1 //===-- tsan_rtl.cpp ------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of ThreadSanitizer (TSan), a race detector. 10 // 11 // Main file (entry points) for the TSan run-time. 12 //===----------------------------------------------------------------------===// 13 14 #include "tsan_rtl.h" 15 16 #include "sanitizer_common/sanitizer_atomic.h" 17 #include "sanitizer_common/sanitizer_common.h" 18 #include "sanitizer_common/sanitizer_file.h" 19 #include "sanitizer_common/sanitizer_interface_internal.h" 20 #include "sanitizer_common/sanitizer_libc.h" 21 #include "sanitizer_common/sanitizer_placement_new.h" 22 #include "sanitizer_common/sanitizer_stackdepot.h" 23 #include "sanitizer_common/sanitizer_symbolizer.h" 24 #include "tsan_defs.h" 25 #include "tsan_interface.h" 26 #include "tsan_mman.h" 27 #include "tsan_platform.h" 28 #include "tsan_suppressions.h" 29 #include "tsan_symbolize.h" 30 #include "ubsan/ubsan_init.h" 31 32 volatile int __tsan_resumed = 0; 33 34 extern "C" void __tsan_resume() { 35 __tsan_resumed = 1; 36 } 37 38 #if SANITIZER_APPLE 39 SANITIZER_WEAK_DEFAULT_IMPL 40 void __tsan_test_only_on_fork() {} 41 #endif 42 43 namespace __tsan { 44 45 #if !SANITIZER_GO 46 void (*on_initialize)(void); 47 int (*on_finalize)(int); 48 #endif 49 50 #if !SANITIZER_GO && !SANITIZER_APPLE 51 alignas(SANITIZER_CACHE_LINE_SIZE) THREADLOCAL __attribute__((tls_model( 52 "initial-exec"))) char cur_thread_placeholder[sizeof(ThreadState)]; 53 #endif 54 alignas(SANITIZER_CACHE_LINE_SIZE) static char ctx_placeholder[sizeof(Context)]; 55 Context *ctx; 56 57 // Can be overriden by a front-end. 58 #ifdef TSAN_EXTERNAL_HOOKS 59 bool OnFinalize(bool failed); 60 void OnInitialize(); 61 #else 62 SANITIZER_WEAK_CXX_DEFAULT_IMPL 63 bool OnFinalize(bool failed) { 64 # if !SANITIZER_GO 65 if (on_finalize) 66 return on_finalize(failed); 67 # endif 68 return failed; 69 } 70 71 SANITIZER_WEAK_CXX_DEFAULT_IMPL 72 void OnInitialize() { 73 # if !SANITIZER_GO 74 if (on_initialize) 75 on_initialize(); 76 # endif 77 } 78 #endif 79 80 static TracePart* TracePartAlloc(ThreadState* thr) { 81 TracePart* part = nullptr; 82 { 83 Lock lock(&ctx->slot_mtx); 84 uptr max_parts = Trace::kMinParts + flags()->history_size; 85 Trace* trace = &thr->tctx->trace; 86 if (trace->parts_allocated == max_parts || 87 ctx->trace_part_finished_excess) { 88 part = ctx->trace_part_recycle.PopFront(); 89 DPrintf("#%d: TracePartAlloc: part=%p\n", thr->tid, part); 90 if (part && part->trace) { 91 Trace* trace1 = part->trace; 92 Lock trace_lock(&trace1->mtx); 93 part->trace = nullptr; 94 TracePart* part1 = trace1->parts.PopFront(); 95 CHECK_EQ(part, part1); 96 if (trace1->parts_allocated > trace1->parts.Size()) { 97 ctx->trace_part_finished_excess += 98 trace1->parts_allocated - trace1->parts.Size(); 99 trace1->parts_allocated = trace1->parts.Size(); 100 } 101 } 102 } 103 if (trace->parts_allocated < max_parts) { 104 trace->parts_allocated++; 105 if (ctx->trace_part_finished_excess) 106 ctx->trace_part_finished_excess--; 107 } 108 if (!part) 109 ctx->trace_part_total_allocated++; 110 else if (ctx->trace_part_recycle_finished) 111 ctx->trace_part_recycle_finished--; 112 } 113 if (!part) 114 part = new (MmapOrDie(sizeof(*part), "TracePart")) TracePart(); 115 return part; 116 } 117 118 static void TracePartFree(TracePart* part) SANITIZER_REQUIRES(ctx->slot_mtx) { 119 DCHECK(part->trace); 120 part->trace = nullptr; 121 ctx->trace_part_recycle.PushFront(part); 122 } 123 124 void TraceResetForTesting() { 125 Lock lock(&ctx->slot_mtx); 126 while (auto* part = ctx->trace_part_recycle.PopFront()) { 127 if (auto trace = part->trace) 128 CHECK_EQ(trace->parts.PopFront(), part); 129 UnmapOrDie(part, sizeof(*part)); 130 } 131 ctx->trace_part_total_allocated = 0; 132 ctx->trace_part_recycle_finished = 0; 133 ctx->trace_part_finished_excess = 0; 134 } 135 136 static void DoResetImpl(uptr epoch) { 137 ThreadRegistryLock lock0(&ctx->thread_registry); 138 Lock lock1(&ctx->slot_mtx); 139 CHECK_EQ(ctx->global_epoch, epoch); 140 ctx->global_epoch++; 141 CHECK(!ctx->resetting); 142 ctx->resetting = true; 143 for (u32 i = ctx->thread_registry.NumThreadsLocked(); i--;) { 144 ThreadContext* tctx = (ThreadContext*)ctx->thread_registry.GetThreadLocked( 145 static_cast<Tid>(i)); 146 // Potentially we could purge all ThreadStatusDead threads from the 147 // registry. Since we reset all shadow, they can't race with anything 148 // anymore. However, their tid's can still be stored in some aux places 149 // (e.g. tid of thread that created something). 