xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision b02e5bc5b1be9d94689ebe1cf1244b7da540fb19)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/MemorySSA.h"
187 #include "llvm/Analysis/MemorySSAUpdater.h"
188 #include "llvm/Analysis/ScalarEvolution.h"
189 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
190 #include "llvm/IR/Function.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/IR/ProfDataUtils.h"
195 #include "llvm/Pass.h"
196 #include "llvm/Support/CommandLine.h"
197 #include "llvm/Support/Debug.h"
198 #include "llvm/Transforms/Scalar.h"
199 #include "llvm/Transforms/Utils/GuardUtils.h"
200 #include "llvm/Transforms/Utils/Local.h"
201 #include "llvm/Transforms/Utils/LoopUtils.h"
202 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
203 #include <optional>
204 
205 #define DEBUG_TYPE "loop-predication"
206 
207 STATISTIC(TotalConsidered, "Number of guards considered");
208 STATISTIC(TotalWidened, "Number of checks widened");
209 
210 using namespace llvm;
211 
212 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
213                                         cl::Hidden, cl::init(true));
214 
215 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
216                                         cl::Hidden, cl::init(true));
217 
218 static cl::opt<bool>
219     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
220                             cl::Hidden, cl::init(false));
221 
222 // This is the scale factor for the latch probability. We use this during
223 // profitability analysis to find other exiting blocks that have a much higher
224 // probability of exiting the loop instead of loop exiting via latch.
225 // This value should be greater than 1 for a sane profitability check.
226 static cl::opt<float> LatchExitProbabilityScale(
227     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
228     cl::desc("scale factor for the latch probability. Value should be greater "
229              "than 1. Lower values are ignored"));
230 
231 static cl::opt<bool> PredicateWidenableBranchGuards(
232     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
233     cl::desc("Whether or not we should predicate guards "
234              "expressed as widenable branches to deoptimize blocks"),
235     cl::init(true));
236 
237 static cl::opt<bool> InsertAssumesOfPredicatedGuardsConditions(
238     "loop-predication-insert-assumes-of-predicated-guards-conditions",
239     cl::Hidden,
240     cl::desc("Whether or not we should insert assumes of conditions of "
241              "predicated guards"),
242     cl::init(true));
243 
244 namespace {
245 /// Represents an induction variable check:
246 ///   icmp Pred, <induction variable>, <loop invariant limit>
247 struct LoopICmp {
248   ICmpInst::Predicate Pred;
249   const SCEVAddRecExpr *IV;
250   const SCEV *Limit;
251   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
252            const SCEV *Limit)
253     : Pred(Pred), IV(IV), Limit(Limit) {}
254   LoopICmp() = default;
255   void dump() {
256     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
257            << ", Limit = " << *Limit << "\n";
258   }
259 };
260 
261 class LoopPredication {
262   AliasAnalysis *AA;
263   DominatorTree *DT;
264   ScalarEvolution *SE;
265   LoopInfo *LI;
266   MemorySSAUpdater *MSSAU;
267 
268   Loop *L;
269   const DataLayout *DL;
270   BasicBlock *Preheader;
271   LoopICmp LatchCheck;
272 
273   bool isSupportedStep(const SCEV* Step);
274   std::optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
275   std::optional<LoopICmp> parseLoopLatchICmp();
276 
277   /// Return an insertion point suitable for inserting a safe to speculate
278   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
279   /// trivial result would be the at the User itself, but we try to return a
280   /// loop invariant location if possible.
281   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
282   /// Same as above, *except* that this uses the SCEV definition of invariant
283   /// which is that an expression *can be made* invariant via SCEVExpander.
284   /// Thus, this version is only suitable for finding an insert point to be
285   /// passed to SCEVExpander!
286   Instruction *findInsertPt(const SCEVExpander &Expander, Instruction *User,
287                             ArrayRef<const SCEV *> Ops);
288 
289   /// Return true if the value is known to produce a single fixed value across
290   /// all iterations on which it executes.  Note that this does not imply
291   /// speculation safety.  That must be established separately.
292   bool isLoopInvariantValue(const SCEV* S);
293 
294   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
295                      ICmpInst::Predicate Pred, const SCEV *LHS,
296                      const SCEV *RHS);
297 
298   std::optional<Value *> widenICmpRangeCheck(ICmpInst *ICI,
299                                              SCEVExpander &Expander,
300                                              Instruction *Guard);
301   std::optional<Value *>
302   widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
303                                       SCEVExpander &Expander,
304                                       Instruction *Guard);
305   std::optional<Value *>
306   widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
307                                       SCEVExpander &Expander,
308                                       Instruction *Guard);
309   void widenChecks(SmallVectorImpl<Value *> &Checks,
310                    SmallVectorImpl<Value *> &WidenedChecks,
311                    SCEVExpander &Expander, Instruction *Guard);
312   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
313   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
314   // If the loop always exits through another block in the loop, we should not
315   // predicate based on the latch check. For example, the latch check can be a
316   // very coarse grained check and there can be more fine grained exit checks
317   // within the loop.
