1 #include <u.h>
2 #include "../port/lib.h"
3 #include "mem.h"
4 #include "dat.h"
5 #include "fns.h"
6 #include "../port/error.h"
7 #include "../port/edf.h"
8 #include <trace.h>
9
10 int schedgain = 30; /* units in seconds */
11 int nrdy;
12 Ref noteidalloc;
13
14 void updatecpu(Proc*);
15 int reprioritize(Proc*);
16
17 ulong delayedscheds; /* statistics */
18 long skipscheds;
19 long preempts;
20 ulong load;
21
22 static Ref pidalloc;
23
24 static struct Procalloc
25 {
26 Lock;
27 Proc* ht[128];
28 Proc* arena;
29 Proc* free;
30 } procalloc;
31
32 enum
33 {
34 Q=10,
35 DQ=4,
36 Scaling=2,
37 };
38
39 Schedq runq[Nrq];
40 ulong runvec;
41
42 char *statename[] =
43 { /* BUG: generate automatically */
44 "Dead",
45 "Moribund",
46 "Ready",
47 "Scheding",
48 "Running",
49 "Queueing",
50 "QueueingR",
51 "QueueingW",
52 "Wakeme",
53 "Broken",
54 "Stopped",
55 "Rendez",
56 "Waitrelease",
57 };
58
59 static void pidhash(Proc*);
60 static void pidunhash(Proc*);
61 static void rebalance(void);
62
63 /*
64 * Always splhi()'ed.
65 */
66 void
schedinit(void)67 schedinit(void) /* never returns */
68 {
69 Edf *e;
70
71 setlabel(&m->sched);
72 if(up) {
73 if((e = up->edf) && (e->flags & Admitted))
74 edfrecord(up);
75 m->proc = 0;
76 switch(up->state) {
77 case Running:
78 ready(up);
79 break;
80 case Moribund:
81 up->state = Dead;
82 edfstop(up);
83 if (up->edf)
84 free(up->edf);
85 up->edf = nil;
86
87 /*
88 * Holding locks from pexit:
89 * procalloc
90 * palloc
91 */
92 mmurelease(up);
93
94 up->qnext = procalloc.free;
95 procalloc.free = up;
96
97 unlock(&palloc);
98 unlock(&procalloc);
99 break;
100 }
101 up->mach = nil;
102 updatecpu(up);
103 up = nil;
104 }
105 sched();
106 }
107
108 /*
109 * If changing this routine, look also at sleep(). It
110 * contains a copy of the guts of sched().
111 */
112 void
sched(void)113 sched(void)
114 {
115 Proc *p;
116
117 if(m->ilockdepth)
118 panic("cpu%d: ilockdepth %d, last lock %#p at %#p, sched called from %#p",
119 m->machno,
120 m->ilockdepth,
121 up? up->lastilock: nil,
122 (up && up->lastilock)? up->lastilock->pc: 0,
123 getcallerpc(&p+2));
124 if(up){
125 /*
126 * Delay the sched until the process gives up the locks
127 * it is holding. This avoids dumb lock loops.
128 * Don't delay if the process is Moribund.
129 * It called sched to die.
130 * But do sched eventually. This avoids a missing unlock
131 * from hanging the entire kernel.
132 * But don't reschedule procs holding palloc or procalloc.
133 * Those are far too important to be holding while asleep.
134 *
135 * This test is not exact. There can still be a few instructions
136 * in the middle of taslock when a process holds a lock
137 * but Lock.p has not yet been initialized.
138 */
139 if(up->nlocks.ref)
140 if(up->state != Moribund)
141 if(up->delaysched < 20
142 || palloc.Lock.p == up
143 || procalloc.Lock.p == up){
144 up->delaysched++;
145 delayedscheds++;
146 return;
147 }
148 up->delaysched = 0;
149
150 splhi();
151
152 /* statistics */
153 m->cs++;
154
155 procsave(up);
156 if(setlabel(&up->sched)){
157 procrestore(up);
158 spllo();
159 return;
160 }
161 gotolabel(&m->sched);
162 }
163 p = runproc();
164 if(!p->edf){
165 updatecpu(p);
166 p->priority = reprioritize(p);
167 }
168 if(p != m->readied)
169 m->schedticks = m->ticks + HZ/10;
170 m->readied = 0;
171 up = p;
172 up->state = Running;
173 up->mach = MACHP(m->machno);
174 m->proc = up;
175 mmuswitch(up);
176 gotolabel(&up->sched);
177 }
178
179 int
anyready(void)180 anyready(void)
181 {
182 return runvec;
183 }
184
185 int
anyhigher(void)186 anyhigher(void)
187 {
188 return runvec & ~((1<<(up->priority+1))-1);
189 }
190
191 /*
192 * here once per clock tick to see if we should resched
193 */
194 void
hzsched(void)195 hzsched(void)
196 {
197 /* once a second, rebalance will reprioritize ready procs */
198 if(m->machno == 0)
199 rebalance();
200
201 /* unless preempted, get to run for at least 100ms */
202 if(anyhigher()
203 || (!up->fixedpri && m->ticks > m->schedticks && anyready())){
204 m->readied = nil; /* avoid cooperative scheduling */
205 up->delaysched++;
206 }
207 }
208
209 /*
210 * here at the end of non-clock interrupts to see if we should preempt the
211 * current process. Returns 1 if preempted, 0 otherwise.
212 */
213 int
preempted(void)214 preempted(void)
215 {
216 if(up && up->state == Running)
217 if(up->preempted == 0)
218 if(anyhigher())
219 if(!active.exiting){
220 m->readied = nil; /* avoid cooperative scheduling */
221 up->preempted = 1;
222 sched();
223 splhi();
224 up->preempted = 0;
225 return 1;
226 }
227 return 0;
228 }
229
230 /*
231 * Update the cpu time average for this particular process,
232 * which is about to change from up -> not up or vice versa.
