1 /* $NetBSD: sha1.c,v 1.2 2016/06/14 20:47:08 agc Exp $ */
2 /* $OpenBSD: sha1.c,v 1.9 1997/07/23 21:12:32 kstailey Exp $ */
3
4 /*
5 * SHA-1 in C
6 * By Steve Reid <steve@edmweb.com>
7 * 100% Public Domain
8 *
9 * Test Vectors (from FIPS PUB 180-1)
10 * "abc"
11 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
12 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
13 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
14 * A million repetitions of "a"
15 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
16 */
17
18 #define SHA1HANDSOFF /* Copies data before messing with it. */
19
20 #include <string.h>
21
22 #include <sys/types.h>
23
24 #include "sha1.h"
25
26 #if !HAVE_SHA1_H
27
28 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
29
30 /*
31 * blk0() and blk() perform the initial expand.
32 * I got the idea of expanding during the round function from SSLeay
33 */
34 #if BYTE_ORDER == LITTLE_ENDIAN
35 # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
36 |(rol(block->l[i],8)&0x00FF00FF))
37 #else
38 # define blk0(i) block->l[i]
39 #endif
40 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
41 ^block->l[(i+2)&15]^block->l[i&15],1))
42
43 /*
44 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
45 */
46 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
47 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
48 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
49 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
50 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
51
52
53 typedef union {
54 uint8_t c[64];
55 uint32_t l[16];
56 } CHAR64LONG16;
57
58 /* old sparc64 gcc could not compile this */
59 #undef SPARC64_GCC_WORKAROUND
60 #if defined(__sparc64__) && defined(__GNUC__) && __GNUC__ < 3
61 #define SPARC64_GCC_WORKAROUND
62 #endif
63
64 #ifdef SPARC64_GCC_WORKAROUND
65 void do_R01(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *);
66 void do_R2(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *);
67 void do_R3(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *);
68 void do_R4(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *);
69
70 #define nR0(v,w,x,y,z,i) R0(*v,*w,*x,*y,*z,i)
71 #define nR1(v,w,x,y,z,i) R1(*v,*w,*x,*y,*z,i)
72 #define nR2(v,w,x,y,z,i) R2(*v,*w,*x,*y,*z,i)
73 #define nR3(v,w,x,y,z,i) R3(*v,*w,*x,*y,*z,i)
74 #define nR4(v,w,x,y,z,i) R4(*v,*w,*x,*y,*z,i)
75
76 void
do_R01(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)77 do_R01(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *block)
78 {
79 nR0(a,b,c,d,e, 0); nR0(e,a,b,c,d, 1); nR0(d,e,a,b,c, 2); nR0(c,d,e,a,b, 3);
80 nR0(b,c,d,e,a, 4); nR0(a,b,c,d,e, 5); nR0(e,a,b,c,d, 6); nR0(d,e,a,b,c, 7);
81 nR0(c,d,e,a,b, 8); nR0(b,c,d,e,a, 9); nR0(a,b,c,d,e,10); nR0(e,a,b,c,d,11);
82 nR0(d,e,a,b,c,12); nR0(c,d,e,a,b,13); nR0(b,c,d,e,a,14); nR0(a,b,c,d,e,15);
83 nR1(e,a,b,c,d,16); nR1(d,e,a,b,c,17); nR1(c,d,e,a,b,18); nR1(b,c,d,e,a,19);
84 }
85
86 void
do_R2(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)87 do_R2(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *block)
88 {
89 nR2(a,b,c,d,e,20); nR2(e,a,b,c,d,21); nR2(d,e,a,b,c,22); nR2(c,d,e,a,b,23);
90 nR2(b,c,d,e,a,24); nR2(a,b,c,d,e,25); nR2(e,a,b,c,d,26); nR2(d,e,a,b,c,27);
91 nR2(c,d,e,a,b,28); nR2(b,c,d,e,a,29); nR2(a,b,c,d,e,30); nR2(e,a,b,c,d,31);
92 nR2(d,e,a,b,c,32); nR2(c,d,e,a,b,33); nR2(b,c,d,e,a,34); nR2(a,b,c,d,e,35);
93 nR2(e,a,b,c,d,36); nR2(d,e,a,b,c,37); nR2(c,d,e,a,b,38); nR2(b,c,d,e,a,39);
94 }
95
96 void
do_R3(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)97 do_R3(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *block)
98 {
99 nR3(a,b,c,d,e,40); nR3(e,a,b,c,d,41); nR3(d,e,a,b,c,42); nR3(c,d,e,a,b,43);
100 nR3(b,c,d,e,a,44); nR3(a,b,c,d,e,45); nR3(e,a,b,c,d,46); nR3(d,e,a,b,c,47);
101 nR3(c,d,e,a,b,48); nR3(b,c,d,e,a,49); nR3(a,b,c,d,e,50); nR3(e,a,b,c,d,51);
102 nR3(d,e,a,b,c,52); nR3(c,d,e,a,b,53); nR3(b,c,d,e,a,54); nR3(a,b,c,d,e,55);
103 nR3(e,a,b,c,d,56); nR3(d,e,a,b,c,57); nR3(c,d,e,a,b,58); nR3(b,c,d,e,a,59);
104 }
105
106 void
do_R4(uint32_t * a,uint32_t * b,uint32_t * c,uint32_t * d,uint32_t * e,CHAR64LONG16 * block)107 do_R4(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *block)
108 {
109 nR4(a,b,c,d,e,60); nR4(e,a,b,c,d,61); nR4(d,e,a,b,c,62); nR4(c,d,e,a,b,63);
110 nR4(b,c,d,e,a,64); nR4(a,b,c,d,e,65); nR4(e,a,b,c,d,66); nR4(d,e,a,b,c,67);
111 nR4(c,d,e,a,b,68); nR4(b,c,d,e,a,69); nR4(a,b,c,d,e,70); nR4(e,a,b,c,d,71);
112 nR4(d,e,a,b,c,72); nR4(c,d,e,a,b,73); nR4(b,c,d,e,a,74); nR4(a,b,c,d,e,75);
113 nR4(e,a,b,c,d,76); nR4(d,e,a,b,c,77); nR4(c,d,e,a,b,78); nR4(b,c,d,e,a,79);
114 }
115 #endif
116
117 /*
118 * Hash a single 512-bit block. This is the core of the algorithm.
