xref: /minix3/sys/ufs/lfs/lfs_accessors.h (revision 0a6a1f1d05b60e214de2f05a7310ddd1f0e590e7)
1 /*	$NetBSD: lfs_accessors.h,v 1.36 2015/10/03 08:29:48 dholland Exp $	*/
2 
3 /*  from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp  */
4 /*  from NetBSD: dinode.h,v 1.22 2013/01/22 09:39:18 dholland Exp  */
5 /*  from NetBSD: dir.h,v 1.21 2009/07/22 04:49:19 dholland Exp  */
6 
7 /*-
8  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to The NetBSD Foundation
12  * by Konrad E. Schroder <perseant@hhhh.org>.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 /*-
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. Neither the name of the University nor the names of its contributors
48  *    may be used to endorse or promote products derived from this software
49  *    without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61  * SUCH DAMAGE.
62  *
63  *	@(#)lfs.h	8.9 (Berkeley) 5/8/95
64  */
65 /*
66  * Copyright (c) 2002 Networks Associates Technology, Inc.
67  * All rights reserved.
68  *
69  * This software was developed for the FreeBSD Project by Marshall
70  * Kirk McKusick and Network Associates Laboratories, the Security
71  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73  * research program
74  *
75  * Copyright (c) 1982, 1989, 1993
76  *	The Regents of the University of California.  All rights reserved.
77  * (c) UNIX System Laboratories, Inc.
78  * All or some portions of this file are derived from material licensed
79  * to the University of California by American Telephone and Telegraph
80  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81  * the permission of UNIX System Laboratories, Inc.
82  *
83  * Redistribution and use in source and binary forms, with or without
84  * modification, are permitted provided that the following conditions
85  * are met:
86  * 1. Redistributions of source code must retain the above copyright
87  *    notice, this list of conditions and the following disclaimer.
88  * 2. Redistributions in binary form must reproduce the above copyright
89  *    notice, this list of conditions and the following disclaimer in the
90  *    documentation and/or other materials provided with the distribution.
91  * 3. Neither the name of the University nor the names of its contributors
92  *    may be used to endorse or promote products derived from this software
93  *    without specific prior written permission.
94  *
95  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105  * SUCH DAMAGE.
106  *
107  *	@(#)dinode.h	8.9 (Berkeley) 3/29/95
108  */
109 /*
110  * Copyright (c) 1982, 1986, 1989, 1993
111  *	The Regents of the University of California.  All rights reserved.
112  * (c) UNIX System Laboratories, Inc.
113  * All or some portions of this file are derived from material licensed
114  * to the University of California by American Telephone and Telegraph
115  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116  * the permission of UNIX System Laboratories, Inc.
117  *
118  * Redistribution and use in source and binary forms, with or without
119  * modification, are permitted provided that the following conditions
120  * are met:
121  * 1. Redistributions of source code must retain the above copyright
122  *    notice, this list of conditions and the following disclaimer.
123  * 2. Redistributions in binary form must reproduce the above copyright
124  *    notice, this list of conditions and the following disclaimer in the
125  *    documentation and/or other materials provided with the distribution.
126  * 3. Neither the name of the University nor the names of its contributors
127  *    may be used to endorse or promote products derived from this software
128  *    without specific prior written permission.
129  *
130  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140  * SUCH DAMAGE.
141  *
142  *	@(#)dir.h	8.5 (Berkeley) 4/27/95
143  */
144 
145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
146 #define _UFS_LFS_LFS_ACCESSORS_H_
147 
148 #if defined(_KERNEL_OPT)
149 #include "opt_lfs.h"
150 #endif
151 
152 #include <sys/bswap.h>
153 
154 #if !defined(_KERNEL) && !defined(_STANDALONE)
155 #include <assert.h>
156 #define KASSERT assert
157 #endif
158 
159 /*
160  * STRUCT_LFS is used by the libsa code to get accessors that work
161  * with struct salfs instead of struct lfs, and by the cleaner to
162  * get accessors that work with struct clfs.
163  */
164 
165 #ifndef STRUCT_LFS
166 #define STRUCT_LFS struct lfs
167 #endif
168 
169 /*
170  * byte order
171  */
172 
173 /*
174  * For now at least, the bootblocks shall not be endian-independent.
175  * We can see later if it fits in the size budget. Also disable the
176  * byteswapping if LFS_EI is off.
177  *
178  * Caution: these functions "know" that bswap16/32/64 are unsigned,
179  * and if that changes will likely break silently.
180  */
181 
182 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
183 #define LFS_SWAP_int16_t(fs, val) (val)
184 #define LFS_SWAP_int32_t(fs, val) (val)
185 #define LFS_SWAP_int64_t(fs, val) (val)
186 #define LFS_SWAP_uint16_t(fs, val) (val)
187 #define LFS_SWAP_uint32_t(fs, val) (val)
188 #define LFS_SWAP_uint64_t(fs, val) (val)
189 #else
190 #define LFS_SWAP_int16_t(fs, val) \
191 	((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
192 #define LFS_SWAP_int32_t(fs, val) \
193 	((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
194 #define LFS_SWAP_int64_t(fs, val) \
195 	((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
196 #define LFS_SWAP_uint16_t(fs, val) \
197 	((fs)->lfs_dobyteswap ? bswap16(val) : (val))
198 #define LFS_SWAP_uint32_t(fs, val) \
199 	((fs)->lfs_dobyteswap ? bswap32(val) : (val))
200 #define LFS_SWAP_uint64_t(fs, val) \
201 	((fs)->lfs_dobyteswap ? bswap64(val) : (val))
202 #endif
203 
204 /*
205  * For handling directories we will need to know if the volume is
206  * little-endian.
207  */
208 #if BYTE_ORDER == LITTLE_ENDIAN
209 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
210 #else
211 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
212 #endif
213 
214 
215 /*
216  * directories
217  */
218 
219 #define LFS_DIRHEADERSIZE(fs) \
220 	((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
221 
222 /*
223  * The LFS_DIRSIZ macro gives the minimum record length which will hold
224  * the directory entry.  This requires the amount of space in struct lfs_direct
225  * without the d_name field, plus enough space for the name with a terminating
226  * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
227  */
228 #define	LFS_DIRECTSIZ(fs, namlen) \
229 	(LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
230 
231 /*
232  * The size of the largest possible directory entry. This is
233  * used by ulfs_dirhash to figure the size of an array, so we
234  * need a single constant value true for both lfs32 and lfs64.