233 * p->lastupdate is the last time an updatecpu happened.
234 *
235 * The cpu time average is a decaying average that lasts
236 * about D clock ticks. D is chosen to be approximately
237 * the cpu time of a cpu-intensive "quick job". A job has to run
238 * for approximately D clock ticks before we home in on its
239 * actual cpu usage. Thus if you manage to get in and get out
240 * quickly, you won't be penalized during your burst. Once you
241 * start using your share of the cpu for more than about D
242 * clock ticks though, your p->cpu hits 1000 (1.0) and you end up
243 * below all the other quick jobs. Interactive tasks, because
244 * they basically always use less than their fair share of cpu,
245 * will be rewarded.
246 *
247 * If the process has not been running, then we want to
248 * apply the filter
249 *
250 * cpu = cpu * (D-1)/D
251 *
252 * n times, yielding
253 *
254 * cpu = cpu * ((D-1)/D)^n
255 *
256 * but D is big enough that this is approximately
257 *
258 * cpu = cpu * (D-n)/D
259 *
260 * so we use that instead.
261 *
262 * If the process has been running, we apply the filter to
263 * 1 - cpu, yielding a similar equation. Note that cpu is
264 * stored in fixed point (* 1000).
265 *
266 * Updatecpu must be called before changing up, in order
267 * to maintain accurate cpu usage statistics. It can be called
268 * at any time to bring the stats for a given proc up-to-date.
269 */
270 void
updatecpu(Proc * p)271 updatecpu(Proc *p)
272 {
273 int n, t, ocpu;
274 int D = schedgain*HZ*Scaling;
275
276 if(p->edf)
277 return;
278
279 t = MACHP(0)->ticks*Scaling + Scaling/2;
280 n = t - p->lastupdate;
281 p->lastupdate = t;
282
283 if(n == 0)
284 return;
285 if(n > D)
286 n = D;
287
288 ocpu = p->cpu;
289 if(p != up)
290 p->cpu = (ocpu*(D-n))/D;
291 else{
292 t = 1000 - ocpu;
293 t = (t*(D-n))/D;
294 p->cpu = 1000 - t;
295 }
296
297 //iprint("pid %d %s for %d cpu %d -> %d\n", p->pid,p==up?"active":"inactive",n, ocpu,p->cpu);
298 }
299
300 /*
301 * On average, p has used p->cpu of a cpu recently.
302 * Its fair share is conf.nmach/m->load of a cpu. If it has been getting
303 * too much, penalize it. If it has been getting not enough, reward it.
304 * I don't think you can get much more than your fair share that
305 * often, so most of the queues are for using less. Having a priority
306 * of 3 means you're just right. Having a higher priority (up to p->basepri)
307 * means you're not using as much as you could.
308 */
309 int
reprioritize(Proc * p)310 reprioritize(Proc *p)
311 {
312 int fairshare, n, load, ratio;
313
314 load = MACHP(0)->load;
315 if(load == 0)
316 return p->basepri;
317
318 /*
319 * fairshare = 1.000 * conf.nproc * 1.000/load,
320 * except the decimal point is moved three places
321 * on both load and fairshare.
322 */
323 fairshare = (conf.nmach*1000*1000)/load;
324 n = p->cpu;
325 if(n == 0)
326 n = 1;
327 ratio = (fairshare+n/2) / n;
328 if(ratio > p->basepri)
329 ratio = p->basepri;
330 if(ratio < 0)
331 panic("reprioritize");
332 //iprint("pid %d cpu %d load %d fair %d pri %d\n", p->pid, p->cpu, load, fairshare, ratio);
333 return ratio;
334 }
335
336 /*
337 * add a process to a scheduling queue
338 */
339 void
queueproc(Schedq * rq,Proc * p)340 queueproc(Schedq *rq, Proc *p)
341 {
342 int pri;
343
344 pri = rq - runq;
345 lock(runq);
346 p->priority = pri;
347 p->rnext = 0;
348 if(rq->tail)
349 rq->tail->rnext = p;
350 else
351 rq->head = p;
352 rq->tail = p;
353 rq->n++;
354 nrdy++;
355 runvec |= 1<<pri;
356 unlock(runq);
357 }
358
359 /*
360 * try to remove a process from a scheduling queue (called splhi)
361 */
362 Proc*
dequeueproc(Schedq * rq,Proc * tp)363 dequeueproc(Schedq *rq, Proc *tp)
364 {
365 Proc *l, *p;
366
367 if(!canlock(runq))
368 return nil;
369
370 /*
371 * the queue may have changed before we locked runq,
372 * refind the target process.
373 */
374 l = 0;
375 for(p = rq->head; p; p = p->rnext){
376 if(p == tp)
377 break;
378 l = p;
379 }
380
381 /*
382 * p->mach==0 only when process state is saved
383 */
384 if(p == 0 || p->mach){
385 unlock(runq);
386 return nil;
387 }
388 if(p->rnext == 0)
389 rq->tail = l;
390 if(l)
391 l->rnext = p->rnext;
392 else
393 rq->head = p->rnext;
394 if(rq->head == nil)
395 runvec &= ~(1<<(rq-runq));
396 rq->n--;
397 nrdy--;
398 if(p->state != Ready)
399 print("dequeueproc %s %lud %s\n", p->text, p->pid, statename[p->state]);
400
401 unlock(runq);
402 return p;
403 }
404
405 /*
406 * ready(p) picks a new priority for a process and sticks it in the
407 * runq for that priority.
