1 /*-
2 * Copyright (c) 2014-2020 Mindaugas Rasiukevicius <rmind at noxt eu>
3 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This material is based upon work partially supported by The
7 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * NPF connection tracking for stateful filtering and translation.
33 *
34 * Overview
35 *
36 * Packets can be incoming or outgoing with respect to an interface.
37 * Connection direction is identified by the direction of its first
38 * packet. The meaning of incoming/outgoing packet in the context of
39 * connection direction can be confusing. Therefore, we will use the
40 * terms "forwards stream" and "backwards stream", where packets in
41 * the forwards stream mean the packets travelling in the direction
42 * as the connection direction.
43 *
44 * All connections have two keys and thus two entries:
45 *
46 * - npf_conn_getforwkey(con) -- for the forwards stream;
47 * - npf_conn_getbackkey(con, alen) -- for the backwards stream.
48 *
49 * Note: the keys are stored in npf_conn_t::c_keys[], which is used
50 * to allocate variable-length npf_conn_t structures based on whether
51 * the IPv4 or IPv6 addresses are used.
52 *
53 * The key is an n-tuple used to identify the connection flow: see the
54 * npf_connkey.c source file for the description of the key layouts.
55 * The key may be formed using translated values in a case of NAT.
56 *
57 * Connections can serve two purposes: for the implicit passing and/or
58 * to accommodate the dynamic NAT. Connections for the former purpose
59 * are created by the rules with "stateful" attribute and are used for
60 * stateful filtering. Such connections indicate that the packet of
61 * the backwards stream should be passed without inspection of the
62 * ruleset. The other purpose is to associate a dynamic NAT mechanism
63 * with a connection. Such connections are created by the NAT policies
64 * and they have a relationship with NAT translation structure via
65 * npf_conn_t::c_nat. A single connection can serve both purposes,
66 * which is a common case.
67 *
68 * Connection life-cycle
69 *
70 * Connections are established when a packet matches said rule or
71 * NAT policy. Both keys of the established connection are inserted
72 * into the connection database. A garbage collection thread
73 * periodically scans all connections and depending on connection
74 * properties (e.g. last activity time, protocol) removes connection
75 * entries and expires the actual connections.
76 *
77 * Each connection has a reference count. The reference is acquired
78 * on lookup and should be released by the caller. It guarantees that
79 * the connection will not be destroyed, although it may be expired.
80 *
81 * Synchronization
82 *
83 * Connection database is accessed in a lock-free manner by the main
84 * routines: npf_conn_inspect() and npf_conn_establish(). Since they
85 * are always called from a software interrupt, the database is
86 * protected using EBR. The main place which can destroy a connection
87 * is npf_conn_worker(). The database itself can be replaced and
88 * destroyed in npf_conn_reload().
89 *
90 * ALG support
91 *
92 * Application-level gateways (ALGs) can override generic connection
93 * inspection (npf_alg_conn() call in npf_conn_inspect() function) by
94 * performing their own lookup using different key. Recursive call
95 * to npf_conn_inspect() is not allowed. The ALGs ought to use the
96 * npf_conn_lookup() function for this purpose.
97 *
98 * Lock order
99 *
100 * npf_t::config_lock ->
101 * conn_lock ->
102 * npf_conn_t::c_lock
103 */
104
105 #ifdef _KERNEL
106 #include <sys/cdefs.h>
107 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.35 2023/01/22 18:39:35 riastradh Exp $");
108
109 #include <sys/param.h>
110 #include <sys/types.h>
111
112 #include <netinet/in.h>
113 #include <netinet/tcp.h>
114
115 #include <sys/atomic.h>
116 #include <sys/kmem.h>
117 #include <sys/mutex.h>
118 #include <net/pfil.h>
119 #include <sys/pool.h>
120 #include <sys/queue.h>
121 #include <sys/systm.h>
122 #endif
123
124 #define __NPF_CONN_PRIVATE
125 #include "npf_conn.h"
126 #include "npf_impl.h"
127
128 /* A helper to select the IPv4 or IPv6 connection cache. */
129 #define NPF_CONNCACHE(alen) (((alen) >> 4) & 0x1)
130
131 /*
132 * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
133 */
134 CTASSERT(PFIL_ALL == (0x001 | 0x002));
135 #define CONN_ACTIVE 0x004 /* visible on inspection */
136 #define CONN_PASS 0x008 /* perform implicit passing */
137 #define CONN_EXPIRE 0x010 /* explicitly expire */
138 #define CONN_REMOVED 0x020 /* "forw/back" entries removed */
139
140 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
141
142 static int npf_conn_export(npf_t *, npf_conn_t *, nvlist_t *);
143
144 /*
145 * npf_conn_sys{init,fini}: initialize/destroy connection tracking.