235  */
236 #define LFS_MAXDIRENTRYSIZE \
237 	(sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
238 
239 #if (BYTE_ORDER == LITTLE_ENDIAN)
240 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
241     (((oldfmt) && !(needswap)) ?		\
242     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
243 #else
244 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
245     (((oldfmt) && (needswap)) ?			\
246     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
247 #endif
248 
249 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
250 
251 /* Constants for the first argument of LFS_OLDDIRSIZ */
252 #define LFS_OLDDIRFMT	1
253 #define LFS_NEWDIRFMT	0
254 
255 #define LFS_NEXTDIR(fs, dp) \
256 	((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
257 
258 static __unused inline char *
lfs_dir_nameptr(const STRUCT_LFS * fs,LFS_DIRHEADER * dh)259 lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
260 {
261 	if (fs->lfs_is64) {
262 		return (char *)(&dh->u_64 + 1);
263 	} else {
264 		return (char *)(&dh->u_32 + 1);
265 	}
266 }
267 
268 static __unused inline uint64_t
lfs_dir_getino(const STRUCT_LFS * fs,const LFS_DIRHEADER * dh)269 lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
270 {
271 	if (fs->lfs_is64) {
272 		uint64_t ino;
273 
274 		/*
275 		 * XXX we can probably write this in a way that's both
276 		 * still legal and generates better code.
277 		 */
278 		memcpy(&ino, &dh->u_64.dh_inoA, sizeof(dh->u_64.dh_inoA));
279 		memcpy((char *)&ino + sizeof(dh->u_64.dh_inoA),
280 		       &dh->u_64.dh_inoB,
281 		       sizeof(dh->u_64.dh_inoB));
282 		return LFS_SWAP_uint64_t(fs, ino);
283 	} else {
284 		return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
285 	}
286 }
287 
288 static __unused inline uint16_t
lfs_dir_getreclen(const STRUCT_LFS * fs,const LFS_DIRHEADER * dh)289 lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
290 {
291 	if (fs->lfs_is64) {
292 		return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
293 	} else {
294 		return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
295 	}
296 }
297 
298 static __unused inline uint8_t
lfs_dir_gettype(const STRUCT_LFS * fs,const LFS_DIRHEADER * dh)299 lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
300 {
301 	if (fs->lfs_is64) {
302 		KASSERT(fs->lfs_hasolddirfmt == 0);
303 		return dh->u_64.dh_type;
304 	} else if (fs->lfs_hasolddirfmt) {
305 		return LFS_DT_UNKNOWN;
306 	} else {
307 		return dh->u_32.dh_type;
308 	}
309 }
310 
311 static __unused inline uint8_t
lfs_dir_getnamlen(const STRUCT_LFS * fs,const LFS_DIRHEADER * dh)312 lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
313 {
314 	if (fs->lfs_is64) {
315 		KASSERT(fs->lfs_hasolddirfmt == 0);
316 		return dh->u_64.dh_type;
317 	} else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
318 		/* low-order byte of old 16-bit namlen field */
319 		return dh->u_32.dh_type;
320 	} else {
321 		return dh->u_32.dh_namlen;
322 	}
323 }
324 
325 static __unused inline void
lfs_dir_setino(STRUCT_LFS * fs,LFS_DIRHEADER * dh,uint64_t ino)326 lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
327 {
328 	if (fs->lfs_is64) {
329 
330 		ino = LFS_SWAP_uint64_t(fs, ino);
331 		/*
332 		 * XXX we can probably write this in a way that's both
333 		 * still legal and generates better code.
334 		 */
335 		memcpy(&dh->u_64.dh_inoA, &ino, sizeof(dh->u_64.dh_inoA));
336 		memcpy(&dh->u_64.dh_inoB,
337 		       (char *)&ino + sizeof(dh->u_64.dh_inoA),
338 		       sizeof(dh->u_64.dh_inoB));
339 	} else {
340 		dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
341 	}
342 }
343 
344 static __unused inline void
lfs_dir_setreclen(STRUCT_LFS * fs,LFS_DIRHEADER * dh,uint16_t reclen)345 lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
346 {
347 	if (fs->lfs_is64) {
348 		dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
349 	} else {
350 		dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
351 	}
352 }
353 
354 static __unused inline void
lfs_dir_settype(const STRUCT_LFS * fs,LFS_DIRHEADER * dh,uint8_t type)355 lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
356 {
357 	if (fs->lfs_is64) {
358 		KASSERT(fs->lfs_hasolddirfmt == 0);
359 		dh->u_64.dh_type = type;
360 	} else if (fs->lfs_hasolddirfmt) {
361 		/* do nothing */
362 		return;
363 	} else {
364 		dh->u_32.dh_type = type;
365 	}
366 }
367 
368 static __unused inline void
lfs_dir_setnamlen(const STRUCT_LFS * fs,LFS_DIRHEADER * dh,uint8_t namlen)369 lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
370 {
371 	if (fs->lfs_is64) {
372 		KASSERT(fs->lfs_hasolddirfmt == 0);
373 		dh->u_64.dh_namlen = namlen;
374 	} else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
375 		/* low-order byte of old 16-bit namlen field */
376 		dh->u_32.dh_type = namlen;
377 	} else {
378 		dh->u_32.dh_namlen = namlen;
379 	}
380 }
381 
382 static __unused inline void
lfs_copydirname(STRUCT_LFS * fs,char * dest,const char * src,unsigned namlen,unsigned reclen)383 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
384 		unsigned namlen, unsigned reclen)
385 {
386 	unsigned spacelen;
387 
388 	KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
389 	spacelen = reclen - LFS_DIRHEADERSIZE(fs);
390 
391 	/* must always be at least 1 byte as a null terminator */
392 	KASSERT(spacelen > namlen);
393 
394 	memcpy(dest, src, namlen);
395 	memset(dest + namlen, '\0', spacelen - namlen);
396 }
397 
398 static __unused LFS_DIRHEADER *
lfs_dirtemplate_dotdot(STRUCT_LFS * fs,union lfs_dirtemplate * dt)399 lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
400 {
401 	/* XXX blah, be nice to have a way to do this w/o casts */
402 	if (fs->lfs_is64) {
403 		return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
404 	} else {
405 		return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
406 	}
407 }
408 
409 static __unused char *
lfs_dirtemplate_dotdotname(STRUCT_LFS * fs,union lfs_dirtemplate * dt)410 lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
411 {
412 	if (fs->lfs_is64) {
413 		return dt->u_64.dotdot_name;
414 	} else {
415 		return dt->u_32.dotdot_name;
416 	}
417 }
418 
419 /*
420  * dinodes
421  */
422 
423 /*
424  * Maximum length of a symlink that can be stored within the inode.