150 auto trace = &tctx->trace; 151 Lock lock(&trace->mtx); 152 bool attached = tctx->thr && tctx->thr->slot; 153 auto parts = &trace->parts; 154 bool local = false; 155 while (!parts->Empty()) { 156 auto part = parts->Front(); 157 local = local || part == trace->local_head; 158 if (local) 159 CHECK(!ctx->trace_part_recycle.Queued(part)); 160 else 161 ctx->trace_part_recycle.Remove(part); 162 if (attached && parts->Size() == 1) { 163 // The thread is running and this is the last/current part. 164 // Set the trace position to the end of the current part 165 // to force the thread to call SwitchTracePart and re-attach 166 // to a new slot and allocate a new trace part. 167 // Note: the thread is concurrently modifying the position as well, 168 // so this is only best-effort. The thread can only modify position 169 // within this part, because switching parts is protected by 170 // slot/trace mutexes that we hold here. 171 atomic_store_relaxed( 172 &tctx->thr->trace_pos, 173 reinterpret_cast<uptr>(&part->events[TracePart::kSize])); 174 break; 175 } 176 parts->Remove(part); 177 TracePartFree(part); 178 } 179 CHECK_LE(parts->Size(), 1); 180 trace->local_head = parts->Front(); 181 if (tctx->thr && !tctx->thr->slot) { 182 atomic_store_relaxed(&tctx->thr->trace_pos, 0); 183 tctx->thr->trace_prev_pc = 0; 184 } 185 if (trace->parts_allocated > trace->parts.Size()) { 186 ctx->trace_part_finished_excess += 187 trace->parts_allocated - trace->parts.Size(); 188 trace->parts_allocated = trace->parts.Size(); 189 } 190 } 191 while (ctx->slot_queue.PopFront()) { 192 } 193 for (auto& slot : ctx->slots) { 194 slot.SetEpoch(kEpochZero); 195 slot.journal.Reset(); 196 slot.thr = nullptr; 197 ctx->slot_queue.PushBack(&slot); 198 } 199 200 DPrintf("Resetting shadow...\n"); 201 auto shadow_begin = ShadowBeg(); 202 auto shadow_end = ShadowEnd(); 203 #if SANITIZER_GO 204 CHECK_NE(0, ctx->mapped_shadow_begin); 205 shadow_begin = ctx->mapped_shadow_begin; 206 shadow_end = ctx->mapped_shadow_end; 207 VPrintf(2, "shadow_begin-shadow_end: (0x%zx-0x%zx)\n", 208 shadow_begin, shadow_end); 209 #endif 210 211 #if SANITIZER_WINDOWS 212 auto resetFailed = 213 !ZeroMmapFixedRegion(shadow_begin, shadow_end - shadow_begin); 214 #else 215 auto resetFailed = 216 !MmapFixedSuperNoReserve(shadow_begin, shadow_end-shadow_begin, "shadow"); 217 # if !SANITIZER_GO 218 DontDumpShadow(shadow_begin, shadow_end - shadow_begin); 219 # endif 220 #endif 221 if (resetFailed) { 222 Printf("failed to reset shadow memory\n"); 223 Die(); 224 } 225 DPrintf("Resetting meta shadow...\n"); 226 ctx->metamap.ResetClocks(); 227 StoreShadow(&ctx->last_spurious_race, Shadow::kEmpty); 228 ctx->resetting = false; 229 } 230 231 // Clang does not understand locking all slots in the loop: 232 // error: expecting mutex 'slot.mtx' to be held at start of each loop 233 void DoReset(ThreadState* thr, uptr epoch) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 234 for (auto& slot : ctx->slots) { 235 slot.mtx.Lock(); 236 if (UNLIKELY(epoch == 0)) 237 epoch = ctx->global_epoch; 238 if (UNLIKELY(epoch != ctx->global_epoch)) { 239 // Epoch can't change once we've locked the first slot. 240 CHECK_EQ(slot.sid, 0); 241 slot.mtx.Unlock(); 242 return; 243 } 244 } 245 DPrintf("#%d: DoReset epoch=%lu\n", thr ? thr->tid : -1, epoch); 246 DoResetImpl(epoch); 247 for (auto& slot : ctx->slots) slot.mtx.Unlock(); 248 } 249 250 void FlushShadowMemory() { DoReset(nullptr, 0); } 251 252 static TidSlot* FindSlotAndLock(ThreadState* thr) 253 SANITIZER_ACQUIRE(thr->slot->mtx) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 254 CHECK(!thr->slot); 255 TidSlot* slot = nullptr; 256 for (;;) { 257 uptr epoch; 258 { 259 Lock lock(&ctx->slot_mtx); 260 epoch = ctx->global_epoch; 261 if (slot) { 262 // This is an exhausted slot from the previous iteration. 263 if (ctx->slot_queue.Queued(slot)) 264 ctx->slot_queue.Remove(slot); 265 thr->slot_locked = false; 266 slot->mtx.Unlock(); 267 } 268 for (;;) { 269 slot = ctx->slot_queue.PopFront(); 270 if (!slot) 271 break; 272 if (slot->epoch() != kEpochLast) { 273 ctx->slot_queue.PushBack(slot); 274 break; 275 } 276 } 277 } 278 if (!slot) { 279 DoReset(thr, epoch); 280 continue; 281 } 282 slot->mtx.Lock(); 283 CHECK(!thr->slot_locked); 284 thr->slot_locked = true; 285 if (slot->thr) { 286 DPrintf("#%d: preempting sid=%d tid=%d\n", thr->tid, (u32)slot->sid, 287 slot->thr->tid); 288 slot->SetEpoch(slot->thr->fast_state.epoch()); 289 slot->thr = nullptr; 290 } 291 if (slot->epoch() != kEpochLast) 292 return slot; 293 } 294 } 295 296 void SlotAttachAndLock(ThreadState* thr) { 297 TidSlot* slot = FindSlotAndLock(thr); 298 DPrintf("#%d: SlotAttach: slot=%u\n", thr->tid, static_cast<int>(slot->sid)); 299 CHECK(!slot->thr); 300 CHECK(!thr->slot); 301 slot->thr = thr; 302 thr->slot = slot; 303 Epoch epoch = EpochInc(slot->epoch()); 304 CHECK(!EpochOverflow(epoch)); 