146 */
147
148 void
npf_conn_init(npf_t * npf)149 npf_conn_init(npf_t *npf)
150 {
151 npf_conn_params_t *params = npf_param_allocgroup(npf,
152 NPF_PARAMS_CONN, sizeof(npf_conn_params_t));
153 npf_param_t param_map[] = {
154 {
155 "state.key.interface",
156 ¶ms->connkey_interface,
157 .default_val = 1, // true
158 .min = 0, .max = 1
159 },
160 {
161 "state.key.direction",
162 ¶ms->connkey_direction,
163 .default_val = 1, // true
164 .min = 0, .max = 1
165 },
166 };
167 npf_param_register(npf, param_map, __arraycount(param_map));
168
169 npf->conn_cache[0] = pool_cache_init(
170 offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V4WORDS * 2]),
171 0, 0, 0, "npfcn4pl", NULL, IPL_NET, NULL, NULL, NULL);
172 npf->conn_cache[1] = pool_cache_init(
173 offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V6WORDS * 2]),
174 0, 0, 0, "npfcn6pl", NULL, IPL_NET, NULL, NULL, NULL);
175
176 mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
177 atomic_store_relaxed(&npf->conn_tracking, CONN_TRACKING_OFF);
178 npf->conn_db = npf_conndb_create();
179 npf_conndb_sysinit(npf);
180
181 npf_worker_addfunc(npf, npf_conn_worker);
182 }
183
184 void
npf_conn_fini(npf_t * npf)185 npf_conn_fini(npf_t *npf)
186 {
187 const size_t len = sizeof(npf_conn_params_t);
188
189 /* Note: the caller should have flushed the connections. */
190 KASSERT(atomic_load_relaxed(&npf->conn_tracking) == CONN_TRACKING_OFF);
191
192 npf_conndb_destroy(npf->conn_db);
193 pool_cache_destroy(npf->conn_cache[0]);
194 pool_cache_destroy(npf->conn_cache[1]);
195 mutex_destroy(&npf->conn_lock);
196
197 npf_param_freegroup(npf, NPF_PARAMS_CONN, len);
198 npf_conndb_sysfini(npf);
199 }
200
201 /*
202 * npf_conn_load: perform the load by flushing the current connection
203 * database and replacing it with the new one or just destroying.
204 *
205 * => The caller must disable the connection tracking and ensure that
206 * there are no connection database lookups or references in-flight.
207 */
208 void
npf_conn_load(npf_t * npf,npf_conndb_t * ndb,bool track)209 npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
210 {
211 npf_conndb_t *odb = NULL;
212
213 KASSERT(npf_config_locked_p(npf));
214
215 /*
216 * The connection database is in the quiescent state.
217 * Prevent G/C thread from running and install a new database.
218 */
219 mutex_enter(&npf->conn_lock);
220 if (ndb) {
221 KASSERT(atomic_load_relaxed(&npf->conn_tracking)
222 == CONN_TRACKING_OFF);
223 odb = atomic_load_relaxed(&npf->conn_db);
224 atomic_store_release(&npf->conn_db, ndb);
225 }
226 if (track) {
227 /* After this point lookups start flying in. */
228 membar_producer();
229 atomic_store_relaxed(&npf->conn_tracking, CONN_TRACKING_ON);
230 }
231 mutex_exit(&npf->conn_lock);
232
233 if (odb) {
234 /*
235 * Flush all, no sync since the caller did it for us.
236 * Also, release the pool cache memory.
237 */
238 npf_conndb_gc(npf, odb, true, false);
239 npf_conndb_destroy(odb);
240 pool_cache_invalidate(npf->conn_cache[0]);
241 pool_cache_invalidate(npf->conn_cache[1]);
242 }
243 }
244
245 /*
246 * npf_conn_tracking: enable/disable connection tracking.
247 */
248 void
npf_conn_tracking(npf_t * npf,bool track)249 npf_conn_tracking(npf_t *npf, bool track)
250 {
251 KASSERT(npf_config_locked_p(npf));
252 atomic_store_relaxed(&npf->conn_tracking,
253 track ? CONN_TRACKING_ON : CONN_TRACKING_OFF);
254 }
255
256 static inline bool
npf_conn_trackable_p(const npf_cache_t * npc)257 npf_conn_trackable_p(const npf_cache_t *npc)
258 {
259 const npf_t *npf = npc->npc_ctx;
260
261 /*
262 * Check if connection tracking is on. Also, if layer 3 and 4 are
263 * not cached - protocol is not supported or packet is invalid.