318   bool isLoopProfitableToPredicate();
319 
320   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
321 
322 public:
323   LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE,
324                   LoopInfo *LI, MemorySSAUpdater *MSSAU)
325       : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){};
326   bool runOnLoop(Loop *L);
327 };
328 
329 } // end namespace
330 
331 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
332                                            LoopStandardAnalysisResults &AR,
333                                            LPMUpdater &U) {
334   std::unique_ptr<MemorySSAUpdater> MSSAU;
335   if (AR.MSSA)
336     MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
337   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI,
338                      MSSAU ? MSSAU.get() : nullptr);
339   if (!LP.runOnLoop(&L))
340     return PreservedAnalyses::all();
341 
342   auto PA = getLoopPassPreservedAnalyses();
343   if (AR.MSSA)
344     PA.preserve<MemorySSAAnalysis>();
345   return PA;
346 }
347 
348 std::optional<LoopICmp> LoopPredication::parseLoopICmp(ICmpInst *ICI) {
349   auto Pred = ICI->getPredicate();
350   auto *LHS = ICI->getOperand(0);
351   auto *RHS = ICI->getOperand(1);
352 
353   const SCEV *LHSS = SE->getSCEV(LHS);
354   if (isa<SCEVCouldNotCompute>(LHSS))
355     return std::nullopt;
356   const SCEV *RHSS = SE->getSCEV(RHS);
357   if (isa<SCEVCouldNotCompute>(RHSS))
358     return std::nullopt;
359 
360   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
361   if (SE->isLoopInvariant(LHSS, L)) {
362     std::swap(LHS, RHS);
363     std::swap(LHSS, RHSS);
364     Pred = ICmpInst::getSwappedPredicate(Pred);
365   }
366 
367   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
368   if (!AR || AR->getLoop() != L)
369     return std::nullopt;
370 
371   return LoopICmp(Pred, AR, RHSS);
372 }
373 
374 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
375                                     Instruction *Guard,
376                                     ICmpInst::Predicate Pred, const SCEV *LHS,
377                                     const SCEV *RHS) {
378   Type *Ty = LHS->getType();
379   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
380 
381   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
382     IRBuilder<> Builder(Guard);
383     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
384       return Builder.getTrue();
385     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
386                                      LHS, RHS))
387       return Builder.getFalse();
388   }
389 
390   Value *LHSV =
391       Expander.expandCodeFor(LHS, Ty, findInsertPt(Expander, Guard, {LHS}));
392   Value *RHSV =
393       Expander.expandCodeFor(RHS, Ty, findInsertPt(Expander, Guard, {RHS}));
394   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
395   return Builder.CreateICmp(Pred, LHSV, RHSV);
396 }
397 
398 // Returns true if its safe to truncate the IV to RangeCheckType.
399 // When the IV type is wider than the range operand type, we can still do loop
400 // predication, by generating SCEVs for the range and latch that are of the
401 // same type. We achieve this by generating a SCEV truncate expression for the
402 // latch IV. This is done iff truncation of the IV is a safe operation,
403 // without loss of information.
404 // Another way to achieve this is by generating a wider type SCEV for the
405 // range check operand, however, this needs a more involved check that
406 // operands do not overflow. This can lead to loss of information when the
407 // range operand is of the form: add i32 %offset, %iv. We need to prove that
408 // sext(x + y) is same as sext(x) + sext(y).
409 // This function returns true if we can safely represent the IV type in
410 // the RangeCheckType without loss of information.
411 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
412                                        ScalarEvolution &SE,
413                                        const LoopICmp LatchCheck,
414                                        Type *RangeCheckType) {
415   if (!EnableIVTruncation)
416     return false;
417   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedValue() >
418              DL.getTypeSizeInBits(RangeCheckType).getFixedValue() &&
419          "Expected latch check IV type to be larger than range check operand "
420          "type!");
421   // The start and end values of the IV should be known. This is to guarantee
422   // that truncating the wide type will not lose information.
423   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
424   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
425   if (!Limit || !Start)
426     return false;
427   // This check makes sure that the IV does not change sign during loop
428   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
429   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
430   // IV wraps around, and the truncation of the IV would lose the range of
431   // iterations between 2^32 and 2^64.
432   if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred))
433     return false;
434   // The active bits should be less than the bits in the RangeCheckType. This
435   // guarantees that truncating the latch check to RangeCheckType is a safe
436   // operation.
437   auto RangeCheckTypeBitSize =
438       DL.getTypeSizeInBits(RangeCheckType).getFixedValue();
439   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
440          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
441 }
442 
443 
444 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
445 // the requested type if safe to do so.  May involve the use of a new IV.
446 static std::optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
447                                                       ScalarEvolution &SE,
448                                                       const LoopICmp LatchCheck,
449                                                       Type *RangeCheckType) {
450 
451   auto *LatchType = LatchCheck.IV->getType();
452   if (RangeCheckType == LatchType)
453     return LatchCheck;
454   // For now, bail out if latch type is narrower than range type.
