1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA 10 // runtime library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/Basic/Cuda.h" 21 #include "clang/CodeGen/CodeGenABITypes.h" 22 #include "clang/CodeGen/ConstantInitBuilder.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Frontend/Offloading/Utility.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/ReplaceConstant.h" 29 #include "llvm/Support/Format.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 32 using namespace clang; 33 using namespace CodeGen; 34 35 namespace { 36 constexpr unsigned CudaFatMagic = 0x466243b1; 37 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF" 38 39 class CGNVCUDARuntime : public CGCUDARuntime { 40 41 /// The prefix used for function calls and section names (CUDA, HIP, LLVM) 42 StringRef Prefix; 43 /// TODO: We should transition the OpenMP section to LLVM/Offload 44 StringRef SectionPrefix; 45 46 private: 47 llvm::IntegerType *IntTy, *SizeTy; 48 llvm::Type *VoidTy; 49 llvm::PointerType *PtrTy; 50 51 /// Convenience reference to LLVM Context 52 llvm::LLVMContext &Context; 53 /// Convenience reference to the current module 54 llvm::Module &TheModule; 55 /// Keeps track of kernel launch stubs and handles emitted in this module 56 struct KernelInfo { 57 llvm::Function *Kernel; // stub function to help launch kernel 58 const Decl *D; 59 }; 60 llvm::SmallVector<KernelInfo, 16> EmittedKernels; 61 // Map a kernel mangled name to a symbol for identifying kernel in host code 62 // For CUDA, the symbol for identifying the kernel is the same as the device 63 // stub function. For HIP, they are different. 64 llvm::DenseMap<StringRef, llvm::GlobalValue *> KernelHandles; 65 // Map a kernel handle to the kernel stub. 66 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs; 67 struct VarInfo { 68 llvm::GlobalVariable *Var; 69 const VarDecl *D; 70 DeviceVarFlags Flags; 71 }; 72 llvm::SmallVector<VarInfo, 16> DeviceVars; 73 /// Keeps track of variable containing handle of GPU binary. Populated by 74 /// ModuleCtorFunction() and used to create corresponding cleanup calls in 75 /// ModuleDtorFunction() 76 llvm::GlobalVariable *GpuBinaryHandle = nullptr; 77 /// Whether we generate relocatable device code. 78 bool RelocatableDeviceCode; 79 /// Mangle context for device. 80 std::unique_ptr<MangleContext> DeviceMC; 81 82 llvm::FunctionCallee getSetupArgumentFn() const; 83 llvm::FunctionCallee getLaunchFn() const; 84 85 llvm::FunctionType *getRegisterGlobalsFnTy() const; 86 llvm::FunctionType *getCallbackFnTy() const; 87 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const; 88 std::string addPrefixToName(StringRef FuncName) const; 89 std::string addUnderscoredPrefixToName(StringRef FuncName) const; 90 91 /// Creates a function to register all kernel stubs generated in this module. 92 llvm::Function *makeRegisterGlobalsFn(); 93 94 /// Helper function that generates a constant string and returns a pointer to 95 /// the start of the string. The result of this function can be used anywhere 96 /// where the C code specifies const char*. 97 llvm::Constant *makeConstantString(const std::string &Str, 98 const std::string &Name = "") { 99 return CGM.GetAddrOfConstantCString(Str, Name.c_str()).getPointer(); 100 } 101 102 /// Helper function which generates an initialized constant array from Str, 103 /// and optionally sets section name and alignment. AddNull specifies whether 104 /// the array should nave NUL termination. 105 llvm::Constant *makeConstantArray(StringRef Str, 106 StringRef Name = "", 107 StringRef SectionName = "", 108 unsigned Alignment = 0, 109 bool AddNull = false) { 110 llvm::Constant *Value = 111 llvm::ConstantDataArray::getString(Context, Str, AddNull); 112 auto *GV = new llvm::GlobalVariable( 113 TheModule, Value->getType(), /*isConstant=*/true, 114 llvm::GlobalValue::PrivateLinkage, Value, Name); 115 if (!SectionName.empty()) { 116 GV->setSection(SectionName); 117 // Mark the address as used which make sure that this section isn't 118 // merged and we will really have it in the object file. 119 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 120 } 121 if (Alignment) 122 GV->setAlignment(llvm::Align(Alignment)); 123 return GV; 124 } 125 126 /// Helper function that generates an empty dummy function returning void. 127 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) { 128 assert(FnTy->getReturnType()->isVoidTy() && 129 "Can only generate dummy functions returning void!"); 130 llvm::Function *DummyFunc = llvm::Function::Create( 131 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule); 132 133 llvm::BasicBlock *DummyBlock = 134 llvm::BasicBlock::Create(Context, "", DummyFunc); 135 CGBuilderTy FuncBuilder(CGM, Context); 136 FuncBuilder.SetInsertPoint(DummyBlock); 137 FuncBuilder.CreateRetVoid(); 138 139 return DummyFunc; 140 } 141 142 Address prepareKernelArgs(CodeGenFunction &CGF, FunctionArgList &Args); 143 Address prepareKernelArgsLLVMOffload(CodeGenFunction &CGF, 144 FunctionArgList &Args); 145 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args); 146 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args); 147 std::string getDeviceSideName(const NamedDecl *ND) override; 148 149 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var, 150 bool Extern, bool Constant) { 151 DeviceVars.push_back({&Var, 152 VD, 153 {DeviceVarFlags::Variable, Extern, Constant, 154 VD->hasAttr<HIPManagedAttr>(), 155 /*Normalized*/ false, 0}}); 156 } 157 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var, 158 bool Extern, int Type) { 159 DeviceVars.push_back({&Var, 160 VD, 161 {DeviceVarFlags::Surface, Extern, /*Constant*/ false, 162 /*Managed*/ false, 163 /*Normalized*/ false, Type}}); 164 } 165 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var, 166 bool Extern, int Type, bool Normalized) { 167 DeviceVars.push_back({&Var, 168 VD, 169 {DeviceVarFlags::Texture, Extern, /*Constant*/ false, 170 /*Managed*/ false, Normalized, Type}}); 171 } 172 173 /// Creates module constructor function 174 llvm::Function *makeModuleCtorFunction(); 175 /// Creates module destructor function 176 llvm::Function *makeModuleDtorFunction(); 177 /// Transform managed variables for device compilation. 