xref: /netbsd-src/sys/dev/nand/nand.c (revision c7fb772b85b2b5d4cfb282f868f454b4701534fd)
1 /*	$NetBSD: nand.c,v 1.29 2021/08/07 16:19:13 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2010 Department of Software Engineering,
5  *		      University of Szeged, Hungary
6  * Copyright (c) 2010 Adam Hoka <ahoka@NetBSD.org>
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by the Department of Software Engineering, University of Szeged, Hungary
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.29 2021/08/07 16:19:13 thorpej Exp $");
38 
39 #include "locators.h"
40 
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/device.h>
44 #include <sys/kmem.h>
45 #include <sys/atomic.h>
46 
47 #include <dev/flash/flash.h>
48 #include <dev/flash/flash_io.h>
49 #include <dev/nand/nand.h>
50 #include <dev/nand/onfi.h>
51 #include <dev/nand/hamming.h>
52 #include <dev/nand/nand_bbt.h>
53 #include <dev/nand/nand_crc.h>
54 
55 #include "opt_nand.h"
56 
57 int nand_match(device_t, cfdata_t, void *);
58 void nand_attach(device_t, device_t, void *);
59 int nand_detach(device_t, int);
60 bool nand_shutdown(device_t, int);
61 
62 int nand_print(void *, const char *);
63 
64 static int nand_search(device_t, cfdata_t, const int *, void *);
65 static void nand_address_row(device_t, size_t);
66 static inline uint8_t nand_get_status(device_t);
67 static void nand_address_column(device_t, size_t, size_t);
68 static int nand_fill_chip_structure(device_t, struct nand_chip *);
69 static int nand_scan_media(device_t, struct nand_chip *);
70 static bool nand_check_wp(device_t);
71 
72 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
73     nand_match, nand_attach, nand_detach, NULL);
74 
75 #ifdef NAND_DEBUG
76 int	nanddebug = NAND_DEBUG;
77 #endif
78 
79 struct flash_interface nand_flash_if = {
80 	.type = FLASH_TYPE_NAND,
81 
82 	.read = nand_flash_read,
83 	.write = nand_flash_write,
84 	.erase = nand_flash_erase,
85 	.block_isbad = nand_flash_isbad,
86 	.block_markbad = nand_flash_markbad,
87 
88 	.submit = nand_flash_submit
89 };
90 
91 const struct nand_manufacturer nand_mfrs[] = {
92 	{ NAND_MFR_AMD,		"AMD" },
93 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
94 	{ NAND_MFR_RENESAS,	"Renesas" },
95 	{ NAND_MFR_STMICRO,	"ST Micro" },
96 	{ NAND_MFR_MICRON,	"Micron" },
97 	{ NAND_MFR_NATIONAL,	"National" },
98 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
99 	{ NAND_MFR_HYNIX,	"Hynix" },
100 	{ NAND_MFR_SAMSUNG,	"Samsung" },
101 	{ NAND_MFR_UNKNOWN,	"Unknown" }
102 };
103 
104 static const char *
nand_midtoname(int id)105 nand_midtoname(int id)
106 {
107 	int i;
108 
109 	for (i = 0; nand_mfrs[i].id != 0; i++) {
110 		if (nand_mfrs[i].id == id)
111 			return nand_mfrs[i].name;
112 	}
113 
114 	KASSERT(nand_mfrs[i].id == 0);
115 
116 	return nand_mfrs[i].name;
117 }
118 
119 /* ARGSUSED */
120 int
nand_match(device_t parent,cfdata_t match,void * aux)121 nand_match(device_t parent, cfdata_t match, void *aux)
122 {
123 	/* pseudo device, always attaches */
124 	return 1;
125 }
126 
127 void
nand_attach(device_t parent,device_t self,void * aux)128 nand_attach(device_t parent, device_t self, void *aux)
129 {
130 	struct nand_softc *sc = device_private(self);
131 	struct nand_attach_args *naa = aux;
132 	struct nand_chip *chip = &sc->sc_chip;
133 
134 	sc->sc_dev = self;
135 	sc->controller_dev = parent;
136 	sc->nand_if = naa->naa_nand_if;
137 
138 	aprint_naive("\n");
139 
140 	if (nand_check_wp(self)) {
141 		aprint_error("NAND chip is write protected!\n");
142 		return;
143 	}
144 
145 	if (nand_scan_media(self, chip)) {
146 		return;
147 	}
148 
149 	nand_flash_if.erasesize = chip->nc_block_size;
150 	nand_flash_if.page_size = chip->nc_page_size;
151 	nand_flash_if.writesize = chip->nc_page_size;
152 
153 	/* allocate cache */
154 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
155 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
156 
157 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
158 
159 	if (flash_sync_thread_init(&sc->sc_flash_io, self, &nand_flash_if)) {
160 		goto error;
161 	}
162 
163 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
164 		aprint_error_dev(sc->sc_dev,
165 		    "couldn't establish power handler\n");
166 
167 #ifdef NAND_BBT
168 	nand_bbt_init(self);
169 	nand_bbt_scan(self);
170 #endif
171 
172 	/*
173 	 * Attach all our devices
174 	 */
175 	config_search(self, NULL,
176 	    CFARGS(.search = nand_search));
177 
178 	return;
179 error:
180 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
181 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
182 	mutex_destroy(&sc->sc_device_lock);
183 }
184 
185 static int
nand_search(device_t parent,cfdata_t cf,const int * ldesc,void * aux)186 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
187 {
188 	struct nand_softc *sc = device_private(parent);
189 	struct nand_chip *chip = &sc->sc_chip;
190 	struct flash_attach_args faa;
191 
192 	if (cf->cf_loc[FLASHBUSCF_DYNAMIC] != 0)
193 		return 0;
194 
195 	faa.flash_if = &nand_flash_if;
196 
197 	faa.partinfo.part_name = NULL;
198 	faa.partinfo.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
199 
200 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
201 		faa.partinfo.part_size = chip->nc_size -
202 		    faa.partinfo.part_offset;
203 	} else {
204 		faa.partinfo.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
205 	}
206 
207 	if (cf->cf_loc[FLASHBUSCF_READONLY])
208 		faa.partinfo.part_flags = FLASH_PART_READONLY;
209 	else
210 		faa.partinfo.part_flags = 0;