455   if (DL.getTypeSizeInBits(LatchType).getFixedValue() <
456       DL.getTypeSizeInBits(RangeCheckType).getFixedValue())
457     return std::nullopt;
458   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
459     return std::nullopt;
460   // We can now safely identify the truncated version of the IV and limit for
461   // RangeCheckType.
462   LoopICmp NewLatchCheck;
463   NewLatchCheck.Pred = LatchCheck.Pred;
464   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
465       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
466   if (!NewLatchCheck.IV)
467     return std::nullopt;
468   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
469   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
470                     << "can be represented as range check type:"
471                     << *RangeCheckType << "\n");
472   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
473   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
474   return NewLatchCheck;
475 }
476 
477 bool LoopPredication::isSupportedStep(const SCEV* Step) {
478   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
479 }
480 
481 Instruction *LoopPredication::findInsertPt(Instruction *Use,
482                                            ArrayRef<Value*> Ops) {
483   for (Value *Op : Ops)
484     if (!L->isLoopInvariant(Op))
485       return Use;
486   return Preheader->getTerminator();
487 }
488 
489 Instruction *LoopPredication::findInsertPt(const SCEVExpander &Expander,
490                                            Instruction *Use,
491                                            ArrayRef<const SCEV *> Ops) {
492   // Subtlety: SCEV considers things to be invariant if the value produced is
493   // the same across iterations.  This is not the same as being able to
494   // evaluate outside the loop, which is what we actually need here.
495   for (const SCEV *Op : Ops)
496     if (!SE->isLoopInvariant(Op, L) ||
497         !Expander.isSafeToExpandAt(Op, Preheader->getTerminator()))
498       return Use;
499   return Preheader->getTerminator();
500 }
501 
502 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
503   // Handling expressions which produce invariant results, but *haven't* yet
504   // been removed from the loop serves two important purposes.
505   // 1) Most importantly, it resolves a pass ordering cycle which would
506   // otherwise need us to iteration licm, loop-predication, and either
507   // loop-unswitch or loop-peeling to make progress on examples with lots of
508   // predicable range checks in a row.  (Since, in the general case,  we can't
509   // hoist the length checks until the dominating checks have been discharged
510   // as we can't prove doing so is safe.)
511   // 2) As a nice side effect, this exposes the value of peeling or unswitching
512   // much more obviously in the IR.  Otherwise, the cost modeling for other
513   // transforms would end up needing to duplicate all of this logic to model a
514   // check which becomes predictable based on a modeled peel or unswitch.
515   //
516   // The cost of doing so in the worst case is an extra fill from the stack  in
517   // the loop to materialize the loop invariant test value instead of checking
518   // against the original IV which is presumable in a register inside the loop.
519   // Such cases are presumably rare, and hint at missing oppurtunities for
520   // other passes.
521 
522   if (SE->isLoopInvariant(S, L))
523     // Note: This the SCEV variant, so the original Value* may be within the
524     // loop even though SCEV has proven it is loop invariant.
525     return true;
526 
527   // Handle a particular important case which SCEV doesn't yet know about which
528   // shows up in range checks on arrays with immutable lengths.
529   // TODO: This should be sunk inside SCEV.
530   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
531     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
532       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
533         if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0))) ||
534             LI->hasMetadata(LLVMContext::MD_invariant_load))
535           return true;
536   return false;
537 }
538 
539 std::optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
540     LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander,
541     Instruction *Guard) {
542   auto *Ty = RangeCheck.IV->getType();
543   // Generate the widened condition for the forward loop:
544   //   guardStart u< guardLimit &&
545   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
546   // where <pred> depends on the latch condition predicate. See the file
547   // header comment for the reasoning.
548   // guardLimit - guardStart + latchStart - 1
549   const SCEV *GuardStart = RangeCheck.IV->getStart();
550   const SCEV *GuardLimit = RangeCheck.Limit;
551   const SCEV *LatchStart = LatchCheck.IV->getStart();
552   const SCEV *LatchLimit = LatchCheck.Limit;
553   // Subtlety: We need all the values to be *invariant* across all iterations,
554   // but we only need to check expansion safety for those which *aren't*
555   // already guaranteed to dominate the guard.
556   if (!isLoopInvariantValue(GuardStart) ||
557       !isLoopInvariantValue(GuardLimit) ||
558       !isLoopInvariantValue(LatchStart) ||
559       !isLoopInvariantValue(LatchLimit)) {
560     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
561     return std::nullopt;
562   }
563   if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
564       !Expander.isSafeToExpandAt(LatchLimit, Guard)) {
565     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
566     return std::nullopt;
567   }
568 
569   // guardLimit - guardStart + latchStart - 1
570   const SCEV *RHS =
571       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
572                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
573   auto LimitCheckPred =
574       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
575 
576   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
577   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
578   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
579 
580   auto *LimitCheck =
581       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
582   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
583                                           GuardStart, GuardLimit);
584   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
585   return Builder.CreateFreeze(
586       Builder.CreateAnd(FirstIterationCheck, LimitCheck));
587 }
588 
589 std::optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
590     LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander,
591     Instruction *Guard) {
592   auto *Ty = RangeCheck.IV->getType();
593   const SCEV *GuardStart = RangeCheck.IV->getStart();
594   const SCEV *GuardLimit = RangeCheck.Limit;
595   const SCEV *LatchStart = LatchCheck.IV->getStart();
596   const SCEV *LatchLimit = LatchCheck.Limit;
597   // Subtlety: We need all the values to be *invariant* across all iterations,
598   // but we only need to check expansion safety for those which *aren't*
599   // already guaranteed to dominate the guard.