119 */
netpgpv_SHA1Transform(uint32_t state[5],const uint8_t buffer[64])120 void netpgpv_SHA1Transform(uint32_t state[5], const uint8_t buffer[64])
121 {
122 uint32_t a, b, c, d, e;
123 CHAR64LONG16 *block;
124
125 #ifdef SHA1HANDSOFF
126 CHAR64LONG16 workspace;
127 #endif
128
129 #ifdef SHA1HANDSOFF
130 block = &workspace;
131 (void)memcpy(block, buffer, 64);
132 #else
133 block = (CHAR64LONG16 *)(void *)buffer;
134 #endif
135
136 /* Copy context->state[] to working vars */
137 a = state[0];
138 b = state[1];
139 c = state[2];
140 d = state[3];
141 e = state[4];
142
143 #ifdef SPARC64_GCC_WORKAROUND
144 do_R01(&a, &b, &c, &d, &e, block);
145 do_R2(&a, &b, &c, &d, &e, block);
146 do_R3(&a, &b, &c, &d, &e, block);
147 do_R4(&a, &b, &c, &d, &e, block);
148 #else
149 /* 4 rounds of 20 operations each. Loop unrolled. */
150 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
151 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
152 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
153 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
154 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
155 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
156 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
157 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
158 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
159 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
160 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
161 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
162 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
163 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
164 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
165 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
166 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
167 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
168 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
169 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
170 #endif
171
172 /* Add the working vars back into context.state[] */
173 state[0] += a;
174 state[1] += b;
175 state[2] += c;
176 state[3] += d;
177 state[4] += e;
178
179 /* Wipe variables */
180 a = b = c = d = e = 0;
181 }
182
183
184 /*
185 * SHA1Init - Initialize new context
186 */
netpgpv_SHA1Init(NETPGPV_SHA1_CTX * context)187 void netpgpv_SHA1Init(NETPGPV_SHA1_CTX *context)
188 {
189
190 /* SHA1 initialization constants */
191 context->state[0] = 0x67452301;
192 context->state[1] = 0xEFCDAB89;
193 context->state[2] = 0x98BADCFE;
194 context->state[3] = 0x10325476;
195 context->state[4] = 0xC3D2E1F0;
196 context->count[0] = context->count[1] = 0;
197 }
198
199
200 /*
201 * Run your data through this.
202 */
netpgpv_SHA1Update(NETPGPV_SHA1_CTX * context,const uint8_t * data,unsigned int len)203 void netpgpv_SHA1Update(NETPGPV_SHA1_CTX *context, const uint8_t *data, unsigned int len)
204 {
205 unsigned int i, j;
206
207 j = context->count[0];
208 if ((context->count[0] += len << 3) < j)
209 context->count[1] += (len>>29)+1;
210 j = (j >> 3) & 63;
211 if ((j + len) > 63) {
212 (void)memcpy(&context->buffer[j], data, (i = 64-j));
213 netpgpv_SHA1Transform(context->state, context->buffer);
214 for ( ; i + 63 < len; i += 64)
215 netpgpv_SHA1Transform(context->state, &data[i]);
216 j = 0;
217 } else {
218 i = 0;
219 }
220 (void)memcpy(&context->buffer[j], &data[i], len - i);
221 }
222
223
224 /*
225 * Add padding and return the message digest.
226 */
netpgpv_SHA1Final(uint8_t digest[20],NETPGPV_SHA1_CTX * context)227 void netpgpv_SHA1Final(uint8_t digest[20], NETPGPV_SHA1_CTX *context)
228 {
229 unsigned int i;
230 uint8_t finalcount[8];
231
232 for (i = 0; i < 8; i++) {
233 finalcount[i] = (uint8_t)((context->count[(i >= 4 ? 0 : 1)]
234 >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
235 }
236 netpgpv_SHA1Update(context, (const uint8_t *)"\200", 1);
237 while ((context->count[0] & 504) != 448)
238 netpgpv_SHA1Update(context, (const uint8_t *)"\0", 1);
239 netpgpv_SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
240
241 if (digest) {
242 for (i = 0; i < 20; i++)
243 digest[i] = (uint8_t)
244 ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
245 }
246 }
247
248 #endif /* HAVE_SHA1_H */
249