305 slot->SetEpoch(epoch); 306 thr->fast_state.SetSid(slot->sid); 307 thr->fast_state.SetEpoch(epoch); 308 if (thr->slot_epoch != ctx->global_epoch) { 309 thr->slot_epoch = ctx->global_epoch; 310 thr->clock.Reset(); 311 #if !SANITIZER_GO 312 thr->last_sleep_stack_id = kInvalidStackID; 313 thr->last_sleep_clock.Reset(); 314 #endif 315 } 316 thr->clock.Set(slot->sid, epoch); 317 slot->journal.PushBack({thr->tid, epoch}); 318 } 319 320 static void SlotDetachImpl(ThreadState* thr, bool exiting) { 321 TidSlot* slot = thr->slot; 322 thr->slot = nullptr; 323 if (thr != slot->thr) { 324 slot = nullptr; // we don't own the slot anymore 325 if (thr->slot_epoch != ctx->global_epoch) { 326 TracePart* part = nullptr; 327 auto* trace = &thr->tctx->trace; 328 { 329 Lock l(&trace->mtx); 330 auto* parts = &trace->parts; 331 // The trace can be completely empty in an unlikely event 332 // the thread is preempted right after it acquired the slot 333 // in ThreadStart and did not trace any events yet. 334 CHECK_LE(parts->Size(), 1); 335 part = parts->PopFront(); 336 thr->tctx->trace.local_head = nullptr; 337 atomic_store_relaxed(&thr->trace_pos, 0); 338 thr->trace_prev_pc = 0; 339 } 340 if (part) { 341 Lock l(&ctx->slot_mtx); 342 TracePartFree(part); 343 } 344 } 345 return; 346 } 347 CHECK(exiting || thr->fast_state.epoch() == kEpochLast); 348 slot->SetEpoch(thr->fast_state.epoch()); 349 slot->thr = nullptr; 350 } 351 352 void SlotDetach(ThreadState* thr) { 353 Lock lock(&thr->slot->mtx); 354 SlotDetachImpl(thr, true); 355 } 356 357 void SlotLock(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 358 DCHECK(!thr->slot_locked); 359 #if SANITIZER_DEBUG 360 // Check these mutexes are not locked. 361 // We can call DoReset from SlotAttachAndLock, which will lock 362 // these mutexes, but it happens only every once in a while. 363 { ThreadRegistryLock lock(&ctx->thread_registry); } 364 { Lock lock(&ctx->slot_mtx); } 365 #endif 366 TidSlot* slot = thr->slot; 367 slot->mtx.Lock(); 368 thr->slot_locked = true; 369 if (LIKELY(thr == slot->thr && thr->fast_state.epoch() != kEpochLast)) 370 return; 371 SlotDetachImpl(thr, false); 372 thr->slot_locked = false; 373 slot->mtx.Unlock(); 374 SlotAttachAndLock(thr); 375 } 376 377 void SlotUnlock(ThreadState* thr) { 378 DCHECK(thr->slot_locked); 379 thr->slot_locked = false; 380 thr->slot->mtx.Unlock(); 381 } 382 383 Context::Context() 384 : initialized(), 385 report_mtx(MutexTypeReport), 386 nreported(), 387 thread_registry([](Tid tid) -> ThreadContextBase* { 388 return new (Alloc(sizeof(ThreadContext))) ThreadContext(tid); 389 }), 390 racy_mtx(MutexTypeRacy), 391 racy_stacks(), 392 fired_suppressions_mtx(MutexTypeFired), 393 slot_mtx(MutexTypeSlots), 394 resetting() { 395 fired_suppressions.reserve(8); 396 for (uptr i = 0; i < ARRAY_SIZE(slots); i++) { 397 TidSlot* slot = &slots[i]; 398 slot->sid = static_cast<Sid>(i); 399 slot_queue.PushBack(slot); 400 } 401 global_epoch = 1; 402 } 403 404 TidSlot::TidSlot() : mtx(MutexTypeSlot) {} 405 406 // The objects are allocated in TLS, so one may rely on zero-initialization. 407 ThreadState::ThreadState(Tid tid) 408 // Do not touch these, rely on zero initialization, 409 // they may be accessed before the ctor. 410 // ignore_reads_and_writes() 411 // ignore_interceptors() 412 : tid(tid) { 413 CHECK_EQ(reinterpret_cast<uptr>(this) % SANITIZER_CACHE_LINE_SIZE, 0); 414 #if !SANITIZER_GO 415 // C/C++ uses fixed size shadow stack. 416 const int kInitStackSize = kShadowStackSize; 417 shadow_stack = static_cast<uptr*>( 418 MmapNoReserveOrDie(kInitStackSize * sizeof(uptr), "shadow stack")); 419 SetShadowRegionHugePageMode(reinterpret_cast<uptr>(shadow_stack), 420 kInitStackSize * sizeof(uptr)); 421 #else 422 // Go uses malloc-allocated shadow stack with dynamic size. 423 const int kInitStackSize = 8; 424 shadow_stack = static_cast<uptr*>(Alloc(kInitStackSize * sizeof(uptr))); 425 #endif 426 shadow_stack_pos = shadow_stack; 427 shadow_stack_end = shadow_stack + kInitStackSize; 428 } 429 430 #if !SANITIZER_GO 431 void MemoryProfiler(u64 uptime) { 432 if (ctx->memprof_fd == kInvalidFd) 433 return; 434 InternalMmapVector<char> buf(4096); 435 WriteMemoryProfile(buf.data(), buf.size(), uptime); 436 WriteToFile(ctx->memprof_fd, buf.data(), internal_strlen(buf.data())); 437 } 438 439 static bool InitializeMemoryProfiler() { 440 ctx->memprof_fd = kInvalidFd; 441 const char *fname = flags()->profile_memory; 442 if (!fname || !fname[0]) 443 return false; 444 if (internal_strcmp(fname, "stdout") == 0) { 445 ctx->memprof_fd = 1; 446 } else if (internal_strcmp(fname, "stderr") == 0) { 447 ctx->memprof_fd = 2; 448 } else { 449 InternalScopedString filename; 450 filename.AppendF("%s.