178 void transformManagedVars(); 179 /// Create offloading entries to register globals in RDC mode. 180 void createOffloadingEntries(); 181 182 public: 183 CGNVCUDARuntime(CodeGenModule &CGM); 184 185 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override; 186 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override { 187 auto Loc = KernelStubs.find(Handle); 188 assert(Loc != KernelStubs.end()); 189 return Loc->second; 190 } 191 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override; 192 void handleVarRegistration(const VarDecl *VD, 193 llvm::GlobalVariable &Var) override; 194 void 195 internalizeDeviceSideVar(const VarDecl *D, 196 llvm::GlobalValue::LinkageTypes &Linkage) override; 197 198 llvm::Function *finalizeModule() override; 199 }; 200 201 } // end anonymous namespace 202 203 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const { 204 return (Prefix + FuncName).str(); 205 } 206 std::string 207 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const { 208 return ("__" + Prefix + FuncName).str(); 209 } 210 211 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) { 212 // If the host and device have different C++ ABIs, mark it as the device 213 // mangle context so that the mangling needs to retrieve the additional 214 // device lambda mangling number instead of the regular host one. 215 if (CGM.getContext().getAuxTargetInfo() && 216 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() && 217 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) { 218 return std::unique_ptr<MangleContext>( 219 CGM.getContext().createDeviceMangleContext( 220 *CGM.getContext().getAuxTargetInfo())); 221 } 222 223 return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext( 224 CGM.getContext().getAuxTargetInfo())); 225 } 226 227 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM) 228 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()), 229 TheModule(CGM.getModule()), 230 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode), 231 DeviceMC(InitDeviceMC(CGM)) { 232 IntTy = CGM.IntTy; 233 SizeTy = CGM.SizeTy; 234 VoidTy = CGM.VoidTy; 235 PtrTy = CGM.UnqualPtrTy; 236 237 if (CGM.getLangOpts().OffloadViaLLVM) { 238 Prefix = "llvm"; 239 SectionPrefix = "omp"; 240 } else if (CGM.getLangOpts().HIP) 241 SectionPrefix = Prefix = "hip"; 242 else 243 SectionPrefix = Prefix = "cuda"; 244 } 245 246 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const { 247 // cudaError_t cudaSetupArgument(void *, size_t, size_t) 248 llvm::Type *Params[] = {PtrTy, SizeTy, SizeTy}; 249 return CGM.CreateRuntimeFunction( 250 llvm::FunctionType::get(IntTy, Params, false), 251 addPrefixToName("SetupArgument")); 252 } 253 254 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const { 255 if (CGM.getLangOpts().HIP) { 256 // hipError_t hipLaunchByPtr(char *); 257 return CGM.CreateRuntimeFunction( 258 llvm::FunctionType::get(IntTy, PtrTy, false), "hipLaunchByPtr"); 259 } 260 // cudaError_t cudaLaunch(char *); 261 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(IntTy, PtrTy, false), 262 "cudaLaunch"); 263 } 264 265 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const { 266 return llvm::FunctionType::get(VoidTy, PtrTy, false); 267 } 268 269 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const { 270 return llvm::FunctionType::get(VoidTy, PtrTy, false); 271 } 272 273 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const { 274 llvm::Type *Params[] = {llvm::PointerType::getUnqual(Context), PtrTy, PtrTy, 275 llvm::PointerType::getUnqual(Context)}; 276 return llvm::FunctionType::get(VoidTy, Params, false); 277 } 278 279 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) { 280 GlobalDecl GD; 281 // D could be either a kernel or a variable. 282 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 283 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 284 else 285 GD = GlobalDecl(ND); 286 std::string DeviceSideName; 287 MangleContext *MC; 288 if (CGM.getLangOpts().CUDAIsDevice) 289 MC = &CGM.getCXXABI().getMangleContext(); 290 else 291 MC = DeviceMC.get(); 292 if (MC->shouldMangleDeclName(ND)) { 293 SmallString<256> Buffer; 294 llvm::raw_svector_ostream Out(Buffer); 295 MC->mangleName(GD, Out); 296 DeviceSideName = std::string(Out.str()); 297 } else 298 DeviceSideName = std::string(ND->getIdentifier()->getName()); 299 300 // Make unique name for device side static file-scope variable for HIP. 301 if (CGM.getContext().shouldExternalize(ND) && 302 CGM.getLangOpts().GPURelocatableDeviceCode) { 303 SmallString<256> Buffer; 304 llvm::raw_svector_ostream Out(Buffer); 305 Out << DeviceSideName; 306 CGM.printPostfixForExternalizedDecl(Out, ND); 307 DeviceSideName = std::string(Out.str()); 308 } 309 return DeviceSideName; 310 } 311 312 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF, 313 FunctionArgList &Args) { 314 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl}); 315 if (auto *GV = 316 dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn->getName()])) { 317 GV->setLinkage(CGF.CurFn->getLinkage()); 318 GV->setInitializer(CGF.CurFn); 319 } 320 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 321 CudaFeature::CUDA_USES_NEW_LAUNCH) || 322 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI) || 323 (CGF.getLangOpts().OffloadViaLLVM)) 324 emitDeviceStubBodyNew(CGF, Args); 325 else 326 emitDeviceStubBodyLegacy(CGF, Args); 327 } 328 329 /// CUDA passes the arguments with a level of indirection. For example, a 330 /// (void*, short, void*) is passed as {void **, short *, void **} to the launch 331 /// function. For the LLVM/offload launch we flatten the arguments into the 332 /// struct directly. In addition, we include the size of the arguments, thus 333 /// pass {sizeof({void *, short, void *}), ptr to {void *, short, void *}, 334 /// nullptr}. The last nullptr needs to be initialized to an array of pointers 335 /// pointing to the arguments if we want to offload to the host. 336 Address CGNVCUDARuntime::prepareKernelArgsLLVMOffload(CodeGenFunction &CGF, 337 FunctionArgList &Args) { 338 SmallVector<llvm::Type *> ArgTypes, KernelLaunchParamsTypes; 339 for (auto &Arg : Args) 340 ArgTypes.push_back(CGF.ConvertTypeForMem(Arg->getType())); 341 llvm::StructType *KernelArgsTy = llvm::StructType::create(ArgTypes); 342 343 auto *Int64Ty = CGF.Builder.getInt64Ty(); 344 KernelLaunchParamsTypes.push_back(Int64Ty); 345 KernelLaunchParamsTypes.push_back(PtrTy); 346 KernelLaunchParamsTypes.push_back(PtrTy); 347 348 llvm::StructType *KernelLaunchParamsTy = 349 llvm::StructType::create(KernelLaunchParamsTypes); 350 Address KernelArgs = CGF.CreateTempAllocaWithoutCast( 351 KernelArgsTy, CharUnits::fromQuantity(16), "kernel_args"); 352 Address KernelLaunchParams = CGF.CreateTempAllocaWithoutCast( 353 KernelLaunchParamsTy, CharUnits::fromQuantity(16), 354 "kernel_launch_params"); 355 356 auto KernelArgsSize = CGM.getDataLayout().getTypeAllocSize(KernelArgsTy); 357 CGF.Builder.CreateStore(llvm::ConstantInt::get(Int64Ty, KernelArgsSize), 358 CGF.Builder.CreateStructGEP(KernelLaunchParams, 0)); 359 CGF.Builder.CreateStore(KernelArgs.emitRawPointer(CGF), 360 CGF.Builder.CreateStructGEP(KernelLaunchParams, 1)); 361 CGF.Builder.CreateStore(llvm::Constant::getNullValue(PtrTy), 362 CGF.Builder.CreateStructGEP(KernelLaunchParams, 2)); 363 364 for (unsigned i = 0; i < Args.size(); ++i) { 365 auto *ArgVal = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[i])); 366 CGF.Builder.CreateStore(ArgVal, CGF.Builder.CreateStructGEP(KernelArgs, i)); 367 } 368 369 return KernelLaunchParams; 370 } 371 372 Address CGNVCUDARuntime::prepareKernelArgs(CodeGenFunction &CGF, 373 FunctionArgList &Args) { 374 // Calculate amount of space we will need for all arguments. If we have no 375 // args, allocate a single pointer so we still have a valid pointer to the 376 // argument array that we can pass to runtime, even if it will be unused. 