408 */
409 void
ready(Proc * p)410 ready(Proc *p)
411 {
412 int s, pri;
413 Schedq *rq;
414 void (*pt)(Proc*, int, vlong);
415
416 s = splhi();
417 if(edfready(p)){
418 splx(s);
419 return;
420 }
421
422 if(up != p && (p->wired == nil || p->wired == m))
423 m->readied = p; /* group scheduling */
424
425 updatecpu(p);
426 pri = reprioritize(p);
427 p->priority = pri;
428 rq = &runq[pri];
429 p->state = Ready;
430 queueproc(rq, p);
431 pt = proctrace;
432 if(pt)
433 pt(p, SReady, 0);
434 splx(s);
435 }
436
437 /*
438 * yield the processor and drop our priority
439 */
440 void
yield(void)441 yield(void)
442 {
443 if(anyready()){
444 /* pretend we just used 1/2 tick */
445 up->lastupdate -= Scaling/2;
446 sched();
447 }
448 }
449
450 /*
451 * recalculate priorities once a second. We need to do this
452 * since priorities will otherwise only be recalculated when
453 * the running process blocks.
454 */
455 ulong balancetime;
456
457 static void
rebalance(void)458 rebalance(void)
459 {
460 int pri, npri, t, x;
461 Schedq *rq;
462 Proc *p;
463
464 t = m->ticks;
465 if(t - balancetime < HZ)
466 return;
467 balancetime = t;
468
469 for(pri=0, rq=runq; pri<Npriq; pri++, rq++){
470 another:
471 p = rq->head;
472 if(p == nil)
473 continue;
474 if(p->mp != MACHP(m->machno))
475 continue;
476 if(pri == p->basepri)
477 continue;
478 updatecpu(p);
479 npri = reprioritize(p);
480 if(npri != pri){
481 x = splhi();
482 p = dequeueproc(rq, p);
483 if(p)
484 queueproc(&runq[npri], p);
485 splx(x);
486 goto another;
487 }
488 }
489 }
490
491
492 /*
493 * pick a process to run
494 */
495 Proc*
runproc(void)496 runproc(void)
497 {
498 Schedq *rq;
499 Proc *p;
500 ulong start, now;
501 int i;
502 void (*pt)(Proc*, int, vlong);
503
504 start = perfticks();
505
506 /* cooperative scheduling until the clock ticks */
507 if((p=m->readied) && p->mach==0 && p->state==Ready
508 && (p->wired == nil || p->wired == m)
509 && runq[Nrq-1].head == nil && runq[Nrq-2].head == nil){
510 skipscheds++;
511 rq = &runq[p->priority];
512 goto found;
513 }
514
515 preempts++;
516
517 loop:
518 /*
519 * find a process that last ran on this processor (affinity),
520 * or one that hasn't moved in a while (load balancing). Every
521 * time around the loop affinity goes down.
522 */
523 spllo();
524 for(i = 0;; i++){
525 /*
526 * find the highest priority target process that this
527 * processor can run given affinity constraints.
528 *
529 */
530 for(rq = &runq[Nrq-1]; rq >= runq; rq--){
531 for(p = rq->head; p; p = p->rnext){
532 if(p->mp == nil || p->mp == MACHP(m->machno)
533 || (!p->wired && i > 0))
534 goto found;
535 }
536 }
537
538 /* waste time or halt the CPU */
539 idlehands();
540
541 /* remember how much time we're here */
542 now = perfticks();
543 m->perf.inidle += now-start;
544 start = now;
545 }
546
547 found:
548 splhi();
549 p = dequeueproc(rq, p);
550 if(p == nil)
551 goto loop;
552
553 p->state = Scheding;
554 p->mp = MACHP(m->machno);
555
556 if(edflock(p)){
557 edfrun(p, rq == &runq[PriEdf]); /* start deadline timer and do admin */
558 edfunlock();
559 }
560 pt = proctrace;
561 if(pt)
562 pt(p, SRun, 0);
563 return p;
564 }
565
566 int
canpage(Proc * p)567 canpage(Proc *p)
568 {
569 int ok = 0;
570
571 splhi();
572 lock(runq);
573 /* Only reliable way to see if we are Running */
574 if(p->mach == 0) {
575 p->newtlb = 1;
576 ok = 1;
577 }
578 unlock(runq);
579 spllo();
580
581 return ok;
582 }
583
584 void
noprocpanic(char * msg)585 noprocpanic(char *msg)
586 {
587 /*
588 * setting exiting will make hzclock() on each processor call exit(0).
589 * clearing our bit in machs avoids calling exit(0) from hzclock()
590 * on this processor.
591 */
592 lock(&active);
593 active.machs &= ~(1<<m->machno);
594 active.exiting = 1;
595 unlock(&active);
596
597 procdump();
598 delay(1000);
599 panic(msg);
600 }
601
602 Proc*
newproc(void)603 newproc(void)
604 {
605 char msg[64];
606 Proc *p;
607
608 lock(&procalloc);
609 while((p = procalloc.free) == nil) {
610 unlock(&procalloc);
611
612 snprint(msg, sizeof msg, "no procs; %s forking",
613 up? up->text: "kernel");
614 /*
615 * the situation is unlikely to heal itself.
616 * dump the proc table and restart by default.
617 * *noprocspersist in plan9.ini will yield the old
618 * behaviour of trying forever.