600   if (!isLoopInvariantValue(GuardStart) ||
601       !isLoopInvariantValue(GuardLimit) ||
602       !isLoopInvariantValue(LatchStart) ||
603       !isLoopInvariantValue(LatchLimit)) {
604     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
605     return std::nullopt;
606   }
607   if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
608       !Expander.isSafeToExpandAt(LatchLimit, Guard)) {
609     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
610     return std::nullopt;
611   }
612   // The decrement of the latch check IV should be the same as the
613   // rangeCheckIV.
614   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
615   if (RangeCheck.IV != PostDecLatchCheckIV) {
616     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
617                       << *PostDecLatchCheckIV
618                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
619     return std::nullopt;
620   }
621 
622   // Generate the widened condition for CountDownLoop:
623   // guardStart u< guardLimit &&
624   // latchLimit <pred> 1.
625   // See the header comment for reasoning of the checks.
626   auto LimitCheckPred =
627       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
628   auto *FirstIterationCheck = expandCheck(Expander, Guard,
629                                           ICmpInst::ICMP_ULT,
630                                           GuardStart, GuardLimit);
631   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
632                                  SE->getOne(Ty));
633   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
634   return Builder.CreateFreeze(
635       Builder.CreateAnd(FirstIterationCheck, LimitCheck));
636 }
637 
638 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
639                                LoopICmp& RC) {
640   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
641   // ULT/UGE form for ease of handling by our caller.
642   if (ICmpInst::isEquality(RC.Pred) &&
643       RC.IV->getStepRecurrence(*SE)->isOne() &&
644       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
645     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
646       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
647 }
648 
649 /// If ICI can be widened to a loop invariant condition emits the loop
650 /// invariant condition in the loop preheader and return it, otherwise
651 /// returns std::nullopt.
652 std::optional<Value *>
653 LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
654                                      Instruction *Guard) {
655   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
656   LLVM_DEBUG(ICI->dump());
657 
658   // parseLoopStructure guarantees that the latch condition is:
659   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
660   // We are looking for the range checks of the form:
661   //   i u< guardLimit
662   auto RangeCheck = parseLoopICmp(ICI);
663   if (!RangeCheck) {
664     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
665     return std::nullopt;
666   }
667   LLVM_DEBUG(dbgs() << "Guard check:\n");
668   LLVM_DEBUG(RangeCheck->dump());
669   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
670     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
671                       << RangeCheck->Pred << ")!\n");
672     return std::nullopt;
673   }
674   auto *RangeCheckIV = RangeCheck->IV;
675   if (!RangeCheckIV->isAffine()) {
676     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
677     return std::nullopt;
678   }
679   const SCEV *Step = RangeCheckIV->getStepRecurrence(*SE);
680   // We cannot just compare with latch IV step because the latch and range IVs
681   // may have different types.
682   if (!isSupportedStep(Step)) {
683     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
684     return std::nullopt;
685   }
686   auto *Ty = RangeCheckIV->getType();
687   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
688   if (!CurrLatchCheckOpt) {
689     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
690                          "corresponding to range type: "
691                       << *Ty << "\n");
692     return std::nullopt;
693   }
694 
695   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
696   // At this point, the range and latch step should have the same type, but need
697   // not have the same value (we support both 1 and -1 steps).