%d", fname, (int)internal_getpid()); 451 ctx->memprof_fd = OpenFile(filename.data(), WrOnly); 452 if (ctx->memprof_fd == kInvalidFd) { 453 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n", 454 filename.data()); 455 return false; 456 } 457 } 458 MemoryProfiler(0); 459 return true; 460 } 461 462 static void *BackgroundThread(void *arg) { 463 // This is a non-initialized non-user thread, nothing to see here. 464 // We don't use ScopedIgnoreInterceptors, because we want ignores to be 465 // enabled even when the thread function exits (e.g. during pthread thread 466 // shutdown code). 467 cur_thread_init()->ignore_interceptors++; 468 const u64 kMs2Ns = 1000 * 1000; 469 const u64 start = NanoTime(); 470 471 u64 last_flush = start; 472 uptr last_rss = 0; 473 while (!atomic_load_relaxed(&ctx->stop_background_thread)) { 474 SleepForMillis(100); 475 u64 now = NanoTime(); 476 477 // Flush memory if requested. 478 if (flags()->flush_memory_ms > 0) { 479 if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) { 480 VReport(1, "ThreadSanitizer: periodic memory flush\n"); 481 FlushShadowMemory(); 482 now = last_flush = NanoTime(); 483 } 484 } 485 if (flags()->memory_limit_mb > 0) { 486 uptr rss = GetRSS(); 487 uptr limit = uptr(flags()->memory_limit_mb) << 20; 488 VReport(1, 489 "ThreadSanitizer: memory flush check" 490 " RSS=%llu LAST=%llu LIMIT=%llu\n", 491 (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20); 492 if (2 * rss > limit + last_rss) { 493 VReport(1, "ThreadSanitizer: flushing memory due to RSS\n"); 494 FlushShadowMemory(); 495 rss = GetRSS(); 496 now = NanoTime(); 497 VReport(1, "ThreadSanitizer: memory flushed RSS=%llu\n", 498 (u64)rss >> 20); 499 } 500 last_rss = rss; 501 } 502 503 MemoryProfiler(now - start); 504 505 // Flush symbolizer cache if requested. 506 if (flags()->flush_symbolizer_ms > 0) { 507 u64 last = atomic_load(&ctx->last_symbolize_time_ns, 508 memory_order_relaxed); 509 if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) { 510 Lock l(&ctx->report_mtx); 511 ScopedErrorReportLock l2; 512 SymbolizeFlush(); 513 atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed); 514 } 515 } 516 } 517 return nullptr; 518 } 519 520 static void StartBackgroundThread() { 521 ctx->background_thread = internal_start_thread(&BackgroundThread, 0); 522 } 523 524 #ifndef __mips__ 525 static void StopBackgroundThread() { 526 atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed); 527 internal_join_thread(ctx->background_thread); 528 ctx->background_thread = 0; 529 } 530 #endif 531 #endif 532 533 void DontNeedShadowFor(uptr addr, uptr size) { 534 ReleaseMemoryPagesToOS(reinterpret_cast<uptr>(MemToShadow(addr)), 535 reinterpret_cast<uptr>(MemToShadow(addr + size))); 536 } 537 538 #if !SANITIZER_GO 539 // We call UnmapShadow before the actual munmap, at that point we don't yet 540 // know if the provided address/size are sane. We can't call UnmapShadow 541 // after the actual munmap becuase at that point the memory range can 542 // already be reused for something else, so we can't rely on the munmap 543 // return value to understand is the values are sane. 544 // While calling munmap with insane values (non-canonical address, negative 545 // size, etc) is an error, the kernel won't crash. We must also try to not 546 // crash as the failure mode is very confusing (paging fault inside of the 547 // runtime on some derived shadow address). 548 static bool IsValidMmapRange(uptr addr, uptr size) { 549 if (size == 0) 550 return true; 551 if (static_cast<sptr>(size) < 0) 552 return false; 553 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) 554 return false; 555 // Check that if the start of the region belongs to one of app ranges, 556 // end of the region belongs to the same region. 557 const uptr ranges[][2] = { 558 {LoAppMemBeg(), LoAppMemEnd()}, 559 {MidAppMemBeg(), MidAppMemEnd()}, 560 {HiAppMemBeg(), HiAppMemEnd()}, 561 }; 562 for (auto range : ranges) { 563 if (addr >= range[0] && addr < range[1]) 564 return addr + size <= range[1]; 565 } 566 return false; 567 } 568 569 void UnmapShadow(ThreadState *thr, uptr addr, uptr size) { 570 if (size == 0 || !IsValidMmapRange(addr, size)) 571 return; 572 DontNeedShadowFor(addr, size); 573 ScopedGlobalProcessor sgp; 574 SlotLocker locker(thr, true); 575 ctx->metamap.ResetRange(thr->proc(), addr, size, true); 576 } 577 #endif 578 579 void MapShadow(uptr addr, uptr size) { 580 // Ensure thead registry lock held, so as to synchronize 581 // with DoReset, which also access the mapped_shadow_* ctxt fields. 582 ThreadRegistryLock lock0(&ctx->thread_registry); 583 static bool data_mapped = false; 584 585 #if !SANITIZER_GO 586 // Global data is not 64K aligned, but there are no adjacent mappings, 587 // so we can get away with unaligned mapping. 