211 
212 	if (config_probe(parent, cf, &faa)) {
213 		if (config_attach(parent, cf, &faa, nand_print,
214 				  CFARGS_NONE) != NULL) {
215 			return 0;
216 		} else {
217 			return 1;
218 		}
219 	}
220 
221 	return 1;
222 }
223 
224 void
nand_attach_mtdparts(device_t parent,const char * mtd_id,const char * cmdline)225 nand_attach_mtdparts(device_t parent, const char *mtd_id, const char *cmdline)
226 {
227 	struct nand_softc *sc = device_private(parent);
228 	struct nand_chip *chip = &sc->sc_chip;
229 
230 	flash_attach_mtdparts(&nand_flash_if, parent, chip->nc_size,
231 	    mtd_id, cmdline);
232 }
233 
234 int
nand_detach(device_t self,int flags)235 nand_detach(device_t self, int flags)
236 {
237 	struct nand_softc *sc = device_private(self);
238 	struct nand_chip *chip = &sc->sc_chip;
239 	int error = 0;
240 
241 	error = config_detach_children(self, flags);
242 	if (error) {
243 		return error;
244 	}
245 
246 	flash_sync_thread_destroy(&sc->sc_flash_io);
247 #ifdef NAND_BBT
248 	nand_bbt_detach(self);
249 #endif
250 	/* free oob cache */
251 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
252 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
253 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
254 
255 	mutex_destroy(&sc->sc_device_lock);
256 
257 	pmf_device_deregister(sc->sc_dev);
258 
259 	return error;
260 }
261 
262 int
nand_print(void * aux,const char * pnp)263 nand_print(void *aux, const char *pnp)
264 {
265 	if (pnp != NULL)
266 		aprint_normal("nand at %s\n", pnp);
267 
268 	return UNCONF;
269 }
270 
271 /* ask for a nand driver to attach to the controller */
272 device_t
nand_attach_mi(struct nand_interface * nand_if,device_t parent)273 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
274 {
275 	struct nand_attach_args arg;
276 
277 	KASSERT(nand_if != NULL);
278 
279 	/* fill the defaults if we have null pointers */
280 	if (nand_if->program_page == NULL) {
281 		nand_if->program_page = &nand_default_program_page;
282 	}
283 
284 	if (nand_if->read_page == NULL) {
285 		nand_if->read_page = &nand_default_read_page;
286 	}
287 
288 	arg.naa_nand_if = nand_if;
289 	return config_found(parent, &arg, nand_print,
290 	    CFARGS(.iattr = "nandbus"));
291 }
292 
293 /* default everything to reasonable values, to ease future api changes */
294 void
nand_init_interface(struct nand_interface * interface)295 nand_init_interface(struct nand_interface *interface)
296 {
297 	interface->select = &nand_default_select;
298 	interface->command = NULL;
299 	interface->address = NULL;
300 	interface->read_buf_1 = NULL;
301 	interface->read_buf_2 = NULL;
302 	interface->read_1 = NULL;
303 	interface->read_2 = NULL;
304 	interface->write_buf_1 = NULL;
305 	interface->write_buf_2 = NULL;
306 	interface->write_1 = NULL;
307 	interface->write_2 = NULL;
308 	interface->busy = NULL;
309 
310 	/*-
311 	 * most drivers dont want to change this, but some implement
312 	 * read/program in one step
313 	 */
314 	interface->program_page = &nand_default_program_page;
315 	interface->read_page = &nand_default_read_page;
316 
317 	/* default to soft ecc, that should work everywhere */
318 	interface->ecc_compute = &nand_default_ecc_compute;
319 	interface->ecc_correct = &nand_default_ecc_correct;
320 	interface->ecc_prepare = NULL;
321 	interface->ecc.necc_code_size = 3;
322 	interface->ecc.necc_block_size = 256;
323 	interface->ecc.necc_type = NAND_ECC_TYPE_SW;
324 }
325 
326 #if 0
327 /* handle quirks here */
328 static void
329 nand_quirks(device_t self, struct nand_chip *chip)
330 {
331 	/* this is an example only! */
332 	switch (chip->nc_manf_id) {
333 	case NAND_MFR_SAMSUNG:
334 		if (chip->nc_dev_id == 0x00) {
335 			/* do something only samsung chips need */
336 			/* or */
337 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
338 		}
339 	}
340 
341 	return;
342 }
343 #endif
344 
345 static int
nand_fill_chip_structure_legacy(device_t self,struct nand_chip * chip)346 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
347 {
348 	switch (chip->nc_manf_id) {
349 	case NAND_MFR_MICRON:
350 		return nand_read_parameters_micron(self, chip);
351 	case NAND_MFR_SAMSUNG:
352 		return nand_read_parameters_samsung(self, chip);
353 	case NAND_MFR_TOSHIBA:
354 		return nand_read_parameters_toshiba(self, chip);
355 	default:
356 		return 1;
357 	}
358 
359 	return 0;
360 }
361 
362 /**
363  * scan media to determine the chip's properties
364  * this function resets the device
365  */
366 static int
nand_scan_media(device_t self,struct nand_chip * chip)367 nand_scan_media(device_t self, struct nand_chip *chip)
368 {
369 	struct nand_softc *sc = device_private(self);
370 	struct nand_ecc *ecc;
371 	uint8_t onfi_signature[4];
372 
373 	nand_select(self, true);
374 	nand_command(self, ONFI_RESET);
375 	KASSERT(nand_get_status(self) & ONFI_STATUS_RDY);
376 	nand_select(self, false);
377 
378 	/* check if the device implements the ONFI standard */
379 	nand_select(self, true);
380 	nand_command(self, ONFI_READ_ID);
381 	nand_address(self, 0x20);
382 	nand_read_1(self, &onfi_signature[0]);
383 	nand_read_1(self, &onfi_signature[1]);
384 	nand_read_1(self, &onfi_signature[2]);
385 	nand_read_1(self, &onfi_signature[3]);
386 	nand_select(self, false);
387 
388 #ifdef NAND_DEBUG
389 	device_printf(self, "signature: %02x %02x %02x %02x\n",
390 	    onfi_signature[0], onfi_signature[1],
391 	    onfi_signature[2], onfi_signature[3]);
392 #endif
393 
394 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
