xref: /netbsd-src/sys/arch/aarch64/aarch64/pmap.c (revision bd86d05e3e02424a657300fa40eeb91b5f0a612c)
1 /*	$NetBSD: pmap.c,v 1.151 2024/02/16 21:32:17 andvar Exp $	*/
2 
3 /*
4  * Copyright (c) 2017 Ryo Shimizu
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.151 2024/02/16 21:32:17 andvar Exp $");
31 
32 #include "opt_arm_debug.h"
33 #include "opt_cpuoptions.h"
34 #include "opt_ddb.h"
35 #include "opt_efi.h"
36 #include "opt_modular.h"
37 #include "opt_multiprocessor.h"
38 #include "opt_pmap.h"
39 #include "opt_uvmhist.h"
40 
41 #include <sys/param.h>
42 #include <sys/types.h>
43 
44 #include <sys/asan.h>
45 #include <sys/atomic.h>
46 #include <sys/cpu.h>
47 #include <sys/kmem.h>
48 #include <sys/vmem.h>
49 
50 #include <uvm/uvm.h>
51 #include <uvm/pmap/pmap_pvt.h>
52 
53 #include <arm/cpufunc.h>
54 
55 #include <aarch64/pmap.h>
56 #include <aarch64/pte.h>
57 #include <aarch64/armreg.h>
58 #include <aarch64/locore.h>
59 #include <aarch64/machdep.h>
60 #ifdef DDB
61 #include <aarch64/db_machdep.h>
62 #include <ddb/db_access.h>
63 #endif
64 
65 #include <arm/cpufunc.h>
66 
67 //#define PMAP_PV_DEBUG
68 
69 #ifdef VERBOSE_INIT_ARM
70 #define VPRINTF(...)	printf(__VA_ARGS__)
71 #else
72 #define VPRINTF(...)	__nothing
73 #endif
74 
75 #ifdef UVMHIST
76 
77 #ifndef UVMHIST_PMAPHIST_SIZE
78 #define UVMHIST_PMAPHIST_SIZE	(1024 * 4)
79 #endif
80 
81 struct kern_history_ent pmaphistbuf[UVMHIST_PMAPHIST_SIZE];
82 UVMHIST_DEFINE(pmaphist) = UVMHIST_INITIALIZER(pmaphist, pmaphistbuf);
83 
84 static void
pmap_hist_init(void)85 pmap_hist_init(void)
86 {
87 	static bool inited = false;
88 	if (inited == false) {
89 		UVMHIST_LINK_STATIC(pmaphist);
90 		inited = true;
91 	}
92 }
93 #define PMAP_HIST_INIT()	pmap_hist_init()
94 
95 #else /* UVMHIST */
96 
97 #define PMAP_HIST_INIT()	((void)0)
98 
99 #endif /* UVMHIST */
100 
101 
102 #ifdef PMAPCOUNTERS
103 #define PMAP_COUNT(name)		(pmap_evcnt_##name.ev_count++ + 0)
104 #define PMAP_COUNTER(name, desc)					\
105 	struct evcnt pmap_evcnt_##name =				\
106 	    EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", desc);	\
107 	EVCNT_ATTACH_STATIC(pmap_evcnt_##name)
108 
109 PMAP_COUNTER(pdp_alloc_boot, "page table page allocate (uvm_pageboot_alloc)");
110 PMAP_COUNTER(pdp_alloc, "page table page allocate (uvm_pagealloc)");
111 PMAP_COUNTER(pdp_free, "page table page free (uvm_pagefree)");
112 
113 PMAP_COUNTER(pv_enter, "pv_entry fill");
114 PMAP_COUNTER(pv_remove_dyn, "pv_entry free and unlink dynamic");
115 PMAP_COUNTER(pv_remove_emb, "pv_entry clear embedded");
116 PMAP_COUNTER(pv_remove_nopv, "no pv_entry found when removing pv");
117 
118 PMAP_COUNTER(activate, "pmap_activate call");
119 PMAP_COUNTER(deactivate, "pmap_deactivate call");
120 PMAP_COUNTER(create, "pmap_create call");
121 PMAP_COUNTER(destroy, "pmap_destroy call");
122 
123 PMAP_COUNTER(page_protect, "pmap_page_protect call");
124 PMAP_COUNTER(protect, "pmap_protect call");
125 PMAP_COUNTER(protect_remove_fallback, "pmap_protect with no-read");
126 PMAP_COUNTER(protect_none, "pmap_protect non-exists pages");
127 PMAP_COUNTER(protect_managed, "pmap_protect managed pages");
128 PMAP_COUNTER(protect_unmanaged, "pmap_protect unmanaged pages");
129 PMAP_COUNTER(protect_pvmanaged, "pmap_protect pv-tracked unmanaged pages");
130 
131 PMAP_COUNTER(clear_modify, "pmap_clear_modify call");
132 PMAP_COUNTER(clear_modify_pages, "pmap_clear_modify pages");
133 PMAP_COUNTER(clear_reference, "pmap_clear_reference call");
134 PMAP_COUNTER(clear_reference_pages, "pmap_clear_reference pages");
135 
136 PMAP_COUNTER(fixup_referenced, "page reference emulations");
137 PMAP_COUNTER(fixup_modified, "page modification emulations");
138 
139 PMAP_COUNTER(kern_mappings_bad, "kernel pages mapped (bad color)");
140 PMAP_COUNTER(kern_mappings_bad_wired, "kernel pages mapped (wired bad color)");
141 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color, not wired)");
142 PMAP_COUNTER(user_mappings_bad_wired, "user pages mapped (bad color, wired)");
143 PMAP_COUNTER(kern_mappings, "kernel pages mapped");
144 PMAP_COUNTER(user_mappings, "user pages mapped");
145 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
146 PMAP_COUNTER(kern_mappings_changed, "kernel mapping changed");
147 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
148 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
149 PMAP_COUNTER(pvmanaged_mappings, "pv-tracked unmanaged pages mapped");
150 PMAP_COUNTER(managed_mappings, "managed pages mapped");
151 PMAP_COUNTER(mappings, "pages mapped (including remapped)");
152 PMAP_COUNTER(remappings, "pages remapped");
153 
154 PMAP_COUNTER(pv_entry_cannotalloc, "pv_entry allocation failure");
155 
156 PMAP_COUNTER(unwire, "pmap_unwire call");
157 PMAP_COUNTER(unwire_failure, "pmap_unwire failure");
158 
159 #else /* PMAPCOUNTERS */
160 #define PMAP_COUNT(name)		__nothing
161 #endif /* PMAPCOUNTERS */
162 
163 /*
164  * invalidate TLB entry for ASID and VA.
