618         Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0);
619         Hints.push_back(HintReg);
620       }
621       break;
622     }
623     }
624   }
625   return BaseImplRetVal;
626 }
627 
628 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
629                                               MachineFunction &MF) const {
630   const PPCFrameLowering *TFI = getFrameLowering(MF);
631   const unsigned DefaultSafety = 1;
632 
633   switch (RC->getID()) {
634   default:
635     return 0;
636   case PPC::G8RC_NOX0RegClassID:
637   case PPC::GPRC_NOR0RegClassID:
638   case PPC::SPERCRegClassID:
639   case PPC::G8RCRegClassID:
640   case PPC::GPRCRegClassID: {
641     unsigned FP = TFI->hasFP(MF) ? 1 : 0;
642     return 32 - FP - DefaultSafety;
643   }
644   case PPC::F4RCRegClassID:
645   case PPC::F8RCRegClassID:
646   case PPC::VSLRCRegClassID:
647     return 32 - DefaultSafety;
648   case PPC::VFRCRegClassID:
649   case PPC::VRRCRegClassID: {
650     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
651     // Vector registers VR20-VR31 are reserved and cannot be used in the default
652     // Altivec ABI on AIX.
653     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
654       return 20 - DefaultSafety;
655   }
656     return 32 - DefaultSafety;
657   case PPC::VSFRCRegClassID:
658   case PPC::VSSRCRegClassID:
659   case PPC::VSRCRegClassID: {
660     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
661     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
662       // Vector registers VR20-VR31 are reserved and cannot be used in the
663       // default Altivec ABI on AIX.
664       return 52 - DefaultSafety;
665   }
666     return 64 - DefaultSafety;
667   case PPC::CRRCRegClassID:
668     return 8 - DefaultSafety;
669   }
670 }
671 
672 const TargetRegisterClass *
673 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
674                                            const MachineFunction &MF) const {
675   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
676   const auto *DefaultSuperclass =
677       TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
678   if (Subtarget.hasVSX()) {
679     // With VSX, we can inflate various sub-register classes to the full VSX
680     // register set.
681 
682     // For Power9 we allow the user to enable GPR to vector spills.
683     // FIXME: Currently limited to spilling GP8RC. A follow on patch will add
684     // support to spill GPRC.
685     if (TM.isELFv2ABI() || Subtarget.isAIXABI()) {
686       if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
687           RC == &PPC::G8RCRegClass) {
688         InflateGP8RC++;
689         return &PPC::SPILLTOVSRRCRegClass;
690       }
691       if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
692         InflateGPRC++;
693     }
694 
695     for (unsigned SuperID : RC->superclasses()) {
696       if (getRegSizeInBits(*getRegClass(SuperID)) != getRegSizeInBits(*RC))
697         continue;
698 
699       switch (SuperID) {
700       case PPC::VSSRCRegClassID:
701         return Subtarget.hasP8Vector() ? getRegClass(SuperID)
702                                        : DefaultSuperclass;
703       case PPC::VSFRCRegClassID:
704       case PPC::VSRCRegClassID:
705         return getRegClass(SuperID);
706       case PPC::VSRpRCRegClassID:
707         return Subtarget.pairedVectorMemops() ? getRegClass(SuperID)
708                                               : DefaultSuperclass;
709       case PPC::ACCRCRegClassID:
710       case PPC::UACCRCRegClassID:
711         return Subtarget.hasMMA() ? getRegClass(SuperID) : DefaultSuperclass;
712       }
713     }
714   }
715 
716   return DefaultSuperclass;
717 }
718 
719 //===----------------------------------------------------------------------===//
720 // Stack Frame Processing methods
721 //===----------------------------------------------------------------------===//
722 
723 /// lowerDynamicAlloc - Generate the code for allocating an object in the
724 /// current frame.  The sequence of code will be in the general form
725 ///
726 ///   addi   R0, SP, \#frameSize ; get the address of the previous frame
727 ///   stwxu  R0, SP, Rnegsize   ; add and update the SP with the negated size
728 ///   addi   Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
729 ///
730 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
731   // Get the instruction.
732   MachineInstr &MI = *II;
733   // Get the instruction's basic block.
734   MachineBasicBlock &MBB = *MI.getParent();
735   // Get the basic block's function.
736   MachineFunction &MF = *MBB.getParent();
737   // Get the frame info.
738   MachineFrameInfo &MFI = MF.getFrameInfo();
739   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
740   // Get the instruction info.
741   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
742   // Determine whether 64-bit pointers are used.
743   bool LP64 = TM.isPPC64();
744   DebugLoc dl = MI.getDebugLoc();
745 
746   // Get the maximum call stack size.
747   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
748   Align MaxAlign = MFI.getMaxAlign();
749   assert(isAligned(MaxAlign, maxCallFrameSize) &&
750          "Maximum call-frame size not sufficiently aligned");
751   (void)MaxAlign;
752 
753   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
754   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
755   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
756   bool KillNegSizeReg = MI.getOperand(1).isKill();
757   Register NegSizeReg = MI.getOperand(1).getReg();
758 
759   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
760   // Grow the stack and update the stack pointer link, then determine the
761   // address of new allocated space.
762   if (LP64) {
763     BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
764         .addReg(Reg, RegState::Kill)
765         .addReg(PPC::X1)
766         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
767     BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
768         .addReg(PPC::X1)
769         .addImm(maxCallFrameSize);
770   } else {
771     BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
772         .addReg(Reg, RegState::Kill)
773         .addReg(PPC::R1)
774         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
775     BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
776         .addReg(PPC::R1)
777         .addImm(maxCallFrameSize);
778   }
779 
780   // Discard the DYNALLOC instruction.
781   MBB.erase(II);
782 }
783 
784 /// To accomplish dynamic stack allocation, we have to calculate exact size
785 /// subtracted from the stack pointer according alignment information and get
786 /// previous frame pointer.
787 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
788                                            Register &NegSizeReg,
789                                            bool &KillNegSizeReg,
790                                            Register &FramePointer) const {
791   // Get the instruction.
792   MachineInstr &MI = *II;
793   // Get the instruction's basic block.
794   MachineBasicBlock &MBB = *MI.getParent();
795   // Get the basic block's function.