395 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
396 		chip->nc_isonfi = false;
397 
398 		aprint_normal(": Legacy NAND Flash\n");
399 
400 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
401 
402 		if (nand_fill_chip_structure_legacy(self, chip)) {
403 			aprint_error_dev(self,
404 			    "can't read device parameters for legacy chip\n");
405 			return 1;
406 		}
407 	} else {
408 		chip->nc_isonfi = true;
409 
410 		aprint_normal(": ONFI NAND Flash\n");
411 
412 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
413 
414 		if (nand_fill_chip_structure(self, chip)) {
415 			aprint_error_dev(self,
416 			    "can't read device parameters\n");
417 			return 1;
418 		}
419 	}
420 
421 	aprint_normal_dev(self,
422 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
423 	    chip->nc_manf_id,
424 	    nand_midtoname(chip->nc_manf_id),
425 	    chip->nc_dev_id);
426 
427 	aprint_normal_dev(self,
428 	    "page size: %" PRIu32 " bytes, spare size: %" PRIu32 " bytes, "
429 	    "block size: %" PRIu32 " bytes\n",
430 	    chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
431 
432 	aprint_normal_dev(self,
433 	    "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
434 	    ", total storage size: %" PRIu64 " MB\n",
435 	    chip->nc_lun_blocks, chip->nc_num_luns,
436 	    chip->nc_size / 1024 / 1024);
437 
438 	aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
439 	    PRIu8 ", width: %s\n",
440 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row,
441 	    (chip->nc_flags & NC_BUSWIDTH_16) ? "x16" : "x8");
442 
443 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
444 
445 	/*
446 	 * calculate the place of ecc data in oob
447 	 * we try to be compatible with Linux here
448 	 */
449 	switch (chip->nc_spare_size) {
450 	case 8:
451 		ecc->necc_offset = 0;
452 		break;
453 	case 16:
454 		ecc->necc_offset = 0;
455 		break;
456 	case 32:
457 		ecc->necc_offset = 0;
458 		break;
459 	case 64:
460 		ecc->necc_offset = 40;
461 		break;
462 	case 128:
463 		ecc->necc_offset = 80;
464 		break;
465 	default:
466 		panic("OOB size %" PRIu32 " is unexpected", chip->nc_spare_size);
467 	}
468 
469 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
470 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
471 
472 	/* check if we fit in oob */
473 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
474 		panic("NAND ECC bits dont fit in OOB");
475 	}
476 
477 	/* TODO: mark free oob area available for file systems */
478 
479 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
480 
481 	/*
482 	 * calculate badblock marker offset in oob
483 	 * we try to be compatible with linux here
484 	 */
485 	if (chip->nc_page_size > 512)
486 		chip->nc_badmarker_offs = 0;
487 	else
488 		chip->nc_badmarker_offs = 5;
489 
490 	/* Calculate page shift and mask */
491 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
492 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
493 	/* same for block */
494 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
495 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
496 
497 	/* look for quirks here if needed in future */
498 	/* nand_quirks(self, chip); */
499 
500 	return 0;
501 }
502 
503 void
nand_read_id(device_t self,uint8_t * manf,uint8_t * dev)504 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
505 {
506 	nand_select(self, true);
507 	nand_command(self, ONFI_READ_ID);
508 	nand_address(self, 0x00);
509 
510 	nand_read_1(self, manf);
511 	nand_read_1(self, dev);
512 
513 	nand_select(self, false);
514 }
515 
516 int
nand_read_parameter_page(device_t self,struct onfi_parameter_page * params)517 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
518 {
519 	uint8_t *bufp;
520 	uint16_t crc;
521 	int i;//, tries = 0;
522 
523 	KASSERT(sizeof(*params) == 256);
524 
525 //read_params:
526 //	tries++;
527 
528 	nand_select(self, true);
529 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
530 	nand_address(self, 0x00);
531 
532 	nand_busy(self);
533 
534 	/* TODO check the signature if it contains at least 2 letters */
535 
536 	bufp = (uint8_t *)params;
537 	/* XXX why i am not using read_buf? */
538 	for (i = 0; i < 256; i++) {
539 		nand_read_1(self, &bufp[i]);
540 	}
541 	nand_select(self, false);
542 
543 	/* validate the parameter page with the crc */
544 	crc = nand_crc16(bufp, 254);
545 
546 	if (crc != params->param_integrity_crc) {
547 		aprint_error_dev(self, "parameter page crc check failed\n");
548 		/* TODO: we should read the next parameter page copy */
549 		return 1;
550 	}
551 
552 	return 0;
553 }
554 
555 static int
nand_fill_chip_structure(device_t self,struct nand_chip * chip)556 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
557 {
558 	struct onfi_parameter_page params;
559 	uint8_t	vendor[13], model[21];
560 	int i;
561 
562 	if (nand_read_parameter_page(self, &params)) {
563 		return 1;
564 	}
565 
566 	/* strip manufacturer and model string */
567 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
568 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
569 		vendor[i] = 0;
570 	strlcpy(model, params.param_model, sizeof(model));
571 	for (i = 19; i > 0 && model[i] == ' '; i--)
572 		model[i] = 0;
573 
574 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
575 
576 	chip->nc_page_size = le32toh(params.param_pagesize);
577 	chip->nc_block_size =
578 	    le32toh(params.param_blocksize) * chip->nc_page_size;
579 	chip->nc_spare_size = le16toh(params.param_sparesize);
580 	chip->nc_lun_blocks = le32toh(params.param_lunsize);