165  */
166 #define AARCH64_TLBI_BY_ASID_VA(asid, va)			\
167 	do {							\
168 		if ((asid) == 0)				\
169 			aarch64_tlbi_by_va((va));		\
170 		else						\
171 			aarch64_tlbi_by_asid_va((asid), (va));	\
172 	} while (0/*CONSTCOND*/)
173 
174 /*
175  * require access permission in pte to invalidate instruction cache.
176  * change the pte to be accessible temporarily before cpu_icache_sync_range().
177  * this macro modifies PTE (*ptep). need to update PTE after this.
178  */
179 #define PTE_ICACHE_SYNC_PAGE(pte, ptep, asid, va)			\
180 	do {								\
181 		atomic_swap_64((ptep), (pte) | LX_BLKPAG_AF);		\
182 		AARCH64_TLBI_BY_ASID_VA((asid), (va));			\
183 		cpu_icache_sync_range((va), PAGE_SIZE);			\
184 	} while (0/*CONSTCOND*/)
185 
186 #define VM_PAGE_TO_PP(pg)	(&(pg)->mdpage.mdpg_pp)
187 
188 #define L3INDEXMASK	(L3_SIZE * Ln_ENTRIES - 1)
189 #define PDPSWEEP_TRIGGER	512
190 
191 static pt_entry_t *_pmap_pte_lookup_l3(struct pmap *, vaddr_t);
192 static pt_entry_t *_pmap_pte_lookup_bs(struct pmap *, vaddr_t, vsize_t *);
193 static pt_entry_t _pmap_pte_adjust_prot(pt_entry_t, vm_prot_t, vm_prot_t, bool);
194 static pt_entry_t _pmap_pte_adjust_cacheflags(pt_entry_t, u_int);
195 static void _pmap_remove(struct pmap *, vaddr_t, vaddr_t, bool,
196     struct pv_entry **);
197 static int _pmap_enter(struct pmap *, vaddr_t, paddr_t, vm_prot_t, u_int, bool);
198 static int _pmap_get_pdp(struct pmap *, vaddr_t, bool, int, paddr_t *,
199     struct vm_page **);
200 
201 static struct pmap kernel_pmap __cacheline_aligned;
202 struct pmap * const kernel_pmap_ptr = &kernel_pmap;
203 
204 #if defined(EFI_RUNTIME)
205 static struct pmap efirt_pmap __cacheline_aligned;
206 
207 pmap_t
pmap_efirt(void)208 pmap_efirt(void)
209 {
210 	return &efirt_pmap;
211 }
212 #endif
213 
214 static vaddr_t pmap_maxkvaddr;
215 
216 vaddr_t virtual_avail, virtual_end;
217 vaddr_t virtual_devmap_addr;
218 
219 static struct pool_cache _pmap_cache;
220 static struct pool_cache _pmap_pv_pool;
221 
222 /* Set to LX_BLKPAG_GP if supported. */
223 uint64_t pmap_attr_gp = 0;
224 
225 static inline void
pmap_pv_lock(struct pmap_page * pp)226 pmap_pv_lock(struct pmap_page *pp)
227 {
228 
229 	mutex_enter(&pp->pp_pvlock);
230 }
231 
232 static inline void
pmap_pv_unlock(struct pmap_page * pp)233 pmap_pv_unlock(struct pmap_page *pp)
234 {
235 
236 	mutex_exit(&pp->pp_pvlock);
237 }
238 
239 
240 static inline void
pm_lock(struct pmap * pm)241 pm_lock(struct pmap *pm)
242 {
243 	mutex_enter(&pm->pm_lock);
244 }
245 
246 static inline void
pm_unlock(struct pmap * pm)247 pm_unlock(struct pmap *pm)
248 {
249 	mutex_exit(&pm->pm_lock);
250 }
251 
252 static bool
pm_reverse_lock(struct pmap * pm,struct pmap_page * pp)253 pm_reverse_lock(struct pmap *pm, struct pmap_page *pp)
254 {
255 
256 	KASSERT(mutex_owned(&pp->pp_pvlock));
257 
258 	if (__predict_true(mutex_tryenter(&pm->pm_lock)))
259 		return true;
260 
261 	if (pm != pmap_kernel())
262 		pmap_reference(pm);
263 	mutex_exit(&pp->pp_pvlock);
264 	mutex_enter(&pm->pm_lock);
265 	/* nothing, just wait for lock */
266 	mutex_exit(&pm->pm_lock);
267 	if (pm != pmap_kernel())
268 		pmap_destroy(pm);
269 	mutex_enter(&pp->pp_pvlock);
270 	return false;
271 }
272 
273 static inline struct pmap_page *
phys_to_pp(paddr_t pa)274 phys_to_pp(paddr_t pa)
275 {
276 	struct vm_page *pg;
277 
278 	pg = PHYS_TO_VM_PAGE(pa);
279 	if (pg != NULL)
280 		return VM_PAGE_TO_PP(pg);
281 
282 #ifdef __HAVE_PMAP_PV_TRACK
283 	return pmap_pv_tracked(pa);
284 #else
285 	return NULL;
286 #endif /* __HAVE_PMAP_PV_TRACK */
287 }
288 
289 #define IN_RANGE(va, sta, end)	(((sta) <= (va)) && ((va) < (end)))
290 
291 #define IN_DIRECTMAP_ADDR(va)	\
292 	IN_RANGE((va), AARCH64_DIRECTMAP_START, AARCH64_DIRECTMAP_END)
293 
294 #define	PMAP_EFIVA_P(va) \
295      IN_RANGE((va), EFI_RUNTIME_VA, EFI_RUNTIME_VA + EFI_RUNTIME_SIZE)
296 
297 #ifdef MODULAR
298 #define IN_MODULE_VA(va)	IN_RANGE((va), module_start, module_end)
299 #else
300 #define IN_MODULE_VA(va)	false
301 #endif
302 
303 #ifdef DIAGNOSTIC
304 
305 #define KERNEL_ADDR_P(va)						\
306     (IN_RANGE((va), VM_MIN_KERNEL_ADDRESS,  VM_MAX_KERNEL_ADDRESS) ||	\
307      PMAP_EFIVA_P(va))
308 
309 #define KASSERT_PM_ADDR(pm, va)						\
310     do {								\
311 	int space = aarch64_addressspace(va);				\
312 	if ((pm) == pmap_kernel()) {					\
313 		KASSERTMSG(space == AARCH64_ADDRSPACE_UPPER,		\
314 		    "%s: kernel pm %p: va=%016lx"			\
315 		    " is out of upper address space",			\
316 		    __func__, (pm), (va));				\
317 		KASSERTMSG(KERNEL_ADDR_P(va),				\
318 		    "%s: kernel pm %p: va=%016lx"			\
319 		    " is not kernel address",				\
320 		    __func__, (pm), (va));				\
321 	} else {							\