619 */
620 if(getconf("*noprocspersist") == nil)
621 noprocpanic(msg);
622 resrcwait(msg);
623 lock(&procalloc);
624 }
625 procalloc.free = p->qnext;
626 unlock(&procalloc);
627
628 p->state = Scheding;
629 p->psstate = "New";
630 p->mach = 0;
631 p->qnext = 0;
632 p->nchild = 0;
633 p->nwait = 0;
634 p->waitq = 0;
635 p->parent = 0;
636 p->pgrp = 0;
637 p->egrp = 0;
638 p->fgrp = 0;
639 p->rgrp = 0;
640 p->pdbg = 0;
641 p->fpstate = FPinit;
642 p->kp = 0;
643 if(up && up->procctl == Proc_tracesyscall)
644 p->procctl = Proc_tracesyscall;
645 else
646 p->procctl = 0;
647 p->syscalltrace = 0;
648 p->notepending = 0;
649 p->ureg = 0;
650 p->privatemem = 0;
651 p->noswap = 0;
652 p->errstr = p->errbuf0;
653 p->syserrstr = p->errbuf1;
654 p->errbuf0[0] = '\0';
655 p->errbuf1[0] = '\0';
656 p->nlocks.ref = 0;
657 p->delaysched = 0;
658 p->trace = 0;
659 kstrdup(&p->user, "*nouser");
660 kstrdup(&p->text, "*notext");
661 kstrdup(&p->args, "");
662 p->nargs = 0;
663 p->setargs = 0;
664 memset(p->seg, 0, sizeof p->seg);
665 p->pid = incref(&pidalloc);
666 pidhash(p);
667 p->noteid = incref(¬eidalloc);
668 if(p->pid==0 || p->noteid==0)
669 panic("pidalloc");
670 if(p->kstack == 0)
671 p->kstack = smalloc(KSTACK);
672
673 /* sched params */
674 p->mp = 0;
675 p->wired = 0;
676 procpriority(p, PriNormal, 0);
677 p->cpu = 0;
678 p->lastupdate = MACHP(0)->ticks*Scaling;
679 p->edf = nil;
680
681 return p;
682 }
683
684 /*
685 * wire this proc to a machine
686 */
687 void
procwired(Proc * p,int bm)688 procwired(Proc *p, int bm)
689 {
690 Proc *pp;
691 int i;
692 char nwired[MAXMACH];
693 Mach *wm;
694
695 if(bm < 0){
696 /* pick a machine to wire to */
697 memset(nwired, 0, sizeof(nwired));
698 p->wired = 0;
699 pp = proctab(0);
700 for(i=0; i<conf.nproc; i++, pp++){
701 wm = pp->wired;
702 if(wm && pp->pid)
703 nwired[wm->machno]++;
704 }
705 bm = 0;
706 for(i=0; i<conf.nmach; i++)
707 if(nwired[i] < nwired[bm])
708 bm = i;
709 } else {
710 /* use the virtual machine requested */
711 bm = bm % conf.nmach;
712 }
713
714 p->wired = MACHP(bm);
715 p->mp = p->wired;
716 }
717
718 void
procpriority(Proc * p,int pri,int fixed)719 procpriority(Proc *p, int pri, int fixed)
720 {
721 if(pri >= Npriq)
722 pri = Npriq - 1;
723 else if(pri < 0)
724 pri = 0;
725 p->basepri = pri;
726 p->priority = pri;
727 if(fixed){
728 p->fixedpri = 1;
729 } else {
730 p->fixedpri = 0;
731 }
732 }
733
734 void
procinit0(void)735 procinit0(void) /* bad planning - clashes with devproc.c */
736 {
737 Proc *p;
738 int i;
739
740 procalloc.free = xalloc(conf.nproc*sizeof(Proc));
741 if(procalloc.free == nil){
742 xsummary();
743 panic("cannot allocate %lud procs (%ludMB)\n", conf.nproc, conf.nproc*sizeof(Proc)/(1024*1024));
744 }
745 procalloc.arena = procalloc.free;
746
747 p = procalloc.free;
748 for(i=0; i<conf.nproc-1; i++,p++)
749 p->qnext = p+1;
750 p->qnext = 0;
751 }
752
753 /*
754 * sleep if a condition is not true. Another process will
755 * awaken us after it sets the condition. When we awaken
756 * the condition may no longer be true.
757 *
758 * we lock both the process and the rendezvous to keep r->p
759 * and p->r synchronized.
760 */
761 void
sleep(Rendez * r,int (* f)(void *),void * arg)762 sleep(Rendez *r, int (*f)(void*), void *arg)
763 {
764 int s;
765 void (*pt)(Proc*, int, vlong);
766
767 s = splhi();
768
769 if(up->nlocks.ref)
770 print("process %lud sleeps with %lud locks held, last lock %#p locked at pc %#lux, sleep called from %#p\n",
771 up->pid, up->nlocks.ref, up->lastlock, up->lastlock->pc, getcallerpc(&r));
772 lock(r);
773 lock(&up->rlock);
774 if(r->p){
775 print("double sleep called from %#p, %lud %lud\n", getcallerpc(&r), r->p->pid, up->pid);
776 dumpstack();
777 }
778
779 /*
780 * Wakeup only knows there may be something to do by testing
781 * r->p in order to get something to lock on.
782 * Flush that information out to memory in case the sleep is
783 * committed.
784 */
785 r->p = up;
786
787 if((*f)(arg) || up->notepending){
788 /*
789 * if condition happened or a note is pending
790 * never mind
791 */
792 r->p = nil;
793 unlock(&up->rlock);
794 unlock(r);
795 } else {
796 /*
797 * now we are committed to
798 * change state and call scheduler
799 */
800 pt = proctrace;
801 if(pt)
802 pt(up, SSleep, 0);
803 up->state = Wakeme;
804 up->r = r;
805
806 /* statistics */
807 m->cs++;
808
809 procsave(up);
810 if(setlabel(&up->sched)) {
811 /*
812 * here when the process is awakened
813 */
814 procrestore(up);
815 spllo();
816 } else {
817 /*
818 * here to go to sleep (i.e. stop Running)
819 */
820 unlock(&up->rlock);
821 unlock(r);
822 gotolabel(&m->sched);
823 }
824 }
825
826 if(up->notepending) {
827 up->notepending = 0;
828 splx(s);
829 if(up->procctl == Proc_exitme && up->closingfgrp)
830 forceclosefgrp();
831 error(Eintr);
832 }
833
834 splx(s);
835 }
836
837 static int
tfn(void * arg)838 tfn(void *arg)
839 {
840 return up->trend == nil || up->tfn(arg);
841 }
842
843 void
twakeup(Ureg *,Timer * t)844 twakeup(Ureg*, Timer *t)
845 {
846 Proc *p;
847 Rendez *trend;
848
849 p = t->ta;
850 trend = p->trend;
851 p->trend = 0;
852 if(trend)
853 wakeup(trend);
854 }
855
856 void
tsleep(Rendez * r,int (* fn)(void *),void * arg,ulong ms)857 tsleep(Rendez *r, int (*fn)(void*), void *arg, ulong ms)
858 {
859 if (up->tt){
860 print("tsleep: timer active: mode %d, tf %#p\n", up->tmode, up->tf);
861 timerdel(up);
862 }
863 up->tns = MS2NS(ms);
864 up->tf = twakeup;
865 up->tmode = Trelative;
866 up->ta = up;
867 up->trend = r;
868 up->tfn = fn;
869 timeradd(up);
870
871 if(waserror()){
872 timerdel(up);
873 nexterror();
874 }
875 sleep(r, tfn, arg);
876 if(up->tt)
877 timerdel(up);
878 up->twhen = 0;
879 poperror();
880 }
881
882 /*
883 * Expects that only one process can call wakeup for any given Rendez.