796   MachineFunction &MF = *MBB.getParent();
797   // Get the frame info.
798   MachineFrameInfo &MFI = MF.getFrameInfo();
799   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
800   // Get the instruction info.
801   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
802   // Determine whether 64-bit pointers are used.
803   bool LP64 = TM.isPPC64();
804   DebugLoc dl = MI.getDebugLoc();
805   // Get the total frame size.
806   unsigned FrameSize = MFI.getStackSize();
807 
808   // Get stack alignments.
809   const PPCFrameLowering *TFI = getFrameLowering(MF);
810   Align TargetAlign = TFI->getStackAlign();
811   Align MaxAlign = MFI.getMaxAlign();
812 
813   // Determine the previous frame's address.  If FrameSize can't be
814   // represented as 16 bits or we need special alignment, then we load the
815   // previous frame's address from 0(SP).  Why not do an addis of the hi?
816   // Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
817   // Constructing the constant and adding would take 3 instructions.
818   // Fortunately, a frame greater than 32K is rare.
819   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
820   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
821 
822   if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
823     if (LP64)
824       BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
825           .addReg(PPC::X31)
826           .addImm(FrameSize);
827     else
828       BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
829           .addReg(PPC::R31)
830           .addImm(FrameSize);
831   } else if (LP64) {
832     BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
833         .addImm(0)
834         .addReg(PPC::X1);
835   } else {
836     BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
837         .addImm(0)
838         .addReg(PPC::R1);
839   }
840   // Determine the actual NegSizeReg according to alignment info.
841   if (LP64) {
842     if (MaxAlign > TargetAlign) {
843       unsigned UnalNegSizeReg = NegSizeReg;
844       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
845 
846       // Unfortunately, there is no andi, only andi., and we can't insert that
847       // here because we might clobber cr0 while it is live.
848       BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
849           .addImm(~(MaxAlign.value() - 1));
850 
851       unsigned NegSizeReg1 = NegSizeReg;
852       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
853       BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
854           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
855           .addReg(NegSizeReg1, RegState::Kill);
856       KillNegSizeReg = true;
857     }
858   } else {
859     if (MaxAlign > TargetAlign) {
860       unsigned UnalNegSizeReg = NegSizeReg;
861       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
862 
863       // Unfortunately, there is no andi, only andi., and we can't insert that
864       // here because we might clobber cr0 while it is live.
865       BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
866           .addImm(~(MaxAlign.value() - 1));
867 
868       unsigned NegSizeReg1 = NegSizeReg;
869       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
870       BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
871           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
872           .addReg(NegSizeReg1, RegState::Kill);
873       KillNegSizeReg = true;
874     }
875   }
876 }
877 
878 void PPCRegisterInfo::lowerPrepareProbedAlloca(
879     MachineBasicBlock::iterator II) const {
880   MachineInstr &MI = *II;
881   // Get the instruction's basic block.
882   MachineBasicBlock &MBB = *MI.getParent();
883   // Get the basic block's function.
884   MachineFunction &MF = *MBB.getParent();
885   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
886   // Get the instruction info.
887   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
888   // Determine whether 64-bit pointers are used.
889   bool LP64 = TM.isPPC64();
890   DebugLoc dl = MI.getDebugLoc();
891   Register FramePointer = MI.getOperand(0).getReg();
892   const Register ActualNegSizeReg = MI.getOperand(1).getReg();
893   bool KillNegSizeReg = MI.getOperand(2).isKill();
894   Register NegSizeReg = MI.getOperand(2).getReg();
895   const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
896   // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
897   if (FramePointer == NegSizeReg) {
898     assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
899                              "NegSizeReg should be killed");
900     // FramePointer is clobbered earlier than the use of NegSizeReg in
901     // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
902     // misuse.
903     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
904         .addReg(NegSizeReg)
905         .addReg(NegSizeReg);
906     NegSizeReg = ActualNegSizeReg;
907     KillNegSizeReg = false;
908   }
909   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
910   // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
911   // TargetAlign.
912   if (NegSizeReg != ActualNegSizeReg)
913     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
914         .addReg(NegSizeReg)
915         .addReg(NegSizeReg);
916   MBB.erase(II);
917 }
918 
919 void PPCRegisterInfo::lowerDynamicAreaOffset(
920     MachineBasicBlock::iterator II) const {
921   // Get the instruction.
922   MachineInstr &MI = *II;
923   // Get the instruction's basic block.
924   MachineBasicBlock &MBB = *MI.getParent();
925   // Get the basic block's function.
926   MachineFunction &MF = *MBB.getParent();
927   // Get the frame info.
928   MachineFrameInfo &MFI = MF.getFrameInfo();
929   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
930   // Get the instruction info.
931   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
932 
933   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
934   bool is64Bit = TM.isPPC64();
935   DebugLoc dl = MI.getDebugLoc();
936   BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
937           MI.getOperand(0).getReg())
938       .addImm(maxCallFrameSize);
939   MBB.erase(II);
940 }
941 
942 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
943 /// reserving a whole register (R0), we scrounge for one here. This generates
944 /// code like this:
945 ///
946 ///   mfcr rA                  ; Move the conditional register into GPR rA.
947 ///   rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
948 ///   stw rA, FI               ; Store rA to the frame.
949 ///
950 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
951                                       unsigned FrameIndex) const {
952   // Get the instruction.
953   MachineInstr &MI = *II;       // ; SPILL_CR <SrcReg>, <offset>
954   // Get the instruction's basic block.
955   MachineBasicBlock &MBB = *MI.getParent();
956   MachineFunction &MF = *MBB.getParent();
957   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
958   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
959   DebugLoc dl = MI.getDebugLoc();
960 
961   bool LP64 = TM.isPPC64();
962   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
963   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
964 
965   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
966   Register SrcReg = MI.getOperand(0).getReg();
967 
968   // We need to store the CR in the low 4-bits of the saved value. First, issue
969   // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
970   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
971       .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
972 
973   // If the saved register wasn't CR0, shift the bits left so that they are in
974   // CR0's slot.
975   if (SrcReg != PPC::CR0) {
976     Register Reg1 = Reg;
977     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
978 
979     // rlwinm rA, rA, ShiftBits, 0, 31.