322 		KASSERTMSG(space == AARCH64_ADDRSPACE_LOWER,		\
323 		    "%s: user pm %p: va=%016lx"				\
324 		    " is out of lower address space",			\
325 		    __func__, (pm), (va));				\
326 		KASSERTMSG(IN_RANGE((va),				\
327 		    VM_MIN_ADDRESS, VM_MAX_ADDRESS),			\
328 		    "%s: user pm %p: va=%016lx"				\
329 		    " is not user address",				\
330 		    __func__, (pm), (va));				\
331 	}								\
332     } while (0 /* CONSTCOND */)
333 #else /* DIAGNOSTIC */
334 #define KASSERT_PM_ADDR(pm,va)
335 #endif /* DIAGNOSTIC */
336 
337 
338 vsize_t
pmap_kenter_range(vaddr_t va,paddr_t pa,vsize_t size,vm_prot_t prot,u_int flags)339 pmap_kenter_range(vaddr_t va, paddr_t pa, vsize_t size,
340     vm_prot_t prot, u_int flags)
341 {
342 	pt_entry_t attr;
343 	vsize_t resid = round_page(size);
344 
345 	attr = _pmap_pte_adjust_prot(0, prot, VM_PROT_ALL, false);
346 	attr = _pmap_pte_adjust_cacheflags(attr, flags);
347 	pmapboot_enter_range(va, pa, resid, attr, printf);
348 
349 	return resid;
350 }
351 
352 
353 void
pmap_bootstrap(vaddr_t vstart,vaddr_t vend)354 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
355 {
356 	struct pmap *kpm;
357 	pd_entry_t *l0;
358 	paddr_t l0pa;
359 
360 	PMAP_HIST_INIT();	/* init once */
361 
362 	UVMHIST_FUNC(__func__);
363 	UVMHIST_CALLARGS(pmaphist, "vstart=%#jx vend=%#jx", (uintptr_t)vstart,
364 	    (uintptr_t)vend, 0, 0);
365 
366 	uvmexp.ncolors = aarch64_cache_vindexsize / PAGE_SIZE;
367 
368 	/* devmap already uses last of va? */
369 	if (virtual_devmap_addr != 0 && virtual_devmap_addr < vend)
370 		vend = virtual_devmap_addr;
371 
372 	virtual_avail = vstart;
373 	virtual_end = vend;
374 	pmap_maxkvaddr = vstart;
375 
376 	l0pa = reg_ttbr1_el1_read();
377 	l0 = (void *)AARCH64_PA_TO_KVA(l0pa);
378 
379 	pmap_tlb_info_init(&pmap_tlb0_info);
380 
381 	memset(&kernel_pmap, 0, sizeof(kernel_pmap));
382 
383 	kpm = pmap_kernel();
384 	struct pmap_asid_info * const pai = PMAP_PAI(kpm, cpu_tlb_info(ci));
385 
386 	pai->pai_asid = KERNEL_PID;
387 	kpm->pm_refcnt = 1;
388 	kpm->pm_idlepdp = 0;
389 	kpm->pm_l0table = l0;
390 	kpm->pm_l0table_pa = l0pa;
391 	kpm->pm_onproc = kcpuset_running;
392 	kpm->pm_active = kcpuset_running;
393 	kpm->pm_activated = true;
394 	LIST_INIT(&kpm->pm_vmlist);
395 	LIST_INIT(&kpm->pm_pvlist);	/* not used for kernel pmap */
396 	mutex_init(&kpm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
397 
398 	CTASSERT(sizeof(kpm->pm_stats.wired_count) == sizeof(long));
399 	CTASSERT(sizeof(kpm->pm_stats.resident_count) == sizeof(long));
400 
401 #if defined(EFI_RUNTIME)
402 	memset(&efirt_pmap, 0, sizeof(efirt_pmap));
403 	struct pmap * const efipm = &efirt_pmap;
404 	struct pmap_asid_info * const efipai = PMAP_PAI(efipm, cpu_tlb_info(ci));
405 
406 	efipai->pai_asid = KERNEL_PID;
407 	efipm->pm_refcnt = 1;
408 
409 	vaddr_t efi_l0va = uvm_pageboot_alloc(Ln_TABLE_SIZE);
410 	KASSERT((efi_l0va & PAGE_MASK) == 0);
411 
412 	efipm->pm_l0table = (pd_entry_t *)efi_l0va;
413 	memset(efipm->pm_l0table, 0, Ln_TABLE_SIZE);
414 
415 	efipm->pm_l0table_pa = AARCH64_KVA_TO_PA(efi_l0va);
416 
417 	efipm->pm_activated = false;
418 	LIST_INIT(&efipm->pm_vmlist);
419 	LIST_INIT(&efipm->pm_pvlist);	/* not used for efi pmap */
420 	mutex_init(&efipm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
421 #endif
422 }
423 
424 #ifdef MULTIPROCESSOR
425 void
pmap_md_tlb_info_attach(struct pmap_tlb_info * ti,struct cpu_info * ci)426 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
427 {
428 	/* nothing */
429 }
430 #endif /* MULTIPROCESSOR */
431 
432 static inline void
_pmap_adj_wired_count(struct pmap * pm,int adj)433 _pmap_adj_wired_count(struct pmap *pm, int adj)
434 {
435 
436 	if (pm == pmap_kernel()) {
437 		atomic_add_long(&pm->pm_stats.wired_count, adj);
438 	} else {
439 		KASSERT(mutex_owned(&pm->pm_lock));
440 		pm->pm_stats.wired_count += adj;
441 	}
442 }
443 
444 static inline void
_pmap_adj_resident_count(struct pmap * pm,int adj)445 _pmap_adj_resident_count(struct pmap *pm, int adj)
446 {
447 
448 	if (pm == pmap_kernel()) {
449 		atomic_add_long(&pm->pm_stats.resident_count, adj);
450 	} else {
451 		KASSERT(mutex_owned(&pm->pm_lock));
452 		pm->pm_stats.resident_count += adj;
453 	}
454 }
455 
456 inline static int
_pmap_color(vaddr_t addr)457 _pmap_color(vaddr_t addr)	/* or paddr_t */
458 {
459 	return (addr >> PGSHIFT) & (uvmexp.ncolors - 1);
460 }
461 
462 static int
_pmap_pmap_ctor(void * arg,void * v,int flags)463 _pmap_pmap_ctor(void *arg, void *v, int flags)
464 {
465 	memset(v, 0, sizeof(struct pmap));
466 	return 0;
467 }
468 
469 static int
_pmap_pv_ctor(void * arg,void * v,int flags)470 _pmap_pv_ctor(void *arg, void *v, int flags)
471 {
472 	memset(v, 0, sizeof(struct pv_entry));