377 Address KernelArgs = CGF.CreateTempAlloca( 378 PtrTy, CharUnits::fromQuantity(16), "kernel_args", 379 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size()))); 380 // Store pointers to the arguments in a locally allocated launch_args. 381 for (unsigned i = 0; i < Args.size(); ++i) { 382 llvm::Value *VarPtr = CGF.GetAddrOfLocalVar(Args[i]).emitRawPointer(CGF); 383 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, PtrTy); 384 CGF.Builder.CreateDefaultAlignedStore( 385 VoidVarPtr, CGF.Builder.CreateConstGEP1_32( 386 PtrTy, KernelArgs.emitRawPointer(CGF), i)); 387 } 388 return KernelArgs; 389 } 390 391 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local 392 // array and kernels are launched using cudaLaunchKernel(). 393 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF, 394 FunctionArgList &Args) { 395 // Build the shadow stack entry at the very start of the function. 396 Address KernelArgs = CGF.getLangOpts().OffloadViaLLVM 397 ? prepareKernelArgsLLVMOffload(CGF, Args) 398 : prepareKernelArgs(CGF, Args); 399 400 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 401 402 // Lookup cudaLaunchKernel/hipLaunchKernel function. 403 // HIP kernel launching API name depends on -fgpu-default-stream option. For 404 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread', 405 // it is hipLaunchKernel_spt. 406 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, 407 // void **args, size_t sharedMem, 408 // cudaStream_t stream); 409 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim, 410 // dim3 blockDim, void **args, 411 // size_t sharedMem, hipStream_t stream); 412 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 413 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 414 std::string KernelLaunchAPI = "LaunchKernel"; 415 if (CGF.getLangOpts().GPUDefaultStream == 416 LangOptions::GPUDefaultStreamKind::PerThread) { 417 if (CGF.getLangOpts().HIP) 418 KernelLaunchAPI = KernelLaunchAPI + "_spt"; 419 else if (CGF.getLangOpts().CUDA) 420 KernelLaunchAPI = KernelLaunchAPI + "_ptsz"; 421 } 422 auto LaunchKernelName = addPrefixToName(KernelLaunchAPI); 423 const IdentifierInfo &cudaLaunchKernelII = 424 CGM.getContext().Idents.get(LaunchKernelName); 425 FunctionDecl *cudaLaunchKernelFD = nullptr; 426 for (auto *Result : DC->lookup(&cudaLaunchKernelII)) { 427 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result)) 428 cudaLaunchKernelFD = FD; 429 } 430 431 if (cudaLaunchKernelFD == nullptr) { 432 CGM.Error(CGF.CurFuncDecl->getLocation(), 433 "Can't find declaration for " + LaunchKernelName); 434 return; 435 } 436 // Create temporary dim3 grid_dim, block_dim. 437 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1); 438 QualType Dim3Ty = GridDimParam->getType(); 439 Address GridDim = 440 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim"); 441 Address BlockDim = 442 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim"); 443 Address ShmemSize = 444 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size"); 445 Address Stream = CGF.CreateTempAlloca(PtrTy, CGM.getPointerAlign(), "stream"); 446 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction( 447 llvm::FunctionType::get(IntTy, 448 {/*gridDim=*/GridDim.getType(), 449 /*blockDim=*/BlockDim.getType(), 450 /*ShmemSize=*/ShmemSize.getType(), 451 /*Stream=*/Stream.getType()}, 452 /*isVarArg=*/false), 453 addUnderscoredPrefixToName("PopCallConfiguration")); 454 455 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn, {GridDim.emitRawPointer(CGF), 456 BlockDim.emitRawPointer(CGF), 457 ShmemSize.emitRawPointer(CGF), 458 Stream.emitRawPointer(CGF)}); 459 460 // Emit the call to cudaLaunch 461 llvm::Value *Kernel = 462 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn->getName()], PtrTy); 463 CallArgList LaunchKernelArgs; 464 LaunchKernelArgs.add(RValue::get(Kernel), 465 cudaLaunchKernelFD->getParamDecl(0)->getType()); 466 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty); 467 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty); 468 LaunchKernelArgs.add(RValue::get(KernelArgs, CGF), 469 cudaLaunchKernelFD->getParamDecl(3)->getType()); 470 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)), 471 cudaLaunchKernelFD->getParamDecl(4)->getType()); 472 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)), 473 cudaLaunchKernelFD->getParamDecl(5)->getType()); 474 475 QualType QT = cudaLaunchKernelFD->getType(); 476 QualType CQT = QT.getCanonicalType(); 477 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT); 478 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 479 480 const CGFunctionInfo &FI = 481 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD); 482 llvm::FunctionCallee cudaLaunchKernelFn = 483 CGM.CreateRuntimeFunction(FTy, LaunchKernelName); 484 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(), 485 LaunchKernelArgs); 486 487 // To prevent CUDA device stub functions from being merged by ICF in MSVC 488 // environment, create an unique global variable for each kernel and write to 489 // the variable in the device stub. 490 if (CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() && 491 !CGF.getLangOpts().HIP) { 492 llvm::Function *KernelFunction = llvm::cast<llvm::Function>(Kernel); 493 std::string GlobalVarName = (KernelFunction->getName() + ".id").str(); 494 495 llvm::GlobalVariable *HandleVar = 496 CGM.getModule().getNamedGlobal(GlobalVarName); 497 if (!HandleVar) { 498 HandleVar = new llvm::GlobalVariable( 499 CGM.getModule(), CGM.Int8Ty, 500 /*Constant=*/false, KernelFunction->getLinkage(), 501 llvm::ConstantInt::get(CGM.Int8Ty, 0), GlobalVarName); 502 HandleVar->setDSOLocal(KernelFunction->isDSOLocal()); 503 HandleVar->setVisibility(KernelFunction->getVisibility()); 504 if (KernelFunction->hasComdat()) 505 HandleVar->setComdat(CGM.getModule().getOrInsertComdat(GlobalVarName)); 506 } 507 508 CGF.Builder.CreateAlignedStore(llvm::ConstantInt::get(CGM.Int8Ty, 1), 509 HandleVar, CharUnits::One(), 510 /*IsVolatile=*/true); 511 } 512 513 CGF.EmitBranch(EndBlock); 