264 */
265 if (atomic_load_relaxed(&npf->conn_tracking) != CONN_TRACKING_ON) {
266 return false;
267 }
268 if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
269 return false;
270 }
271 return true;
272 }
273
274 static inline void
conn_update_atime(npf_conn_t * con)275 conn_update_atime(npf_conn_t *con)
276 {
277 struct timespec tsnow;
278
279 getnanouptime(&tsnow);
280 atomic_store_relaxed(&con->c_atime, tsnow.tv_sec);
281 }
282
283 /*
284 * npf_conn_check: check that:
285 *
286 * - the connection is active;
287 *
288 * - the packet is travelling in the right direction with the respect
289 * to the connection direction (if interface-id is not zero);
290 *
291 * - the packet is travelling on the same interface as the
292 * connection interface (if interface-id is not zero).
293 */
294 static bool
npf_conn_check(const npf_conn_t * con,const nbuf_t * nbuf,const unsigned di,const npf_flow_t flow)295 npf_conn_check(const npf_conn_t *con, const nbuf_t *nbuf,
296 const unsigned di, const npf_flow_t flow)
297 {
298 const uint32_t flags = atomic_load_relaxed(&con->c_flags);
299 const unsigned ifid = atomic_load_relaxed(&con->c_ifid);
300 bool active;
301
302 active = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
303 if (__predict_false(!active)) {
304 return false;
305 }
306 if (ifid && nbuf) {
307 const bool match = (flags & PFIL_ALL) == di;
308 npf_flow_t pflow = match ? NPF_FLOW_FORW : NPF_FLOW_BACK;
309
310 if (__predict_false(flow != pflow)) {
311 return false;
312 }
313 if (__predict_false(ifid != nbuf->nb_ifid)) {
314 return false;
315 }
316 }
317 return true;
318 }
319
320 /*
321 * npf_conn_lookup: lookup if there is an established connection.
322 *
323 * => If found, we will hold a reference for the caller.
324 */
325 npf_conn_t *
npf_conn_lookup(const npf_cache_t * npc,const unsigned di,npf_flow_t * flow)326 npf_conn_lookup(const npf_cache_t *npc, const unsigned di, npf_flow_t *flow)
327 {
328 npf_t *npf = npc->npc_ctx;
329 const nbuf_t *nbuf = npc->npc_nbuf;
330 npf_conn_t *con;
331 npf_connkey_t key;
332
333 /* Construct a key and lookup for a connection in the store. */
334 if (!npf_conn_conkey(npc, &key, di, NPF_FLOW_FORW)) {
335 return NULL;
336 }
337 con = npf_conndb_lookup(npf, &key, flow);
338 if (con == NULL) {
339 return NULL;
340 }
341 KASSERT(npc->npc_proto == atomic_load_relaxed(&con->c_proto));
342
343 /* Extra checks for the connection and packet. */
344 if (!npf_conn_check(con, nbuf, di, *flow)) {
345 atomic_dec_uint(&con->c_refcnt);
346 return NULL;
347 }
348
349 /* Update the last activity time. */
350 conn_update_atime(con);
351 return con;
352 }
353
354 /*
355 * npf_conn_inspect: lookup a connection and inspecting the protocol data.
356 *
357 * => If found, we will hold a reference for the caller.
358 */
359 npf_conn_t *
npf_conn_inspect(npf_cache_t * npc,const unsigned di,int * error)360 npf_conn_inspect(npf_cache_t *npc, const unsigned di, int *error)
361 {
362 nbuf_t *nbuf = npc->npc_nbuf;
363 npf_flow_t flow;
364 npf_conn_t *con;
365 bool ok;
366
367 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
368 if (!npf_conn_trackable_p(npc)) {
369 return NULL;
370 }
371
372 /* Query ALG which may lookup connection for us. */
373 if ((con = npf_alg_conn(npc, di)) != NULL) {
374 /* Note: reference is held. */
375 return con;
376 }
377 if (nbuf_head_mbuf(nbuf) == NULL) {
378 *error = ENOMEM;
379 return NULL;
380 }
381 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
382
383 /* The main lookup of the connection (acquires a reference). */
384 if ((con = npf_conn_lookup(npc, di, &flow)) == NULL) {
385 return NULL;
386 }
387
388 /* Inspect the protocol data and handle state changes. */
389 mutex_enter(&con->c_lock);
390 ok = npf_state_inspect(npc, &con->c_state, flow);
391 mutex_exit(&con->c_lock);
392
393 /* If invalid state: let the rules deal with it. */
394 if (__predict_false(!ok)) {
395 npf_conn_release(con);
396 npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
397 return NULL;
398 }
399 #if 0
400 /*
401 * TODO -- determine when this might be wanted/used.