425  */
426 #define LFS32_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
427 #define LFS64_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
428 
429 #define LFS_MAXSYMLINKLEN(fs) \
430 	((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
431 
432 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
433 
434 #define DINO_IN_BLOCK(fs, base, ix) \
435 	((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
436 
437 static __unused inline void
lfs_copy_dinode(STRUCT_LFS * fs,union lfs_dinode * dst,const union lfs_dinode * src)438 lfs_copy_dinode(STRUCT_LFS *fs,
439     union lfs_dinode *dst, const union lfs_dinode *src)
440 {
441 	/*
442 	 * We can do structure assignment of the structs, but not of
443 	 * the whole union, as the union is the size of the (larger)
444 	 * 64-bit struct and on a 32-bit fs the upper half of it might
445 	 * be off the end of a buffer or otherwise invalid.
446 	 */
447 	if (fs->lfs_is64) {
448 		dst->u_64 = src->u_64;
449 	} else {
450 		dst->u_32 = src->u_32;
451 	}
452 }
453 
454 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
455 	static __unused inline type				\
456 	lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
457 	{							\
458 		if (fs->lfs_is64) {				\
459 			return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
460 		} else {					\
461 			return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
462 		}						\
463 	}							\
464 	static __unused inline void				\
465 	lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
466 	{							\
467 		if (fs->lfs_is64) {				\
468 			type *p = &dip->u_64.di_##field;	\
469 			(void)p;				\
470 			dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
471 		} else {					\
472 			type32 *p = &dip->u_32.di_##field;	\
473 			(void)p;				\
474 			dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
475 		}						\
476 	}							\
477 
478 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
479 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
480 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
481 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
482 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
483 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
484 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
485 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
486 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
487 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
488 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
489 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
490 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
491 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
492 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
493 
494 /* XXX this should be done differently (it's a fake field) */
495 LFS_DEF_DINO_ACCESSOR(uint64_t, int32_t, rdev);
496 
497 static __unused inline daddr_t
lfs_dino_getdb(STRUCT_LFS * fs,union lfs_dinode * dip,unsigned ix)498 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
499 {
500 	KASSERT(ix < ULFS_NDADDR);
501 	if (fs->lfs_is64) {
502 		return dip->u_64.di_db[ix];
503 	} else {
504 		/* note: this must sign-extend or UNWRITTEN gets trashed */
505 		return dip->u_32.di_db[ix];
506 	}
507 }
508 
509 static __unused inline daddr_t
lfs_dino_getib(STRUCT_LFS * fs,union lfs_dinode * dip,unsigned ix)510 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
511 {
512 	KASSERT(ix < ULFS_NIADDR);
513 	if (fs->lfs_is64) {
514 		return dip->u_64.di_ib[ix];
515 	} else {
516 		/* note: this must sign-extend or UNWRITTEN gets trashed */
517 		return dip->u_32.di_ib[ix];
518 	}
519 }
520 
521 static __unused inline void
lfs_dino_setdb(STRUCT_LFS * fs,union lfs_dinode * dip,unsigned ix,daddr_t val)522 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
523 {
524 	KASSERT(ix < ULFS_NDADDR);
525 	if (fs->lfs_is64) {
526 		dip->u_64.di_db[ix] = val;
527 	} else {
528 		dip->u_32.di_db[ix] = val;
529 	}
530 }
531 
532 static __unused inline void
lfs_dino_setib(STRUCT_LFS * fs,union lfs_dinode * dip,unsigned ix,daddr_t val)533 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
534 {
535 	KASSERT(ix < ULFS_NIADDR);
536 	if (fs->lfs_is64) {
537 		dip->u_64.di_ib[ix] = val;
538 	} else {
539 		dip->u_32.di_ib[ix] = val;
540 	}
541 }
542 
543 /* birthtime is present only in the 64-bit inode */
544 static __unused inline void
lfs_dino_setbirthtime(STRUCT_LFS * fs,union lfs_dinode * dip,const struct timespec * ts)545 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
546     const struct timespec *ts)
547 {
548 	if (fs->lfs_is64) {
549 		dip->u_64.di_birthtime = ts->tv_sec;
550 		dip->u_64.di_birthnsec = ts->tv_nsec;
551 	} else {
552 		/* drop it on the floor */
553 	}
554 }
555 
556 /*
557  * indirect blocks
558  */
559 
560 static __unused inline daddr_t
lfs_iblock_get(STRUCT_LFS * fs,void * block,unsigned ix)561 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
562 {
563 	if (fs->lfs_is64) {
564 		// XXX re-enable these asserts after reorging this file
565 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
566 		return (daddr_t)(((int64_t *)block)[ix]);
567 	} else {
568 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
569 		/* must sign-extend or UNWRITTEN gets trashed */
570 		return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
571 	}
572 }
573 
574 static __unused inline void
lfs_iblock_set(STRUCT_LFS * fs,void * block,unsigned ix,daddr_t val)575 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
576 {
577 	if (fs->lfs_is64) {
578 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
579 		((int64_t *)block)[ix] = val;
580 	} else {
581 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
582 		((int32_t *)block)[ix] = val;
583 	}
584 }
585 
586 /*
587  * "struct buf" associated definitions
588  */
589 
590 # define LFS_LOCK_BUF(bp) do {						\
591 	if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) {	\
592 		mutex_enter(&lfs_lock);					\
593 		++locked_queue_count;					\
594 		locked_queue_bytes += bp->b_bufsize;			\
595 		mutex_exit(&lfs_lock);					\
596 	}								\
597 	(bp)->b_flags |= B_LOCKED;					\
598 } while (0)
599 
600 # define LFS_UNLOCK_BUF(bp) do {					\
601 	if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) {	\
602 		mutex_enter(&lfs_lock);					\
603 		--locked_queue_count;					\
604 		locked_queue_bytes -= bp->b_bufsize;			\
605 		if (locked_queue_count < LFS_WAIT_BUFS &&		\
606 		    locked_queue_bytes < LFS_WAIT_BYTES)		\
607 			cv_broadcast(&locked_queue_cv);			\
608 		mutex_exit(&lfs_lock);					\
609 	}								\
610 	(bp)->b_flags &= ~B_LOCKED;					\
611 } while (0)
612 
613 /*
614  * "struct inode" associated definitions
615  */
616 
617 #define LFS_SET_UINO(ip, flags) do {					\
618 	if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED))	\
619 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
620 	if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING))	\
621 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
622 	if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED))	\
623 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
624 	(ip)->i_flag |= (flags);					\
625 } while (0)
626 
627 #define LFS_CLR_UINO(ip, flags) do {					\
628 	if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED))	\
629 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
630 	if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING))	\
631 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
632 	if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED))	\
633 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
634 	(ip)->i_flag &= ~(flags);					\
635 	if (lfs_sb_getuinodes((ip)->i_lfs) < 0) {			\
636 		panic("lfs_uinodes < 0");				\
637 	}								\
638 } while (0)
639 
640 #define LFS_ITIMES(ip, acc, mod, cre) \
641 	while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
642 		lfs_itimes(ip, acc, mod, cre)
643 
644 /*
645  * On-disk and in-memory checkpoint segment usage structure.