698   assert(Step->getType() ==
699              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
700          "Range and latch steps should be of same type!");
701   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
702     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
703     return std::nullopt;
704   }
705 
706   if (Step->isOne())
707     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
708                                                Expander, Guard);
709   else {
710     assert(Step->isAllOnesValue() && "Step should be -1!");
711     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
712                                                Expander, Guard);
713   }
714 }
715 
716 void LoopPredication::widenChecks(SmallVectorImpl<Value *> &Checks,
717                                   SmallVectorImpl<Value *> &WidenedChecks,
718                                   SCEVExpander &Expander, Instruction *Guard) {
719   for (auto &Check : Checks)
720     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Check))
721       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Guard)) {
722         WidenedChecks.push_back(Check);
723         Check = *NewRangeCheck;
724       }
725 }
726 
727 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
728                                            SCEVExpander &Expander) {
729   LLVM_DEBUG(dbgs() << "Processing guard:\n");
730   LLVM_DEBUG(Guard->dump());
731 
732   TotalConsidered++;
733   SmallVector<Value *, 4> Checks;
734   SmallVector<Value *> WidenedChecks;
735   parseWidenableGuard(Guard, Checks);
736   widenChecks(Checks, WidenedChecks, Expander, Guard);
737   if (WidenedChecks.empty())
738     return false;
739 
740   TotalWidened += WidenedChecks.size();
741 
742   // Emit the new guard condition
743   IRBuilder<> Builder(findInsertPt(Guard, Checks));
744   Value *AllChecks = Builder.CreateAnd(Checks);
745   auto *OldCond = Guard->getOperand(0);
746   Guard->setOperand(0, AllChecks);
747   if (InsertAssumesOfPredicatedGuardsConditions) {
748     Builder.SetInsertPoint(&*++BasicBlock::iterator(Guard));
749     Builder.CreateAssumption(OldCond);
750   }
751   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
752 
753   LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n");
754   return true;
755 }
756 
757 bool LoopPredication::widenWidenableBranchGuardConditions(
758     BranchInst *BI, SCEVExpander &Expander) {
759   assert(isGuardAsWidenableBranch(BI) && "Must be!");
760   LLVM_DEBUG(dbgs() << "Processing guard:\n");
761   LLVM_DEBUG(BI->dump());
762 
763   TotalConsidered++;
764   SmallVector<Value *, 4> Checks;
765   SmallVector<Value *> WidenedChecks;
766   parseWidenableGuard(BI, Checks);
767   // At the moment, our matching logic for wideable conditions implicitly
768   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
769   auto WC = extractWidenableCondition(BI);
770   Checks.push_back(WC);
771   widenChecks(Checks, WidenedChecks, Expander, BI);
772   if (WidenedChecks.empty())
773     return false;
774 
775   TotalWidened += WidenedChecks.size();
776 
777   // Emit the new guard condition
778   IRBuilder<> Builder(findInsertPt(BI, Checks));
779   Value *AllChecks = Builder.CreateAnd(Checks);
780   auto *OldCond = BI->getCondition();
781   BI->setCondition(AllChecks);
782   if (InsertAssumesOfPredicatedGuardsConditions) {
783     BasicBlock *IfTrueBB = BI->getSuccessor(0);
784     Builder.SetInsertPoint(IfTrueBB, IfTrueBB->getFirstInsertionPt());
785     // If this block has other predecessors, we might not be able to use Cond.
786     // In this case, create a Phi where every other input is `true` and input
787     // from guard block is Cond.
788     Value *AssumeCond = Builder.CreateAnd(WidenedChecks);
789     if (!IfTrueBB->getUniquePredecessor()) {
790       auto *GuardBB = BI->getParent();
791       auto *PN = Builder.CreatePHI(AssumeCond->getType(), pred_size(IfTrueBB),
792                                    "assume.cond");
793       for (auto *Pred : predecessors(IfTrueBB))
794         PN->addIncoming(Pred == GuardBB ? AssumeCond : Builder.getTrue(), Pred);
795       AssumeCond = PN;
796     }
797     Builder.CreateAssumption(AssumeCond);
798   }
799   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
800   assert(isGuardAsWidenableBranch(BI) &&
801          "Stopped being a guard after transform?");
802 
803   LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n");
804   return true;
805 }
806 
807 std::optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
808   using namespace PatternMatch;
809 
810   BasicBlock *LoopLatch = L->getLoopLatch();
811   if (!LoopLatch) {
812     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
813     return std::nullopt;
814   }
815 
816   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
817   if (!BI || !BI->isConditional()) {
818     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
819     return std::nullopt;
820   }
821   BasicBlock *TrueDest = BI->getSuccessor(0);
822   assert(
823       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
824       "One of the latch's destinations must be the header");
825 
826   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
827   if (!ICI) {
828     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
829     return std::nullopt;
830   }
831   auto Result = parseLoopICmp(ICI);
832   if (!Result) {
833     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
834     return std::nullopt;
835   }
836 
837   if (TrueDest != L->getHeader())
838     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
839 
840   // Check affine first, so if it's not we don't try to compute the step
841   // recurrence.
842   if (!Result->IV->isAffine()) {
843     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
844     return std::nullopt;
845   }
846 
847   const SCEV *Step = Result->IV->getStepRecurrence(*SE);
848   if (!isSupportedStep(Step)) {
849     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
850     return std::nullopt;
851   }
852 
853   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
854     if (Step->isOne()) {
855       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
856              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
857     } else {
858       assert(Step->isAllOnesValue() && "Step should be -1!");
859       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
860              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
861     }
862   };
863 
864   normalizePredicate(SE, L, *Result);
865   if (IsUnsupportedPredicate(Step, Result->Pred)) {
866     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
867                       << ")!\n");
868     return std::nullopt;
869   }
870 
871   return Result;
872 }
873 
874 bool LoopPredication::isLoopProfitableToPredicate() {
875   if (SkipProfitabilityChecks)
876     return true;
877 
878   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
879   L->getExitEdges(ExitEdges);
880   // If there is only one exiting edge in the loop, it is always profitable to
881   // predicate the loop.