980     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
981       .addReg(Reg1, RegState::Kill)
982       .addImm(getEncodingValue(SrcReg) * 4)
983       .addImm(0)
984       .addImm(31);
985   }
986 
987   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
988                     .addReg(Reg, RegState::Kill),
989                     FrameIndex);
990 
991   // Discard the pseudo instruction.
992   MBB.erase(II);
993 }
994 
995 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
996                                       unsigned FrameIndex) const {
997   // Get the instruction.
998   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CR <offset>
999   // Get the instruction's basic block.
1000   MachineBasicBlock &MBB = *MI.getParent();
1001   MachineFunction &MF = *MBB.getParent();
1002   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1003   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1004   DebugLoc dl = MI.getDebugLoc();
1005 
1006   bool LP64 = TM.isPPC64();
1007   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1008   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1009 
1010   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1011   Register DestReg = MI.getOperand(0).getReg();
1012   assert(MI.definesRegister(DestReg, /*TRI=*/nullptr) &&
1013          "RESTORE_CR does not define its destination");
1014 
1015   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1016                               Reg), FrameIndex);
1017 
1018   // If the reloaded register isn't CR0, shift the bits right so that they are
1019   // in the right CR's slot.
1020   if (DestReg != PPC::CR0) {
1021     Register Reg1 = Reg;
1022     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1023 
1024     unsigned ShiftBits = getEncodingValue(DestReg)*4;
1025     // rlwinm r11, r11, 32-ShiftBits, 0, 31.
1026     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1027              .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
1028              .addImm(31);
1029   }
1030 
1031   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
1032              .addReg(Reg, RegState::Kill);
1033 
1034   // Discard the pseudo instruction.
1035   MBB.erase(II);
1036 }
1037 
1038 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
1039                                          unsigned FrameIndex) const {
1040   // Get the instruction.
1041   MachineInstr &MI = *II;       // ; SPILL_CRBIT <SrcReg>, <offset>
1042   // Get the instruction's basic block.
1043   MachineBasicBlock &MBB = *MI.getParent();
1044   MachineFunction &MF = *MBB.getParent();
1045   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1046   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1047   const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
1048   DebugLoc dl = MI.getDebugLoc();
1049 
1050   bool LP64 = TM.isPPC64();
1051   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1052   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1053 
1054   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1055   Register SrcReg = MI.getOperand(0).getReg();
1056 
1057   // Search up the BB to find the definition of the CR bit.
1058   MachineBasicBlock::reverse_iterator Ins = MI;
1059   MachineBasicBlock::reverse_iterator Rend = MBB.rend();
1060   ++Ins;
1061   unsigned CRBitSpillDistance = 0;
1062   bool SeenUse = false;
1063   for (; Ins != Rend; ++Ins) {
1064     // Definition found.
1065     if (Ins->modifiesRegister(SrcReg, TRI))
1066       break;
1067     // Use found.
1068     if (Ins->readsRegister(SrcReg, TRI))
1069       SeenUse = true;
1070     // Unable to find CR bit definition within maximum search distance.
1071     if (CRBitSpillDistance == MaxCRBitSpillDist) {
1072       Ins = MI;
1073       break;
1074     }
1075     // Skip debug instructions when counting CR bit spill distance.
1076     if (!Ins->isDebugInstr())
1077       CRBitSpillDistance++;
1078   }
1079 
1080   // Unable to find the definition of the CR bit in the MBB.
1081   if (Ins == MBB.rend())
1082     Ins = MI;
1083 
1084   bool SpillsKnownBit = false;
1085   // There is no need to extract the CR bit if its value is already known.
1086   switch (Ins->getOpcode()) {
1087   case PPC::CRUNSET:
1088     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
1089       .addImm(0);
1090     SpillsKnownBit = true;
1091     break;
1092   case PPC::CRSET:
1093     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
1094       .addImm(-32768);
1095     SpillsKnownBit = true;
1096     break;
1097   default:
1098     // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
1099     // bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
1100     // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
1101     // register), and SETNBC will set this.
1102     if (Subtarget.isISA3_1()) {
1103       BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
1104           .addReg(SrcReg, RegState::Undef);
1105       break;
1106     }
1107 
1108     // On Power9, we can use SETB to extract the LT bit. This only works for
1109     // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
1110     // of the bit we care about (32-bit sign bit) will be set to the value of
1111     // the LT bit (regardless of the other bits in the CR field).
1112     if (Subtarget.isISA3_0()) {
1113       if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
1114           SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
1115           SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
1116           SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
1117         BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
1118           .addReg(getCRFromCRBit(SrcReg), RegState::Undef);
1119         break;
1120       }
1121     }
1122 
1123     // We need to move the CR field that contains the CR bit we are spilling.
1124     // The super register may not be explicitly defined (i.e. it can be defined
1125     // by a CR-logical that only defines the subreg) so we state that the CR
1126     // field is undef. Also, in order to preserve the kill flag on the CR bit,
1127     // we add it as an implicit use.
1128     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
1129       .addReg(getCRFromCRBit(SrcReg), RegState::Undef)
1130       .addReg(SrcReg,
1131               RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));
1132 
1133     // If the saved register wasn't CR0LT, shift the bits left so that the bit
1134     // to store is the first one. Mask all but that bit.
1135     Register Reg1 = Reg;
1136     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1137 
1138     // rlwinm rA, rA, ShiftBits, 0, 0.
1139     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1140       .addReg(Reg1, RegState::Kill)
1141       .addImm(getEncodingValue(SrcReg))
1142       .addImm(0).addImm(0);
1143   }
1144   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
1145                     .addReg(Reg, RegState::Kill),
1146                     FrameIndex);
1147 
1148   bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
1149   // Discard the pseudo instruction.
1150   MBB.erase(II);
1151   if (SpillsKnownBit && KillsCRBit && !SeenUse) {
1152     Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
1153     Ins->removeOperand(0);
1154   }
1155 }
1156 
1157 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
1158                                       unsigned FrameIndex) const {
1159   // Get the instruction.
1160   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CRBIT <offset>
1161   // Get the instruction's basic block.