884 * We hold both locks to ensure that r->p and p->r remain consistent.
885 * Richard Miller has a better solution that doesn't require both to
886 * be held simultaneously, but I'm a paranoid - presotto.
887 */
888 Proc*
wakeup(Rendez * r)889 wakeup(Rendez *r)
890 {
891 Proc *p;
892 int s;
893
894 s = splhi();
895
896 lock(r);
897 p = r->p;
898
899 if(p != nil){
900 lock(&p->rlock);
901 if(p->state != Wakeme || p->r != r){
902 iprint("%p %p %d\n", p->r, r, p->state);
903 panic("wakeup: state");
904 }
905 r->p = nil;
906 p->r = nil;
907 ready(p);
908 unlock(&p->rlock);
909 }
910 unlock(r);
911
912 splx(s);
913
914 return p;
915 }
916
917 /*
918 * if waking a sleeping process, this routine must hold both
919 * p->rlock and r->lock. However, it can't know them in
920 * the same order as wakeup causing a possible lock ordering
921 * deadlock. We break the deadlock by giving up the p->rlock
922 * lock if we can't get the r->lock and retrying.
923 */
924 int
postnote(Proc * p,int dolock,char * n,int flag)925 postnote(Proc *p, int dolock, char *n, int flag)
926 {
927 int s, ret;
928 Rendez *r;
929 Proc *d, **l;
930
931 if(dolock)
932 qlock(&p->debug);
933
934 if(flag != NUser && (p->notify == 0 || p->notified))
935 p->nnote = 0;
936
937 ret = 0;
938 if(p->nnote < NNOTE) {
939 strcpy(p->note[p->nnote].msg, n);
940 p->note[p->nnote++].flag = flag;
941 ret = 1;
942 }
943 p->notepending = 1;
944 if(dolock)
945 qunlock(&p->debug);
946
947 /* this loop is to avoid lock ordering problems. */
948 for(;;){
949 s = splhi();
950 lock(&p->rlock);
951 r = p->r;
952
953 /* waiting for a wakeup? */
954 if(r == nil)
955 break; /* no */
956
957 /* try for the second lock */
958 if(canlock(r)){
959 if(p->state != Wakeme || r->p != p)
960 panic("postnote: state %d %d %d", r->p != p, p->r != r, p->state);
961 p->r = nil;
962 r->p = nil;
963 ready(p);
964 unlock(r);
965 break;
966 }
967
968 /* give other process time to get out of critical section and try again */
969 unlock(&p->rlock);
970 splx(s);
971 sched();
972 }
973 unlock(&p->rlock);
974 splx(s);
975
976 if(p->state != Rendezvous)
977 return ret;
978
979 /* Try and pull out of a rendezvous */
980 lock(p->rgrp);
981 if(p->state == Rendezvous) {
982 p->rendval = ~0;
983 l = &REND(p->rgrp, p->rendtag);
984 for(d = *l; d; d = d->rendhash) {
985 if(d == p) {
986 *l = p->rendhash;
987 break;
988 }
989 l = &d->rendhash;
990 }
991 ready(p);
992 }
993 unlock(p->rgrp);
994 return ret;
995 }
996
997 /*
998 * weird thing: keep at most NBROKEN around
999 */
1000 #define NBROKEN 4
1001 struct
1002 {
1003 QLock;
1004 int n;
1005 Proc *p[NBROKEN];
1006 }broken;
1007
1008 void
addbroken(Proc * p)1009 addbroken(Proc *p)
1010 {
1011 qlock(&broken);
1012 if(broken.n == NBROKEN) {
1013 ready(broken.p[0]);
1014 memmove(&broken.p[0], &broken.p[1], sizeof(Proc*)*(NBROKEN-1));
1015 --broken.n;
1016 }
1017 broken.p[broken.n++] = p;
1018 qunlock(&broken);
1019
1020 edfstop(up);
1021 p->state = Broken;
1022 p->psstate = 0;
1023 sched();
1024 }
1025
1026 void
unbreak(Proc * p)1027 unbreak(Proc *p)
1028 {
1029 int b;
1030
1031 qlock(&broken);
1032 for(b=0; b < broken.n; b++)
1033 if(broken.p[b] == p) {
1034 broken.n--;
1035 memmove(&broken.p[b], &broken.p[b+1],
1036 sizeof(Proc*)*(NBROKEN-(b+1)));
1037 ready(p);
1038 break;
1039 }
1040 qunlock(&broken);
1041 }
1042
1043 int
freebroken(void)1044 freebroken(void)
1045 {
1046 int i, n;
1047
1048 qlock(&broken);
1049 n = broken.n;
1050 for(i=0; i<n; i++) {
1051 ready(broken.p[i]);
1052 broken.p[i] = 0;
1053 }
1054 broken.n = 0;
1055 qunlock(&broken);
1056 return n;
1057 }
1058
1059 void
pexit(char * exitstr,int freemem)1060 pexit(char *exitstr, int freemem)
1061 {
1062 Proc *p;
1063 Segment **s, **es;
1064 long utime, stime;
1065 Waitq *wq, *f, *next;
1066 Fgrp *fgrp;
1067 Egrp *egrp;
1068 Rgrp *rgrp;
1069 Pgrp *pgrp;
1070 Chan *dot;
1071 void (*pt)(Proc*, int, vlong);
1072
1073 if(up->syscalltrace)
1074 free(up->syscalltrace);
1075 up->alarm = 0;
1076 if (up->tt)
1077 timerdel(up);
1078 pt = proctrace;
1079 if(pt)
1080 pt(up, SDead, 0);
1081
1082 /* nil out all the resources under lock (free later) */
1083 qlock(&up->debug);
1084 fgrp = up->fgrp;
1085 up->fgrp = nil;
1086 egrp = up->egrp;
1087 up->egrp = nil;
1088 rgrp = up->rgrp;
1089 up->rgrp = nil;
1090 pgrp = up->pgrp;
1091 up->pgrp = nil;
1092 dot = up->dot;
1093 up->dot = nil;
1094 qunlock(&up->debug);
1095
1096 if(fgrp)
1097 closefgrp(fgrp);
1098 if(egrp)
1099 closeegrp(egrp);
1100 if(rgrp)
1101 closergrp(rgrp);
1102 if(dot)
1103 cclose(dot);
1104 if(pgrp)
1105 closepgrp(pgrp);
1106
1107 /*
1108 * if not a kernel process and have a parent,
1109 * do some housekeeping.