588 // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment 589 const uptr kPageSize = GetPageSizeCached(); 590 uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize); 591 uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize); 592 if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow")) 593 Die(); 594 #else 595 uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), (64 << 10)); 596 uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), (64 << 10)); 597 VPrintf(2, "MapShadow for (0x%zx-0x%zx), begin/end: (0x%zx-0x%zx)\n", 598 addr, addr + size, shadow_begin, shadow_end); 599 600 if (!data_mapped) { 601 // First call maps data+bss. 602 if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow")) 603 Die(); 604 } else { 605 VPrintf(2, "ctx->mapped_shadow_{begin,end} = (0x%zx-0x%zx)\n", 606 ctx->mapped_shadow_begin, ctx->mapped_shadow_end); 607 // Second and subsequent calls map heap. 608 if (shadow_end <= ctx->mapped_shadow_end) 609 return; 610 if (!ctx->mapped_shadow_begin || ctx->mapped_shadow_begin > shadow_begin) 611 ctx->mapped_shadow_begin = shadow_begin; 612 if (shadow_begin < ctx->mapped_shadow_end) 613 shadow_begin = ctx->mapped_shadow_end; 614 VPrintf(2, "MapShadow begin/end = (0x%zx-0x%zx)\n", 615 shadow_begin, shadow_end); 616 if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, 617 "shadow")) 618 Die(); 619 ctx->mapped_shadow_end = shadow_end; 620 } 621 #endif 622 623 // Meta shadow is 2:1, so tread carefully. 624 static uptr mapped_meta_end = 0; 625 uptr meta_begin = (uptr)MemToMeta(addr); 626 uptr meta_end = (uptr)MemToMeta(addr + size); 627 meta_begin = RoundDownTo(meta_begin, 64 << 10); 628 meta_end = RoundUpTo(meta_end, 64 << 10); 629 if (!data_mapped) { 630 // First call maps data+bss. 631 data_mapped = true; 632 if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, 633 "meta shadow")) 634 Die(); 635 } else { 636 // Mapping continuous heap. 637 // Windows wants 64K alignment. 638 meta_begin = RoundDownTo(meta_begin, 64 << 10); 639 meta_end = RoundUpTo(meta_end, 64 << 10); 640 CHECK_GT(meta_end, mapped_meta_end); 641 if (meta_begin < mapped_meta_end) 642 meta_begin = mapped_meta_end; 643 if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, 644 "meta shadow")) 645 Die(); 646 mapped_meta_end = meta_end; 647 } 648 VPrintf(2, "mapped meta shadow for (0x%zx-0x%zx) at (0x%zx-0x%zx)\n", addr, 649 addr + size, meta_begin, meta_end); 650 } 651 652 #if !SANITIZER_GO 653 static void OnStackUnwind(const SignalContext &sig, const void *, 654 BufferedStackTrace *stack) { 655 stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context, 656 common_flags()->fast_unwind_on_fatal); 657 } 658 659 static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) { 660 HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr); 661 } 662 #endif 663 664 void CheckUnwind() { 665 // There is high probability that interceptors will check-fail as well, 666 // on the other hand there is no sense in processing interceptors 667 // since we are going to die soon. 668 ScopedIgnoreInterceptors ignore; 669 #if !SANITIZER_GO 670 ThreadState* thr = cur_thread(); 671 thr->nomalloc = false; 672 thr->ignore_sync++; 673 thr->ignore_reads_and_writes++; 674 atomic_store_relaxed(&thr->in_signal_handler, 0); 675 #endif 676 PrintCurrentStack(StackTrace::GetCurrentPc(), 677 common_flags()->fast_unwind_on_fatal); 678 } 679 680 bool is_initialized; 681 682 void Initialize(ThreadState *thr) { 683 // Thread safe because done before all threads exist. 684 if (is_initialized) 685 return; 686 is_initialized = true; 687 // We are not ready to handle interceptors yet. 688 ScopedIgnoreInterceptors ignore; 689 SanitizerToolName = "ThreadSanitizer"; 690 // Install tool-specific callbacks in sanitizer_common. 691 SetCheckUnwindCallback(CheckUnwind); 692 693 ctx = new(ctx_placeholder) Context; 694 const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS"; 695 const char *options = GetEnv(env_name); 696 CacheBinaryName(); 697 CheckASLR(); 698 InitializeFlags(&ctx->flags, options, env_name); 699 AvoidCVE_2016_2143(); 700 __sanitizer::InitializePlatformEarly(); 701 __tsan::InitializePlatformEarly(); 702 703 #if !SANITIZER_GO 704 InitializeAllocator(); 705 ReplaceSystemMalloc(); 706 #endif 707 if (common_flags()->detect_deadlocks) 708 ctx->dd = DDetector::Create(flags()); 709 Processor *proc = ProcCreate(); 710 ProcWire(proc, thr); 711 InitializeInterceptors(); 712 InitializePlatform(); 713 InitializeDynamicAnnotations(); 714 #if !SANITIZER_GO 715 InitializeShadowMemory(); 716 InitializeAllocatorLate(); 717 InstallDeadlySignalHandlers(TsanOnDeadlySignal); 718 #endif 719 // Setup correct file descriptor for error reports. 