1162   MachineBasicBlock &MBB = *MI.getParent();
1163   MachineFunction &MF = *MBB.getParent();
1164   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1165   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1166   DebugLoc dl = MI.getDebugLoc();
1167 
1168   bool LP64 = TM.isPPC64();
1169   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1170   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1171 
1172   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1173   Register DestReg = MI.getOperand(0).getReg();
1174   assert(MI.definesRegister(DestReg, /*TRI=*/nullptr) &&
1175          "RESTORE_CRBIT does not define its destination");
1176 
1177   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1178                               Reg), FrameIndex);
1179 
1180   BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
1181 
1182   Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1183   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
1184           .addReg(getCRFromCRBit(DestReg));
1185 
1186   unsigned ShiftBits = getEncodingValue(DestReg);
1187   // rlwimi r11, r10, 32-ShiftBits, ..., ...
1188   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
1189       .addReg(RegO, RegState::Kill)
1190       .addReg(Reg, RegState::Kill)
1191       .addImm(ShiftBits ? 32 - ShiftBits : 0)
1192       .addImm(ShiftBits)
1193       .addImm(ShiftBits);
1194 
1195   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
1196           getCRFromCRBit(DestReg))
1197       .addReg(RegO, RegState::Kill)
1198       // Make sure we have a use dependency all the way through this
1199       // sequence of instructions. We can't have the other bits in the CR
1200       // modified in between the mfocrf and the mtocrf.
1201       .addReg(getCRFromCRBit(DestReg), RegState::Implicit);
1202 
1203   // Discard the pseudo instruction.
1204   MBB.erase(II);
1205 }
1206 
1207 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
1208                                       MCRegister DestReg, MCRegister SrcReg) {
1209 #ifdef NDEBUG
1210   return;
1211 #else
1212   if (ReportAccMoves) {
1213     std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
1214     std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
1215     dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
1216     MBB.dump();
1217   }
1218 #endif
1219 }
1220 
1221 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
1222                                     bool IsRestore) {
1223 #ifdef NDEBUG
1224   return;
1225 #else
1226   if (ReportAccMoves) {
1227     dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
1228            << (IsRestore ? "restore" : "spill") << ":\n";
1229     MBB.dump();
1230   }
1231 #endif
1232 }
1233 
1234 static void spillRegPairs(MachineBasicBlock &MBB,
1235                           MachineBasicBlock::iterator II, DebugLoc DL,
1236                           const TargetInstrInfo &TII, Register SrcReg,
1237                           unsigned FrameIndex, bool IsLittleEndian,
1238                           bool IsKilled, bool TwoPairs) {
1239   unsigned Offset = 0;
1240   // The register arithmetic in this function does not support virtual
1241   // registers.
1242   assert(!SrcReg.isVirtual() &&
1243          "Spilling register pairs does not support virtual registers.");
1244 
1245   if (TwoPairs)
1246     Offset = IsLittleEndian ? 48 : 0;
1247   else
1248     Offset = IsLittleEndian ? 16 : 0;
1249   Register Reg = (SrcReg > PPC::VSRp15) ? PPC::V0 + (SrcReg - PPC::VSRp16) * 2
1250                                         : PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1251   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1252                         .addReg(Reg, getKillRegState(IsKilled)),
1253                     FrameIndex, Offset);
1254   Offset += IsLittleEndian ? -16 : 16;
1255   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1256                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1257                     FrameIndex, Offset);
1258   if (TwoPairs) {
1259     Offset += IsLittleEndian ? -16 : 16;
1260     addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1261                           .addReg(Reg + 2, getKillRegState(IsKilled)),
1262                       FrameIndex, Offset);
1263     Offset += IsLittleEndian ? -16 : 16;
1264     addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1265                           .addReg(Reg + 3, getKillRegState(IsKilled)),
1266                       FrameIndex, Offset);
1267   }
1268 }
1269 
1270 /// Remove any STXVP[X] instructions and split them out into a pair of
1271 /// STXV[X] instructions if --disable-auto-paired-vec-st is specified on
1272 /// the command line.
1273 void PPCRegisterInfo::lowerOctWordSpilling(MachineBasicBlock::iterator II,
1274                                            unsigned FrameIndex) const {
1275   assert(DisableAutoPairedVecSt &&
1276          "Expecting to do this only if paired vector stores are disabled.");
1277   MachineInstr &MI = *II; // STXVP <SrcReg>, <offset>
1278   MachineBasicBlock &MBB = *MI.getParent();
1279   MachineFunction &MF = *MBB.getParent();
1280   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1281   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1282   DebugLoc DL = MI.getDebugLoc();
1283   Register SrcReg = MI.getOperand(0).getReg();
1284   bool IsLittleEndian = Subtarget.isLittleEndian();
1285   bool IsKilled = MI.getOperand(0).isKill();
1286   spillRegPairs(MBB, II, DL, TII, SrcReg, FrameIndex, IsLittleEndian, IsKilled,
1287                 /* TwoPairs */ false);
1288   // Discard the original instruction.
1289   MBB.erase(II);
1290 }
1291 
1292 static void emitWAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsRestore) {
1293 #ifdef NDEBUG
1294   return;
1295 #else
1296   if (ReportAccMoves) {
1297     dbgs() << "Emitting wacc register " << (IsRestore ? "restore" : "spill")
1298            << ":\n";
1299     MBB.dump();
1300   }
1301 #endif
1302 }
1303 
1304 /// lowerACCSpilling - Generate the code for spilling the accumulator register.
1305 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually
1306 /// eliminate the FrameIndex here nor compute the stack offset. We simply
1307 /// create a real instruction with an FI and rely on eliminateFrameIndex to
1308 /// handle the FI elimination.
1309 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
1310                                        unsigned FrameIndex) const {
1311   MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
1312   MachineBasicBlock &MBB = *MI.getParent();
1313   MachineFunction &MF = *MBB.getParent();
1314   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1315   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1316   DebugLoc DL = MI.getDebugLoc();
1317   Register SrcReg = MI.getOperand(0).getReg();
1318   bool IsKilled = MI.getOperand(0).isKill();
1319 
1320   bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1321   Register Reg =
1322       PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1323   bool IsLittleEndian = Subtarget.isLittleEndian();
1324 
1325   emitAccSpillRestoreInfo(MBB, IsPrimed, false);
1326 
1327   // De-prime the register being spilled, create two stores for the pair
1328   // subregisters accounting for endianness and then re-prime the register if
1329   // it isn't killed.  This uses the Offset parameter to addFrameReference() to
1330   // adjust the offset of the store that is within the 64-byte stack slot.