514 515 CGF.EmitBlock(EndBlock); 516 } 517 518 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF, 519 FunctionArgList &Args) { 520 // Emit a call to cudaSetupArgument for each arg in Args. 521 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn(); 522 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 523 CharUnits Offset = CharUnits::Zero(); 524 for (const VarDecl *A : Args) { 525 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType()); 526 Offset = Offset.alignTo(TInfo.Align); 527 llvm::Value *Args[] = { 528 CGF.Builder.CreatePointerCast( 529 CGF.GetAddrOfLocalVar(A).emitRawPointer(CGF), PtrTy), 530 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()), 531 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()), 532 }; 533 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args); 534 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0); 535 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero); 536 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next"); 537 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock); 538 CGF.EmitBlock(NextBlock); 539 Offset += TInfo.Width; 540 } 541 542 // Emit the call to cudaLaunch 543 llvm::FunctionCallee cudaLaunchFn = getLaunchFn(); 544 llvm::Value *Arg = 545 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn->getName()], PtrTy); 546 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg); 547 CGF.EmitBranch(EndBlock); 548 549 CGF.EmitBlock(EndBlock); 550 } 551 552 // Replace the original variable Var with the address loaded from variable 553 // ManagedVar populated by HIP runtime. 554 static void replaceManagedVar(llvm::GlobalVariable *Var, 555 llvm::GlobalVariable *ManagedVar) { 556 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList; 557 for (auto &&VarUse : Var->uses()) { 558 WorkList.push_back({VarUse.getUser()}); 559 } 560 while (!WorkList.empty()) { 561 auto &&WorkItem = WorkList.pop_back_val(); 562 auto *U = WorkItem.back(); 563 if (isa<llvm::ConstantExpr>(U)) { 564 for (auto &&UU : U->uses()) { 565 WorkItem.push_back(UU.getUser()); 566 WorkList.push_back(WorkItem); 567 WorkItem.pop_back(); 568 } 569 continue; 570 } 571 if (auto *I = dyn_cast<llvm::Instruction>(U)) { 572 llvm::Value *OldV = Var; 573 llvm::Instruction *NewV = new llvm::LoadInst( 574 Var->getType(), ManagedVar, "ld.managed", false, 575 llvm::Align(Var->getAlignment()), I->getIterator()); 576 WorkItem.pop_back(); 577 // Replace constant expressions directly or indirectly using the managed 578 // variable with instructions. 579 for (auto &&Op : WorkItem) { 580 auto *CE = cast<llvm::ConstantExpr>(Op); 581 auto *NewInst = CE->getAsInstruction(); 582 NewInst->insertBefore(*I->getParent(), I->getIterator()); 583 NewInst->replaceUsesOfWith(OldV, NewV); 584 OldV = CE; 585 NewV = NewInst; 586 } 587 I->replaceUsesOfWith(OldV, NewV); 588 } else { 589 llvm_unreachable("Invalid use of managed variable"); 590 } 591 } 592 } 593 594 /// Creates a function that sets up state on the host side for CUDA objects that 595 /// have a presence on both the host and device sides. Specifically, registers 596 /// the host side of kernel functions and device global variables with the CUDA 597 /// runtime. 598 /// \code 599 /// void __cuda_register_globals(void** GpuBinaryHandle) { 600 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...); 601 /// ... 602 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...); 603 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...); 604 /// ... 605 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...); 606 /// } 607 /// \endcode 608 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() { 609 // No need to register anything 610 if (EmittedKernels.empty() && DeviceVars.empty()) 611 return nullptr; 612 613 llvm::Function *RegisterKernelsFunc = llvm::Function::Create( 614 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage, 615 addUnderscoredPrefixToName("_register_globals"), &TheModule); 616 llvm::BasicBlock *EntryBB = 617 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc); 618 CGBuilderTy Builder(CGM, Context); 619 Builder.SetInsertPoint(EntryBB); 620 621 // void __cudaRegisterFunction(void **, const char *, char *, const char *, 622 // int, uint3*, uint3*, dim3*, dim3*, int*) 623 llvm::Type *RegisterFuncParams[] = { 624 PtrTy, PtrTy, PtrTy, PtrTy, IntTy, 625 PtrTy, PtrTy, PtrTy, PtrTy, llvm::PointerType::getUnqual(Context)}; 626 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction( 627 llvm::FunctionType::get(IntTy, RegisterFuncParams, false), 628 addUnderscoredPrefixToName("RegisterFunction")); 629 630 // Extract GpuBinaryHandle passed as the first argument passed to 631 // __cuda_register_globals() and generate __cudaRegisterFunction() call for 632 // each emitted kernel. 633 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin(); 634 for (auto &&I : EmittedKernels) { 635 llvm::Constant *KernelName = 636 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D))); 637 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(PtrTy); 638 llvm::Value *Args[] = { 639 &GpuBinaryHandlePtr, 640 KernelHandles[I.Kernel->getName()], 641 KernelName, 642 KernelName, 643 llvm::ConstantInt::get(IntTy, -1), 644 NullPtr, 645 NullPtr, 646 NullPtr, 647 NullPtr, 648 llvm::ConstantPointerNull::get(llvm::PointerType::getUnqual(Context))}; 649 Builder.CreateCall(RegisterFunc, Args); 650 } 651 652 llvm::Type *VarSizeTy = IntTy; 653 // For HIP or CUDA 9.0+, device variable size is type of `size_t`. 654 if (CGM.getLangOpts().HIP || 655 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90) 656 VarSizeTy = SizeTy; 657 658 // void __cudaRegisterVar(void **, char *, char *, const char *, 659 // int, int, int, int) 660 llvm::Type *RegisterVarParams[] = {PtrTy, PtrTy, PtrTy, PtrTy, 661 IntTy, VarSizeTy, IntTy, IntTy}; 662 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction( 663 llvm::FunctionType::get(VoidTy, RegisterVarParams, false), 664 addUnderscoredPrefixToName("RegisterVar")); 665 // void __hipRegisterManagedVar(void **, char *, char *, const char *, 666 // size_t, unsigned) 667 llvm::Type *RegisterManagedVarParams[] = {PtrTy, PtrTy, PtrTy, 668 PtrTy, VarSizeTy, IntTy}; 669 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction( 670 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false), 671 addUnderscoredPrefixToName("RegisterManagedVar")); 672 // void __cudaRegisterSurface(void **, const struct surfaceReference *, 673 // const void **, const char *, int, int); 674 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction( 675 llvm::FunctionType::get( 676 VoidTy, {PtrTy, PtrTy, PtrTy, PtrTy, IntTy, IntTy}, false), 677 addUnderscoredPrefixToName("RegisterSurface")); 678 // void __cudaRegisterTexture(void **, const struct textureReference *, 679 // const void **, const char *, int, int, int) 680 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction( 681 llvm::FunctionType::get( 682 VoidTy, {PtrTy, PtrTy, PtrTy, PtrTy, IntTy, IntTy, IntTy}, false), 683 addUnderscoredPrefixToName("RegisterTexture")); 684 for (auto &&Info : DeviceVars) { 685 llvm::GlobalVariable *Var = Info.Var; 686 assert((!Var->isDeclaration() || Info.Flags.isManaged()) && 687 "External variables should not show up here, except HIP managed " 688 "variables"); 689 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D)); 690 switch (Info.Flags.getKind()) { 691 case DeviceVarFlags::Variable: { 692 uint64_t VarSize = 693 CGM.getDataLayout().getTypeAllocSize(Var->getValueType()); 694 if (Info.Flags.isManaged()) { 695 assert(Var->getName().ends_with(".managed") && 696 "HIP managed variables not transformed"); 697 auto *ManagedVar = CGM.getModule().getNamedGlobal( 698 Var->getName().drop_back(StringRef(".managed").size())); 699 llvm::Value *Args[] = { 700 &GpuBinaryHandlePtr, 701 ManagedVar, 702 Var, 703 VarName, 704 llvm::ConstantInt::get(VarSizeTy, VarSize), 705 llvm::ConstantInt::get(IntTy, Var->getAlignment())}; 706 if (!Var->isDeclaration()) 707 Builder.CreateCall(RegisterManagedVar, Args); 708 } else { 709 llvm::Value *Args[] = { 710 &GpuBinaryHandlePtr, 711 Var, 712 VarName, 713 VarName, 714 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()), 715 llvm::ConstantInt::get(VarSizeTy, VarSize), 716 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()), 717 llvm::ConstantInt::get(IntTy, 0)}; 718 Builder.CreateCall(RegisterVar, Args); 719 } 720 break; 721 } 722 case DeviceVarFlags::Surface: 723 Builder.CreateCall( 724 RegisterSurf, 725 {&GpuBinaryHandlePtr, Var, VarName, VarName, 726 llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 727 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 728 break; 729 case DeviceVarFlags::Texture: 730 Builder.CreateCall( 731 RegisterTex, 732 {&GpuBinaryHandlePtr, Var, VarName, VarName, 733 llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 734 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()), 735 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 736 break; 737 } 738 } 739 740 Builder.CreateRetVoid(); 741 return RegisterKernelsFunc; 742 } 743 744 /// Creates a global constructor function for the module: 745 /// 746 /// For CUDA: 747 /// \code 748 /// void __cuda_module_ctor() { 749 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob); 750 /// __cuda_register_globals(Handle); 751 /// } 752 /// \endcode 753 /// 754 /// For HIP: 755 /// \code 756 /// void __hip_module_ctor() { 757 /// if (__hip_gpubin_handle == 0) { 758 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob); 759 /// __hip_register_globals(__hip_gpubin_handle); 760 /// } 761 /// } 762 /// \endcode 763 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() { 764 bool IsHIP = CGM.getLangOpts().HIP; 765 bool IsCUDA = CGM.getLangOpts().CUDA; 766 // No need to generate ctors/dtors if there is no GPU binary. 767 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName; 768 if (CudaGpuBinaryFileName.empty() && !IsHIP) 769 return nullptr; 770 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() && 771 DeviceVars.empty()) 772 return nullptr; 773 774 // void __{cuda|hip}_register_globals(void* handle); 775 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn(); 776 // We always need a function to pass in as callback. Create a dummy 777 // implementation if we don't need to register anything. 778 if (RelocatableDeviceCode && !RegisterGlobalsFunc) 779 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy()); 780 781 // void ** __{cuda|hip}RegisterFatBinary(void *); 782 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction( 783 llvm::FunctionType::get(PtrTy, PtrTy, false), 784 addUnderscoredPrefixToName("RegisterFatBinary")); 785 // struct { int magic, int version, void * gpu_binary, void * dont_care }; 786 llvm::StructType *FatbinWrapperTy = 787 llvm::StructType::get(IntTy, IntTy, PtrTy, PtrTy); 788 789 // Register GPU binary with the CUDA runtime, store returned handle in a 790 // global variable and save a reference in GpuBinaryHandle to be cleaned up 791 // in destructor on exit. Then associate all known kernels with the GPU binary 792 // handle so CUDA runtime can figure out what to call on the GPU side. 793 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr; 794 if (!CudaGpuBinaryFileName.empty()) { 795 auto VFS = CGM.getFileSystem(); 796 auto CudaGpuBinaryOrErr = 797 VFS->getBufferForFile(CudaGpuBinaryFileName, -1, false); 798 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) { 799 CGM.getDiags().Report(diag::err_cannot_open_file) 800 << CudaGpuBinaryFileName << EC.message(); 801 return nullptr; 802 } 803 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get()); 804 } 805 806 llvm::Function *ModuleCtorFunc = llvm::Function::Create( 807 llvm::FunctionType::get(VoidTy, false), 808 llvm::GlobalValue::InternalLinkage, 809 addUnderscoredPrefixToName("_module_ctor"), &TheModule); 810 llvm::BasicBlock *CtorEntryBB = 811 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc); 812 CGBuilderTy CtorBuilder(CGM, Context); 813 814 CtorBuilder.SetInsertPoint(CtorEntryBB); 815 816 const char *FatbinConstantName; 817 const char *FatbinSectionName; 818 const char *ModuleIDSectionName; 819 StringRef ModuleIDPrefix; 820 llvm::Constant *FatBinStr; 821 unsigned FatMagic; 822 if (IsHIP) { 823 FatbinConstantName = ".hip_fatbin"; 824 FatbinSectionName = ".hipFatBinSegment"; 825 826 ModuleIDSectionName = "__hip_module_id"; 827 ModuleIDPrefix = "__hip_"; 828 829 if (CudaGpuBinary) { 830 // If fatbin is available from early finalization, create a string 831 // literal containing the fat binary loaded from the given file. 832 const unsigned HIPCodeObjectAlign = 4096; 833 FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "", 834 FatbinConstantName, HIPCodeObjectAlign); 835 } else { 836 // If fatbin is not available, create an external symbol 837 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed 838 // to contain the fat binary but will be populated somewhere else, 839 // e.g. by lld through link script. 840 FatBinStr = new llvm::GlobalVariable( 841 CGM.getModule(), CGM.Int8Ty, 842 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, 843 "__hip_fatbin" + (CGM.getLangOpts().CUID.empty() 844 ? "" 845 : "_" + CGM.getContext().getCUIDHash()), 846 nullptr, llvm::GlobalVariable::NotThreadLocal); 847 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName); 848 } 849 850 FatMagic = HIPFatMagic; 851 } else { 852 if (RelocatableDeviceCode) 853 FatbinConstantName = CGM.getTriple().isMacOSX() 854 ? "__NV_CUDA,__nv_relfatbin" 855 : "__nv_relfatbin"; 856 else 857 FatbinConstantName = 858 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"; 859 // NVIDIA's cuobjdump looks for fatbins in this section. 