882   if (ExitEdges.size() == 1)
883     return true;
884 
885   // Calculate the exiting probabilities of all exiting edges from the loop,
886   // starting with the LatchExitProbability.
887   // Heuristic for profitability: If any of the exiting blocks' probability of
888   // exiting the loop is larger than exiting through the latch block, it's not
889   // profitable to predicate the loop.
890   auto *LatchBlock = L->getLoopLatch();
891   assert(LatchBlock && "Should have a single latch at this point!");
892   auto *LatchTerm = LatchBlock->getTerminator();
893   assert(LatchTerm->getNumSuccessors() == 2 &&
894          "expected to be an exiting block with 2 succs!");
895   unsigned LatchBrExitIdx =
896       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
897   // We compute branch probabilities without BPI. We do not rely on BPI since
898   // Loop predication is usually run in an LPM and BPI is only preserved
899   // lossily within loop pass managers, while BPI has an inherent notion of
900   // being complete for an entire function.
901 
902   // If the latch exits into a deoptimize or an unreachable block, do not
903   // predicate on that latch check.
904   auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx);
905   if (isa<UnreachableInst>(LatchTerm) ||
906       LatchExitBlock->getTerminatingDeoptimizeCall())
907     return false;
908 
909   // Latch terminator has no valid profile data, so nothing to check
910   // profitability on.
911   if (!hasValidBranchWeightMD(*LatchTerm))
912     return true;
913 
914   auto ComputeBranchProbability =
915       [&](const BasicBlock *ExitingBlock,
916           const BasicBlock *ExitBlock) -> BranchProbability {
917     auto *Term = ExitingBlock->getTerminator();
918     unsigned NumSucc = Term->getNumSuccessors();
919     if (MDNode *ProfileData = getValidBranchWeightMDNode(*Term)) {
920       SmallVector<uint32_t> Weights;
921       extractBranchWeights(ProfileData, Weights);
922       uint64_t Numerator = 0, Denominator = 0;
923       for (auto [i, Weight] : llvm::enumerate(Weights)) {
924         if (Term->getSuccessor(i) == ExitBlock)
925           Numerator += Weight;
926         Denominator += Weight;
927       }
928       // If all weights are zero act as if there was no profile data
929       if (Denominator == 0)
930         return BranchProbability::getBranchProbability(1, NumSucc);
931       return BranchProbability::getBranchProbability(Numerator, Denominator);
932     } else {
933       assert(LatchBlock != ExitingBlock &&
934              "Latch term should always have profile data!");
935       // No profile data, so we choose the weight as 1/num_of_succ(Src)
936       return BranchProbability::getBranchProbability(1, NumSucc);
937     }
938   };
939 
940   BranchProbability LatchExitProbability =
941       ComputeBranchProbability(LatchBlock, LatchExitBlock);
942 
943   // Protect against degenerate inputs provided by the user. Providing a value
944   // less than one, can invert the definition of profitable loop predication.
945   float ScaleFactor = LatchExitProbabilityScale;
946   if (ScaleFactor < 1) {
947     LLVM_DEBUG(
948         dbgs()
949         << "Ignored user setting for loop-predication-latch-probability-scale: "
950         << LatchExitProbabilityScale << "\n");
951     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
952     ScaleFactor = 1.0;
953   }
954   const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor;
955 
956   for (const auto &ExitEdge : ExitEdges) {
957     BranchProbability ExitingBlockProbability =
958         ComputeBranchProbability(ExitEdge.first, ExitEdge.second);
959     // Some exiting edge has higher probability than the latch exiting edge.
960     // No longer profitable to predicate.
961     if (ExitingBlockProbability > LatchProbabilityThreshold)
962       return false;
963   }
964 
965   // We have concluded that the most probable way to exit from the
966   // loop is through the latch (or there's no profile information and all
967   // exits are equally likely).
968   return true;
969 }
970 
971 /// If we can (cheaply) find a widenable branch which controls entry into the
972 /// loop, return it.
973 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
974   // Walk back through any unconditional executed blocks and see if we can find
975   // a widenable condition which seems to control execution of this loop.  Note
976   // that we predict that maythrow calls are likely untaken and thus that it's
977   // profitable to widen a branch before a maythrow call with a condition
978   // afterwards even though that may cause the slow path to run in a case where
979   // it wouldn't have otherwise.
980   BasicBlock *BB = L->getLoopPreheader();
981   if (!BB)
982     return nullptr;
983   do {
984     if (BasicBlock *Pred = BB->getSinglePredecessor())
985       if (BB == Pred->getSingleSuccessor()) {
986         BB = Pred;
987         continue;
988       }
989     break;
990   } while (true);
991 
992   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
993     if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
994       if (BI->getSuccessor(0) == BB && isWidenableBranch(BI))
995         return BI;
996   }
997   return nullptr;
998 }
999 
1000 /// Return the minimum of all analyzeable exit counts.  This is an upper bound
1001 /// on the actual exit count.  If there are not at least two analyzeable exits,
1002 /// returns SCEVCouldNotCompute.