720 __sanitizer_set_report_path(common_flags()->log_path); 721 InitializeSuppressions(); 722 #if !SANITIZER_GO 723 InitializeLibIgnore(); 724 Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer); 725 #endif 726 727 VPrintf(1, "***** Running under ThreadSanitizer v3 (pid %d) *****\n", 728 (int)internal_getpid()); 729 730 // Initialize thread 0. 731 Tid tid = ThreadCreate(nullptr, 0, 0, true); 732 CHECK_EQ(tid, kMainTid); 733 ThreadStart(thr, tid, GetTid(), ThreadType::Regular); 734 #if TSAN_CONTAINS_UBSAN 735 __ubsan::InitAsPlugin(); 736 #endif 737 738 #if !SANITIZER_GO 739 Symbolizer::LateInitialize(); 740 if (InitializeMemoryProfiler() || flags()->force_background_thread) 741 MaybeSpawnBackgroundThread(); 742 #endif 743 ctx->initialized = true; 744 745 if (flags()->stop_on_start) { 746 Printf("ThreadSanitizer is suspended at startup (pid %d)." 747 " Call __tsan_resume().\n", 748 (int)internal_getpid()); 749 while (__tsan_resumed == 0) {} 750 } 751 752 OnInitialize(); 753 } 754 755 void MaybeSpawnBackgroundThread() { 756 // On MIPS, TSan initialization is run before 757 // __pthread_initialize_minimal_internal() is finished, so we can not spawn 758 // new threads. 759 #if !SANITIZER_GO && !defined(__mips__) 760 static atomic_uint32_t bg_thread = {}; 761 if (atomic_load(&bg_thread, memory_order_relaxed) == 0 && 762 atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) { 763 StartBackgroundThread(); 764 SetSandboxingCallback(StopBackgroundThread); 765 } 766 #endif 767 } 768 769 int Finalize(ThreadState *thr) { 770 bool failed = false; 771 772 #if !SANITIZER_GO 773 if (common_flags()->print_module_map == 1) 774 DumpProcessMap(); 775 #endif 776 777 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) 778 internal_usleep(u64(flags()->atexit_sleep_ms) * 1000); 779 780 { 781 // Wait for pending reports. 782 ScopedErrorReportLock lock; 783 } 784 785 #if !SANITIZER_GO 786 if (Verbosity()) AllocatorPrintStats(); 787 #endif 788 789 ThreadFinalize(thr); 790 791 if (ctx->nreported) { 792 failed = true; 793 #if !SANITIZER_GO 794 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); 795 #else 796 Printf("Found %d data race(s)\n", ctx->nreported); 797 #endif 798 } 799 800 if (common_flags()->print_suppressions) 801 PrintMatchedSuppressions(); 802 803 failed = OnFinalize(failed); 804 805 return failed ? common_flags()->exitcode : 0; 806 } 807 808 #if !SANITIZER_GO 809 void ForkBefore(ThreadState* thr, uptr pc) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 810 VReport(2, "BeforeFork tid: %llu\n", GetTid()); 811 GlobalProcessorLock(); 812 // Detaching from the slot makes OnUserFree skip writing to the shadow. 813 // The slot will be locked so any attempts to use it will deadlock anyway. 814 SlotDetach(thr); 815 for (auto& slot : ctx->slots) slot.mtx.Lock(); 816 ctx->thread_registry.Lock(); 817 ctx->slot_mtx.Lock(); 818 ScopedErrorReportLock::Lock(); 819 AllocatorLockBeforeFork(); 820 // Suppress all reports in the pthread_atfork callbacks. 821 // Reports will deadlock on the report_mtx. 822 // We could ignore sync operations as well, 823 // but so far it's unclear if it will do more good or harm. 824 // Unnecessarily ignoring things can lead to false positives later. 825 thr->suppress_reports++; 826 // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and 827 // we'll assert in CheckNoLocks() unless we ignore interceptors. 828 // On OS X libSystem_atfork_prepare/parent/child callbacks are called 829 // after/before our callbacks and they call free. 830 thr->ignore_interceptors++; 831 // Disables memory write in OnUserAlloc/Free. 832 thr->ignore_reads_and_writes++; 833 834 # if SANITIZER_APPLE 835 __tsan_test_only_on_fork(); 836 # endif 837 } 838 839 static void ForkAfter(ThreadState* thr, 840 bool child) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 841 thr->suppress_reports--; // Enabled in ForkBefore. 842 thr->ignore_interceptors--; 843 thr->ignore_reads_and_writes--; 844 AllocatorUnlockAfterFork(child); 845 ScopedErrorReportLock::Unlock(); 846 ctx->slot_mtx.Unlock(); 847 ctx->thread_registry.Unlock(); 848 for (auto& slot : ctx->slots) slot.mtx.Unlock(); 849 SlotAttachAndLock(thr); 850 SlotUnlock(thr); 851 GlobalProcessorUnlock(); 852 VReport(2, "AfterFork tid: %llu\n", GetTid()); 853 } 854 855 void ForkParentAfter(ThreadState* thr, uptr pc) { ForkAfter(thr, false); } 856 857 void ForkChildAfter(ThreadState* thr, uptr pc, bool start_thread) { 858 ForkAfter(thr, true); 859 u32 nthread = ctx->thread_registry.OnFork(thr->tid); 860 VPrintf(1, 861 "ThreadSanitizer: forked new process with pid %d," 862 " parent had %d threads\n", 863 (int)internal_getpid(), (int)nthread); 