1110 */
1111 if(up->kp == 0) {
1112 p = up->parent;
1113 if(p == 0) {
1114 if(exitstr == 0)
1115 exitstr = "unknown";
1116 panic("boot process died: %s", exitstr);
1117 }
1118
1119 while(waserror())
1120 ;
1121
1122 wq = smalloc(sizeof(Waitq));
1123 poperror();
1124
1125 wq->w.pid = up->pid;
1126 utime = up->time[TUser] + up->time[TCUser];
1127 stime = up->time[TSys] + up->time[TCSys];
1128 wq->w.time[TUser] = tk2ms(utime);
1129 wq->w.time[TSys] = tk2ms(stime);
1130 wq->w.time[TReal] = tk2ms(MACHP(0)->ticks - up->time[TReal]);
1131 if(exitstr && exitstr[0])
1132 snprint(wq->w.msg, sizeof(wq->w.msg), "%s %lud: %s", up->text, up->pid, exitstr);
1133 else
1134 wq->w.msg[0] = '\0';
1135
1136 lock(&p->exl);
1137 /*
1138 * Check that parent is still alive.
1139 */
1140 if(p->pid == up->parentpid && p->state != Broken) {
1141 p->nchild--;
1142 p->time[TCUser] += utime;
1143 p->time[TCSys] += stime;
1144 /*
1145 * If there would be more than 128 wait records
1146 * processes for my parent, then don't leave a wait
1147 * record behind. This helps prevent badly written
1148 * daemon processes from accumulating lots of wait
1149 * records.
1150 */
1151 if(p->nwait < 128) {
1152 wq->next = p->waitq;
1153 p->waitq = wq;
1154 p->nwait++;
1155 wq = nil;
1156 wakeup(&p->waitr);
1157 }
1158 }
1159 unlock(&p->exl);
1160 if(wq)
1161 free(wq);
1162 }
1163
1164 if(!freemem)
1165 addbroken(up);
1166
1167 qlock(&up->seglock);
1168 es = &up->seg[NSEG];
1169 for(s = up->seg; s < es; s++) {
1170 if(*s) {
1171 putseg(*s);
1172 *s = 0;
1173 }
1174 }
1175 qunlock(&up->seglock);
1176
1177 lock(&up->exl); /* Prevent my children from leaving waits */
1178 pidunhash(up);
1179 up->pid = 0;
1180 wakeup(&up->waitr);
1181 unlock(&up->exl);
1182
1183 for(f = up->waitq; f; f = next) {
1184 next = f->next;
1185 free(f);
1186 }
1187
1188 /* release debuggers */
1189 qlock(&up->debug);
1190 if(up->pdbg) {
1191 wakeup(&up->pdbg->sleep);
1192 up->pdbg = 0;
1193 }
1194 qunlock(&up->debug);
1195
1196 /* Sched must not loop for these locks */
1197 lock(&procalloc);
1198 lock(&palloc);
1199
1200 edfstop(up);
1201 up->state = Moribund;
1202 sched();
1203 panic("pexit");
1204 }
1205
1206 int
haswaitq(void * x)1207 haswaitq(void *x)
1208 {
1209 Proc *p;
1210
1211 p = (Proc *)x;
1212 return p->waitq != 0;
1213 }
1214
1215 ulong
pwait(Waitmsg * w)1216 pwait(Waitmsg *w)
1217 {
1218 ulong cpid;
1219 Waitq *wq;
1220
1221 if(!canqlock(&up->qwaitr))
1222 error(Einuse);
1223
1224 if(waserror()) {
1225 qunlock(&up->qwaitr);
1226 nexterror();
1227 }
1228
1229 lock(&up->exl);
1230 if(up->nchild == 0 && up->waitq == 0) {
1231 unlock(&up->exl);
1232 error(Enochild);
1233 }
1234 unlock(&up->exl);
1235
1236 sleep(&up->waitr, haswaitq, up);
1237
1238 lock(&up->exl);
1239 wq = up->waitq;
1240 up->waitq = wq->next;
1241 up->nwait--;
1242 unlock(&up->exl);
1243
1244 qunlock(&up->qwaitr);
1245 poperror();
1246
1247 if(w)
1248 memmove(w, &wq->w, sizeof(Waitmsg));
1249 cpid = wq->w.pid;
1250 free(wq);
1251 return cpid;
1252 }
1253
1254 Proc*
proctab(int i)1255 proctab(int i)
1256 {
1257 return &procalloc.arena[i];
1258 }
1259
1260 void
dumpaproc(Proc * p)1261 dumpaproc(Proc *p)
1262 {
1263 ulong bss;
1264 char *s;
1265
1266 if(p == 0)