402 *
403 * Note: skipping the connection lookup and ruleset inspection
404 * on other interfaces will also bypass dynamic NAT.
405 */
406 if (atomic_load_relaxed(&con->c_flags) & CONN_GPASS) {
407 /*
408 * Note: if tagging fails, then give this packet a chance
409 * to go through a regular ruleset.
410 */
411 (void)nbuf_add_tag(nbuf, NPF_NTAG_PASS);
412 }
413 #endif
414 return con;
415 }
416
417 /*
418 * npf_conn_establish: create a new connection, insert into the global list.
419 *
420 * => Connection is created with the reference held for the caller.
421 * => Connection will be activated on the first reference release.
422 */
423 npf_conn_t *
npf_conn_establish(npf_cache_t * npc,const unsigned di,bool global)424 npf_conn_establish(npf_cache_t *npc, const unsigned di, bool global)
425 {
426 npf_t *npf = npc->npc_ctx;
427 const unsigned alen = npc->npc_alen;
428 const unsigned idx = NPF_CONNCACHE(alen);
429 const nbuf_t *nbuf = npc->npc_nbuf;
430 npf_connkey_t *fw, *bk;
431 npf_conndb_t *conn_db;
432 npf_conn_t *con;
433 int error = 0;
434
435 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
436
437 if (!npf_conn_trackable_p(npc)) {
438 return NULL;
439 }
440
441 /* Allocate and initialize the new connection. */
442 con = pool_cache_get(npf->conn_cache[idx], PR_NOWAIT);
443 if (__predict_false(!con)) {
444 npf_worker_signal(npf);
445 return NULL;
446 }
447 NPF_PRINTF(("NPF: create conn %p\n", con));
448 npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
449
450 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
451 atomic_store_relaxed(&con->c_flags, di & PFIL_ALL);
452 atomic_store_relaxed(&con->c_refcnt, 0);
453 con->c_rproc = NULL;
454 con->c_nat = NULL;
455
456 con->c_proto = npc->npc_proto;
457 CTASSERT(sizeof(con->c_proto) >= sizeof(npc->npc_proto));
458 con->c_alen = alen;
459
460 /* Initialize the protocol state. */
461 if (!npf_state_init(npc, &con->c_state)) {
462 npf_conn_destroy(npf, con);
463 return NULL;
464 }
465 KASSERT(npf_iscached(npc, NPC_IP46));
466
467 fw = npf_conn_getforwkey(con);
468 bk = npf_conn_getbackkey(con, alen);
469
470 /*
471 * Construct "forwards" and "backwards" keys. Also, set the
472 * interface ID for this connection (unless it is global).
473 */
474 if (!npf_conn_conkey(npc, fw, di, NPF_FLOW_FORW) ||
475 !npf_conn_conkey(npc, bk, di ^ PFIL_ALL, NPF_FLOW_BACK)) {
476 npf_conn_destroy(npf, con);
477 return NULL;
478 }
479 con->c_ifid = global ? nbuf->nb_ifid : 0;
480
481 /*
482 * Set last activity time for a new connection and acquire
483 * a reference for the caller before we make it visible.
484 */
485 conn_update_atime(con);
486 atomic_store_relaxed(&con->c_refcnt, 1);
487
488 /*
489 * Insert both keys (entries representing directions) of the
490 * connection. At this point it becomes visible, but we activate
491 * the connection later.
492 */
493 mutex_enter(&con->c_lock);
494 conn_db = atomic_load_consume(&npf->conn_db);
495 if (!npf_conndb_insert(conn_db, fw, con, NPF_FLOW_FORW)) {
496 error = EISCONN;
497 goto err;
498 }
499 if (!npf_conndb_insert(conn_db, bk, con, NPF_FLOW_BACK)) {
500 npf_conn_t *ret __diagused;
501 ret = npf_conndb_remove(conn_db, fw);
502 KASSERT(ret == con);
503 error = EISCONN;
504 goto err;
505 }
506 err:
507 /*
508 * If we have hit the duplicate: mark the connection as expired
509 * and let the G/C thread to take care of it. We cannot do it
510 * here since there might be references acquired already.