581 	chip->nc_num_luns = params.param_numluns;
582 
583 	chip->nc_size =
584 	    chip->nc_block_size * chip->nc_lun_blocks * chip->nc_num_luns;
585 
586 	/* the lower 4 bits contain the row address cycles */
587 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
588 	/* the upper 4 bits contain the column address cycles */
589 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
590 
591 	uint16_t features = le16toh(params.param_features);
592 	if (features & ONFI_FEATURE_16BIT) {
593 		chip->nc_flags |= NC_BUSWIDTH_16;
594 	}
595 
596 	if (features & ONFI_FEATURE_EXTENDED_PARAM) {
597 		chip->nc_flags |= NC_EXTENDED_PARAM;
598 	}
599 
600 	return 0;
601 }
602 
603 /* ARGSUSED */
604 bool
nand_shutdown(device_t self,int howto)605 nand_shutdown(device_t self, int howto)
606 {
607 	return true;
608 }
609 
610 static void
nand_address_column(device_t self,size_t row,size_t column)611 nand_address_column(device_t self, size_t row, size_t column)
612 {
613 	struct nand_softc *sc = device_private(self);
614 	struct nand_chip *chip = &sc->sc_chip;
615 	uint8_t i;
616 
617 	DPRINTF(("addressing row: 0x%jx column: %" PRIu32 "\n",
618 		(uintmax_t )row, column));
619 
620 	/* XXX TODO */
621 	row >>= chip->nc_page_shift;
622 
623 	/* Write the column (subpage) address */
624 	if (chip->nc_flags & NC_BUSWIDTH_16)
625 		column >>= 1;
626 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
627 		nand_address(self, column & 0xff);
628 
629 	/* Write the row (page) address */
630 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
631 		nand_address(self, row & 0xff);
632 }
633 
634 static void
nand_address_row(device_t self,size_t row)635 nand_address_row(device_t self, size_t row)
636 {
637 	struct nand_softc *sc = device_private(self);
638 	struct nand_chip *chip = &sc->sc_chip;
639 	int i;
640 
641 	/* XXX TODO */
642 	row >>= chip->nc_page_shift;
643 
644 	/* Write the row (page) address */
645 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
646 		nand_address(self, row & 0xff);
647 }
648 
649 static inline uint8_t
nand_get_status(device_t self)650 nand_get_status(device_t self)
651 {
652 	uint8_t status;
653 
654 	nand_command(self, ONFI_READ_STATUS);
655 	nand_busy(self);
656 	nand_read_1(self, &status);
657 
658 	return status;
659 }
660 
661 static bool
nand_check_wp(device_t self)662 nand_check_wp(device_t self)
663 {
664 	if (nand_get_status(self) & ONFI_STATUS_WP)
665 		return false;
666 	else
667 		return true;
668 }
669 
670 static void
nand_prepare_read(device_t self,flash_off_t row,flash_off_t column)671 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
672 {
673 	nand_command(self, ONFI_READ);
674 	nand_address_column(self, row, column);
675 	nand_command(self, ONFI_READ_START);
676 
677 	nand_busy(self);
678 }
679 
680 /* read a page with ecc correction, default implementation */
681 int
nand_default_read_page(device_t self,size_t offset,uint8_t * data)682 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
683 {
684 	struct nand_softc *sc = device_private(self);
685 	struct nand_chip *chip = &sc->sc_chip;
686 	size_t b, bs, e, cs;
687 	uint8_t *ecc;
688 	int result;
689 
690 	nand_prepare_read(self, offset, 0);
691 
692 	bs = chip->nc_ecc->necc_block_size;
693 	cs = chip->nc_ecc->necc_code_size;
694 
695 	/* decide if we access by 8 or 16 bits */
696 	if (chip->nc_flags & NC_BUSWIDTH_16) {
697 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
698 			nand_ecc_prepare(self, NAND_ECC_READ);
699 			nand_read_buf_2(self, data + b, bs);
700 			nand_ecc_compute(self, data + b,
701 			    chip->nc_ecc_cache + e);
702 		}
703 	} else {
704 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
705 			nand_ecc_prepare(self, NAND_ECC_READ);
706 			nand_read_buf_1(self, data + b, bs);
707 			nand_ecc_compute(self, data + b,
708 			    chip->nc_ecc_cache + e);
709 		}
710 	}
711 
712 	/* for debugging new drivers */
713 #if 0
714 	nand_dump_data("page", data, chip->nc_page_size);
715 #endif
716 
717 	nand_read_oob(self, offset, chip->nc_oob_cache);
718 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
719 
720 	/* useful for debugging new ecc drivers */
721 #if 0
722 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
723 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
724 		printf("0x");
725 		for (b = 0; b < cs; b++) {
726 			printf("%.2hhx", ecc[e+b]);
727 		}
728 		printf(" 0x");
729 		for (b = 0; b < cs; b++) {
730 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
731 		}
732 		printf("\n");
733 	}
734 	printf("--------------\n");
735 #endif
736 
737 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
738 		result = nand_ecc_correct(self, data + b, ecc + e,
739 		    chip->nc_ecc_cache + e);
740 
741 		switch (result) {
742 		case NAND_ECC_OK:
743 			break;
744 		case NAND_ECC_CORRECTED:
745 			aprint_error_dev(self,
746 			    "data corrected with ECC at page offset 0x%jx "
747 			    "block %zu\n", (uintmax_t)offset, b);
748 			break;
749 		case NAND_ECC_TWOBIT:
750 			aprint_error_dev(self,
751 			    "uncorrectable ECC error at page offset 0x%jx "
752 			    "block %zu\n", (uintmax_t)offset, b);
753 			return EIO;
754 			break;
755 		case NAND_ECC_INVALID:
756 			aprint_error_dev(self,
757 			    "invalid ECC in oob at page offset 0x%jx "
758 			    "block %zu\n", (uintmax_t)offset, b);
759 			return EIO;
760 			break;
761 		default:
762 			panic("invalid ECC correction errno");
763 		}
764 	}
765 
766 	return 0;
767 }
768 
769 int