1267 return;
1268
1269 bss = 0;
1270 if(p->seg[BSEG])
1271 bss = p->seg[BSEG]->top;
1272
1273 s = p->psstate;
1274 if(s == 0)
1275 s = statename[p->state];
1276 print("%3lud:%10s pc %8lux dbgpc %8lux %8s (%s) ut %ld st %ld bss %lux qpc %lux nl %lud nd %lud lpc %lux pri %lud\n",
1277 p->pid, p->text, p->pc, dbgpc(p), s, statename[p->state],
1278 p->time[0], p->time[1], bss, p->qpc, p->nlocks.ref, p->delaysched, p->lastlock ? p->lastlock->pc : 0, p->priority);
1279 }
1280
1281 void
procdump(void)1282 procdump(void)
1283 {
1284 int i;
1285 Proc *p;
1286
1287 if(up)
1288 print("up %lud\n", up->pid);
1289 else
1290 print("no current process\n");
1291 for(i=0; i<conf.nproc; i++) {
1292 p = &procalloc.arena[i];
1293 if(p->state == Dead)
1294 continue;
1295
1296 dumpaproc(p);
1297 }
1298 }
1299
1300 /*
1301 * wait till all processes have flushed their mmu
1302 * state about segement s
1303 */
1304 void
procflushseg(Segment * s)1305 procflushseg(Segment *s)
1306 {
1307 int i, ns, nm, nwait;
1308 Proc *p;
1309
1310 /*
1311 * tell all processes with this
1312 * segment to flush their mmu's
1313 */
1314 nwait = 0;
1315 for(i=0; i<conf.nproc; i++) {
1316 p = &procalloc.arena[i];
1317 if(p->state == Dead)
1318 continue;
1319 for(ns = 0; ns < NSEG; ns++)
1320 if(p->seg[ns] == s){
1321 p->newtlb = 1;
1322 for(nm = 0; nm < conf.nmach; nm++){
1323 if(MACHP(nm)->proc == p){
1324 MACHP(nm)->flushmmu = 1;
1325 nwait++;
1326 }
1327 }
1328 break;
1329 }
1330 }
1331
1332 if(nwait == 0)
1333 return;
1334
1335 /*
1336 * wait for all processors to take a clock interrupt
1337 * and flush their mmu's
1338 */
1339 for(nm = 0; nm < conf.nmach; nm++)
1340 if(MACHP(nm) != m)
1341 while(MACHP(nm)->flushmmu)
1342 sched();
1343 }
1344
1345 void
scheddump(void)1346 scheddump(void)
1347 {
1348 Proc *p;
1349 Schedq *rq;
1350
1351 for(rq = &runq[Nrq-1]; rq >= runq; rq--){
1352 if(rq->head == 0)
1353 continue;
1354 print("rq%ld:", rq-runq);
1355 for(p = rq->head; p; p = p->rnext)
1356 print(" %lud(%lud)", p->pid, m->ticks - p->readytime);
1357 print("\n");
1358 delay(150);
1359 }
1360 print("nrdy %d\n", nrdy);
1361 }
1362
1363 void
kproc(char * name,void (* func)(void *),void * arg)1364 kproc(char *name, void (*func)(void *), void *arg)
1365 {
1366 Proc *p;
1367 static Pgrp *kpgrp;
1368
1369 p = newproc();
1370 p->psstate = 0;
1371 p->procmode = 0640;
1372 p->kp = 1;
1373 p->noswap = 1;
1374
1375 p->fpsave = up->fpsave;
1376 p->scallnr = up->scallnr;
1377 p->s = up->s;
1378 p->nerrlab = 0;
1379 p->slash = up->slash;
1380 p->dot = up->dot;
1381 if(p->dot)
1382 incref(p->dot);
1383
1384 memmove(p->note, up->note, sizeof(p->note));
1385 p->nnote = up->nnote;
1386 p->notified = 0;
1387 p->lastnote = up->lastnote;
1388 p->notify = up->notify;
1389 p->ureg = 0;
1390 p->dbgreg = 0;
1391
1392 procpriority(p, PriKproc, 0);
1393
1394 kprocchild(p, func, arg);
1395
1396 kstrdup(&p->user, eve);
1397 kstrdup(&p->text, name);
1398 if(kpgrp == 0)
1399 kpgrp = newpgrp();
1400 p->pgrp = kpgrp;
1401 incref(kpgrp);
1402
1403 memset(p->time, 0, sizeof(p->time));
1404 p->time[TReal] = MACHP(0)->ticks;
1405 ready(p);
1406 }
1407
1408 /*
1409 * called splhi() by notify(). See comment in notify for the
1410 * reasoning.