1331   if (IsPrimed)
1332     BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1333   if (DisableAutoPairedVecSt)
1334     spillRegPairs(MBB, II, DL, TII, Reg, FrameIndex, IsLittleEndian, IsKilled,
1335                   /* TwoPairs */ true);
1336   else {
1337     addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1338                           .addReg(Reg, getKillRegState(IsKilled)),
1339                       FrameIndex, IsLittleEndian ? 32 : 0);
1340     addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1341                           .addReg(Reg + 1, getKillRegState(IsKilled)),
1342                       FrameIndex, IsLittleEndian ? 0 : 32);
1343   }
1344   if (IsPrimed && !IsKilled)
1345     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1346 
1347   // Discard the pseudo instruction.
1348   MBB.erase(II);
1349 }
1350 
1351 /// lowerACCRestore - Generate the code to restore the accumulator register.
1352 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
1353                                       unsigned FrameIndex) const {
1354   MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
1355   MachineBasicBlock &MBB = *MI.getParent();
1356   MachineFunction &MF = *MBB.getParent();
1357   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1358   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1359   DebugLoc DL = MI.getDebugLoc();
1360 
1361   Register DestReg = MI.getOperand(0).getReg();
1362   assert(MI.definesRegister(DestReg, /*TRI=*/nullptr) &&
1363          "RESTORE_ACC does not define its destination");
1364 
1365   bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
1366   Register Reg =
1367       PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1368   bool IsLittleEndian = Subtarget.isLittleEndian();
1369 
1370   emitAccSpillRestoreInfo(MBB, IsPrimed, true);
1371 
1372   // Create two loads for the pair subregisters accounting for endianness and
1373   // then prime the accumulator register being restored.
1374   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
1375                     FrameIndex, IsLittleEndian ? 32 : 0);
1376   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
1377                     FrameIndex, IsLittleEndian ? 0 : 32);
1378   if (IsPrimed)
1379     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);
1380 
1381   // Discard the pseudo instruction.
1382   MBB.erase(II);
1383 }
1384 
1385 /// lowerWACCSpilling - Generate the code for spilling the wide accumulator
1386 /// register.
1387 void PPCRegisterInfo::lowerWACCSpilling(MachineBasicBlock::iterator II,
1388                                         unsigned FrameIndex) const {
1389   MachineInstr &MI = *II; // SPILL_WACC <SrcReg>, <offset>
1390   MachineBasicBlock &MBB = *MI.getParent();
1391   MachineFunction &MF = *MBB.getParent();
1392   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1393   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1394   DebugLoc DL = MI.getDebugLoc();
1395   bool IsLittleEndian = Subtarget.isLittleEndian();
1396 
1397   emitWAccSpillRestoreInfo(MBB, false);
1398 
1399   const TargetRegisterClass *RC = &PPC::VSRpRCRegClass;
1400   Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC);
1401   Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC);
1402   Register SrcReg = MI.getOperand(0).getReg();
1403 
1404   BuildMI(MBB, II, DL, TII.get(PPC::DMXXEXTFDMR512), VSRpReg0)
1405       .addDef(VSRpReg1)
1406       .addReg(SrcReg);
1407 
1408   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1409                         .addReg(VSRpReg0, RegState::Kill),
1410                     FrameIndex, IsLittleEndian ? 32 : 0);
1411   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1412                         .addReg(VSRpReg1, RegState::Kill),
1413                     FrameIndex, IsLittleEndian ? 0 : 32);
1414 
1415   // Discard the pseudo instruction.
1416   MBB.erase(II);
1417 }
1418 
1419 /// lowerWACCRestore - Generate the code to restore the wide accumulator
1420 /// register.
1421 void PPCRegisterInfo::lowerWACCRestore(MachineBasicBlock::iterator II,
1422                                        unsigned FrameIndex) const {
1423   MachineInstr &MI = *II; // <DestReg> = RESTORE_WACC <offset>
1424   MachineBasicBlock &MBB = *MI.getParent();
1425   MachineFunction &MF = *MBB.getParent();
1426   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1427   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1428   DebugLoc DL = MI.getDebugLoc();
1429   bool IsLittleEndian = Subtarget.isLittleEndian();
1430 
1431   emitWAccSpillRestoreInfo(MBB, true);
1432 
1433   const TargetRegisterClass *RC = &PPC::VSRpRCRegClass;
1434   Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC);
1435   Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC);
1436   Register DestReg = MI.getOperand(0).getReg();
1437 
1438   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg0),
1439                     FrameIndex, IsLittleEndian ? 32 : 0);
1440   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg1),
1441                     FrameIndex, IsLittleEndian ? 0 : 32);
1442 
1443   // Kill VSRpReg0, VSRpReg1   (killedRegState::Killed)
1444   BuildMI(MBB, II, DL, TII.get(PPC::DMXXINSTFDMR512), DestReg)
1445       .addReg(VSRpReg0, RegState::Kill)
1446       .addReg(VSRpReg1, RegState::Kill);
1447 
1448   // Discard the pseudo instruction.
1449   MBB.erase(II);
1450 }
1451 
1452 /// lowerQuadwordSpilling - Generate code to spill paired general register.
1453 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II,
1454                                             unsigned FrameIndex) const {
1455   MachineInstr &MI = *II;
1456   MachineBasicBlock &MBB = *MI.getParent();
1457   MachineFunction &MF = *MBB.getParent();
1458   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1459   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1460   DebugLoc DL = MI.getDebugLoc();
1461 
1462   Register SrcReg = MI.getOperand(0).getReg();
1463   bool IsKilled = MI.getOperand(0).isKill();
1464 
1465   Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2;
1466   bool IsLittleEndian = Subtarget.isLittleEndian();
1467 
1468   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1469                         .addReg(Reg, getKillRegState(IsKilled)),
1470                     FrameIndex, IsLittleEndian ? 8 : 0);
1471   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1472                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1473                     FrameIndex, IsLittleEndian ? 0 : 8);
1474 
1475   // Discard the pseudo instruction.
1476   MBB.erase(II);
1477 }
1478 
1479 /// lowerQuadwordRestore - Generate code to restore paired general register.