nand_default_program_page(device_t self,size_t page,const uint8_t * data)770 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
771 {
772 	struct nand_softc *sc = device_private(self);
773 	struct nand_chip *chip = &sc->sc_chip;
774 	size_t bs, cs, e, b;
775 	uint8_t status;
776 	uint8_t *ecc;
777 
778 	nand_command(self, ONFI_PAGE_PROGRAM);
779 	nand_address_column(self, page, 0);
780 
781 	nand_busy(self);
782 
783 	bs = chip->nc_ecc->necc_block_size;
784 	cs = chip->nc_ecc->necc_code_size;
785 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
786 
787 	/* XXX code duplication */
788 	/* decide if we access by 8 or 16 bits */
789 	if (chip->nc_flags & NC_BUSWIDTH_16) {
790 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
791 			nand_ecc_prepare(self, NAND_ECC_WRITE);
792 			nand_write_buf_2(self, data + b, bs);
793 			nand_ecc_compute(self, data + b, ecc + e);
794 		}
795 		/* write oob with ecc correction code */
796 		nand_write_buf_2(self, chip->nc_oob_cache,
797 		    chip->nc_spare_size);
798 	} else {
799 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
800 			nand_ecc_prepare(self, NAND_ECC_WRITE);
801 			nand_write_buf_1(self, data + b, bs);
802 			nand_ecc_compute(self, data + b, ecc + e);
803 		}
804 		/* write oob with ecc correction code */
805 		nand_write_buf_1(self, chip->nc_oob_cache,
806 		    chip->nc_spare_size);
807 	}
808 
809 	nand_command(self, ONFI_PAGE_PROGRAM_START);
810 
811 	nand_busy(self);
812 
813 	/* for debugging ecc */
814 #if 0
815 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
816 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
817 		printf("0x");
818 		for (b = 0; b < cs; b++) {
819 			printf("%.2hhx", ecc[e+b]);
820 		}
821 		printf("\n");
822 	}
823 	printf("--------------\n");
824 #endif
825 
826 	status = nand_get_status(self);
827 	KASSERT(status & ONFI_STATUS_RDY);
828 	if (status & ONFI_STATUS_FAIL) {
829 		aprint_error_dev(self, "page program failed!\n");
830 		return EIO;
831 	}
832 
833 	return 0;
834 }
835 
836 /* read the OOB of a page */
837 int
nand_read_oob(device_t self,size_t page,uint8_t * oob)838 nand_read_oob(device_t self, size_t page, uint8_t *oob)
839 {
840 	struct nand_softc *sc = device_private(self);
841 	struct nand_chip *chip = &sc->sc_chip;
842 
843 	nand_prepare_read(self, page, chip->nc_page_size);
844 
845 	if (chip->nc_flags & NC_BUSWIDTH_16)
846 		nand_read_buf_2(self, oob, chip->nc_spare_size);
847 	else
848 		nand_read_buf_1(self, oob, chip->nc_spare_size);
849 
850 	/* for debugging drivers */
851 #if 0
852 	nand_dump_data("oob", oob, chip->nc_spare_size);
853 #endif
854 
855 	return 0;
856 }
857 
858 static int
nand_write_oob(device_t self,size_t offset,const void * oob)859 nand_write_oob(device_t self, size_t offset, const void *oob)
860 {
861 	struct nand_softc *sc = device_private(self);
862 	struct nand_chip *chip = &sc->sc_chip;
863 	uint8_t status;
864 
865 	nand_command(self, ONFI_PAGE_PROGRAM);
866 	nand_address_column(self, offset, chip->nc_page_size);
867 	nand_command(self, ONFI_PAGE_PROGRAM_START);
868 
869 	nand_busy(self);
870 
871 	if (chip->nc_flags & NC_BUSWIDTH_16)
872 		nand_write_buf_2(self, oob, chip->nc_spare_size);
873 	else
874 		nand_write_buf_1(self, oob, chip->nc_spare_size);
875 
876 	status = nand_get_status(self);
877 	KASSERT(status & ONFI_STATUS_RDY);
878 	if (status & ONFI_STATUS_FAIL)
879 		return EIO;
880 	else
881 		return 0;
882 }
883 
884 void
nand_markbad(device_t self,size_t offset)885 nand_markbad(device_t self, size_t offset)
886 {
887 	struct nand_softc *sc = device_private(self);
888 	struct nand_chip *chip = &sc->sc_chip;
889 	flash_off_t blockoffset;
890 #ifdef NAND_BBT
891 	flash_off_t block;
892 
893 	block = offset / chip->nc_block_size;
894 
895 	nand_bbt_block_markbad(self, block);
896 #endif
897 	blockoffset = offset & chip->nc_block_mask;
898 
899 	/* check if it is already marked bad */
900 	if (nand_isbad(self, blockoffset))
901 		return;
902 
903 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
904 
905 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
906 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
907 
908 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
909 }
910 
911 bool
nand_isfactorybad(device_t self,flash_off_t offset)912 nand_isfactorybad(device_t self, flash_off_t offset)
913 {
914 	struct nand_softc *sc = device_private(self);
915 	struct nand_chip *chip = &sc->sc_chip;
916 	flash_off_t block, first_page, last_page, page;
917 	int i;
918 
919 	/* Check for factory bad blocks first
920 	 * Factory bad blocks are marked in the first or last
921 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
922 	 */
923 	block = offset / chip->nc_block_size;
924 	first_page = block * chip->nc_block_size;
925 	last_page = (block + 1) * chip->nc_block_size
926 	    - chip->nc_page_size;
927 
928 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
929 		/* address OOB */
930 		nand_prepare_read(self, page, chip->nc_page_size);
931 
932 		if (chip->nc_flags & NC_BUSWIDTH_16) {
933 			uint16_t word;
934 			nand_read_2(self, &word);
935 			if (word == 0x0000)
936 				return true;
937 		} else {
938 			uint8_t byte;
939 			nand_read_1(self, &byte);
940 			if (byte == 0x00)
941 				return true;
942 		}
943 	}
944 
945 	return false;
946 }
947 
948 bool
nand_iswornoutbad(device_t self,flash_off_t offset)949 nand_iswornoutbad(device_t self, flash_off_t offset)
950 {
951 	struct nand_softc *sc = device_private(self);
952 	struct nand_chip *chip = &sc->sc_chip;
953 	flash_off_t block;