473 	return 0;
474 }
475 
476 pd_entry_t *
pmap_l0table(struct pmap * pm)477 pmap_l0table(struct pmap *pm)
478 {
479 
480 	return pm->pm_l0table;
481 }
482 
483 void
pmap_init(void)484 pmap_init(void)
485 {
486 
487 	pool_cache_bootstrap(&_pmap_cache, sizeof(struct pmap),
488 	    coherency_unit, 0, 0, "pmappl", NULL, IPL_NONE, _pmap_pmap_ctor,
489 	    NULL, NULL);
490 
491 	pool_cache_bootstrap(&_pmap_pv_pool, sizeof(struct pv_entry),
492 	    32, 0, PR_LARGECACHE, "pvpl", NULL, IPL_NONE, _pmap_pv_ctor,
493 	    NULL, NULL);
494 
495 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
496 }
497 
498 void
pmap_virtual_space(vaddr_t * vstartp,vaddr_t * vendp)499 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
500 {
501 	*vstartp = virtual_avail;
502 	*vendp = virtual_end;
503 }
504 
505 vaddr_t
pmap_steal_memory(vsize_t size,vaddr_t * vstartp,vaddr_t * vendp)506 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
507 {
508 	int npage;
509 	paddr_t pa;
510 	vaddr_t va;
511 	psize_t bank_npage;
512 	uvm_physseg_t bank;
513 
514 	UVMHIST_FUNC(__func__);
515 	UVMHIST_CALLARGS(pmaphist, "size=%llu, *vstartp=%llx, *vendp=%llx",
516 	    size, *vstartp, *vendp, 0);
517 
518 	size = round_page(size);
519 	npage = atop(size);
520 
521 	for (bank = uvm_physseg_get_first(); uvm_physseg_valid_p(bank);
522 	    bank = uvm_physseg_get_next(bank)) {
523 
524 		bank_npage = uvm_physseg_get_avail_end(bank) -
525 		    uvm_physseg_get_avail_start(bank);
526 		if (npage <= bank_npage)
527 			break;
528 	}
529 
530 	if (!uvm_physseg_valid_p(bank)) {
531 		panic("%s: no memory", __func__);
532 	}
533 
534 	/* Steal pages */
535 	pa = ptoa(uvm_physseg_get_avail_start(bank));
536 	va = AARCH64_PA_TO_KVA(pa);
537 	uvm_physseg_unplug(atop(pa), npage);
538 
539 	for (; npage > 0; npage--, pa += PAGE_SIZE)
540 		pmap_zero_page(pa);
541 
542 	return va;
543 }
544 
545 void
pmap_reference(struct pmap * pm)546 pmap_reference(struct pmap *pm)
547 {
548 	atomic_inc_uint(&pm->pm_refcnt);
549 }
550 
551 static paddr_t
pmap_alloc_pdp(struct pmap * pm,struct vm_page ** pgp,int flags,bool waitok)552 pmap_alloc_pdp(struct pmap *pm, struct vm_page **pgp, int flags, bool waitok)
553 {
554 	paddr_t pa;
555 	struct vm_page *pg;
556 
557 	UVMHIST_FUNC(__func__);
558 	UVMHIST_CALLARGS(pmaphist, "pm=%p, flags=%08x, waitok=%d",
559 	    pm, flags, waitok, 0);
560 
561 	if (uvm.page_init_done) {
562 		int aflags = ((flags & PMAP_CANFAIL) ? 0 : UVM_PGA_USERESERVE) |
563 		    UVM_PGA_ZERO;
564  retry:
565 		pg = uvm_pagealloc(NULL, 0, NULL, aflags);
566 		if (pg == NULL) {
567 			if (waitok) {
568 				uvm_wait("pmap_alloc_pdp");
569 				goto retry;
570 			}
571 			return POOL_PADDR_INVALID;
572 		}
573 
574 		LIST_INSERT_HEAD(&pm->pm_vmlist, pg, pageq.list);
575 		pg->flags &= ~PG_BUSY;	/* never busy */
576 		pg->wire_count = 1;	/* max = 1 + Ln_ENTRIES = 513 */
577 		pa = VM_PAGE_TO_PHYS(pg);
578 		PMAP_COUNT(pdp_alloc);
579 		PMAP_PAGE_INIT(VM_PAGE_TO_PP(pg));
580 	} else {
581 		/* uvm_pageboot_alloc() returns a direct mapping address */
582 		pg = NULL;
583 		pa = AARCH64_KVA_TO_PA(
584 		    uvm_pageboot_alloc(Ln_TABLE_SIZE));
585 		PMAP_COUNT(pdp_alloc_boot);
586 	}
587 	if (pgp != NULL)
588 		*pgp = pg;
589 
590 	UVMHIST_LOG(pmaphist, "pa=%llx, pg=%llx",
591 	    pa, pg, 0, 0);
592 
593 	return pa;
594 }
595 
596 static void
pmap_free_pdp(struct pmap * pm,struct vm_page * pg)597 pmap_free_pdp(struct pmap *pm, struct vm_page *pg)
598 {
599 
600 	KASSERT(pm != pmap_kernel());
601 	KASSERT(VM_PAGE_TO_PP(pg)->pp_pv.pv_pmap == NULL);
602 	KASSERT(VM_PAGE_TO_PP(pg)->pp_pv.pv_next == NULL);
603 
604 	LIST_REMOVE(pg, pageq.list);
605 	pg->wire_count = 0;
606 	uvm_pagefree(pg);
607 	PMAP_COUNT(pdp_free);
608 }
609 
610 /* free empty page table pages */
611 static void
_pmap_sweep_pdp(struct pmap * pm)612 _pmap_sweep_pdp(struct pmap *pm)
613 {
614 	struct vm_page *pg, *tmp;
615 	pd_entry_t *ptep_in_parent, opte __diagused;
616 	paddr_t pa, pdppa;
617 	uint16_t wirecount __diagused;
618 
619 	KASSERT(mutex_owned(&pm->pm_lock) || pm->pm_refcnt == 0);
620 
621 	LIST_FOREACH_SAFE(pg, &pm->pm_vmlist, pageq.list, tmp) {
622 		if (pg->wire_count != 1)
623 			continue;
624 
625 		pa = VM_PAGE_TO_PHYS(pg);
626 		if (pa == pm->pm_l0table_pa)
627 			continue;
628 
629 		ptep_in_parent = VM_PAGE_TO_MD(pg)->mdpg_ptep_parent;
630 		if (ptep_in_parent == NULL) {
631 			/* no parent */
632 			pmap_free_pdp(pm, pg);
633 			continue;
634 		}
635 
636 		/* unlink from parent */
637 		opte = atomic_swap_64(ptep_in_parent, 0);
638 		KASSERT(lxpde_valid(opte));
639 		wirecount = --pg->wire_count; /* 1 -> 0 */
640 		KASSERT(wirecount == 0);
641 		pmap_free_pdp(pm, pg);
642 
643 		/* L3->L2->L1. no need for L0 */