646  */
647 
648 #define	SEGUPB(fs)	(lfs_sb_getsepb(fs))
649 #define	SEGTABSIZE_SU(fs)						\
650 	((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
651 
652 #ifdef _KERNEL
653 # define SHARE_IFLOCK(F) 						\
654   do {									\
655 	rw_enter(&(F)->lfs_iflock, RW_READER);				\
656   } while(0)
657 # define UNSHARE_IFLOCK(F)						\
658   do {									\
659 	rw_exit(&(F)->lfs_iflock);					\
660   } while(0)
661 #else /* ! _KERNEL */
662 # define SHARE_IFLOCK(F)
663 # define UNSHARE_IFLOCK(F)
664 #endif /* ! _KERNEL */
665 
666 /* Read in the block with a specific segment usage entry from the ifile. */
667 #define	LFS_SEGENTRY(SP, F, IN, BP) do {				\
668 	int _e;								\
669 	SHARE_IFLOCK(F);						\
670 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
671 	if ((_e = bread((F)->lfs_ivnode,				\
672 	    ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F),		\
673 	    lfs_sb_getbsize(F), 0, &(BP))) != 0)			\
674 		panic("lfs: ifile read: %d", _e);			\
675 	if (lfs_sb_getversion(F) == 1)					\
676 		(SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data +		\
677 			((IN) & (lfs_sb_getsepb(F) - 1)));		\
678 	else								\
679 		(SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
680 	UNSHARE_IFLOCK(F);						\
681 } while (0)
682 
683 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do {				\
684 	if ((SP)->su_nbytes == 0)					\
685 		(SP)->su_flags |= SEGUSE_EMPTY;				\
686 	else								\
687 		(SP)->su_flags &= ~SEGUSE_EMPTY;			\
688 	(F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags;	\
689 	LFS_BWRITE_LOG(BP);						\
690 } while (0)
691 
692 /*
693  * FINFO (file info) entries.
694  */
695 
696 /* Size of an on-disk block pointer, e.g. in an indirect block. */
697 /* XXX: move to a more suitable location in this file */
698 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
699 
700 /* Size of an on-disk inode number. */
701 /* XXX: move to a more suitable location in this file */
702 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
703 
704 /* size of a FINFO, without the block pointers */
705 #define	FINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
706 
707 /* Full size of the provided FINFO record, including its block pointers. */
708 #define FINFO_FULLSIZE(fs, fip) \
709 	(FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
710 
711 #define NEXT_FINFO(fs, fip) \
712 	((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
713 
714 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
715 	static __unused inline type				\
716 	lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip)		\
717 	{							\
718 		if (fs->lfs_is64) {				\
719 			return fip->u_64.fi_##field; 		\
720 		} else {					\
721 			return fip->u_32.fi_##field; 		\
722 		}						\
723 	}							\
724 	static __unused inline void				\
725 	lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
726 	{							\
727 		if (fs->lfs_is64) {				\
728 			type *p = &fip->u_64.fi_##field;	\
729 			(void)p;				\
730 			fip->u_64.fi_##field = val;		\
731 		} else {					\
732 			type32 *p = &fip->u_32.fi_##field;	\
733 			(void)p;				\
734 			fip->u_32.fi_##field = val;		\
735 		}						\
736 	}							\
737 
738 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
739 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
740 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
741 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
742 
743 static __unused inline daddr_t
lfs_fi_getblock(STRUCT_LFS * fs,FINFO * fip,unsigned index)744 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned index)
745 {
746 	void *firstblock;
747 
748 	firstblock = (char *)fip + FINFOSIZE(fs);
749 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
750 	if (fs->lfs_is64) {
751 		return ((int64_t *)firstblock)[index];
752 	} else {
753 		return ((int32_t *)firstblock)[index];
754 	}
755 }
756 
757 static __unused inline void
lfs_fi_setblock(STRUCT_LFS * fs,FINFO * fip,unsigned index,daddr_t blk)758 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned index, daddr_t blk)
759 {
760 	void *firstblock;
761 
762 	firstblock = (char *)fip + FINFOSIZE(fs);
763 	KASSERT(index < lfs_fi_getnblocks(fs, fip));
764 	if (fs->lfs_is64) {
765 		((int64_t *)firstblock)[index] = blk;
766 	} else {
767 		((int32_t *)firstblock)[index] = blk;
768 	}
769 }
770 
771 /*
772  * inode info entries (in the segment summary)
773  */
774 
775 #define IINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
776 
777 /* iinfos scroll backward from the end of the segment summary block */
778 #define SEGSUM_IINFOSTART(fs, buf) \
779 	((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
780 
781 #define NEXTLOWER_IINFO(fs, iip) \
782 	((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
783 
784 #define NTH_IINFO(fs, buf, n) \
785 	((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
786 
787 static __unused inline uint64_t
lfs_ii_getblock(STRUCT_LFS * fs,IINFO * iip)788 lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
789 {
790 	if (fs->lfs_is64) {
791 		return iip->u_64.ii_block;
792 	} else {
793 		return iip->u_32.ii_block;
794 	}
795 }
796 
797 static __unused inline void
lfs_ii_setblock(STRUCT_LFS * fs,IINFO * iip,uint64_t block)798 lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
799 {
800 	if (fs->lfs_is64) {
801 		iip->u_64.ii_block = block;
802 	} else {
803 		iip->u_32.ii_block = block;
804 	}
805 }
806 
807 /*
808  * Index file inode entries.
809  */
810 
811 #define IFILE_ENTRYSIZE(fs) \
812 	((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
813 
814 /*
815  * LFSv1 compatibility code is not allowed to touch if_atime, since it
816  * may not be mapped!