954 
955 	/* we inspect the first page of the block */
956 	block = offset & chip->nc_block_mask;
957 
958 	/* Linux/u-boot compatible badblock handling */
959 	if (chip->nc_flags & NC_BUSWIDTH_16) {
960 		uint16_t word, mark;
961 
962 		nand_prepare_read(self, block,
963 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
964 
965 		nand_read_2(self, &word);
966 		mark = htole16(word);
967 		if (chip->nc_badmarker_offs & 0x01)
968 			mark >>= 8;
969 		if ((mark & 0xff) != 0xff)
970 			return true;
971 	} else {
972 		uint8_t byte;
973 
974 		nand_prepare_read(self, block,
975 		    chip->nc_page_size + chip->nc_badmarker_offs);
976 
977 		nand_read_1(self, &byte);
978 		if (byte != 0xff)
979 			return true;
980 	}
981 
982 	return false;
983 }
984 
985 bool
nand_isbad(device_t self,flash_off_t offset)986 nand_isbad(device_t self, flash_off_t offset)
987 {
988 #ifdef NAND_BBT
989 	struct nand_softc *sc = device_private(self);
990 	struct nand_chip *chip = &sc->sc_chip;
991 	flash_off_t block;
992 
993 	block = offset / chip->nc_block_size;
994 
995 	return nand_bbt_block_isbad(self, block);
996 #else
997 	/* ONFI host requirement */
998 	if (nand_isfactorybad(self, offset))
999 		return true;
1000 
1001 	/* Look for Linux/U-Boot compatible bad marker */
1002 	if (nand_iswornoutbad(self, offset))
1003 		return true;
1004 
1005 	return false;
1006 #endif
1007 }
1008 
1009 int
nand_erase_block(device_t self,size_t offset)1010 nand_erase_block(device_t self, size_t offset)
1011 {
1012 	uint8_t status;
1013 
1014 	/* xxx calculate first page of block for address? */
1015 
1016 	nand_command(self, ONFI_BLOCK_ERASE);
1017 	nand_address_row(self, offset);
1018 	nand_command(self, ONFI_BLOCK_ERASE_START);
1019 
1020 	nand_busy(self);
1021 
1022 	status = nand_get_status(self);
1023 	KASSERT(status & ONFI_STATUS_RDY);
1024 	if (status & ONFI_STATUS_FAIL) {
1025 		aprint_error_dev(self, "block erase failed!\n");
1026 		nand_markbad(self, offset);
1027 		return EIO;
1028 	} else {
1029 		return 0;
1030 	}
1031 }
1032 
1033 /* default functions for driver development */
1034 
1035 /* default ECC using hamming code of 256 byte chunks */
1036 int
nand_default_ecc_compute(device_t self,const uint8_t * data,uint8_t * code)1037 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
1038 {
1039 	hamming_compute_256(data, code);
1040 
1041 	return 0;
1042 }
1043 
1044 int
nand_default_ecc_correct(device_t self,uint8_t * data,const uint8_t * origcode,const uint8_t * compcode)1045 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
1046 	const uint8_t *compcode)
1047 {
1048 	return hamming_correct_256(data, origcode, compcode);
1049 }
1050 
1051 void
nand_default_select(device_t self,bool enable)1052 nand_default_select(device_t self, bool enable)
1053 {
1054 	/* do nothing */
1055 	return;
1056 }
1057 
1058 /* implementation of the block device API */
1059 
1060 int
nand_flash_submit(device_t self,struct buf * const bp)1061 nand_flash_submit(device_t self, struct buf * const bp)
1062 {
1063 	struct nand_softc *sc = device_private(self);
1064 
1065 	return flash_io_submit(&sc->sc_flash_io, bp);
1066 }
1067 
1068 /*
1069  * handle (page) unaligned write to nand
1070  */
1071 static int
nand_flash_write_unaligned(device_t self,flash_off_t offset,size_t len,size_t * retlen,const uint8_t * buf)1072 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
1073     size_t *retlen, const uint8_t *buf)
1074 {
1075 	struct nand_softc *sc = device_private(self);
1076 	struct nand_chip *chip = &sc->sc_chip;
1077 	flash_off_t first, last, firstoff;
1078 	const uint8_t *bufp;
1079 	flash_off_t addr;
1080 	size_t left, count;
1081 	int error = 0, i;
1082 
1083 	first = offset & chip->nc_page_mask;
1084 	firstoff = offset & ~chip->nc_page_mask;
1085 	/* XXX check if this should be len - 1 */
1086 	last = (offset + len) & chip->nc_page_mask;
1087 	count = last - first + 1;
1088 
1089 	addr = first;
1090 	*retlen = 0;
1091 
1092 	mutex_enter(&sc->sc_device_lock);
1093 	if (count == 1) {
1094 		if (nand_isbad(self, addr)) {
1095 			aprint_error_dev(self,
1096 			    "nand_flash_write_unaligned: "
1097 			    "bad block encountered\n");
1098 			error = EIO;
1099 			goto out;
1100 		}
1101 
1102 		error = nand_read_page(self, addr, chip->nc_page_cache);
1103 		if (error) {
1104 			goto out;
1105 		}
1106 
1107 		memcpy(chip->nc_page_cache + firstoff, buf, len);
1108 
1109 		error = nand_program_page(self, addr, chip->nc_page_cache);
1110 		if (error) {
1111 			goto out;
1112 		}
1113 
1114 		*retlen = len;
1115 		goto out;
1116 	}
1117 
1118 	bufp = buf;
1119 	left = len;
1120 
1121 	for (i = 0; i < count && left != 0; i++) {
1122 		if (nand_isbad(self, addr)) {
1123 			aprint_error_dev(self,
1124 			    "nand_flash_write_unaligned: "
1125 			    "bad block encountered\n");
1126 			error = EIO;
1127 			goto out;
1128 		}
1129 
1130 		if (i == 0) {
1131 			error = nand_read_page(self,
1132 			    addr, chip->nc_page_cache);
1133 			if (error) {
1134 				goto out;
1135 			}
1136 
1137 			memcpy(chip->nc_page_cache + firstoff,
1138 			    bufp, chip->nc_page_size - firstoff);
1139 
1140 			printf("program page: %s: %d\n", __FILE__, __LINE__);
1141 			error = nand_program_page(self,
1142 			    addr, chip->nc_page_cache);
1143 			if (error) {
1144 				goto out;
1145 			}
1146 
1147 			bufp += chip->nc_page_size - firstoff;
1148 			left -= chip->nc_page_size - firstoff;
1149 			*retlen += chip->nc_page_size - firstoff;
1150 
1151 		} else if (i == count - 1) {