1411 */
1412 void
procctl(Proc * p)1413 procctl(Proc *p)
1414 {
1415 char *state;
1416 ulong s;
1417
1418 switch(p->procctl) {
1419 case Proc_exitbig:
1420 spllo();
1421 pexit("Killed: Insufficient physical memory", 1);
1422
1423 case Proc_exitme:
1424 spllo(); /* pexit has locks in it */
1425 pexit("Killed", 1);
1426
1427 case Proc_traceme:
1428 if(p->nnote == 0)
1429 return;
1430 /* No break */
1431
1432 case Proc_stopme:
1433 p->procctl = 0;
1434 state = p->psstate;
1435 p->psstate = "Stopped";
1436 /* free a waiting debugger */
1437 s = spllo();
1438 qlock(&p->debug);
1439 if(p->pdbg) {
1440 wakeup(&p->pdbg->sleep);
1441 p->pdbg = 0;
1442 }
1443 qunlock(&p->debug);
1444 splhi();
1445 p->state = Stopped;
1446 sched();
1447 p->psstate = state;
1448 splx(s);
1449 return;
1450 }
1451 }
1452
1453 #include "errstr.h"
1454
1455 void
error(char * err)1456 error(char *err)
1457 {
1458 spllo();
1459
1460 assert(up->nerrlab < NERR);
1461 kstrcpy(up->errstr, err, ERRMAX);
1462 setlabel(&up->errlab[NERR-1]);
1463 nexterror();
1464 }
1465
1466 void
nexterror(void)1467 nexterror(void)
1468 {
1469 gotolabel(&up->errlab[--up->nerrlab]);
1470 }
1471
1472 void
exhausted(char * resource)1473 exhausted(char *resource)
1474 {
1475 char buf[ERRMAX];
1476
1477 snprint(buf, sizeof buf, "no free %s", resource);
1478 iprint("%s\n", buf);
1479 error(buf);
1480 }
1481
1482 void
killbig(char * why)1483 killbig(char *why)
1484 {
1485 int i;
1486 Segment *s;
1487 ulong l, max;
1488 Proc *p, *ep, *kp;
1489
1490 max = 0;
1491 kp = 0;
1492 ep = procalloc.arena+conf.nproc;
1493 for(p = procalloc.arena; p < ep; p++) {
1494 if(p->state == Dead || p->kp)
1495 continue;
1496 l = 0;
1497 for(i=1; i<NSEG; i++) {
1498 s = p->seg[i];
1499 if(s != 0)
1500 l += s->top - s->base;
1501 }
1502 if(l > max && ((p->procmode&0222) || strcmp(eve, p->user)!=0)) {
1503 kp = p;
1504 max = l;
1505 }
1506 }
1507
1508 print("%lud: %s killed: %s\n", kp->pid, kp->text, why);
1509 for(p = procalloc.arena; p < ep; p++) {
1510 if(p->state == Dead || p->kp)
1511 continue;
1512 if(p != kp && p->seg[BSEG] && p->seg[BSEG] == kp->seg[BSEG])
1513 p->procctl = Proc_exitbig;
1514 }
1515 kp->procctl = Proc_exitbig;
1516 for(i = 0; i < NSEG; i++) {
1517 s = kp->seg[i];
1518 if(s != 0 && canqlock(&s->lk)) {
1519 mfreeseg(s, s->base, (s->top - s->base)/BY2PG);
1520 qunlock(&s->lk);
1521 }
1522 }
1523 }
1524
1525 /*
1526 * change ownership to 'new' of all processes owned by 'old'. Used when
1527 * eve changes.
1528 */
1529 void
renameuser(char * old,char * new)1530 renameuser(char *old, char *new)
1531 {
1532 Proc *p, *ep;
1533
1534 ep = procalloc.arena+conf.nproc;
1535 for(p = procalloc.arena; p < ep; p++)
1536 if(p->user!=nil && strcmp(old, p->user)==0)
1537 kstrdup(&p->user, new);
1538 }
1539
1540 /*
1541 * time accounting called by clock() splhi'd
1542 */
1543 void
accounttime(void)1544 accounttime(void)
1545 {
1546 Proc *p;
1547 ulong n, per;
1548 static ulong nrun;
1549
1550 p = m->proc;
1551 if(p) {
1552 nrun++;
1553 p->time[p->insyscall]++;
1554 }
1555
1556 /* calculate decaying duty cycles */
1557 n = perfticks();
1558 per = n - m->perf.last;
1559 m->perf.last = n;
1560 per = (m->perf.period*(HZ-1) + per)/HZ;
1561 if(per != 0)
1562 m->perf.period = per;
1563
1564 m->perf.avg_inidle = (m->perf.avg_inidle*(HZ-1)+m->perf.inidle)/HZ;
1565 m->perf.inidle = 0;
1566
1567 m->perf.avg_inintr = (m->perf.avg_inintr*(HZ-1)+m->perf.inintr)/HZ;
1568 m->perf.inintr = 0;
1569
1570 /* only one processor gets to compute system load averages */
1571 if(m->machno != 0)
1572 return;
1573
1574 /*
1575 * calculate decaying load average.
1576 * if we decay by (n-1)/n then it takes
1577 * n clock ticks to go from load L to .36 L once
1578 * things quiet down. it takes about 5 n clock
1579 * ticks to go to zero. so using HZ means this is
1580 * approximately the load over the last second,
1581 * with a tail lasting about 5 seconds.
1582 */
1583 n = nrun;
1584 nrun = 0;
1585 n = (nrdy+n)*1000;
1586 m->load = (m->load*(HZ-1)+n)/HZ;
1587 }
1588
1589 static void
pidhash(Proc * p)1590 pidhash(Proc *p)
1591 {
1592 int h;
1593
1594 h = p->pid % nelem(procalloc.ht);
1595 lock(&procalloc);
1596 p->pidhash = procalloc.ht[h];
1597 procalloc.ht[h] = p;
1598 unlock(&procalloc);
1599 }
1600
1601 static void
pidunhash(Proc * p)1602 pidunhash(Proc *p)
1603 {
1604 int h;
1605 Proc **l;
1606
1607 h = p->pid % nelem(procalloc.ht);
1608 lock(&procalloc);
1609 for(l = &procalloc.ht[h]; *l != nil; l = &(*l)->pidhash)
1610 if(*l == p){
1611 *l = p->pidhash;
1612 break;
1613 }
1614 unlock(&procalloc);
1615 }
1616
1617 int
procindex(ulong pid)1618 procindex(ulong pid)
1619 {
1620 Proc *p;
1621 int h;
1622 int s;
1623
1624 s = -1;
1625 h = pid % nelem(procalloc.ht);
1626 lock(&procalloc);
1627 for(p = procalloc.ht[h]; p != nil; p = p->pidhash)
1628 if(p->pid == pid){
1629 s = p - procalloc.arena;
1630 break;
1631 }
1632 unlock(&procalloc);
1633 return s;
1634 }
1635