817  */
818 /* Read in the block with a specific inode from the ifile. */
819 #define	LFS_IENTRY(IP, F, IN, BP) do {					\
820 	int _e;								\
821 	SHARE_IFLOCK(F);						\
822 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
823 	if ((_e = bread((F)->lfs_ivnode,				\
824 	(IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
825 	lfs_sb_getbsize(F), 0, &(BP))) != 0)				\
826 		panic("lfs: ifile ino %d read %d", (int)(IN), _e);	\
827 	if ((F)->lfs_is64) {						\
828 		(IP) = (IFILE *)((IFILE64 *)(BP)->b_data +		\
829 				 (IN) % lfs_sb_getifpb(F));		\
830 	} else if (lfs_sb_getversion(F) > 1) {				\
831 		(IP) = (IFILE *)((IFILE32 *)(BP)->b_data +		\
832 				(IN) % lfs_sb_getifpb(F)); 		\
833 	} else {							\
834 		(IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data +		\
835 				 (IN) % lfs_sb_getifpb(F));		\
836 	}								\
837 	UNSHARE_IFLOCK(F);						\
838 } while (0)
839 #define LFS_IENTRY_NEXT(IP, F) do { \
840 	if ((F)->lfs_is64) {						\
841 		(IP) = (IFILE *)((IFILE64 *)(IP) + 1);			\
842 	} else if (lfs_sb_getversion(F) > 1) {				\
843 		(IP) = (IFILE *)((IFILE32 *)(IP) + 1);			\
844 	} else {							\
845 		(IP) = (IFILE *)((IFILE_V1 *)(IP) + 1);			\
846 	}								\
847 } while (0)
848 
849 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
850 	static __unused inline type				\
851 	lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp)		\
852 	{							\
853 		if (fs->lfs_is64) {				\
854 			return ifp->u_64.if_##field; 		\
855 		} else {					\
856 			return ifp->u_32.if_##field; 		\
857 		}						\
858 	}							\
859 	static __unused inline void				\
860 	lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
861 	{							\
862 		if (fs->lfs_is64) {				\
863 			type *p = &ifp->u_64.if_##field;	\
864 			(void)p;				\
865 			ifp->u_64.if_##field = val;		\
866 		} else {					\
867 			type32 *p = &ifp->u_32.if_##field;	\
868 			(void)p;				\
869 			ifp->u_32.if_##field = val;		\
870 		}						\
871 	}							\
872 
873 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, version);
874 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
875 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, nextfree);
876 LFS_DEF_IF_ACCESSOR(u_int64_t, u_int32_t, atime_sec);
877 LFS_DEF_IF_ACCESSOR(u_int32_t, u_int32_t, atime_nsec);
878 
879 /*
880  * Cleaner information structure.  This resides in the ifile and is used
881  * to pass information from the kernel to the cleaner.
882  */
883 
884 #define	CLEANSIZE_SU(fs)						\
885 	((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
886 		lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
887 
888 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
889 	static __unused inline type				\
890 	lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip)	\
891 	{							\
892 		if (fs->lfs_is64) {				\
893 			return cip->u_64.field; 		\
894 		} else {					\
895 			return cip->u_32.field; 		\
896 		}						\
897 	}							\
898 	static __unused inline void				\
899 	lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
900 	{							\
901 		if (fs->lfs_is64) {				\
902 			type *p = &cip->u_64.field;		\
903 			(void)p;				\
904 			cip->u_64.field = val;			\
905 		} else {					\
906 			type32 *p = &cip->u_32.field;		\
907 			(void)p;				\
908 			cip->u_32.field = val;			\
909 		}						\
910 	}							\
911 
912 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, clean);
913 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, dirty);
914 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
915 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
916 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_head);
917 LFS_DEF_CI_ACCESSOR(u_int64_t, u_int32_t, free_tail);
918 LFS_DEF_CI_ACCESSOR(u_int32_t, u_int32_t, flags);
919 
920 static __unused inline void
lfs_ci_shiftcleantodirty(STRUCT_LFS * fs,CLEANERINFO * cip,unsigned num)921 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
922 {
923 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
924 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
925 }
926 
927 static __unused inline void
lfs_ci_shiftdirtytoclean(STRUCT_LFS * fs,CLEANERINFO * cip,unsigned num)928 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
929 {
930 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
931 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
932 }
933 
934 /* Read in the block with the cleaner info from the ifile. */
935 #define LFS_CLEANERINFO(CP, F, BP) do {					\
936 	SHARE_IFLOCK(F);						\
937 	VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS;			\
938 	if (bread((F)->lfs_ivnode,					\
939 	    (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)))			\
940 		panic("lfs: ifile read");				\
941 	(CP) = (CLEANERINFO *)(BP)->b_data;				\
942 	UNSHARE_IFLOCK(F);						\
943 } while (0)
944 
945 /*
946  * Synchronize the Ifile cleaner info with current avail and bfree.
947  */
948 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do {		 	\
949     mutex_enter(&lfs_lock);						\
950     if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) ||	\
951 	lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
952 	fs->lfs_favail) {	 					\
953 	lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));		 	\
954 	lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail -	\
955 		fs->lfs_favail);				 	\
956 	if (((bp)->b_flags & B_GATHERED) == 0) {		 	\
957 		fs->lfs_flags |= LFS_IFDIRTY;				\
958 	}								\
959 	mutex_exit(&lfs_lock);						\
960 	(void) LFS_BWRITE_LOG(bp); /* Ifile */			 	\
961     } else {							 	\
962 	mutex_exit(&lfs_lock);						\
963 	brelse(bp, 0);						 	\
964     }									\
965 } while (0)
966 
967 /*
968  * Get the head of the inode free list.
969  * Always called with the segment lock held.
970  */
971 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do {			\
972 	if (lfs_sb_getversion(FS) > 1) {				\
973 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
974 		lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP));	\
975 		brelse(BP, 0);						\
976 	}								\
977 	*(FREEP) = lfs_sb_getfreehd(FS);				\
978 } while (0)
979 
980 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do {				\
981 	lfs_sb_setfreehd(FS, VAL);					\
982 	if (lfs_sb_getversion(FS) > 1) {				\
983 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
984 		lfs_ci_setfree_head(FS, CIP, VAL);			\
985 		LFS_BWRITE_LOG(BP);					\
986 		mutex_enter(&lfs_lock);					\
987 		(FS)->lfs_flags |= LFS_IFDIRTY;				\
988 		mutex_exit(&lfs_lock);					\
989 	}								\
990 } while (0)
991 
992 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do {			\
993 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
994 	*(FREEP) = lfs_ci_getfree_tail(FS, CIP);			\
995 	brelse(BP, 0);							\
996 } while (0)
997 
998 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do {				\
999 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
1000 	lfs_ci_setfree_tail(FS, CIP, VAL);				\
1001 	LFS_BWRITE_LOG(BP);						\
1002 	mutex_enter(&lfs_lock);						\
1003 	(FS)->lfs_flags |= LFS_IFDIRTY;					\
1004 	mutex_exit(&lfs_lock);						\
1005 } while (0)
1006 
1007 /*
1008  * On-disk segment summary information
1009  */
1010 
1011 #define SEGSUM_SIZE(fs) \
1012 	(fs->lfs_is64 ? sizeof(SEGSUM64) : \
1013 	 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
1014 
1015 /*
1016  * The SEGSUM structure is followed by FINFO structures. Get the pointer
1017  * to the first FINFO.