1152 			error = nand_read_page(self,
1153 			    addr, chip->nc_page_cache);
1154 			if (error) {
1155 				goto out;
1156 			}
1157 
1158 			memcpy(chip->nc_page_cache, bufp, left);
1159 
1160 			error = nand_program_page(self,
1161 			    addr, chip->nc_page_cache);
1162 			if (error) {
1163 				goto out;
1164 			}
1165 
1166 			*retlen += left;
1167 			KASSERT(left < chip->nc_page_size);
1168 
1169 		} else {
1170 			/* XXX debug */
1171 			if (left > chip->nc_page_size) {
1172 				printf("left: %zu, i: %d, count: %zu\n",
1173 				    left, i, count);
1174 			}
1175 			KASSERT(left > chip->nc_page_size);
1176 
1177 			error = nand_program_page(self, addr, bufp);
1178 			if (error) {
1179 				goto out;
1180 			}
1181 
1182 			bufp += chip->nc_page_size;
1183 			left -= chip->nc_page_size;
1184 			*retlen += chip->nc_page_size;
1185 		}
1186 
1187 		addr += chip->nc_page_size;
1188 	}
1189 
1190 	KASSERT(*retlen == len);
1191 out:
1192 	mutex_exit(&sc->sc_device_lock);
1193 
1194 	return error;
1195 }
1196 
1197 int
nand_flash_write(device_t self,flash_off_t offset,size_t len,size_t * retlen,const uint8_t * buf)1198 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1199     const uint8_t *buf)
1200 {
1201 	struct nand_softc *sc = device_private(self);
1202 	struct nand_chip *chip = &sc->sc_chip;
1203 	const uint8_t *bufp;
1204 	size_t pages, page;
1205 	daddr_t addr;
1206 	int error = 0;
1207 
1208 	if ((offset + len) > chip->nc_size) {
1209 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
1210 			" is over device size (0x%jx)\n",
1211 			(uintmax_t)offset, (uintmax_t)len,
1212 			(uintmax_t)chip->nc_size));
1213 		return EINVAL;
1214 	}
1215 
1216 	if (len % chip->nc_page_size != 0 ||
1217 	    offset % chip->nc_page_size != 0) {
1218 		return nand_flash_write_unaligned(self,
1219 		    offset, len, retlen, buf);
1220 	}
1221 
1222 	pages = len / chip->nc_page_size;
1223 	KASSERT(pages != 0);
1224 	*retlen = 0;
1225 
1226 	addr = offset;
1227 	bufp = buf;
1228 
1229 	mutex_enter(&sc->sc_device_lock);
1230 	for (page = 0; page < pages; page++) {
1231 		/* do we need this check here? */
1232 		if (nand_isbad(self, addr)) {
1233 			aprint_error_dev(self,
1234 			    "nand_flash_write: bad block encountered\n");
1235 
1236 			error = EIO;
1237 			goto out;
1238 		}
1239 
1240 		error = nand_program_page(self, addr, bufp);
1241 		if (error) {
1242 			goto out;
1243 		}
1244 
1245 		addr += chip->nc_page_size;
1246 		bufp += chip->nc_page_size;
1247 		*retlen += chip->nc_page_size;
1248 	}
1249 out:
1250 	mutex_exit(&sc->sc_device_lock);
1251 	DPRINTF(("page programming: retlen: %" PRIu32 ", len: %" PRIu32 "\n", *retlen, len));
1252 
1253 	return error;
1254 }
1255 
1256 /*
1257  * handle (page) unaligned read from nand
1258  */
1259 static int
nand_flash_read_unaligned(device_t self,size_t offset,size_t len,size_t * retlen,uint8_t * buf)1260 nand_flash_read_unaligned(device_t self, size_t offset,
1261     size_t len, size_t *retlen, uint8_t *buf)
1262 {
1263 	struct nand_softc *sc = device_private(self);
1264 	struct nand_chip *chip = &sc->sc_chip;
1265 	daddr_t first, last, count, firstoff;
1266 	uint8_t *bufp;
1267 	daddr_t addr;
1268 	size_t left;
1269 	int error = 0, i;
1270 
1271 	first = offset & chip->nc_page_mask;
1272 	firstoff = offset & ~chip->nc_page_mask;
1273 	last = (offset + len) & chip->nc_page_mask;
1274 	count = (last - first) / chip->nc_page_size + 1;
1275 
1276 	addr = first;
1277 	bufp = buf;
1278 	left = len;
1279 	*retlen = 0;
1280 
1281 	mutex_enter(&sc->sc_device_lock);
1282 	if (count == 1) {
1283 		error = nand_read_page(self, addr, chip->nc_page_cache);
1284 		if (error) {
1285 			goto out;
1286 		}
1287 
1288 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
1289 
1290 		*retlen = len;
1291 		goto out;
1292 	}
1293 
1294 	for (i = 0; i < count && left != 0; i++) {
1295 		error = nand_read_page(self, addr, chip->nc_page_cache);
1296 		if (error) {
1297 			goto out;
1298 		}
1299 
1300 		if (i == 0) {
1301 			memcpy(bufp, chip->nc_page_cache + firstoff,
1302 			    chip->nc_page_size - firstoff);
1303 
1304 			bufp += chip->nc_page_size - firstoff;
1305 			left -= chip->nc_page_size - firstoff;
1306 			*retlen += chip->nc_page_size - firstoff;
1307 
1308 		} else if (i == count - 1) {
1309 			memcpy(bufp, chip->nc_page_cache, left);
1310 			*retlen += left;
1311 			KASSERT(left < chip->nc_page_size);
1312 
1313 		} else {
1314 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
1315 
1316 			bufp += chip->nc_page_size;
1317 			left -= chip->nc_page_size;
1318 			*retlen += chip->nc_page_size;
1319 		}
1320 
1321 		addr += chip->nc_page_size;
1322 	}
1323 	KASSERT(*retlen == len);
1324 out:
1325 	mutex_exit(&sc->sc_device_lock);
1326 
1327 	return error;
1328 }
1329 
1330 int
nand_flash_read(device_t self,flash_off_t offset,size_t len,size_t * retlen,uint8_t * buf)1331 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1332     uint8_t *buf)
1333 {
1334 	struct nand_softc *sc = device_private(self);
1335 	struct nand_chip *chip = &sc->sc_chip;
1336 	uint8_t *bufp;
1337 	size_t addr;
1338 	size_t i, pages;
1339 	int error = 0;
1340 
1341 	*retlen = 0;
1342 
1343 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %" PRIu32 "\n",
1344 		(uintmax_t)offset, len));
1345 
1346 	if (__predict_false((offset + len) > chip->nc_size)) {
1347 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %" PRIu32 "),"
1348 			" is over device size (%ju)\n", (uintmax_t)offset,