644 		pdppa = AARCH64_KVA_TO_PA(trunc_page((vaddr_t)ptep_in_parent));
645 		if (pdppa == pm->pm_l0table_pa)
646 			continue;
647 
648 		pg = PHYS_TO_VM_PAGE(pdppa);
649 		KASSERT(pg != NULL);
650 		KASSERTMSG(pg->wire_count >= 1,
651 		    "wire_count=%d", pg->wire_count);
652 		/* decrement wire_count of parent */
653 		wirecount = --pg->wire_count;
654 		KASSERTMSG(pg->wire_count <= (Ln_ENTRIES + 1),
655 		    "pm=%p, pg=%p, wire_count=%d",
656 		    pm, pg, pg->wire_count);
657 	}
658 	pm->pm_idlepdp = 0;
659 }
660 
661 static void
_pmap_free_pdp_all(struct pmap * pm,bool free_l0)662 _pmap_free_pdp_all(struct pmap *pm, bool free_l0)
663 {
664 	struct vm_page *pg, *pgtmp, *pg_reserve;
665 
666 	pg_reserve = free_l0 ? NULL : PHYS_TO_VM_PAGE(pm->pm_l0table_pa);
667 	LIST_FOREACH_SAFE(pg, &pm->pm_vmlist, pageq.list, pgtmp) {
668 		if (pg == pg_reserve)
669 			continue;
670 		pmap_free_pdp(pm, pg);
671 	}
672 }
673 
674 vaddr_t
pmap_growkernel(vaddr_t maxkvaddr)675 pmap_growkernel(vaddr_t maxkvaddr)
676 {
677 	struct pmap *pm = pmap_kernel();
678 	struct vm_page *pg;
679 	int error;
680 	vaddr_t va;
681 	paddr_t pa;
682 
683 	UVMHIST_FUNC(__func__);
684 	UVMHIST_CALLARGS(pmaphist, "maxkvaddr=%llx, pmap_maxkvaddr=%llx",
685 	    maxkvaddr, pmap_maxkvaddr, 0, 0);
686 
687 	mutex_enter(&pm->pm_lock);
688 	for (va = pmap_maxkvaddr & L2_FRAME; va <= maxkvaddr; va += L2_SIZE) {
689 		error = _pmap_get_pdp(pm, va, false, 0, &pa, &pg);
690 		if (error != 0) {
691 			panic("%s: cannot allocate L3 table error=%d",
692 			    __func__, error);
693 		}
694 	}
695 	kasan_shadow_map((void *)pmap_maxkvaddr,
696 	    (size_t)(va - pmap_maxkvaddr));
697 	pmap_maxkvaddr = va;
698 	mutex_exit(&pm->pm_lock);
699 
700 	return va;
701 }
702 
703 bool
pmap_extract(struct pmap * pm,vaddr_t va,paddr_t * pap)704 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
705 {
706 
707 	return pmap_extract_coherency(pm, va, pap, NULL);
708 }
709 
710 bool
pmap_extract_coherency(struct pmap * pm,vaddr_t va,paddr_t * pap,bool * coherencyp)711 pmap_extract_coherency(struct pmap *pm, vaddr_t va, paddr_t *pap,
712     bool *coherencyp)
713 {
714 	pt_entry_t *ptep, pte;
715 	paddr_t pa;
716 	vsize_t blocksize = 0;
717 	int space;
718 	bool coherency, valid;
719 	extern char __kernel_text[];
720 	extern char _end[];
721 
722 	coherency = false;
723 
724 	space = aarch64_addressspace(va);
725 	if (pm == pmap_kernel()) {
726 		if (space != AARCH64_ADDRSPACE_UPPER)
727 			return false;
728 
729 		if (IN_RANGE(va, (vaddr_t)__kernel_text, (vaddr_t)_end)) {
730 			/* kernel text/data/bss are definitely linear mapped */
731 			pa = KERN_VTOPHYS(va);
732 			goto mapped;
733 		} else if (IN_DIRECTMAP_ADDR(va)) {
734 			/*
735 			 * also direct mapping is linear mapped, but areas that
736 			 * have no physical memory haven't been mapped.
737 			 * fast lookup by using the S1E1R/PAR_EL1 registers.
738 			 */
739 			register_t s = daif_disable(DAIF_I | DAIF_F);
740 			reg_s1e1r_write(va);
741 			isb();
742 			uint64_t par = reg_par_el1_read();
743 			reg_daif_write(s);
744 
745 			if (par & PAR_F)
746 				return false;
747 			pa = (__SHIFTOUT(par, PAR_PA) << PAR_PA_SHIFT) +
748 			    (va & __BITS(PAR_PA_SHIFT - 1, 0));
749 			goto mapped;
750 		}
751 	} else {
752 		if (space != AARCH64_ADDRSPACE_LOWER)
753 			return false;
754 	}
755 
756 	/*
757 	 * other areas, it isn't able to examined using the PAR_EL1 register,
758 	 * because the page may be in an access fault state due to
759 	 * reference bit emulation.
760 	 */
761 	if (pm != pmap_kernel())
762 		mutex_enter(&pm->pm_lock);
763 	ptep = _pmap_pte_lookup_bs(pm, va, &blocksize);
764 	valid = (ptep != NULL && lxpde_valid(pte = *ptep));
765 	if (pm != pmap_kernel())
766 		mutex_exit(&pm->pm_lock);
767 
768 	if (!valid) {
769 		return false;
770 	}
771 
772 	pa = lxpde_pa(pte) + (va & (blocksize - 1));
773 
774 	switch (pte & LX_BLKPAG_ATTR_MASK) {
775 	case LX_BLKPAG_ATTR_NORMAL_NC:
776 	case LX_BLKPAG_ATTR_DEVICE_MEM:
777 	case LX_BLKPAG_ATTR_DEVICE_MEM_NP:
778 		coherency = true;
779 		break;
780 	}
781 
782  mapped:
783 	if (pap != NULL)
784 		*pap = pa;
785 	if (coherencyp != NULL)
786 		*coherencyp = coherency;
787 	return true;
788 }
789 
790 paddr_t
vtophys(vaddr_t va)791 vtophys(vaddr_t va)
792 {
793 	struct pmap *pm;
794 	paddr_t pa;
795 
796 	/* even if TBI is disabled, AARCH64_ADDRTOP_TAG means KVA */
797 	if ((uint64_t)va & AARCH64_ADDRTOP_TAG)
798 		pm = pmap_kernel();
799 	else
800 		pm = curlwp->l_proc->p_vmspace->vm_map.pmap;
801 
802 	if (pmap_extract(pm, va, &pa) == false)
803 		return VTOPHYS_FAILED;
804 	return pa;
805 }
806 
807 /*
808  * return pointer of the pte. regardess of whether the entry is valid or not.