1018  *
1019  * XXX this can't be a macro yet; this file needs to be resorted.
1020  */
1021 #if 0
1022 static __unused inline FINFO *
1023 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
1024 {
1025 	return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
1026 }
1027 #else
1028 #define SEGSUM_FINFOBASE(fs, ssp) \
1029 	((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
1030 #endif
1031 
1032 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
1033 	static __unused inline type				\
1034 	lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp)		\
1035 	{							\
1036 		if (fs->lfs_is64) {				\
1037 			return ssp->u_64.ss_##field; 		\
1038 		} else {					\
1039 			return ssp->u_32.ss_##field; 		\
1040 		}						\
1041 	}							\
1042 	static __unused inline void				\
1043 	lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
1044 	{							\
1045 		if (fs->lfs_is64) {				\
1046 			type *p = &ssp->u_64.ss_##field;	\
1047 			(void)p;				\
1048 			ssp->u_64.ss_##field = val;		\
1049 		} else {					\
1050 			type32 *p = &ssp->u_32.ss_##field;	\
1051 			(void)p;				\
1052 			ssp->u_32.ss_##field = val;		\
1053 		}						\
1054 	}							\
1055 
1056 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
1057 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
1058 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
1059 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
1060 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
1061 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
1062 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
1063 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
1064 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
1065 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
1066 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
1067 
1068 static __unused inline size_t
lfs_ss_getsumstart(STRUCT_LFS * fs)1069 lfs_ss_getsumstart(STRUCT_LFS *fs)
1070 {
1071 	/* These are actually all the same. */
1072 	if (fs->lfs_is64) {
1073 		return offsetof(SEGSUM64, ss_datasum);
1074 	} else /* if (lfs_sb_getversion(fs) > 1) */ {
1075 		return offsetof(SEGSUM32, ss_datasum);
1076 	} /* else {
1077 		return offsetof(SEGSUM_V1, ss_datasum);
1078 	} */
1079 	/*
1080 	 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
1081 	 * defined yet.
1082 	 */
1083 }
1084 
1085 static __unused inline uint32_t
lfs_ss_getocreate(STRUCT_LFS * fs,SEGSUM * ssp)1086 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
1087 {
1088 	KASSERT(fs->lfs_is64 == 0);
1089 	/* XXX need to resort this file before we can do this */
1090 	//KASSERT(lfs_sb_getversion(fs) == 1);
1091 
1092 	return ssp->u_v1.ss_create;
1093 }
1094 
1095 static __unused inline void
lfs_ss_setocreate(STRUCT_LFS * fs,SEGSUM * ssp,uint32_t val)1096 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
1097 {
1098 	KASSERT(fs->lfs_is64 == 0);
1099 	/* XXX need to resort this file before we can do this */
1100 	//KASSERT(lfs_sb_getversion(fs) == 1);
1101 
1102 	ssp->u_v1.ss_create = val;
1103 }
1104 
1105 
1106 /*
1107  * Super block.
1108  */
1109 
1110 /*
1111  * Generate accessors for the on-disk superblock fields with cpp.
1112  */
1113 
1114 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1115 	static __unused inline type				\
1116 	lfs_sb_get##field(STRUCT_LFS *fs)			\
1117 	{							\
1118 		if (fs->lfs_is64) {				\
1119 			return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1120 		} else {					\
1121 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1122 		}						\
1123 	}							\
1124 	static __unused inline void				\
1125 	lfs_sb_set##field(STRUCT_LFS *fs, type val)		\
1126 	{							\
1127 		if (fs->lfs_is64) {				\
1128 			fs->lfs_dlfs_u.u_64.dlfs_##field = val;	\
1129 		} else {					\
1130 			fs->lfs_dlfs_u.u_32.dlfs_##field = val;	\
1131 		}						\
1132 	}							\
1133 	static __unused inline void				\
1134 	lfs_sb_add##field(STRUCT_LFS *fs, type val)		\
1135 	{							\
1136 		if (fs->lfs_is64) {				\
1137 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1138 			*p64 += val;				\
1139 		} else {					\
1140 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1141 			*p32 += val;				\
1142 		}						\
1143 	}							\
1144 	static __unused inline void				\
1145 	lfs_sb_sub##field(STRUCT_LFS *fs, type val)		\
1146 	{							\
1147 		if (fs->lfs_is64) {				\
1148 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1149 			*p64 -= val;				\
1150 		} else {					\
1151 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1152 			*p32 -= val;				\
1153 		}						\
1154 	}
1155 
1156 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1157 
1158 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1159 	static __unused inline type				\
1160 	lfs_sb_get##field(STRUCT_LFS *fs)			\
1161 	{							\
1162 		if (fs->lfs_is64) {				\
1163 			return val64;				\
1164 		} else {					\
1165 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1166 		}						\
1167 	}
1168 
1169 #define lfs_magic lfs_dlfs.dlfs_magic
1170 LFS_DEF_SB_ACCESSOR(u_int32_t, version);
1171 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, size);
1172 LFS_DEF_SB_ACCESSOR(u_int32_t, ssize);
1173 LFS_DEF_SB_ACCESSOR_FULL(u_int64_t, u_int32_t, dsize);
1174 LFS_DEF_SB_ACCESSOR(u_int32_t, bsize);
1175 LFS_DEF_SB_ACCESSOR(u_int32_t, fsize);
1176 LFS_DEF_SB_ACCESSOR(u_int32_t, frag);
1177 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
1178 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
1179 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
1180 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
1181 LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
1182 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
1183 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, ifile, LFS_IFILE_INUM);
1184 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
1185 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
1186 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
1187 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
1188 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
1189 LFS_DEF_SB_ACCESSOR(u_int32_t, inopf);