511 */
512 if (error) {
513 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
514 atomic_dec_uint(&con->c_refcnt);
515 npf_stats_inc(npf, NPF_STAT_RACE_CONN);
516 } else {
517 NPF_PRINTF(("NPF: establish conn %p\n", con));
518 }
519
520 /* Finally, insert into the connection list. */
521 npf_conndb_enqueue(conn_db, con);
522 mutex_exit(&con->c_lock);
523
524 return error ? NULL : con;
525 }
526
527 void
npf_conn_destroy(npf_t * npf,npf_conn_t * con)528 npf_conn_destroy(npf_t *npf, npf_conn_t *con)
529 {
530 const unsigned idx __unused = NPF_CONNCACHE(con->c_alen);
531
532 KASSERT(atomic_load_relaxed(&con->c_refcnt) == 0);
533
534 if (con->c_nat) {
535 /* Release any NAT structures. */
536 npf_nat_destroy(con, con->c_nat);
537 }
538 if (con->c_rproc) {
539 /* Release the rule procedure. */
540 npf_rproc_release(con->c_rproc);
541 }
542
543 /* Destroy the state. */
544 npf_state_destroy(&con->c_state);
545 mutex_destroy(&con->c_lock);
546
547 /* Free the structure, increase the counter. */
548 pool_cache_put(npf->conn_cache[idx], con);
549 npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
550 NPF_PRINTF(("NPF: conn %p destroyed\n", con));
551 }
552
553 /*
554 * npf_conn_setnat: associate NAT entry with the connection, update and
555 * re-insert connection entry using the translation values.
556 *
557 * => The caller must be holding a reference.
558 */
559 int
npf_conn_setnat(const npf_cache_t * npc,npf_conn_t * con,npf_nat_t * nt,unsigned ntype)560 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
561 npf_nat_t *nt, unsigned ntype)
562 {
563 static const unsigned nat_type_which[] = {
564 /* See the description in npf_nat_which(). */
565 [NPF_NATOUT] = NPF_DST,
566 [NPF_NATIN] = NPF_SRC,
567 };
568 npf_t *npf = npc->npc_ctx;
569 npf_conn_t *ret __diagused;
570 npf_conndb_t *conn_db;
571 npf_connkey_t *bk;
572 npf_addr_t *taddr;
573 in_port_t tport;
574 uint32_t flags;
575
576 KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
577
578 npf_nat_gettrans(nt, &taddr, &tport);
579 KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
580
581 /* Acquire the lock and check for the races. */
582 mutex_enter(&con->c_lock);
583 flags = atomic_load_relaxed(&con->c_flags);
584 if (__predict_false(flags & CONN_EXPIRE)) {
585 /* The connection got expired. */
586 mutex_exit(&con->c_lock);
587 return EINVAL;
588 }
589 KASSERT((flags & CONN_REMOVED) == 0);
590
591 if (__predict_false(con->c_nat != NULL)) {
592 /* Race with a duplicate packet. */
593 mutex_exit(&con->c_lock);
594 npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
595 return EISCONN;
596 }
597
598 /* Remove the "backwards" key. */
599 conn_db = atomic_load_consume(&npf->conn_db);
600 bk = npf_conn_getbackkey(con, con->c_alen);
601 ret = npf_conndb_remove(conn_db, bk);
602 KASSERT(ret == con);
603
604 /* Set the source/destination IDs to the translation values. */
605 npf_conn_adjkey(bk, taddr, tport, nat_type_which[ntype]);
606
607 /* Finally, re-insert the "backwards" key. */
608 if (!npf_conndb_insert(conn_db, bk, con, NPF_FLOW_BACK)) {
609 /*
610 * Race: we have hit the duplicate, remove the "forwards"
611 * key and expire our connection; it is no longer valid.
612 */
613 npf_connkey_t *fw = npf_conn_getforwkey(con);
614 ret = npf_conndb_remove(conn_db, fw);
615 KASSERT(ret == con);
616
617 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
618 mutex_exit(&con->c_lock);
619
620 npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
621 return EISCONN;
622 }
623
624 /* Associate the NAT entry and release the lock. */
625 con->c_nat = nt;
626 mutex_exit(&con->c_lock);
627 return 0;
628 }
629
630 /*
631 * npf_conn_expire: explicitly mark connection as expired.
632 *
633 * => Must be called with: a) reference held b) the relevant lock held.