860 FatbinSectionName = 861 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; 862 863 ModuleIDSectionName = CGM.getTriple().isMacOSX() 864 ? "__NV_CUDA,__nv_module_id" 865 : "__nv_module_id"; 866 ModuleIDPrefix = "__nv_"; 867 868 // For CUDA, create a string literal containing the fat binary loaded from 869 // the given file. 870 FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "", 871 FatbinConstantName, 8); 872 FatMagic = CudaFatMagic; 873 } 874 875 // Create initialized wrapper structure that points to the loaded GPU binary 876 ConstantInitBuilder Builder(CGM); 877 auto Values = Builder.beginStruct(FatbinWrapperTy); 878 // Fatbin wrapper magic. 879 Values.addInt(IntTy, FatMagic); 880 // Fatbin version. 881 Values.addInt(IntTy, 1); 882 // Data. 883 Values.add(FatBinStr); 884 // Unused in fatbin v1. 885 Values.add(llvm::ConstantPointerNull::get(PtrTy)); 886 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal( 887 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(), 888 /*constant*/ true); 889 FatbinWrapper->setSection(FatbinSectionName); 890 891 // There is only one HIP fat binary per linked module, however there are 892 // multiple constructor functions. Make sure the fat binary is registered 893 // only once. The constructor functions are executed by the dynamic loader 894 // before the program gains control. The dynamic loader cannot execute the 895 // constructor functions concurrently since doing that would not guarantee 896 // thread safety of the loaded program. Therefore we can assume sequential 897 // execution of constructor functions here. 898 if (IsHIP) { 899 auto Linkage = RelocatableDeviceCode ? llvm::GlobalValue::ExternalLinkage 900 : llvm::GlobalValue::InternalLinkage; 901 llvm::BasicBlock *IfBlock = 902 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc); 903 llvm::BasicBlock *ExitBlock = 904 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc); 905 // The name, size, and initialization pattern of this variable is part 906 // of HIP ABI. 907 GpuBinaryHandle = new llvm::GlobalVariable( 908 TheModule, PtrTy, /*isConstant=*/false, Linkage, 909 /*Initializer=*/ 910 !RelocatableDeviceCode ? llvm::ConstantPointerNull::get(PtrTy) 911 : nullptr, 912 "__hip_gpubin_handle" + (CGM.getLangOpts().CUID.empty() 913 ? "" 914 : "_" + CGM.getContext().getCUIDHash())); 915 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 916 // Prevent the weak symbol in different shared libraries being merged. 917 if (Linkage != llvm::GlobalValue::InternalLinkage) 918 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility); 919 Address GpuBinaryAddr( 920 GpuBinaryHandle, PtrTy, 921 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 922 { 923 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 924 llvm::Constant *Zero = 925 llvm::Constant::getNullValue(HandleValue->getType()); 926 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero); 927 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock); 928 } 929 { 930 CtorBuilder.SetInsertPoint(IfBlock); 931 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper); 932 llvm::CallInst *RegisterFatbinCall = 933 CtorBuilder.CreateCall(RegisterFatbinFunc, FatbinWrapper); 934 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr); 935 CtorBuilder.CreateBr(ExitBlock); 936 } 937 { 938 CtorBuilder.SetInsertPoint(ExitBlock); 939 // Call __hip_register_globals(GpuBinaryHandle); 940 if (RegisterGlobalsFunc) { 941 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 942 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue); 943 } 944 } 945 } else if (!RelocatableDeviceCode) { 946 // Register binary with CUDA runtime. This is substantially different in 947 // default mode vs. separate compilation! 948 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper); 949 llvm::CallInst *RegisterFatbinCall = 950 CtorBuilder.CreateCall(RegisterFatbinFunc, FatbinWrapper); 951 GpuBinaryHandle = new llvm::GlobalVariable( 952 TheModule, PtrTy, false, llvm::GlobalValue::InternalLinkage, 953 llvm::ConstantPointerNull::get(PtrTy), "__cuda_gpubin_handle"); 954 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 955 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle, 956 CGM.getPointerAlign()); 957 958 // Call __cuda_register_globals(GpuBinaryHandle); 959 if (RegisterGlobalsFunc) 960 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall); 961 962 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it. 963 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 964 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) { 965 // void __cudaRegisterFatBinaryEnd(void **); 966 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction( 967 llvm::FunctionType::get(VoidTy, PtrTy, false), 968 "__cudaRegisterFatBinaryEnd"); 969 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall); 970 } 971 } else { 972 // Generate a unique module ID. 973 SmallString<64> ModuleID; 974 llvm::raw_svector_ostream OS(ModuleID); 975 OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID()); 976 llvm::Constant *ModuleIDConstant = makeConstantArray( 977 std::string(ModuleID), "", ModuleIDSectionName, 32, /*AddNull=*/true); 978 979 // Create an alias for the FatbinWrapper that nvcc will look for. 980 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage, 981 Twine("__fatbinwrap") + ModuleID, FatbinWrapper); 982 983 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *, 984 // void *, void (*)(void **)) 985 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary"); 986 RegisterLinkedBinaryName += ModuleID; 987 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction( 988 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName); 989 990 assert(RegisterGlobalsFunc && "Expecting at least dummy function!"); 991 llvm::Value *Args[] = {RegisterGlobalsFunc, FatbinWrapper, ModuleIDConstant, 992 makeDummyFunction(getCallbackFnTy())}; 993 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args); 994 } 995 996 // Create destructor and register it with atexit() the way NVCC does it. Doing 997 // it during regular destructor phase worked in CUDA before 9.2 but results in 998 // double-free in 9.2. 999 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) { 1000 // extern "C" int atexit(void (*f)(void)); 1001 llvm::FunctionType *AtExitTy = 1002 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false); 1003 llvm::FunctionCallee AtExitFunc = 1004 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(), 1005 /*Local=*/true); 1006 CtorBuilder.CreateCall(AtExitFunc, CleanupFn); 1007 } 1008 1009 CtorBuilder.CreateRetVoid(); 1010 return ModuleCtorFunc; 1011 } 1012 1013 /// Creates a global destructor function that unregisters the GPU code blob 1014 /// registered by constructor. 