1190 LFS_DEF_SB_ACCESSOR(u_int32_t, minfree);
1191 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
1192 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbpseg);
1193 LFS_DEF_SB_ACCESSOR(u_int32_t, inopb);
1194 LFS_DEF_SB_ACCESSOR(u_int32_t, ifpb);
1195 LFS_DEF_SB_ACCESSOR(u_int32_t, sepb);
1196 LFS_DEF_SB_ACCESSOR(u_int32_t, nindir);
1197 LFS_DEF_SB_ACCESSOR(u_int32_t, nseg);
1198 LFS_DEF_SB_ACCESSOR(u_int32_t, nspf);
1199 LFS_DEF_SB_ACCESSOR(u_int32_t, cleansz);
1200 LFS_DEF_SB_ACCESSOR(u_int32_t, segtabsz);
1201 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segmask, 0);
1202 LFS_DEF_SB_ACCESSOR_32ONLY(u_int32_t, segshift, 0);
1203 LFS_DEF_SB_ACCESSOR(u_int64_t, bmask);
1204 LFS_DEF_SB_ACCESSOR(u_int32_t, bshift);
1205 LFS_DEF_SB_ACCESSOR(u_int64_t, ffmask);
1206 LFS_DEF_SB_ACCESSOR(u_int32_t, ffshift);
1207 LFS_DEF_SB_ACCESSOR(u_int64_t, fbmask);
1208 LFS_DEF_SB_ACCESSOR(u_int32_t, fbshift);
1209 LFS_DEF_SB_ACCESSOR(u_int32_t, blktodb);
1210 LFS_DEF_SB_ACCESSOR(u_int32_t, fsbtodb);
1211 LFS_DEF_SB_ACCESSOR(u_int32_t, sushift);
1212 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
1213 LFS_DEF_SB_ACCESSOR(u_int32_t, cksum);
1214 LFS_DEF_SB_ACCESSOR(u_int16_t, pflags);
1215 LFS_DEF_SB_ACCESSOR(u_int32_t, nclean);
1216 LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
1217 LFS_DEF_SB_ACCESSOR(u_int32_t, minfreeseg);
1218 LFS_DEF_SB_ACCESSOR(u_int32_t, sumsize);
1219 LFS_DEF_SB_ACCESSOR(u_int64_t, serial);
1220 LFS_DEF_SB_ACCESSOR(u_int32_t, ibsize);
1221 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
1222 LFS_DEF_SB_ACCESSOR(u_int64_t, tstamp);
1223 LFS_DEF_SB_ACCESSOR(u_int32_t, inodefmt);
1224 LFS_DEF_SB_ACCESSOR(u_int32_t, interleave);
1225 LFS_DEF_SB_ACCESSOR(u_int32_t, ident);
1226 LFS_DEF_SB_ACCESSOR(u_int32_t, resvseg);
1227 
1228 /* special-case accessors */
1229 
1230 /*
1231  * the v1 otstamp field lives in what's now dlfs_inopf
1232  */
1233 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1234 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1235 
1236 /*
1237  * lfs_sboffs is an array
1238  */
1239 static __unused inline int32_t
lfs_sb_getsboff(STRUCT_LFS * fs,unsigned n)1240 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1241 {
1242 #ifdef KASSERT /* ugh */
1243 	KASSERT(n < LFS_MAXNUMSB);
1244 #endif
1245 	if (fs->lfs_is64) {
1246 		return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1247 	} else {
1248 		return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1249 	}
1250 }
1251 static __unused inline void
lfs_sb_setsboff(STRUCT_LFS * fs,unsigned n,int32_t val)1252 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1253 {
1254 #ifdef KASSERT /* ugh */
1255 	KASSERT(n < LFS_MAXNUMSB);
1256 #endif
1257 	if (fs->lfs_is64) {
1258 		fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1259 	} else {
1260 		fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1261 	}
1262 }
1263 
1264 /*
1265  * lfs_fsmnt is a string
1266  */
1267 static __unused inline const char *
lfs_sb_getfsmnt(STRUCT_LFS * fs)1268 lfs_sb_getfsmnt(STRUCT_LFS *fs)
1269 {
1270 	if (fs->lfs_is64) {
1271 		return fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1272 	} else {
1273 		return fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1274 	}
1275 }
1276 
1277 static __unused inline void
lfs_sb_setfsmnt(STRUCT_LFS * fs,const char * str)1278 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1279 {
1280 	if (fs->lfs_is64) {
1281 		(void)strncpy(fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1282 			sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1283 	} else {
1284 		(void)strncpy(fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1285 			sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1286 	}
1287 }
1288 
1289 /* Highest addressable fsb */
1290 #define LFS_MAX_DADDR(fs) \
1291 	((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1292 
1293 /* LFS_NINDIR is the number of indirects in a file system block. */
1294 #define	LFS_NINDIR(fs)	(lfs_sb_getnindir(fs))
1295 
1296 /* LFS_INOPB is the number of inodes in a secondary storage block. */
1297 #define	LFS_INOPB(fs)	(lfs_sb_getinopb(fs))
1298 /* LFS_INOPF is the number of inodes in a fragment. */
1299 #define LFS_INOPF(fs)	(lfs_sb_getinopf(fs))
1300 
1301 #define	lfs_blkoff(fs, loc)	((int)((loc) & lfs_sb_getbmask(fs)))
1302 #define lfs_fragoff(fs, loc)    /* calculates (loc % fs->lfs_fsize) */ \
1303     ((int)((loc) & lfs_sb_getffmask(fs)))
1304 
1305 /* XXX: lowercase these as they're no longer macros */
1306 /* Frags to diskblocks */
1307 static __unused inline uint64_t
LFS_FSBTODB(STRUCT_LFS * fs,uint64_t b)1308 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1309 {
1310 #if defined(_KERNEL)
1311 	return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1312 #else
1313 	return b << lfs_sb_getfsbtodb(fs);
1314 #endif
1315 }
1316 /* Diskblocks to frags */
1317 static __unused inline uint64_t
LFS_DBTOFSB(STRUCT_LFS * fs,uint64_t b)1318 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1319 {
1320 #if defined(_KERNEL)
1321 	return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1322 #else
1323 	return b >> lfs_sb_getfsbtodb(fs);
1324 #endif
1325 }
1326 
1327 #define	lfs_lblkno(fs, loc)	((loc) >> lfs_sb_getbshift(fs))
1328 #define	lfs_lblktosize(fs, blk)	((blk) << lfs_sb_getbshift(fs))
1329 
1330 /* Frags to bytes */
1331 static __unused inline uint64_t
lfs_fsbtob(STRUCT_LFS * fs,uint64_t b)1332 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1333 {
1334 	return b << lfs_sb_getffshift(fs);
1335 }
1336 /* Bytes to frags */
1337 static __unused inline uint64_t
lfs_btofsb(STRUCT_LFS * fs,uint64_t b)1338 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1339 {
1340 	return b >> lfs_sb_getffshift(fs);
1341 }
1342 
1343 #define lfs_numfrags(fs, loc)	/* calculates (loc / fs->lfs_fsize) */	\
1344 	((loc) >> lfs_sb_getffshift(fs))
1345 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1346 	((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1347 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1348 	((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1349 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1350 	((frags) >> lfs_sb_getfbshift(fs))