634 * The relevant lock should prevent from connection destruction, e.g.
635 * npf_t::conn_lock or npf_natpolicy_t::n_lock.
636 */
637 void
npf_conn_expire(npf_conn_t * con)638 npf_conn_expire(npf_conn_t *con)
639 {
640 atomic_or_uint(&con->c_flags, CONN_EXPIRE);
641 }
642
643 /*
644 * npf_conn_pass: return true if connection is "pass" one, otherwise false.
645 */
646 bool
npf_conn_pass(const npf_conn_t * con,npf_match_info_t * mi,npf_rproc_t ** rp)647 npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
648 {
649 KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
650 if (__predict_true(atomic_load_relaxed(&con->c_flags) & CONN_PASS)) {
651 mi->mi_retfl = atomic_load_relaxed(&con->c_retfl);
652 mi->mi_rid = con->c_rid;
653 *rp = con->c_rproc;
654 return true;
655 }
656 return false;
657 }
658
659 /*
660 * npf_conn_setpass: mark connection as a "pass" one and associate the
661 * rule procedure with it.
662 */
663 void
npf_conn_setpass(npf_conn_t * con,const npf_match_info_t * mi,npf_rproc_t * rp)664 npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
665 {
666 KASSERT((atomic_load_relaxed(&con->c_flags) & CONN_ACTIVE) == 0);
667 KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
668 KASSERT(con->c_rproc == NULL);
669
670 /*
671 * No need for atomic since the connection is not yet active.
672 * If rproc is set, the caller transfers its reference to us,
673 * which will be released on npf_conn_destroy().
674 */
675 atomic_or_uint(&con->c_flags, CONN_PASS);
676 con->c_rproc = rp;
677 if (rp) {
678 con->c_rid = mi->mi_rid;
679 con->c_retfl = mi->mi_retfl;
680 }
681 }
682
683 /*
684 * npf_conn_release: release a reference, which might allow G/C thread
685 * to destroy this connection.
686 */
687 void
npf_conn_release(npf_conn_t * con)688 npf_conn_release(npf_conn_t *con)
689 {
690 const unsigned flags = atomic_load_relaxed(&con->c_flags);
691
692 if ((flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
693 /* Activate: after this, connection is globally visible. */
694 atomic_or_uint(&con->c_flags, CONN_ACTIVE);
695 }
696 KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
697 atomic_dec_uint(&con->c_refcnt);
698 }
699
700 /*
701 * npf_conn_getnat: return the associated NAT entry, if any.
702 */
703 npf_nat_t *
npf_conn_getnat(const npf_conn_t * con)704 npf_conn_getnat(const npf_conn_t *con)
705 {
706 return con->c_nat;
707 }
708
709 /*
710 * npf_conn_expired: criterion to check if connection is expired.
711 */
712 bool
npf_conn_expired(npf_t * npf,const npf_conn_t * con,uint64_t tsnow)713 npf_conn_expired(npf_t *npf, const npf_conn_t *con, uint64_t tsnow)
714 {
715 const unsigned flags = atomic_load_relaxed(&con->c_flags);
716 const int etime = npf_state_etime(npf, &con->c_state, con->c_proto);
717 int elapsed;
718
719 if (__predict_false(flags & CONN_EXPIRE)) {
720 /* Explicitly marked to be expired. */
721 return true;
722 }
723
724 /*
725 * Note: another thread may update 'atime' and it might
726 * become greater than 'now'.
727 */
728 elapsed = (int64_t)tsnow - atomic_load_relaxed(&con->c_atime);
729 return elapsed > etime;
730 }
731
732 /*
733 * npf_conn_remove: unlink the connection and mark as expired.
734 */
735 void
npf_conn_remove(npf_conndb_t * cd,npf_conn_t * con)736 npf_conn_remove(npf_conndb_t *cd, npf_conn_t *con)
737 {
738 /* Remove both entries of the connection. */
739 mutex_enter(&con->c_lock);
740 if ((atomic_load_relaxed(&con->c_flags) & CONN_REMOVED) == 0) {
741 npf_connkey_t *fw, *bk;
742 npf_conn_t *ret __diagused;
743
744 fw = npf_conn_getforwkey(con);
745 ret = npf_conndb_remove(cd, fw);
746 KASSERT(ret == con);
747
748 bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
749 ret = npf_conndb_remove(cd, bk);
750 KASSERT(ret == con);
751 }
752
753 /* Flag the removal and expiration. */
754 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
755 mutex_exit(&con->c_lock);
756 }
757
758 /*
759 * npf_conn_worker: G/C to run from a worker thread or via npfk_gc().