864 if (nthread == 1) { 865 if (start_thread) 866 StartBackgroundThread(); 867 } else { 868 // We've just forked a multi-threaded process. We cannot reasonably function 869 // after that (some mutexes may be locked before fork). So just enable 870 // ignores for everything in the hope that we will exec soon. 871 ctx->after_multithreaded_fork = true; 872 thr->ignore_interceptors++; 873 thr->suppress_reports++; 874 ThreadIgnoreBegin(thr, pc); 875 ThreadIgnoreSyncBegin(thr, pc); 876 } 877 } 878 #endif 879 880 #if SANITIZER_GO 881 NOINLINE 882 void GrowShadowStack(ThreadState *thr) { 883 const int sz = thr->shadow_stack_end - thr->shadow_stack; 884 const int newsz = 2 * sz; 885 auto *newstack = (uptr *)Alloc(newsz * sizeof(uptr)); 886 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); 887 Free(thr->shadow_stack); 888 thr->shadow_stack = newstack; 889 thr->shadow_stack_pos = newstack + sz; 890 thr->shadow_stack_end = newstack + newsz; 891 } 892 #endif 893 894 StackID CurrentStackId(ThreadState *thr, uptr pc) { 895 #if !SANITIZER_GO 896 if (!thr->is_inited) // May happen during bootstrap. 897 return kInvalidStackID; 898 #endif 899 if (pc != 0) { 900 #if !SANITIZER_GO 901 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 902 #else 903 if (thr->shadow_stack_pos == thr->shadow_stack_end) 904 GrowShadowStack(thr); 905 #endif 906 thr->shadow_stack_pos[0] = pc; 907 thr->shadow_stack_pos++; 908 } 909 StackID id = StackDepotPut( 910 StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack)); 911 if (pc != 0) 912 thr->shadow_stack_pos--; 913 return id; 914 } 915 916 static bool TraceSkipGap(ThreadState* thr) { 917 Trace *trace = &thr->tctx->trace; 918 Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos)); 919 DCHECK_EQ(reinterpret_cast<uptr>(pos + 1) & TracePart::kAlignment, 0); 920 auto *part = trace->parts.Back(); 921 DPrintf("#%d: TraceSwitchPart enter trace=%p parts=%p-%p pos=%p\n", thr->tid, 922 trace, trace->parts.Front(), part, pos); 923 if (!part) 924 return false; 925 // We can get here when we still have space in the current trace part. 926 // The fast-path check in TraceAcquire has false positives in the middle of 927 // the part. Check if we are indeed at the end of the current part or not, 928 // and fill any gaps with NopEvent's. 929 Event* end = &part->events[TracePart::kSize]; 930 DCHECK_GE(pos, &part->events[0]); 931 DCHECK_LE(pos, end); 932 if (pos + 1 < end) { 933 if ((reinterpret_cast<uptr>(pos) & TracePart::kAlignment) == 934 TracePart::kAlignment) 935 *pos++ = NopEvent; 936 *pos++ = NopEvent; 937 DCHECK_LE(pos + 2, end); 938 atomic_store_relaxed(&thr->trace_pos, reinterpret_cast<uptr>(pos)); 939 return true; 940 } 941 // We are indeed at the end. 942 for (; pos < end; pos++) *pos = NopEvent; 943 return false; 944 } 945 946 NOINLINE 947 void TraceSwitchPart(ThreadState* thr) { 948 if (TraceSkipGap(thr)) 949 return; 950 #if !SANITIZER_GO 951 if (ctx->after_multithreaded_fork) { 952 // We just need to survive till exec. 953 TracePart* part = thr->tctx->trace.parts.Back(); 954 if (part) { 955 atomic_store_relaxed(&thr->trace_pos, 956 reinterpret_cast<uptr>(&part->events[0])); 957 return; 958 } 959 } 960 #endif 961 TraceSwitchPartImpl(thr); 962 } 963 964 void TraceSwitchPartImpl(ThreadState* thr) { 965 SlotLocker locker(thr, true); 966 Trace* trace = &thr->tctx->trace; 967 TracePart* part = TracePartAlloc(thr); 968 part->trace = trace; 969 thr->trace_prev_pc = 0; 970 TracePart* recycle = nullptr; 971 // Keep roughly half of parts local to the thread 972 // (not queued into the recycle queue). 973 uptr local_parts = (Trace::kMinParts + flags()->history_size + 1) / 2; 974 { 975 Lock lock(&trace->mtx); 976 if (trace->parts.Empty()) 977 trace->local_head = part; 978 if (trace->parts.Size() >= local_parts) { 979 recycle = trace->local_head; 980 trace->local_head = trace->parts.Next(recycle); 981 } 982 trace->parts.PushBack(part); 983 atomic_store_relaxed(&thr->trace_pos, 984 reinterpret_cast<uptr>(&part->events[0])); 985 } 986 // Make this part self-sufficient by restoring the current stack 987 // and mutex set in the beginning of the trace. 988 TraceTime(thr); 989 { 990 // Pathologically large stacks may not fit into the part. 991 // In these cases we log only fixed number of top frames. 