809  */
810 static pt_entry_t *
_pmap_pte_lookup_bs(struct pmap * pm,vaddr_t va,vsize_t * bs)811 _pmap_pte_lookup_bs(struct pmap *pm, vaddr_t va, vsize_t *bs)
812 {
813 	pt_entry_t *ptep;
814 	pd_entry_t *l0, *l1, *l2, *l3;
815 	pd_entry_t pde;
816 	vsize_t blocksize;
817 	unsigned int idx;
818 
819 	KASSERT(pm == pmap_kernel() || mutex_owned(&pm->pm_lock));
820 
821 	/*
822 	 * traverse L0 -> L1 -> L2 -> L3
823 	 */
824 	blocksize = L0_SIZE;
825 	l0 = pm->pm_l0table;
826 	idx = l0pde_index(va);
827 	ptep = &l0[idx];
828 	pde = *ptep;
829 	if (!l0pde_valid(pde))
830 		goto done;
831 
832 	blocksize = L1_SIZE;
833 	l1 = (pd_entry_t *)AARCH64_PA_TO_KVA(l0pde_pa(pde));
834 	idx = l1pde_index(va);
835 	ptep = &l1[idx];
836 	pde = *ptep;
837 	if (!l1pde_valid(pde) || l1pde_is_block(pde))
838 		goto done;
839 
840 	blocksize = L2_SIZE;
841 	l2 = (pd_entry_t *)AARCH64_PA_TO_KVA(l1pde_pa(pde));
842 	idx = l2pde_index(va);
843 	ptep = &l2[idx];
844 	pde = *ptep;
845 	if (!l2pde_valid(pde) || l2pde_is_block(pde))
846 		goto done;
847 
848 	blocksize = L3_SIZE;
849 	l3 = (pd_entry_t *)AARCH64_PA_TO_KVA(l2pde_pa(pde));
850 	idx = l3pte_index(va);
851 	ptep = &l3[idx];
852 
853  done:
854 	if (bs != NULL)
855 		*bs = blocksize;
856 	return ptep;
857 }
858 
859 static pt_entry_t *
_pmap_pte_lookup_l3(struct pmap * pm,vaddr_t va)860 _pmap_pte_lookup_l3(struct pmap *pm, vaddr_t va)
861 {
862 	pt_entry_t *ptep;
863 	vsize_t blocksize = 0;
864 
865 	ptep = _pmap_pte_lookup_bs(pm, va, &blocksize);
866 	if ((ptep != NULL) && (blocksize == L3_SIZE))
867 		return ptep;
868 
869 	return NULL;
870 }
871 
872 void
pmap_icache_sync_range(pmap_t pm,vaddr_t sva,vaddr_t eva)873 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
874 {
875 	pt_entry_t *ptep = NULL, pte;
876 	vaddr_t va;
877 	vsize_t blocksize = 0;
878 
879 	KASSERT_PM_ADDR(pm, sva);
880 
881 	pm_lock(pm);
882 
883 	for (va = sva; va < eva; va = (va + blocksize) & ~(blocksize - 1)) {
884 		/* va is belong to the same L3 table as before? */
885 		if ((blocksize == L3_SIZE) && ((va & L3INDEXMASK) != 0)) {
886 			ptep++;
887 		} else {
888 			ptep = _pmap_pte_lookup_bs(pm, va, &blocksize);
889 			if (ptep == NULL)
890 				break;
891 		}
892 
893 		pte = *ptep;
894 		if (!lxpde_valid(pte))
895 			continue;
896 
897 		vaddr_t eob = (va + blocksize) & ~(blocksize - 1);
898 		vsize_t len = ulmin(eva, eob) - va;
899 
900 		if (l3pte_readable(pte)) {
901 			cpu_icache_sync_range(va, len);
902 		} else {
903 			/*
904 			 * change to accessible temporarily
905 			 * to do cpu_icache_sync_range()
906 			 */
907 			struct pmap_asid_info * const pai = PMAP_PAI(pm,
908 			    cpu_tlb_info(ci));
909 
910 			atomic_swap_64(ptep, pte | LX_BLKPAG_AF);
911 			AARCH64_TLBI_BY_ASID_VA(pai->pai_asid, va);
912 			cpu_icache_sync_range(va, len);
913 			atomic_swap_64(ptep, pte);
914 			AARCH64_TLBI_BY_ASID_VA(pai->pai_asid, va);
915 		}
916 	}
917 
918 	pm_unlock(pm);
919 }
920 
921 /*
922  * Routine:	pmap_procwr
923  *
924  * Function:
925  *	Synchronize caches corresponding to [addr, addr+len) in p.
926  *
927  */
928 void
pmap_procwr(struct proc * p,vaddr_t sva,int len)929 pmap_procwr(struct proc *p, vaddr_t sva, int len)
930 {
931 
932 	if (__predict_true(p == curproc))
933 		cpu_icache_sync_range(sva, len);
934 	else {
935 		struct pmap *pm = p->p_vmspace->vm_map.pmap;
936 		paddr_t pa;
937 		vaddr_t va, eva;
938 		int tlen;
939 
940 		for (va = sva; len > 0; va = eva, len -= tlen) {
941 			eva = uimin(va + len, trunc_page(va + PAGE_SIZE));
942 			tlen = eva - va;
943 			if (!pmap_extract(pm, va, &pa))
944 				continue;
945 			va = AARCH64_PA_TO_KVA(pa);
946 			cpu_icache_sync_range(va, tlen);
947 		}
948 	}
949 }
950 
951 static pt_entry_t
_pmap_pte_adjust_prot(pt_entry_t pte,vm_prot_t prot,vm_prot_t refmod,bool user)952 _pmap_pte_adjust_prot(pt_entry_t pte, vm_prot_t prot, vm_prot_t refmod,
953     bool user)
954 {
955 	vm_prot_t masked;
956 	pt_entry_t xn;
957 
958 	masked = prot & refmod;
959 	pte &= ~(LX_BLKPAG_OS_RWMASK | LX_BLKPAG_AF | LX_BLKPAG_DBM | LX_BLKPAG_AP);
960 
961 	/*
962 	 * keep actual prot in the pte as OS_{READ|WRITE} for ref/mod emulation,
963 	 * and set the DBM bit for HAFDBS if it has write permission.