1015 /// 1016 /// For CUDA: 1017 /// \code 1018 /// void __cuda_module_dtor() { 1019 /// __cudaUnregisterFatBinary(Handle); 1020 /// } 1021 /// \endcode 1022 /// 1023 /// For HIP: 1024 /// \code 1025 /// void __hip_module_dtor() { 1026 /// if (__hip_gpubin_handle) { 1027 /// __hipUnregisterFatBinary(__hip_gpubin_handle); 1028 /// __hip_gpubin_handle = 0; 1029 /// } 1030 /// } 1031 /// \endcode 1032 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() { 1033 // No need for destructor if we don't have a handle to unregister. 1034 if (!GpuBinaryHandle) 1035 return nullptr; 1036 1037 // void __cudaUnregisterFatBinary(void ** handle); 1038 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction( 1039 llvm::FunctionType::get(VoidTy, PtrTy, false), 1040 addUnderscoredPrefixToName("UnregisterFatBinary")); 1041 1042 llvm::Function *ModuleDtorFunc = llvm::Function::Create( 1043 llvm::FunctionType::get(VoidTy, false), 1044 llvm::GlobalValue::InternalLinkage, 1045 addUnderscoredPrefixToName("_module_dtor"), &TheModule); 1046 1047 llvm::BasicBlock *DtorEntryBB = 1048 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc); 1049 CGBuilderTy DtorBuilder(CGM, Context); 1050 DtorBuilder.SetInsertPoint(DtorEntryBB); 1051 1052 Address GpuBinaryAddr( 1053 GpuBinaryHandle, GpuBinaryHandle->getValueType(), 1054 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 1055 auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr); 1056 // There is only one HIP fat binary per linked module, however there are 1057 // multiple destructor functions. Make sure the fat binary is unregistered 1058 // only once. 1059 if (CGM.getLangOpts().HIP) { 1060 llvm::BasicBlock *IfBlock = 1061 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc); 1062 llvm::BasicBlock *ExitBlock = 1063 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc); 1064 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType()); 1065 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero); 1066 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock); 1067 1068 DtorBuilder.SetInsertPoint(IfBlock); 1069 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 1070 DtorBuilder.CreateStore(Zero, GpuBinaryAddr); 1071 DtorBuilder.CreateBr(ExitBlock); 1072 1073 DtorBuilder.SetInsertPoint(ExitBlock); 1074 } else { 1075 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 1076 } 1077 DtorBuilder.CreateRetVoid(); 1078 return ModuleDtorFunc; 1079 } 1080 1081 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) { 1082 return new CGNVCUDARuntime(CGM); 1083 } 1084 1085 void CGNVCUDARuntime::internalizeDeviceSideVar( 1086 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) { 1087 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side 1088 // global variables become internal definitions. These have to be internal in 1089 // order to prevent name conflicts with global host variables with the same 1090 // name in a different TUs. 1091 // 1092 // For -fgpu-rdc, the shadow variables should not be internalized because 1093 // they may be accessed by different TU. 1094 if (CGM.getLangOpts().GPURelocatableDeviceCode) 1095 return; 1096 1097 // __shared__ variables are odd. Shadows do get created, but 1098 // they are not registered with the CUDA runtime, so they 1099 // can't really be used to access their device-side 1100 // counterparts. It's not clear yet whether it's nvcc's bug or 1101 // a feature, but we've got to do the same for compatibility. 1102 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 1103 D->hasAttr<CUDASharedAttr>() || 1104 D->getType()->isCUDADeviceBuiltinSurfaceType() || 1105 D->getType()->isCUDADeviceBuiltinTextureType()) { 1106 Linkage = llvm::GlobalValue::InternalLinkage; 1107 } 1108 } 1109 1110 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D, 1111 llvm::GlobalVariable &GV) { 1112 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 1113 // Shadow variables and their properties must be registered with CUDA 1114 // runtime. Skip Extern global variables, which will be registered in 1115 // the TU where they are defined. 1116 // 1117 // Don't register a C++17 inline variable. The local symbol can be 1118 // discarded and referencing a discarded local symbol from outside the 1119 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 1120 // 1121 // HIP managed variables need to be always recorded in device and host 1122 // compilations for transformation. 1123 // 1124 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are 1125 // added to llvm.compiler-used, therefore they are safe to be registered. 1126 if ((!D->hasExternalStorage() && !D->isInline()) || 1127 CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) || 1128 D->hasAttr<HIPManagedAttr>()) { 1129 registerDeviceVar(D, GV, !D->hasDefinition(), 1130 D->hasAttr<CUDAConstantAttr>()); 1131 } 1132 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 1133 D->getType()->isCUDADeviceBuiltinTextureType()) { 1134 // Builtin surfaces and textures and their template arguments are 1135 // also registered with CUDA runtime. 1136 const auto *TD = cast<ClassTemplateSpecializationDecl>( 1137 D->getType()->castAs<RecordType>()->getDecl()); 1138 const TemplateArgumentList &Args = TD->getTemplateArgs(); 1139 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 1140 assert(Args.size() == 2 && 1141 "Unexpected number of template arguments of CUDA device " 1142 "builtin surface type."); 1143 auto SurfType = Args[1].getAsIntegral(); 1144 if (!D->hasExternalStorage()) 1145 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue()); 1146 } else { 1147 assert(Args.size() == 3 && 1148 "Unexpected number of template arguments of CUDA device " 1149 "builtin texture type."); 1150 auto TexType = Args[1].getAsIntegral(); 1151 auto Normalized = Args[2].getAsIntegral(); 1152 if (!D->hasExternalStorage()) 1153 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(), 1154 Normalized.getZExtValue()); 1155 } 1156 } 1157 } 1158 1159 // Transform managed variables to pointers to managed variables in device code. 1160 // Each use of the original managed variable is replaced by a load from the 1161 // transformed managed variable. The transformed managed variable contains 1162 // the address of managed memory which will be allocated by the runtime. 