992 const uptr kMaxFrames = 1000; 993 // Check that kMaxFrames won't consume the whole part. 994 static_assert(kMaxFrames < TracePart::kSize / 2, "kMaxFrames is too big"); 995 uptr* pos = Max(&thr->shadow_stack[0], thr->shadow_stack_pos - kMaxFrames); 996 for (; pos < thr->shadow_stack_pos; pos++) { 997 if (TryTraceFunc(thr, *pos)) 998 continue; 999 CHECK(TraceSkipGap(thr)); 1000 CHECK(TryTraceFunc(thr, *pos)); 1001 } 1002 } 1003 for (uptr i = 0; i < thr->mset.Size(); i++) { 1004 MutexSet::Desc d = thr->mset.Get(i); 1005 for (uptr i = 0; i < d.count; i++) 1006 TraceMutexLock(thr, d.write ? EventType::kLock : EventType::kRLock, 0, 1007 d.addr, d.stack_id); 1008 } 1009 // Callers of TraceSwitchPart expect that TraceAcquire will always succeed 1010 // after the call. It's possible that TryTraceFunc/TraceMutexLock above 1011 // filled the trace part exactly up to the TracePart::kAlignment gap 1012 // and the next TraceAcquire won't succeed. Skip the gap to avoid that. 1013 EventFunc *ev; 1014 if (!TraceAcquire(thr, &ev)) { 1015 CHECK(TraceSkipGap(thr)); 1016 CHECK(TraceAcquire(thr, &ev)); 1017 } 1018 { 1019 Lock lock(&ctx->slot_mtx); 1020 // There is a small chance that the slot may be not queued at this point. 1021 // This can happen if the slot has kEpochLast epoch and another thread 1022 // in FindSlotAndLock discovered that it's exhausted and removed it from 1023 // the slot queue. kEpochLast can happen in 2 cases: (1) if TraceSwitchPart 1024 // was called with the slot locked and epoch already at kEpochLast, 1025 // or (2) if we've acquired a new slot in SlotLock in the beginning 1026 // of the function and the slot was at kEpochLast - 1, so after increment 1027 // in SlotAttachAndLock it become kEpochLast. 1028 if (ctx->slot_queue.Queued(thr->slot)) { 1029 ctx->slot_queue.Remove(thr->slot); 1030 ctx->slot_queue.PushBack(thr->slot); 1031 } 1032 if (recycle) 1033 ctx->trace_part_recycle.PushBack(recycle); 1034 } 1035 DPrintf("#%d: TraceSwitchPart exit parts=%p-%p pos=0x%zx\n", thr->tid, 1036 trace->parts.Front(), trace->parts.Back(), 1037 atomic_load_relaxed(&thr->trace_pos)); 1038 } 1039 1040 void ThreadIgnoreBegin(ThreadState* thr, uptr pc) { 1041 DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid); 1042 thr->ignore_reads_and_writes++; 1043 CHECK_GT(thr->ignore_reads_and_writes, 0); 1044 thr->fast_state.SetIgnoreBit(); 1045 #if !SANITIZER_GO 1046 if (pc && !ctx->after_multithreaded_fork) 1047 thr->mop_ignore_set.Add(CurrentStackId(thr, pc)); 1048 #endif 1049 } 1050 1051 void ThreadIgnoreEnd(ThreadState *thr) { 1052 DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid); 1053 CHECK_GT(thr->ignore_reads_and_writes, 0); 1054 thr->ignore_reads_and_writes--; 1055 if (thr->ignore_reads_and_writes == 0) { 1056 thr->fast_state.ClearIgnoreBit(); 1057 #if !SANITIZER_GO 1058 thr->mop_ignore_set.Reset(); 1059 #endif 1060 } 1061 } 1062 1063 #if !SANITIZER_GO 1064 extern "C" SANITIZER_INTERFACE_ATTRIBUTE 1065 uptr __tsan_testonly_shadow_stack_current_size() { 1066 ThreadState *thr = cur_thread(); 1067 return thr->shadow_stack_pos - thr->shadow_stack; 1068 } 1069 #endif 1070 1071 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) { 1072 DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid); 1073 thr->ignore_sync++; 1074 CHECK_GT(thr->ignore_sync, 0); 1075 #if !SANITIZER_GO 1076 if (pc && !ctx->after_multithreaded_fork) 1077 thr->sync_ignore_set.Add(CurrentStackId(thr, pc)); 1078 #endif 1079 } 1080 1081 void ThreadIgnoreSyncEnd(ThreadState *thr) { 1082 DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid); 1083 CHECK_GT(thr->ignore_sync, 0); 1084 thr->ignore_sync--; 1085 #if !SANITIZER_GO 1086 if (thr->ignore_sync == 0) 1087 thr->sync_ignore_set.Reset(); 1088 #endif 1089 } 1090 1091 bool MD5Hash::operator==(const MD5Hash &other) const { 1092 return hash[0] == other.hash[0] && hash[1] == other.hash[1]; 1093 } 1094 1095 #if SANITIZER_DEBUG 1096 void build_consistency_debug() {} 1097 #else 1098 void build_consistency_release() {} 1099 #endif 1100 } // namespace __tsan 1101 1102 #if SANITIZER_CHECK_DEADLOCKS 1103 namespace __sanitizer { 1104 using namespace __tsan; 1105 MutexMeta mutex_meta[] = { 1106 {MutexInvalid, "Invalid", {}}, 1107 {MutexThreadRegistry, 1108 "ThreadRegistry", 1109 {MutexTypeSlots, MutexTypeTrace, MutexTypeReport}}, 1110 {MutexTypeReport, "Report", {MutexTypeTrace}}, 1111 {MutexTypeSyncVar, "SyncVar", {MutexTypeReport, MutexTypeTrace}}, 1112 {MutexTypeAnnotations, "Annotations", {}}, 1113 {MutexTypeAtExit, "AtExit", {}}, 1114 {MutexTypeFired, "Fired", {MutexLeaf}}, 1115 {MutexTypeRacy, "Racy", {MutexLeaf}}, 1116 {MutexTypeGlobalProc, "GlobalProc", {MutexTypeSlot, MutexTypeSlots}}, 1117 {MutexTypeInternalAlloc, "InternalAlloc", {MutexLeaf}}, 1118 {MutexTypeTrace, "Trace", {}}, 1119 {MutexTypeSlot, 1120 "Slot", 1121 {MutexMulti, MutexTypeTrace, MutexTypeSyncVar, MutexThreadRegistry, 1122 MutexTypeSlots}}, 1123 {MutexTypeSlots, "Slots", {MutexTypeTrace, MutexTypeReport}}, 1124 {}, 1125 }; 1126 1127 void PrintMutexPC(uptr pc) { StackTrace(&pc, 1).Print(); } 1128 1129 } // namespace __sanitizer 1130 #endif 1131