1349 			len, (uintmax_t)chip->nc_size));
1350 		return EINVAL;
1351 	}
1352 
1353 	/* Handle unaligned access, shouldnt be needed when using the
1354 	 * block device, as strategy handles it, so only low level
1355 	 * accesses will use this path
1356 	 */
1357 	/* XXX^2 */
1358 #if 0
1359 	if (len < chip->nc_page_size)
1360 		panic("TODO page size is larger than read size");
1361 #endif
1362 
1363 	if (len % chip->nc_page_size != 0 ||
1364 	    offset % chip->nc_page_size != 0) {
1365 		return nand_flash_read_unaligned(self,
1366 		    offset, len, retlen, buf);
1367 	}
1368 
1369 	bufp = buf;
1370 	addr = offset;
1371 	pages = len / chip->nc_page_size;
1372 
1373 	mutex_enter(&sc->sc_device_lock);
1374 	for (i = 0; i < pages; i++) {
1375 		/* XXX do we need this check here? */
1376 		if (nand_isbad(self, addr)) {
1377 			aprint_error_dev(self, "bad block encountered\n");
1378 			error = EIO;
1379 			goto out;
1380 		}
1381 		error = nand_read_page(self, addr, bufp);
1382 		if (error)
1383 			goto out;
1384 
1385 		bufp += chip->nc_page_size;
1386 		addr += chip->nc_page_size;
1387 		*retlen += chip->nc_page_size;
1388 	}
1389 out:
1390 	mutex_exit(&sc->sc_device_lock);
1391 
1392 	return error;
1393 }
1394 
1395 int
nand_flash_isbad(device_t self,flash_off_t ofs,bool * is_bad)1396 nand_flash_isbad(device_t self, flash_off_t ofs, bool *is_bad)
1397 {
1398 	struct nand_softc *sc = device_private(self);
1399 	struct nand_chip *chip = &sc->sc_chip;
1400 	bool result;
1401 
1402 	if (ofs > chip->nc_size) {
1403 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
1404 			" device size (0x%jx)\n", (uintmax_t)ofs,
1405 			(uintmax_t)chip->nc_size));
1406 		return EINVAL;
1407 	}
1408 
1409 	if (ofs % chip->nc_block_size != 0) {
1410 		DPRINTF(("offset (0x%jx) is not a multiple of block size "
1411 			"(%ju)",
1412 			(uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
1413 		return EINVAL;
1414 	}
1415 
1416 	mutex_enter(&sc->sc_device_lock);
1417 	result = nand_isbad(self, ofs);
1418 	mutex_exit(&sc->sc_device_lock);
1419 
1420 	*is_bad = result;
1421 
1422 	return 0;
1423 }
1424 
1425 int
nand_flash_markbad(device_t self,flash_off_t ofs)1426 nand_flash_markbad(device_t self, flash_off_t ofs)
1427 {
1428 	struct nand_softc *sc = device_private(self);
1429 	struct nand_chip *chip = &sc->sc_chip;
1430 
1431 	if (ofs > chip->nc_size) {
1432 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
1433 			" device size (0x%jx)\n", ofs,
1434 			(uintmax_t)chip->nc_size));
1435 		return EINVAL;
1436 	}
1437 
1438 	if (ofs % chip->nc_block_size != 0) {
1439 		panic("offset (%ju) is not a multiple of block size (%ju)",
1440 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1441 	}
1442 
1443 	mutex_enter(&sc->sc_device_lock);
1444 	nand_markbad(self, ofs);
1445 	mutex_exit(&sc->sc_device_lock);
1446 
1447 	return 0;
1448 }
1449 
1450 int
nand_flash_erase(device_t self,struct flash_erase_instruction * ei)1451 nand_flash_erase(device_t self,
1452     struct flash_erase_instruction *ei)
1453 {
1454 	struct nand_softc *sc = device_private(self);
1455 	struct nand_chip *chip = &sc->sc_chip;
1456 	flash_off_t addr;
1457 	int error = 0;
1458 
1459 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
1460 		return EINVAL;
1461 
1462 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
1463 		DPRINTF(("nand_flash_erase: erase address is over the end"
1464 			" of the device\n"));
1465 		return EINVAL;
1466 	}
1467 
1468 	if (ei->ei_addr % chip->nc_block_size != 0) {
1469 		aprint_error_dev(self,
1470 		    "nand_flash_erase: ei_addr (%ju) is not"
1471 		    " a multiple of block size (%ju)",
1472 		    (uintmax_t)ei->ei_addr,
1473 		    (uintmax_t)chip->nc_block_size);
1474 		return EINVAL;
1475 	}
1476 
1477 	if (ei->ei_len % chip->nc_block_size != 0) {
1478 		aprint_error_dev(self,
1479 		    "nand_flash_erase: ei_len (%ju) is not"
1480 		    " a multiple of block size (%ju)",
1481 		    (uintmax_t)ei->ei_len,
1482 		    (uintmax_t)chip->nc_block_size);
1483 		return EINVAL;
1484 	}
1485 
1486 	mutex_enter(&sc->sc_device_lock);
1487 	addr = ei->ei_addr;
1488 	while (addr < ei->ei_addr + ei->ei_len) {
1489 		if (nand_isbad(self, addr)) {
1490 			aprint_error_dev(self, "bad block encountered\n");
1491 			ei->ei_state = FLASH_ERASE_FAILED;
1492 			error = EIO;
1493 			goto out;
1494 		}
1495 
1496 		error = nand_erase_block(self, addr);
1497 		if (error) {
1498 			ei->ei_state = FLASH_ERASE_FAILED;
1499 			goto out;
1500 		}
1501 
1502 		addr += chip->nc_block_size;
1503 	}
1504 	mutex_exit(&sc->sc_device_lock);
1505 
1506 	ei->ei_state = FLASH_ERASE_DONE;
1507 	if (ei->ei_callback != NULL) {
1508 		ei->ei_callback(ei);
1509 	}
1510 
1511 	return 0;
1512 out:
1513 	mutex_exit(&sc->sc_device_lock);
1514 
1515 	return error;
1516 }
1517 
1518 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
1519 
1520 #ifdef _MODULE
1521 #include "ioconf.c"
1522 #endif
1523 
1524 static int
nand_modcmd(modcmd_t cmd,void * opaque)1525 nand_modcmd(modcmd_t cmd, void *opaque)
1526 {
1527 	switch (cmd) {
1528 	case MODULE_CMD_INIT:
1529 #ifdef _MODULE
1530 		return config_init_component(cfdriver_ioconf_nand,
1531 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
1532 #else
1533 		return 0;
1534 #endif
1535 	case MODULE_CMD_FINI:
1536 #ifdef _MODULE
1537 		return config_fini_component(cfdriver_ioconf_nand,
1538 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
1539 #else
1540 		return 0;
1541 #endif
1542 	default:
1543 		return ENOTTY;
1544 	}
1545 }
1546