964 	 */
965 	pte |= LX_BLKPAG_OS_READ;	/* a valid pte can always be readable */
966 	if (prot & VM_PROT_WRITE)
967 		pte |= LX_BLKPAG_OS_WRITE | LX_BLKPAG_DBM;
968 
969 	switch (masked & (VM_PROT_READ | VM_PROT_WRITE)) {
970 	case 0:
971 	default:
972 		/*
973 		 * it cannot be accessed because there is no AF bit,
974 		 * but the AF bit will be added by fixup() or HAFDBS.
975 		 */
976 		pte |= LX_BLKPAG_AP_RO;
977 		break;
978 	case VM_PROT_READ:
979 		/*
980 		 * as it is RO, it cannot be written as is,
981 		 * but it may be changed to RW by fixup() or HAFDBS.
982 		 */
983 		pte |= LX_BLKPAG_AF;
984 		pte |= LX_BLKPAG_AP_RO;
985 		break;
986 	case VM_PROT_WRITE:
987 	case VM_PROT_READ | VM_PROT_WRITE:
988 		/* fully readable and writable */
989 		pte |= LX_BLKPAG_AF;
990 		pte |= LX_BLKPAG_AP_RW;
991 		break;
992 	}
993 
994 	/* executable for kernel or user? first set never exec both */
995 	pte |= (LX_BLKPAG_UXN | LX_BLKPAG_PXN);
996 	/* and either to executable */
997 	xn = user ? LX_BLKPAG_UXN : LX_BLKPAG_PXN;
998 	if (prot & VM_PROT_EXECUTE)
999 		pte &= ~xn;
1000 
1001 	return pte;
1002 }
1003 
1004 static pt_entry_t
_pmap_pte_adjust_cacheflags(pt_entry_t pte,u_int flags)1005 _pmap_pte_adjust_cacheflags(pt_entry_t pte, u_int flags)
1006 {
1007 
1008 	pte &= ~LX_BLKPAG_ATTR_MASK;
1009 
1010 	switch (flags & (PMAP_CACHE_MASK | PMAP_DEV_MASK)) {
1011 	case PMAP_DEV_NP ... PMAP_DEV_NP | PMAP_CACHE_MASK:
1012 		pte |= LX_BLKPAG_ATTR_DEVICE_MEM_NP;	/* Device-nGnRnE */
1013 		break;
1014 	case PMAP_DEV ... PMAP_DEV | PMAP_CACHE_MASK:
1015 		pte |= LX_BLKPAG_ATTR_DEVICE_MEM;	/* Device-nGnRE */
1016 		break;
1017 	case PMAP_NOCACHE:
1018 	case PMAP_NOCACHE_OVR:
1019 	case PMAP_WRITE_COMBINE:
1020 		pte |= LX_BLKPAG_ATTR_NORMAL_NC;	/* only no-cache */
1021 		break;
1022 	case PMAP_WRITE_BACK:
1023 	case 0:
1024 	default:
1025 		pte |= LX_BLKPAG_ATTR_NORMAL_WB;
1026 		break;
1027 	}
1028 
1029 	return pte;
1030 }
1031 
1032 #ifdef ARMV81_HAFDBS
1033 static inline void
_pmap_reflect_refmod_in_pp(pt_entry_t pte,struct pmap_page * pp)1034 _pmap_reflect_refmod_in_pp(pt_entry_t pte, struct pmap_page *pp)
1035 {
1036 	if (!lxpde_valid(pte))
1037 		return;
1038 
1039 	/*
1040 	 * In order to retain referenced/modified information,
1041 	 * it should be reflected from pte in the pmap_page.
1042 	 */
1043 	if (pte & LX_BLKPAG_AF)
1044 		pp->pp_pv.pv_va |= VM_PROT_READ;
1045 	if ((pte & LX_BLKPAG_AP) == LX_BLKPAG_AP_RW)
1046 		pp->pp_pv.pv_va |= VM_PROT_WRITE;
1047 }
1048 #endif
1049 
1050 static struct pv_entry *
_pmap_remove_pv(struct pmap_page * pp,struct pmap * pm,vaddr_t va,pt_entry_t pte)1051 _pmap_remove_pv(struct pmap_page *pp, struct pmap *pm, vaddr_t va,
1052     pt_entry_t pte)
1053 {
1054 	struct pv_entry *pv, *ppv;
1055 
1056 	UVMHIST_FUNC(__func__);
1057 	UVMHIST_CALLARGS(pmaphist, "pp=%p, pm=%p, va=%llx, pte=%llx",
1058 	    pp, pm, va, pte);
1059 
1060 	KASSERT(mutex_owned(&pm->pm_lock));	/* for pv_proc */
1061 	KASSERT(mutex_owned(&pp->pp_pvlock));
1062 
1063 #ifdef ARMV81_HAFDBS
1064 	if (aarch64_hafdbs_enabled != ID_AA64MMFR1_EL1_HAFDBS_NONE)
1065 		_pmap_reflect_refmod_in_pp(pte, pp);
1066 #endif
1067 
1068 	for (ppv = NULL, pv = &pp->pp_pv; pv != NULL; pv = pv->pv_next) {
1069 		if (pv->pv_pmap == pm && trunc_page(pv->pv_va) == va) {
1070 			break;
1071 		}
1072 		ppv = pv;
1073 	}
1074 
1075 	if (pm != pmap_kernel() && pv != NULL)
1076 		LIST_REMOVE(pv, pv_proc);
1077 
1078 	if (ppv == NULL) {
1079 		/* embedded in pmap_page */
1080 		pv->pv_pmap = NULL;
1081 		pv = NULL;
1082 		PMAP_COUNT(pv_remove_emb);
1083 	} else if (pv != NULL) {
1084 		/* dynamically allocated */
1085 		ppv->pv_next = pv->pv_next;
1086 		PMAP_COUNT(pv_remove_dyn);
1087 	} else {
1088 		PMAP_COUNT(pv_remove_nopv);
1089 	}
1090 
1091 	return pv;
1092 }
1093 
1094 #if defined(PMAP_PV_DEBUG) || defined(DDB)
1095 
1096 static char *
str_vmflags(uint32_t flags)1097 str_vmflags(uint32_t flags)
1098 {
1099 	static int idx = 0;
1100 	static char buf[4][32];	/* XXX */
1101 	char *p;
1102 
1103 	p = buf[idx];
1104 	idx = (idx + 1) & 3;
1105 
1106 	p[0] = (flags & VM_PROT_READ) ? 'R' : '-';
1107 	p[1] = (flags & VM_PROT_WRITE) ? 'W' : '-';