1351 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1352 	((blks) << lfs_sb_getfbshift(fs))
1353 #define lfs_fragnum(fs, fsb)	/* calculates (fsb % fs->lfs_frag) */	\
1354 	((fsb) & ((fs)->lfs_frag - 1))
1355 #define lfs_blknum(fs, fsb)	/* calculates rounddown(fsb, fs->lfs_frag) */ \
1356 	((fsb) &~ ((fs)->lfs_frag - 1))
1357 #define lfs_dblksize(fs, dp, lbn) \
1358 	(((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1359 	    ? lfs_sb_getbsize(fs) \
1360 	    : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1361 
1362 #define	lfs_segsize(fs)	(lfs_sb_getversion(fs) == 1 ?	     		\
1363 			   lfs_lblktosize((fs), lfs_sb_getssize(fs)) :	\
1364 			   lfs_sb_getssize(fs))
1365 /* XXX segtod produces a result in frags despite the 'd' */
1366 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1367 #define	lfs_dtosn(fs, daddr)	/* block address to segment number */	\
1368 	((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1369 #define lfs_sntod(fs, sn)	/* segment number to disk address */	\
1370 	((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1371 
1372 /* XXX, blah. make this appear only if struct inode is defined */
1373 #ifdef _UFS_LFS_LFS_INODE_H_
1374 static __unused inline uint32_t
lfs_blksize(STRUCT_LFS * fs,struct inode * ip,uint64_t lbn)1375 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1376 {
1377 	if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1378 		return lfs_sb_getbsize(fs);
1379 	} else {
1380 		return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1381 	}
1382 }
1383 #endif
1384 
1385 /*
1386  * union lfs_blocks
1387  */
1388 
1389 static __unused inline void
lfs_blocks_fromvoid(STRUCT_LFS * fs,union lfs_blocks * bp,void * p)1390 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1391 {
1392 	if (fs->lfs_is64) {
1393 		bp->b64 = p;
1394 	} else {
1395 		bp->b32 = p;
1396 	}
1397 }
1398 
1399 static __unused inline void
lfs_blocks_fromfinfo(STRUCT_LFS * fs,union lfs_blocks * bp,FINFO * fip)1400 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1401 {
1402 	void *firstblock;
1403 
1404 	firstblock = (char *)fip + FINFOSIZE(fs);
1405 	if (fs->lfs_is64) {
1406 		bp->b64 = (int64_t *)firstblock;
1407 	}  else {
1408 		bp->b32 = (int32_t *)firstblock;
1409 	}
1410 }
1411 
1412 static __unused inline daddr_t
lfs_blocks_get(STRUCT_LFS * fs,union lfs_blocks * bp,unsigned index)1413 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index)
1414 {
1415 	if (fs->lfs_is64) {
1416 		return bp->b64[index];
1417 	} else {
1418 		return bp->b32[index];
1419 	}
1420 }
1421 
1422 static __unused inline void
lfs_blocks_set(STRUCT_LFS * fs,union lfs_blocks * bp,unsigned index,daddr_t val)1423 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned index, daddr_t val)
1424 {
1425 	if (fs->lfs_is64) {
1426 		bp->b64[index] = val;
1427 	} else {
1428 		bp->b32[index] = val;
1429 	}
1430 }
1431 
1432 static __unused inline void
lfs_blocks_inc(STRUCT_LFS * fs,union lfs_blocks * bp)1433 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1434 {
1435 	if (fs->lfs_is64) {
1436 		bp->b64++;
1437 	} else {
1438 		bp->b32++;
1439 	}
1440 }
1441 
1442 static __unused inline int
lfs_blocks_eq(STRUCT_LFS * fs,union lfs_blocks * bp1,union lfs_blocks * bp2)1443 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1444 {
1445 	if (fs->lfs_is64) {
1446 		return bp1->b64 == bp2->b64;
1447 	} else {
1448 		return bp1->b32 == bp2->b32;
1449 	}
1450 }
1451 
1452 static __unused inline int
lfs_blocks_sub(STRUCT_LFS * fs,union lfs_blocks * bp1,union lfs_blocks * bp2)1453 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1454 {
1455 	/* (remember that the pointers are typed) */
1456 	if (fs->lfs_is64) {
1457 		return bp1->b64 - bp2->b64;
1458 	} else {
1459 		return bp1->b32 - bp2->b32;
1460 	}
1461 }
1462 
1463 /*
1464  * struct segment
1465  */
1466 
1467 
1468 /*
1469  * Macros for determining free space on the disk, with the variable metadata
1470  * of segment summaries and inode blocks taken into account.
1471  */
1472 /*
1473  * Estimate number of clean blocks not available for writing because
1474  * they will contain metadata or overhead.  This is calculated as
1475  *
1476  *		E = ((C * M / D) * D + (0) * (T - D)) / T
1477  * or more simply
1478  *		E = (C * M) / T
1479  *
1480  * where
1481  * C is the clean space,
1482  * D is the dirty space,
1483  * M is the dirty metadata, and
1484  * T = C + D is the total space on disk.
1485  *
1486  * This approximates the old formula of E = C * M / D when D is close to T,
1487  * but avoids falsely reporting "disk full" when the sample size (D) is small.
1488  */
1489 #define LFS_EST_CMETA(F) ((						\
1490 	(lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / 		\
1491 	(lfs_sb_getnseg(F))))
1492 
1493 /* Estimate total size of the disk not including metadata */
1494 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1495 
1496 /* Estimate number of blocks actually available for writing */
1497 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ?	     \
1498 			  lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1499 
1500 /* Amount of non-meta space not available to mortal man */
1501 #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) *			     \
1502 				   (u_int64_t)lfs_sb_getminfree(F)) /	     \
1503 				  100)
1504 
1505 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1506 #define ISSPACE(F, BB, C)						\
1507 	((((C) == NOCRED || kauth_cred_geteuid(C) == 0) &&		\
1508 	  LFS_EST_BFREE(F) >= (BB)) ||					\
1509 	 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1510 
1511 /* Can an ordinary user write BB blocks */
1512 #define IS_FREESPACE(F, BB)						\
1513 	  (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1514 
1515 /*
1516  * The minimum number of blocks to create a new inode.  This is:
1517  * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1518  * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1519  */
1520 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1521 
1522 
1523 
1524 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1525