1003 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1004                                                        DominatorTree &DT,
1005                                                        Loop *L) {
1006   SmallVector<BasicBlock *, 16> ExitingBlocks;
1007   L->getExitingBlocks(ExitingBlocks);
1008 
1009   SmallVector<const SCEV *, 4> ExitCounts;
1010   for (BasicBlock *ExitingBB : ExitingBlocks) {
1011     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1012     if (isa<SCEVCouldNotCompute>(ExitCount))
1013       continue;
1014     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1015            "We should only have known counts for exiting blocks that "
1016            "dominate latch!");
1017     ExitCounts.push_back(ExitCount);
1018   }
1019   if (ExitCounts.size() < 2)
1020     return SE.getCouldNotCompute();
1021   return SE.getUMinFromMismatchedTypes(ExitCounts);
1022 }
1023 
1024 /// This implements an analogous, but entirely distinct transform from the main
1025 /// loop predication transform.  This one is phrased in terms of using a
1026 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1027 /// following loop.  This is close in spirit to the IndVarSimplify transform
1028 /// of the same name, but is materially different widening loosens legality
1029 /// sharply.
1030 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1031   // The transformation performed here aims to widen a widenable condition
1032   // above the loop such that all analyzeable exit leading to deopt are dead.
1033   // It assumes that the latch is the dominant exit for profitability and that
1034   // exits branching to deoptimizing blocks are rarely taken. It relies on the
1035   // semantics of widenable expressions for legality. (i.e. being able to fall
1036   // down the widenable path spuriously allows us to ignore exit order,
1037   // unanalyzeable exits, side effects, exceptional exits, and other challenges
1038   // which restrict the applicability of the non-WC based version of this
1039   // transform in IndVarSimplify.)
1040   //
1041   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1042   // imply flags on the expression being hoisted and inserting new uses (flags
1043   // are only correct for current uses).  The result is that we may be
1044   // inserting a branch on the value which can be either poison or undef.  In
1045   // this case, the branch can legally go either way; we just need to avoid
1046   // introducing UB.  This is achieved through the use of the freeze
1047   // instruction.
1048 
1049   SmallVector<BasicBlock *, 16> ExitingBlocks;
1050   L->getExitingBlocks(ExitingBlocks);
1051 
1052   if (ExitingBlocks.empty())
1053     return false; // Nothing to do.
1054 
1055   auto *Latch = L->getLoopLatch();
1056   if (!Latch)
1057     return false;
1058 
1059   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1060   if (!WidenableBR)
1061     return false;
1062 
1063   const SCEV *LatchEC = SE->getExitCount(L, Latch);
1064   if (isa<SCEVCouldNotCompute>(LatchEC))
1065     return false; // profitability - want hot exit in analyzeable set
1066 
1067   // At this point, we have found an analyzeable latch, and a widenable
1068   // condition above the loop.  If we have a widenable exit within the loop
1069   // (for which we can't compute exit counts), drop the ability to further
1070   // widen so that we gain ability to analyze it's exit count and perform this
1071   // transform.  TODO: It'd be nice to know for sure the exit became
1072   // analyzeable after dropping widenability.
1073   bool ChangedLoop = false;
1074 
1075   for (auto *ExitingBB : ExitingBlocks) {
1076     if (LI->getLoopFor(ExitingBB) != L)
1077       continue;
1078 
1079     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1080     if (!BI)
1081       continue;
1082 
1083     if (auto WC = extractWidenableCondition(BI))
1084       if (L->contains(BI->getSuccessor(0))) {
1085         assert(WC->hasOneUse() && "Not appropriate widenable branch!");
1086         WC->user_back()->replaceUsesOfWith(
1087             WC, ConstantInt::getTrue(BI->getContext()));
1088         ChangedLoop = true;
1089       }
1090   }
1091   if (ChangedLoop)
1092     SE->forgetLoop(L);
1093 
1094   // The insertion point for the widening should be at the widenably call, not
1095   // at the WidenableBR. If we do this at the widenableBR, we can incorrectly
1096   // change a loop-invariant condition to a loop-varying one.
1097   auto *IP = cast<Instruction>(WidenableBR->getCondition());
1098 
1099   // The use of umin(all analyzeable exits) instead of latch is subtle, but
1100   // important for profitability.  We may have a loop which hasn't been fully
1101   // canonicalized just yet.  If the exit we chose to widen is provably never
1102   // taken, we want the widened form to *also* be provably never taken.  We
1103   // can't guarantee this as a current unanalyzeable exit may later become
1104   // analyzeable, but we can at least avoid the obvious cases.
1105   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1106   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1107       !SE->isLoopInvariant(MinEC, L) ||
1108       !Rewriter.isSafeToExpandAt(MinEC, IP))
1109     return ChangedLoop;
1110 
1111   Rewriter.setInsertPoint(IP);
1112   IRBuilder<> B(IP);
1113 
1114   bool InvalidateLoop = false;
1115   Value *MinECV = nullptr; // lazily generated if needed
1116   for (BasicBlock *ExitingBB : ExitingBlocks) {
1117     // If our exiting block exits multiple loops, we can only rewrite the
1118     // innermost one.  Otherwise, we're changing how many times the innermost
1119     // loop runs before it exits.