1163 void CGNVCUDARuntime::transformManagedVars() { 1164 for (auto &&Info : DeviceVars) { 1165 llvm::GlobalVariable *Var = Info.Var; 1166 if (Info.Flags.getKind() == DeviceVarFlags::Variable && 1167 Info.Flags.isManaged()) { 1168 auto *ManagedVar = new llvm::GlobalVariable( 1169 CGM.getModule(), Var->getType(), 1170 /*isConstant=*/false, Var->getLinkage(), 1171 /*Init=*/Var->isDeclaration() 1172 ? nullptr 1173 : llvm::ConstantPointerNull::get(Var->getType()), 1174 /*Name=*/"", /*InsertBefore=*/nullptr, 1175 llvm::GlobalVariable::NotThreadLocal, 1176 CGM.getContext().getTargetAddressSpace(CGM.getLangOpts().CUDAIsDevice 1177 ? LangAS::cuda_device 1178 : LangAS::Default)); 1179 ManagedVar->setDSOLocal(Var->isDSOLocal()); 1180 ManagedVar->setVisibility(Var->getVisibility()); 1181 ManagedVar->setExternallyInitialized(true); 1182 replaceManagedVar(Var, ManagedVar); 1183 ManagedVar->takeName(Var); 1184 Var->setName(Twine(ManagedVar->getName()) + ".managed"); 1185 // Keep managed variables even if they are not used in device code since 1186 // they need to be allocated by the runtime. 1187 if (CGM.getLangOpts().CUDAIsDevice && !Var->isDeclaration()) { 1188 assert(!ManagedVar->isDeclaration()); 1189 CGM.addCompilerUsedGlobal(Var); 1190 CGM.addCompilerUsedGlobal(ManagedVar); 1191 } 1192 } 1193 } 1194 } 1195 1196 // Creates offloading entries for all the kernels and globals that must be 1197 // registered. The linker will provide a pointer to this section so we can 1198 // register the symbols with the linked device image. 1199 void CGNVCUDARuntime::createOffloadingEntries() { 1200 SmallVector<char, 32> Out; 1201 StringRef Section = (SectionPrefix + "_offloading_entries").toStringRef(Out); 1202 llvm::object::OffloadKind Kind = CGM.getLangOpts().HIP 1203 ? llvm::object::OffloadKind::OFK_HIP 1204 : llvm::object::OffloadKind::OFK_Cuda; 1205 1206 llvm::Module &M = CGM.getModule(); 1207 for (KernelInfo &I : EmittedKernels) 1208 llvm::offloading::emitOffloadingEntry( 1209 M, Kind, KernelHandles[I.Kernel->getName()], 1210 getDeviceSideName(cast<NamedDecl>(I.D)), /*Flags=*/0, /*Data=*/0, 1211 llvm::offloading::OffloadGlobalEntry, Section); 1212 1213 for (VarInfo &I : DeviceVars) { 1214 uint64_t VarSize = 1215 CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType()); 1216 int32_t Flags = 1217 (I.Flags.isExtern() 1218 ? static_cast<int32_t>(llvm::offloading::OffloadGlobalExtern) 1219 : 0) | 1220 (I.Flags.isConstant() 1221 ? static_cast<int32_t>(llvm::offloading::OffloadGlobalConstant) 1222 : 0) | 1223 (I.Flags.isNormalized() 1224 ? static_cast<int32_t>(llvm::offloading::OffloadGlobalNormalized) 1225 : 0); 1226 if (I.Flags.getKind() == DeviceVarFlags::Variable) { 1227 if (I.Flags.isManaged()) { 1228 assert(I.Var->getName().ends_with(".managed") && 1229 "HIP managed variables not transformed"); 1230 1231 auto *ManagedVar = M.getNamedGlobal( 1232 I.Var->getName().drop_back(StringRef(".managed").size())); 1233 llvm::offloading::emitOffloadingEntry( 1234 M, Kind, I.Var, getDeviceSideName(I.D), VarSize, 1235 llvm::offloading::OffloadGlobalManagedEntry | Flags, 1236 /*Data=*/I.Var->getAlignment(), Section, ManagedVar); 1237 } else { 1238 llvm::offloading::emitOffloadingEntry( 1239 M, Kind, I.Var, getDeviceSideName(I.D), VarSize, 1240 llvm::offloading::OffloadGlobalEntry | Flags, 1241 /*Data=*/0, Section); 1242 } 1243 } else if (I.Flags.getKind() == DeviceVarFlags::Surface) { 1244 llvm::offloading::emitOffloadingEntry( 1245 M, Kind, I.Var, getDeviceSideName(I.D), VarSize, 1246 llvm::offloading::OffloadGlobalSurfaceEntry | Flags, 1247 I.Flags.getSurfTexType(), Section); 1248 } else if (I.Flags.getKind() == DeviceVarFlags::Texture) { 1249 llvm::offloading::emitOffloadingEntry( 1250 M, Kind, I.Var, getDeviceSideName(I.D), VarSize, 1251 llvm::offloading::OffloadGlobalTextureEntry | Flags, 1252 I.Flags.getSurfTexType(), Section); 1253 } 1254 } 1255 } 1256 1257 // Returns module constructor to be added. 1258 llvm::Function *CGNVCUDARuntime::finalizeModule() { 1259 transformManagedVars(); 1260 if (CGM.getLangOpts().CUDAIsDevice) { 1261 // Mark ODR-used device variables as compiler used to prevent it from being 1262 // eliminated by optimization. This is necessary for device variables 1263 // ODR-used by host functions. Sema correctly marks them as ODR-used no 1264 // matter whether they are ODR-used by device or host functions. 1265 // 1266 // We do not need to do this if the variable has used attribute since it 1267 // has already been added. 1268 // 1269 // Static device variables have been externalized at this point, therefore 1270 // variables with LLVM private or internal linkage need not be added. 1271 for (auto &&Info : DeviceVars) { 1272 auto Kind = Info.Flags.getKind(); 1273 if (!Info.Var->isDeclaration() && 1274 !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) && 1275 (Kind == DeviceVarFlags::Variable || 1276 Kind == DeviceVarFlags::Surface || 1277 Kind == DeviceVarFlags::Texture) && 1278 Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) { 1279 CGM.addCompilerUsedGlobal(Info.Var); 1280 } 1281 } 1282 return nullptr; 1283 } 1284 if (CGM.getLangOpts().OffloadViaLLVM || 1285 (CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode)) 1286 createOffloadingEntries(); 1287 else 1288 return makeModuleCtorFunction(); 1289 1290 return nullptr; 1291 } 1292 1293 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F, 1294 GlobalDecl GD) { 1295 auto Loc = KernelHandles.find(F->getName()); 1296 if (Loc != KernelHandles.end()) { 1297 auto OldHandle = Loc->second; 1298 if (KernelStubs[OldHandle] == F) 1299 return OldHandle; 1300 1301 // We've found the function name, but F itself has changed, so we need to 1302 // update the references. 1303 if (CGM.getLangOpts().HIP) { 1304 // For HIP compilation the handle itself does not change, so we only need 1305 // to update the Stub value. 1306 KernelStubs[OldHandle] = F; 1307 return OldHandle; 1308 } 1309 // For non-HIP compilation, erase the old Stub and fall-through to creating 1310 // new entries. 1311 KernelStubs.erase(OldHandle); 1312 } 1313 1314 if (!CGM.getLangOpts().HIP) { 1315 KernelHandles[F->getName()] = F; 1316 KernelStubs[F] = F; 1317 return F; 1318 } 1319 1320 auto *Var = new llvm::GlobalVariable( 1321 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(), 1322 /*Initializer=*/nullptr, 1323 CGM.getMangledName( 1324 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel))); 1325 Var->setAlignment(CGM.getPointerAlign().getAsAlign()); 1326 Var->setDSOLocal(F->isDSOLocal()); 1327 Var->setVisibility(F->getVisibility()); 1328 auto *FD = cast<FunctionDecl>(GD.getDecl()); 1329 auto *FT = FD->getPrimaryTemplate(); 1330 if (!FT || FT->isThisDeclarationADefinition()) 1331 CGM.maybeSetTrivialComdat(*FD, *Var); 1332 KernelHandles[F->getName()] = Var; 1333 KernelStubs[Var] = F; 1334 return Var; 1335 } 1336