760 */
761 void
npf_conn_worker(npf_t * npf)762 npf_conn_worker(npf_t *npf)
763 {
764 npf_conndb_t *conn_db = atomic_load_consume(&npf->conn_db);
765 npf_conndb_gc(npf, conn_db, false, true);
766 }
767
768 /*
769 * npf_conndb_export: construct a list of connections prepared for saving.
770 * Note: this is expected to be an expensive operation.
771 */
772 int
npf_conndb_export(npf_t * npf,nvlist_t * nvl)773 npf_conndb_export(npf_t *npf, nvlist_t *nvl)
774 {
775 npf_conn_t *head, *con;
776 npf_conndb_t *conn_db;
777
778 /*
779 * Note: acquire conn_lock to prevent from the database
780 * destruction and G/C thread.
781 */
782 mutex_enter(&npf->conn_lock);
783 if (atomic_load_relaxed(&npf->conn_tracking) != CONN_TRACKING_ON) {
784 mutex_exit(&npf->conn_lock);
785 return 0;
786 }
787 conn_db = atomic_load_relaxed(&npf->conn_db);
788 head = npf_conndb_getlist(conn_db);
789 con = head;
790 while (con) {
791 nvlist_t *con_nvl;
792
793 con_nvl = nvlist_create(0);
794 if (npf_conn_export(npf, con, con_nvl) == 0) {
795 nvlist_append_nvlist_array(nvl, "conn-list", con_nvl);
796 }
797 nvlist_destroy(con_nvl);
798
799 if ((con = npf_conndb_getnext(conn_db, con)) == head) {
800 break;
801 }
802 }
803 mutex_exit(&npf->conn_lock);
804 return 0;
805 }
806
807 /*
808 * npf_conn_export: serialize a single connection.
809 */
810 static int
npf_conn_export(npf_t * npf,npf_conn_t * con,nvlist_t * nvl)811 npf_conn_export(npf_t *npf, npf_conn_t *con, nvlist_t *nvl)
812 {
813 nvlist_t *knvl;
814 npf_connkey_t *fw, *bk;
815 unsigned flags, alen;
816
817 flags = atomic_load_relaxed(&con->c_flags);
818 if ((flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
819 return ESRCH;
820 }
821 nvlist_add_number(nvl, "flags", flags);
822 nvlist_add_number(nvl, "proto", con->c_proto);
823 if (con->c_ifid) {
824 char ifname[IFNAMSIZ];
825 npf_ifmap_copyname(npf, con->c_ifid, ifname, sizeof(ifname));
826 nvlist_add_string(nvl, "ifname", ifname);
827 }
828 nvlist_add_binary(nvl, "state", &con->c_state, sizeof(npf_state_t));
829
830 fw = npf_conn_getforwkey(con);
831 alen = NPF_CONNKEY_ALEN(fw);
832 KASSERT(alen == con->c_alen);
833 bk = npf_conn_getbackkey(con, alen);
834
835 knvl = npf_connkey_export(npf, fw);
836 nvlist_move_nvlist(nvl, "forw-key", knvl);
837
838 knvl = npf_connkey_export(npf, bk);
839 nvlist_move_nvlist(nvl, "back-key", knvl);
840
841 /* Let the address length be based on on first key. */
842 nvlist_add_number(nvl, "alen", alen);
843
844 if (con->c_nat) {
845 npf_nat_export(npf, con->c_nat, nvl);
846 }
847 return 0;
848 }
849
850 /*
851 * npf_conn_import: fully reconstruct a single connection from a
852 * nvlist and insert into the given database.
853 */
854 int
npf_conn_import(npf_t * npf,npf_conndb_t * cd,const nvlist_t * cdict,npf_ruleset_t * natlist)855 npf_conn_import(npf_t *npf, npf_conndb_t *cd, const nvlist_t *cdict,
856 npf_ruleset_t *natlist)
857 {
858 npf_conn_t *con;
859 npf_connkey_t *fw, *bk;
860 const nvlist_t *nat, *conkey;
861 unsigned flags, alen, idx;
862 const char *ifname;
863 const void *state;
864 size_t len;
865
866 /*
867 * To determine the length of the connection, which depends
868 * on the address length in the connection keys.