1480 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II,
1481                                            unsigned FrameIndex) const {
1482   MachineInstr &MI = *II;
1483   MachineBasicBlock &MBB = *MI.getParent();
1484   MachineFunction &MF = *MBB.getParent();
1485   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1486   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1487   DebugLoc DL = MI.getDebugLoc();
1488 
1489   Register DestReg = MI.getOperand(0).getReg();
1490   assert(MI.definesRegister(DestReg, /*TRI=*/nullptr) &&
1491          "RESTORE_QUADWORD does not define its destination");
1492 
1493   Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2;
1494   bool IsLittleEndian = Subtarget.isLittleEndian();
1495 
1496   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex,
1497                     IsLittleEndian ? 8 : 0);
1498   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex,
1499                     IsLittleEndian ? 0 : 8);
1500 
1501   // Discard the pseudo instruction.
1502   MBB.erase(II);
1503 }
1504 
1505 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
1506                                            Register Reg, int &FrameIdx) const {
1507   // For the nonvolatile condition registers (CR2, CR3, CR4) return true to
1508   // prevent allocating an additional frame slot.
1509   // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
1510   // for 32-bit AIX the CR save area is in the linkage area at SP+4.
1511   // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
1512   // valid.
1513   // For 32-bit ELF, we have previously created the stack slot if needed, so
1514   // return its FrameIdx.
1515   if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
1516     FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
1517     return true;
1518   }
1519   return false;
1520 }
1521 
1522 // If the offset must be a multiple of some value, return what that value is.
1523 static unsigned offsetMinAlignForOpcode(unsigned OpC) {
1524   switch (OpC) {
1525   default:
1526     return 1;
1527   case PPC::LWA:
1528   case PPC::LWA_32:
1529   case PPC::LD:
1530   case PPC::LDU:
1531   case PPC::STD:
1532   case PPC::STDU:
1533   case PPC::DFLOADf32:
1534   case PPC::DFLOADf64:
1535   case PPC::DFSTOREf32:
1536   case PPC::DFSTOREf64:
1537   case PPC::LXSD:
1538   case PPC::LXSSP:
1539   case PPC::STXSD:
1540   case PPC::STXSSP:
1541   case PPC::STQ:
1542     return 4;
1543   case PPC::EVLDD:
1544   case PPC::EVSTDD:
1545     return 8;
1546   case PPC::LXV:
1547   case PPC::STXV:
1548   case PPC::LQ:
1549   case PPC::LXVP:
1550   case PPC::STXVP:
1551     return 16;
1552   }
1553 }
1554 
1555 // If the offset must be a multiple of some value, return what that value is.
1556 static unsigned offsetMinAlign(const MachineInstr &MI) {
1557   unsigned OpC = MI.getOpcode();
1558   return offsetMinAlignForOpcode(OpC);
1559 }
1560 
1561 // Return the OffsetOperandNo given the FIOperandNum (and the instruction).
1562 static unsigned getOffsetONFromFION(const MachineInstr &MI,
1563                                     unsigned FIOperandNum) {
1564   // Take into account whether it's an add or mem instruction
1565   unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
1566   if (MI.isInlineAsm())
1567     OffsetOperandNo = FIOperandNum - 1;
1568   else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
1569            MI.getOpcode() == TargetOpcode::PATCHPOINT)
1570     OffsetOperandNo = FIOperandNum + 1;
1571 
1572   return OffsetOperandNo;
1573 }
1574 
1575 bool
1576 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1577                                      int SPAdj, unsigned FIOperandNum,
1578                                      RegScavenger *RS) const {
1579   assert(SPAdj == 0 && "Unexpected");
1580 
1581   // Get the instruction.
1582   MachineInstr &MI = *II;
1583   // Get the instruction's basic block.
1584   MachineBasicBlock &MBB = *MI.getParent();
1585   // Get the basic block's function.
1586   MachineFunction &MF = *MBB.getParent();
1587   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1588   // Get the instruction info.
1589   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1590   // Get the frame info.
1591   MachineFrameInfo &MFI = MF.getFrameInfo();
1592   DebugLoc dl = MI.getDebugLoc();
1593 
1594   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1595 
1596   // Get the frame index.
1597   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
1598 
1599   // Get the frame pointer save index.  Users of this index are primarily
1600   // DYNALLOC instructions.
1601   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1602   int FPSI = FI->getFramePointerSaveIndex();
1603   // Get the instruction opcode.
1604   unsigned OpC = MI.getOpcode();
1605 
1606   if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
1607     lowerDynamicAreaOffset(II);
1608     // lowerDynamicAreaOffset erases II
1609     return true;
1610   }
1611 
1612   // Special case for dynamic alloca.
1613   if (FPSI && FrameIndex == FPSI &&
1614       (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
1615     lowerDynamicAlloc(II);
1616     // lowerDynamicAlloc erases II
1617     return true;
1618   }
1619 
1620   if (FPSI && FrameIndex == FPSI &&
1621       (OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
1622        OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
1623        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
1624        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
1625     lowerPrepareProbedAlloca(II);
1626     // lowerPrepareProbedAlloca erases II
1627     return true;
1628   }
1629 
1630   // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
1631   if (OpC == PPC::SPILL_CR) {
1632     lowerCRSpilling(II, FrameIndex);
1633     return true;
1634   } else if (OpC == PPC::RESTORE_CR) {
1635     lowerCRRestore(II, FrameIndex);
1636     return true;
1637   } else if (OpC == PPC::SPILL_CRBIT) {
1638     lowerCRBitSpilling(II, FrameIndex);
1639     return true;
1640   } else if (OpC == PPC::RESTORE_CRBIT) {
1641     lowerCRBitRestore(II, FrameIndex);
1642     return true;
1643   } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
1644     lowerACCSpilling(II, FrameIndex);
1645     return true;
1646   } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
1647     lowerACCRestore(II, FrameIndex);
1648     return true;
1649   } else if (OpC == PPC::STXVP && DisableAutoPairedVecSt) {
1650     lowerOctWordSpilling(II, FrameIndex);
1651     return true;
1652   } else if (OpC == PPC::SPILL_WACC) {
1653     lowerWACCSpilling(II, FrameIndex);
1654     return true;
1655   } else if (OpC == PPC::RESTORE_WACC) {
1656     lowerWACCRestore(II, FrameIndex);
1657     return true;
1658   } else if (OpC == PPC::SPILL_QUADWORD) {
1659     lowerQuadwordSpilling(II, FrameIndex);
1660     return true;
1661   } else if (OpC == PPC::RESTORE_QUADWORD) {
1662     lowerQuadwordRestore(II, FrameIndex);
1663     return true;
1664   }
1665 
1666   // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
1667   MI.getOperand(FIOperandNum).ChangeToRegister(
1668     FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
1669 
1670   // If the instruction is not present in ImmToIdxMap, then it has no immediate
1671   // form (and must be r+r).