1120     if (LI->getLoopFor(ExitingBB) != L)
1121       continue;
1122 
1123     // Can't rewrite non-branch yet.
1124     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1125     if (!BI)
1126       continue;
1127 
1128     // If already constant, nothing to do.
1129     if (isa<Constant>(BI->getCondition()))
1130       continue;
1131 
1132     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1133     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1134         ExitCount->getType()->isPointerTy() ||
1135         !Rewriter.isSafeToExpandAt(ExitCount, WidenableBR))
1136       continue;
1137 
1138     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1139     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1140     if (!ExitBB->getPostdominatingDeoptimizeCall())
1141       continue;
1142 
1143     /// Here we can be fairly sure that executing this exit will most likely
1144     /// lead to executing llvm.experimental.deoptimize.
1145     /// This is a profitability heuristic, not a legality constraint.
1146 
1147     // If we found a widenable exit condition, do two things:
1148     // 1) fold the widened exit test into the widenable condition
1149     // 2) fold the branch to untaken - avoids infinite looping
1150 
1151     Value *ECV = Rewriter.expandCodeFor(ExitCount);
1152     if (!MinECV)
1153       MinECV = Rewriter.expandCodeFor(MinEC);
1154     Value *RHS = MinECV;
1155     if (ECV->getType() != RHS->getType()) {
1156       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1157       ECV = B.CreateZExt(ECV, WiderTy);
1158       RHS = B.CreateZExt(RHS, WiderTy);
1159     }
1160     assert(!Latch || DT->dominates(ExitingBB, Latch));
1161     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1162     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1163     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
1164     // context.
1165     NewCond = B.CreateFreeze(NewCond);
1166 
1167     widenWidenableBranch(WidenableBR, NewCond);
1168 
1169     Value *OldCond = BI->getCondition();
1170     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1171     InvalidateLoop = true;
1172   }
1173 
1174   if (InvalidateLoop)
1175     // We just mutated a bunch of loop exits changing there exit counts
1176     // widely.  We need to force recomputation of the exit counts given these
1177     // changes.  Note that all of the inserted exits are never taken, and
1178     // should be removed next time the CFG is modified.
1179     SE->forgetLoop(L);
1180 
1181   // Always return `true` since we have moved the WidenableBR's condition.
1182   return true;
1183 }
1184 
1185 bool LoopPredication::runOnLoop(Loop *Loop) {
1186   L = Loop;
1187 
1188   LLVM_DEBUG(dbgs() << "Analyzing ");
1189   LLVM_DEBUG(L->dump());
1190 
1191   Module *M = L->getHeader()->getModule();
1192 
1193   // There is nothing to do if the module doesn't use guards
1194   auto *GuardDecl =
1195       Intrinsic::getDeclarationIfExists(M, Intrinsic::experimental_guard);
1196   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1197   auto *WCDecl = Intrinsic::getDeclarationIfExists(
1198       M, Intrinsic::experimental_widenable_condition);
1199   bool HasWidenableConditions =
1200       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1201   if (!HasIntrinsicGuards && !HasWidenableConditions)
1202     return false;
1203 
1204   DL = &M->getDataLayout();
1205 
1206   Preheader = L->getLoopPreheader();
1207   if (!Preheader)
1208     return false;
1209 
1210   auto LatchCheckOpt = parseLoopLatchICmp();
1211   if (!LatchCheckOpt)
1212     return false;
1213   LatchCheck = *LatchCheckOpt;
1214 
1215   LLVM_DEBUG(dbgs() << "Latch check:\n");
1216   LLVM_DEBUG(LatchCheck.dump());
1217 
1218   if (!isLoopProfitableToPredicate()) {
1219     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1220     return false;
1221   }
1222   // Collect all the guards into a vector and process later, so as not
1223   // to invalidate the instruction iterator.
1224   SmallVector<IntrinsicInst *, 4> Guards;
1225   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1226   for (const auto BB : L->blocks()) {
1227     for (auto &I : *BB)
1228       if (isGuard(&I))
1229         Guards.push_back(cast<IntrinsicInst>(&I));
1230     if (PredicateWidenableBranchGuards &&
1231         isGuardAsWidenableBranch(BB->getTerminator()))
1232       GuardsAsWidenableBranches.push_back(
1233           cast<BranchInst>(BB->getTerminator()));
1234   }
1235 
1236   SCEVExpander Expander(*SE, *DL, "loop-predication");
1237   bool Changed = false;
1238   for (auto *Guard : Guards)
1239     Changed |= widenGuardConditions(Guard, Expander);
1240   for (auto *Guard : GuardsAsWidenableBranches)
1241     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1242   Changed |= predicateLoopExits(L, Expander);
1243 
1244   if (MSSAU && VerifyMemorySSA)
1245     MSSAU->getMemorySSA()->verifyMemorySSA();
1246   return Changed;
1247 }
1248