869 */
870 alen = dnvlist_get_number(cdict, "alen", 0);
871 idx = NPF_CONNCACHE(alen);
872
873 /* Allocate a connection and initialize it (clear first). */
874 con = pool_cache_get(npf->conn_cache[idx], PR_WAITOK);
875 memset(con, 0, sizeof(npf_conn_t));
876 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
877 npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
878
879 con->c_proto = dnvlist_get_number(cdict, "proto", 0);
880 flags = dnvlist_get_number(cdict, "flags", 0);
881 flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
882 atomic_store_relaxed(&con->c_flags, flags);
883 conn_update_atime(con);
884
885 ifname = dnvlist_get_string(cdict, "ifname", NULL);
886 if (ifname && (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
887 goto err;
888 }
889
890 state = dnvlist_get_binary(cdict, "state", &len, NULL, 0);
891 if (!state || len != sizeof(npf_state_t)) {
892 goto err;
893 }
894 memcpy(&con->c_state, state, sizeof(npf_state_t));
895
896 /* Reconstruct NAT association, if any. */
897 if ((nat = dnvlist_get_nvlist(cdict, "nat", NULL)) != NULL &&
898 (con->c_nat = npf_nat_import(npf, nat, natlist, con)) == NULL) {
899 goto err;
900 }
901
902 /*
903 * Fetch and copy the keys for each direction.
904 */
905 fw = npf_conn_getforwkey(con);
906 conkey = dnvlist_get_nvlist(cdict, "forw-key", NULL);
907 if (conkey == NULL || !npf_connkey_import(npf, conkey, fw)) {
908 goto err;
909 }
910 bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
911 conkey = dnvlist_get_nvlist(cdict, "back-key", NULL);
912 if (conkey == NULL || !npf_connkey_import(npf, conkey, bk)) {
913 goto err;
914 }
915
916 /* Guard against the contradicting address lengths. */
917 if (NPF_CONNKEY_ALEN(fw) != alen || NPF_CONNKEY_ALEN(bk) != alen) {
918 goto err;
919 }
920
921 /* Insert the entries and the connection itself. */
922 if (!npf_conndb_insert(cd, fw, con, NPF_FLOW_FORW)) {
923 goto err;
924 }
925 if (!npf_conndb_insert(cd, bk, con, NPF_FLOW_BACK)) {
926 npf_conndb_remove(cd, fw);
927 goto err;
928 }
929
930 NPF_PRINTF(("NPF: imported conn %p\n", con));
931 npf_conndb_enqueue(cd, con);
932 return 0;
933 err:
934 npf_conn_destroy(npf, con);
935 return EINVAL;
936 }
937
938 /*
939 * npf_conn_find: lookup a connection in the list of connections
940 */
941 int
npf_conn_find(npf_t * npf,const nvlist_t * req,nvlist_t * resp)942 npf_conn_find(npf_t *npf, const nvlist_t *req, nvlist_t *resp)
943 {
944 const nvlist_t *key_nv;
945 npf_conn_t *con;
946 npf_connkey_t key;
947 npf_flow_t flow;
948 int error;
949
950 key_nv = dnvlist_get_nvlist(req, "key", NULL);
951 if (!key_nv || !npf_connkey_import(npf, key_nv, &key)) {
952 return EINVAL;
953 }
954 con = npf_conndb_lookup(npf, &key, &flow);
955 if (con == NULL) {
956 return ESRCH;
957 }
958 if (!npf_conn_check(con, NULL, 0, NPF_FLOW_FORW)) {
959 atomic_dec_uint(&con->c_refcnt);
960 return ESRCH;
961 }
962 error = npf_conn_export(npf, con, resp);
963 nvlist_add_number(resp, "flow", flow);
964 atomic_dec_uint(&con->c_refcnt);
965 return error;
966 }
967
968 #if defined(DDB) || defined(_NPF_TESTING)
969
970 void
npf_conn_print(npf_conn_t * con)971 npf_conn_print(npf_conn_t *con)
972 {
973 const npf_connkey_t *fw = npf_conn_getforwkey(con);
974 const npf_connkey_t *bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
975 const unsigned flags = atomic_load_relaxed(&con->c_flags);
976 const unsigned proto = con->c_proto;
977 struct timespec tspnow;
978
979 getnanouptime(&tspnow);
980 printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
981 proto, flags, (long)(tspnow.tv_sec - con->c_atime),
982 npf_state_etime(npf_getkernctx(), &con->c_state, proto));
983 npf_connkey_print(fw);
984 npf_connkey_print(bk);
985 npf_state_dump(&con->c_state);
986 if (con->c_nat) {
987 npf_nat_dump(con->c_nat);
988 }
989 }
990
991 #endif
992