1672   bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
1673                    OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
1674 
1675   // Now add the frame object offset to the offset from r1.
1676   int64_t Offset = MFI.getObjectOffset(FrameIndex);
1677   Offset += MI.getOperand(OffsetOperandNo).getImm();
1678 
1679   // If we're not using a Frame Pointer that has been set to the value of the
1680   // SP before having the stack size subtracted from it, then add the stack size
1681   // to Offset to get the correct offset.
1682   // Naked functions have stack size 0, although getStackSize may not reflect
1683   // that because we didn't call all the pieces that compute it for naked
1684   // functions.
1685   if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
1686     if (!(hasBasePointer(MF) && FrameIndex < 0))
1687       Offset += MFI.getStackSize();
1688   }
1689 
1690   // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can
1691   // transform it to the prefixed version so we don't have to use the XForm.
1692   if ((OpC == PPC::LXVP || OpC == PPC::STXVP) &&
1693       (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) &&
1694       Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector()) {
1695     unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP;
1696     MI.setDesc(TII.get(NewOpc));
1697     OpC = NewOpc;
1698   }
1699 
1700   // If we can, encode the offset directly into the instruction.  If this is a
1701   // normal PPC "ri" instruction, any 16-bit value can be safely encoded.  If
1702   // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
1703   // clear can be encoded.  This is extremely uncommon, because normally you
1704   // only "std" to a stack slot that is at least 4-byte aligned, but it can
1705   // happen in invalid code.
1706   assert(OpC != PPC::DBG_VALUE &&
1707          "This should be handled in a target-independent way");
1708   // FIXME: This should be factored out to a separate function as prefixed
1709   // instructions add a number of opcodes for which we can use 34-bit imm.
1710   bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
1711                             isUInt<8>(Offset) :
1712                             isInt<16>(Offset);
1713   if (TII.isPrefixed(MI.getOpcode()))
1714     OffsetFitsMnemonic = isInt<34>(Offset);
1715   if (!noImmForm && ((OffsetFitsMnemonic &&
1716                       ((Offset % offsetMinAlign(MI)) == 0)) ||
1717                      OpC == TargetOpcode::STACKMAP ||
1718                      OpC == TargetOpcode::PATCHPOINT)) {
1719     MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1720     return false;
1721   }
1722 
1723   // The offset doesn't fit into a single register, scavenge one to build the
1724   // offset in.
1725 
1726   bool is64Bit = TM.isPPC64();
1727   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1728   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1729   const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
1730   unsigned NewOpcode = 0u;
1731   bool ScavengingFailed = RS && RS->getRegsAvailable(RC).none() &&
1732                           RS->getRegsAvailable(&PPC::VSFRCRegClass).any();
1733   Register SRegHi, SReg, VSReg;
1734 
1735   // The register scavenger is unable to get a GPR but can get a VSR. We
1736   // need to stash a GPR into a VSR so that we can free one up.
1737   if (ScavengingFailed && Subtarget.hasDirectMove()) {
1738     // Pick a volatile register and if we are spilling/restoring that
1739     // particular one, pick the next one.
1740     SRegHi = SReg = is64Bit ? PPC::X4 : PPC::R4;
1741     if (MI.getOperand(0).getReg() == SReg)
1742       SRegHi = SReg = SReg + 1;
1743     VSReg = MF.getRegInfo().createVirtualRegister(&PPC::VSFRCRegClass);
1744     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::MTVSRD : PPC::MTVSRWZ), VSReg)
1745         .addReg(SReg);
1746   } else {
1747     SRegHi = MF.getRegInfo().createVirtualRegister(RC);
1748     SReg = MF.getRegInfo().createVirtualRegister(RC);
1749   }
1750 
1751   // Insert a set of rA with the full offset value before the ld, st, or add
1752   if (isInt<16>(Offset))
1753     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
1754         .addImm(Offset);
1755   else if (isInt<32>(Offset)) {
1756     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
1757         .addImm(Offset >> 16);
1758     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
1759         .addReg(SRegHi, RegState::Kill)
1760         .addImm(Offset);
1761   } else {
1762     assert(is64Bit && "Huge stack is only supported on PPC64");
1763     TII.materializeImmPostRA(MBB, II, dl, SReg, Offset);
1764   }
1765 
1766   // Convert into indexed form of the instruction:
1767   //
1768   //   sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
1769   //   addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
1770   unsigned OperandBase;
1771 
1772   if (noImmForm)
1773     OperandBase = 1;
1774   else if (OpC != TargetOpcode::INLINEASM &&
1775            OpC != TargetOpcode::INLINEASM_BR) {
1776     assert(ImmToIdxMap.count(OpC) &&
1777            "No indexed form of load or store available!");
1778     NewOpcode = ImmToIdxMap.find(OpC)->second;
1779     MI.setDesc(TII.get(NewOpcode));
1780     OperandBase = 1;
1781   } else {
1782     OperandBase = OffsetOperandNo;
1783   }
1784 
1785   Register StackReg = MI.getOperand(FIOperandNum).getReg();
1786   MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
1787   MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
1788 
1789   // If we stashed a value from a GPR into a VSR, we need to get it back after
1790   // spilling the register.
1791   if (ScavengingFailed && Subtarget.hasDirectMove())
1792     BuildMI(MBB, ++II, dl, TII.get(is64Bit ? PPC::MFVSRD : PPC::MFVSRWZ), SReg)
1793         .addReg(VSReg);
1794 
1795   // Since these are not real X-Form instructions, we must
1796   // add the registers and access 0(NewReg) rather than
1797   // emitting the X-Form pseudo.
1798   if (NewOpcode == PPC::LQX_PSEUDO || NewOpcode == PPC::STQX_PSEUDO) {
1799     assert(is64Bit && "Quadword loads/stores only supported in 64-bit mode");
1800     Register NewReg = MF.getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
1801     BuildMI(MBB, II, dl, TII.get(PPC::ADD8), NewReg)
1802         .addReg(SReg, RegState::Kill)
1803         .addReg(StackReg);
1804     MI.setDesc(TII.get(NewOpcode == PPC::LQX_PSEUDO ? PPC::LQ : PPC::STQ));
1805     MI.getOperand(OperandBase + 1).ChangeToRegister(NewReg, false);
1806     MI.getOperand(OperandBase).ChangeToImmediate(0);
1807   }
1808   return false;
1809 }
1810 
1811 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
1812   const PPCFrameLowering *TFI = getFrameLowering(MF);
1813 
1814   if (!TM.isPPC64())
1815     return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
1816   else
1817     return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
1818 }
1819 
1820 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
1821   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1822   if (!hasBasePointer(MF))
1823     return getFrameRegister(MF);
1824 
1825   if (TM.isPPC64())
1826     return PPC::X30;
1827 
1828   if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
1829     return PPC::R29;
1830 
1831   return PPC::R30;
1832 }
1833 
1834 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
1835   if (!EnableBasePointer)
1836     return false;
1837   if (AlwaysBasePointer)
1838     return true;
1839 
1840   // If we need to realign the stack, then the stack pointer can no longer
1841   // serve as an offset into the caller's stack space. As a result, we need a
1842   // base pointer.
1843   return hasStackRealignment(MF);
1844 }
1845 
1846 /// Returns true if the instruction's frame index
1847 /// reference would be better served by a base register other than FP
1848 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
1849 /// references it should create new base registers for.
1850 bool PPCRegisterInfo::
1851 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1852   assert(Offset < 0 && "Local offset must be negative");
1853 
1854   // It's the load/store FI references that cause issues, as it can be difficult
1855   // to materialize the offset if it won't fit in the literal field. Estimate
1856   // based on the size of the local frame and some conservative assumptions
1857   // about the rest of the stack frame (note, this is pre-regalloc, so
1858   // we don't know everything for certain yet) whether this offset is likely
1859   // to be out of range of the immediate. Return true if so.
1860 
1861   // We only generate virtual base registers for loads and stores that have
1862   // an r+i form. Return false for everything else.
1863   unsigned OpC = MI->getOpcode();
1864   if (!ImmToIdxMap.count(OpC))
1865     return false;
1866 
1867   // Don't generate a new virtual base register just to add zero to it.
1868   if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
1869       MI->getOperand(2).getImm() == 0)
1870     return false;
1871 
1872   MachineBasicBlock &MBB = *MI->getParent();
1873   MachineFunction &MF = *MBB.getParent();
1874   const PPCFrameLowering *TFI = getFrameLowering(MF);
1875   unsigned StackEst = TFI->determineFrameLayout(MF, true);
1876 
1877   // If we likely don't need a stack frame, then we probably don't need a
1878   // virtual base register either.
1879   if (!StackEst)
1880     return false;
1881 
1882   // Estimate an offset from the stack pointer.
1883   // The incoming offset is relating to the SP at the start of the function,
1884   // but when we access the local it'll be relative to the SP after local
1885   // allocation, so adjust our SP-relative offset by that allocation size.
1886   Offset += StackEst;
1887 
1888   // The frame pointer will point to the end of the stack, so estimate the
1889   // offset as the difference between the object offset and the FP location.
1890   return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
1891 }
1892 
1893 /// Insert defining instruction(s) for BaseReg to
1894 /// be a pointer to FrameIdx at the beginning of the basic block.
1895 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
1896                                                        int FrameIdx,
1897                                                        int64_t Offset) const {
1898   unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
1899 
1900   MachineBasicBlock::iterator Ins = MBB->begin();
1901   DebugLoc DL;                  // Defaults to "unknown"
1902   if (Ins != MBB->end())
1903     DL = Ins->getDebugLoc();
1904 
1905   const MachineFunction &MF = *MBB->getParent();
1906   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1907   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1908   const MCInstrDesc &MCID = TII.get(ADDriOpc);
1909   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1910   const TargetRegisterClass *RC = getPointerRegClass(MF);
1911   Register BaseReg = MRI.createVirtualRegister(RC);
1912   MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
1913 
1914   BuildMI(*MBB, Ins, DL, MCID, BaseReg)
1915     .addFrameIndex(FrameIdx).addImm(Offset);
1916 
1917   return BaseReg;
1918 }
1919 
1920 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1921                                         int64_t Offset) const {
1922   unsigned FIOperandNum = 0;
1923   while (!MI.getOperand(FIOperandNum).isFI()) {
1924     ++FIOperandNum;
1925     assert(FIOperandNum < MI.getNumOperands() &&
1926            "Instr doesn't have FrameIndex operand!");
1927   }
1928 
1929   MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
1930   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1931   Offset += MI.getOperand(OffsetOperandNo).getImm();
1932   MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1933 
1934   MachineBasicBlock &MBB = *MI.getParent();
1935   MachineFunction &MF = *MBB.getParent();
1936   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1937   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1938   const MCInstrDesc &MCID = MI.getDesc();
1939   MachineRegisterInfo &MRI = MF.getRegInfo();
1940   MRI.constrainRegClass(BaseReg,
1941                         TII.getRegClass(MCID, FIOperandNum, this, MF));
1942 }
1943 
1944 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
1945                                          Register BaseReg,
1946                                          int64_t Offset) const {
1947   unsigned FIOperandNum = 0;
1948   while (!MI->getOperand(FIOperandNum).isFI()) {
1949     ++FIOperandNum;
1950     assert(FIOperandNum < MI->getNumOperands() &&
1951            "Instr doesn't have FrameIndex operand!");
1952   }
1953 
1954   unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
1955   Offset += MI->getOperand(OffsetOperandNo).getImm();
1956 
1957   return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
1958          MI->getOpcode() == TargetOpcode::STACKMAP ||
1959          MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1960          (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);
1961 }
1962