1108 	p[2] = (flags & VM_PROT_EXECUTE) ? 'X' : '-';
1109 	if (flags & PMAP_WIRED)
1110 		memcpy(&p[3], ",WIRED\0", 7);
1111 	else
1112 		p[3] = '\0';
1113 
1114 	return p;
1115 }
1116 
1117 void
1118 pmap_db_mdpg_print(struct vm_page *pg, void (*pr)(const char *, ...) __printflike(1, 2))
1119 {
1120 	struct pmap_page *pp = VM_PAGE_TO_PP(pg);
1121 	struct pv_entry *pv;
1122 	int i, flags;
1123 
1124 	i = 0;
1125 	flags = pp->pp_pv.pv_va & (PAGE_SIZE - 1);
1126 
1127 	pr("pp=%p\n", pp);
1128 	pr(" pp flags=%08x %s\n", flags, str_vmflags(flags));
1129 
1130 	for (pv = &pp->pp_pv; pv != NULL; pv = pv->pv_next) {
1131 		if (pv->pv_pmap == NULL) {
1132 			KASSERT(pv == &pp->pp_pv);
1133 			continue;
1134 		}
1135 		struct pmap * const pm = pv->pv_pmap;
1136 		struct pmap_asid_info * const pai = PMAP_PAI(pm,
1137 		    cpu_tlb_info(ci));
1138 
1139 		pr("  pv[%d] pv=%p\n", i, pv);
1140 		pr("    pv[%d].pv_pmap = %p (asid=%d)\n", i, pm, pai->pai_asid);
1141 		pr("    pv[%d].pv_va   = %016lx (color=%d)\n", i,
1142 		    trunc_page(pv->pv_va), _pmap_color(pv->pv_va));
1143 		pr("    pv[%d].pv_ptep = %p\n", i, pv->pv_ptep);
1144 		i++;
1145 	}
1146 }
1147 #endif /* PMAP_PV_DEBUG & DDB */
1148 
1149 static int
_pmap_enter_pv(struct pmap_page * pp,struct pmap * pm,struct pv_entry ** pvp,vaddr_t va,pt_entry_t * ptep,paddr_t pa,u_int flags)1150 _pmap_enter_pv(struct pmap_page *pp, struct pmap *pm, struct pv_entry **pvp,
1151     vaddr_t va, pt_entry_t *ptep, paddr_t pa, u_int flags)
1152 {
1153 	struct pv_entry *pv;
1154 
1155 	UVMHIST_FUNC(__func__);
1156 	UVMHIST_CALLARGS(pmaphist, "pp=%p, pm=%p, va=%llx, pa=%llx", pp, pm, va,
1157 	    pa);
1158 	UVMHIST_LOG(pmaphist, "ptep=%p, flags=%08x", ptep, flags, 0, 0);
1159 
1160 	KASSERT(mutex_owned(&pp->pp_pvlock));
1161 	KASSERT(trunc_page(va) == va);
1162 
1163 	/*
1164 	 * mapping cannot be already registered at this VA.
1165 	 */
1166 	if (pp->pp_pv.pv_pmap == NULL) {
1167 		/*
1168 		 * claim pv_entry embedded in pmap_page.
1169 		 * take care not to wipe out acc/mod flags.
1170 		 */
1171 		pv = &pp->pp_pv;
1172 		pv->pv_va = (pv->pv_va & (PAGE_SIZE - 1)) | va;
1173 	} else {
1174 		/*
1175 		 * create and link new pv.
1176 		 * pv is already allocated at beginning of _pmap_enter().
1177 		 */
1178 		pv = *pvp;
1179 		if (pv == NULL)
1180 			return ENOMEM;
1181 		*pvp = NULL;
1182 		pv->pv_next = pp->pp_pv.pv_next;
1183 		pp->pp_pv.pv_next = pv;
1184 		pv->pv_va = va;
1185 	}
1186 	pv->pv_pmap = pm;
1187 	pv->pv_ptep = ptep;
1188 	PMAP_COUNT(pv_enter);
1189 
1190 	if (pm != pmap_kernel())
1191 		LIST_INSERT_HEAD(&pm->pm_pvlist, pv, pv_proc);
1192 
1193 #ifdef PMAP_PV_DEBUG
1194 	printf("pv %p alias added va=%016lx -> pa=%016lx\n", pv, va, pa);
1195 	pmap_db_mdpg_print(PHYS_TO_VM_PAGE(pa), printf);
1196 #endif
1197 
1198 	return 0;
1199 }
1200 
1201 void
pmap_kenter_pa(vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags)1202 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1203 {
1204 
1205 	_pmap_enter(pmap_kernel(), va, pa, prot, flags | PMAP_WIRED, true);
1206 }
1207 
1208 void
pmap_kremove(vaddr_t va,vsize_t size)1209 pmap_kremove(vaddr_t va, vsize_t size)
1210 {
1211 	struct pmap *kpm = pmap_kernel();
1212 
1213 	UVMHIST_FUNC(__func__);
1214 	UVMHIST_CALLARGS(pmaphist, "va=%llx, size=%llx", va, size, 0, 0);
1215 
1216 	KDASSERT((va & PGOFSET) == 0);
1217 	KDASSERT((size & PGOFSET) == 0);
1218 
1219 	KDASSERT(!IN_DIRECTMAP_ADDR(va));
1220 	KDASSERT(IN_RANGE(va, VM_MIN_KERNEL_ADDRESS, VM_MAX_KERNEL_ADDRESS));
1221 
1222 	_pmap_remove(kpm, va, va + size, true, NULL);
1223 }
1224 
1225 static void
_pmap_protect_pv(struct pmap_page * pp,struct pv_entry * pv,vm_prot_t prot)1226 _pmap_protect_pv(struct pmap_page *pp, struct pv_entry *pv, vm_prot_t prot)
1227 {
1228 	pt_entry_t *ptep, pte;
1229 	vm_prot_t pteprot;
1230 	uint32_t mdattr;
1231 	const bool user = (pv->pv_pmap != pmap_kernel());
1232 
1233 	UVMHIST_FUNC(__func__);
1234 	UVMHIST_CALLARGS(pmaphist, "pp=%p, pv=%p, prot=%08x", pp, pv, prot, 0);
1235 
1236 	KASSERT(mutex_owned(&pv->pv_pmap->pm_lock));
1237 
1238 	ptep = pv->pv_ptep;
1239 	pte = *ptep;
1240 
1241 	/* get prot mask from pte */
1242 	pteprot = VM_PROT_READ;	/* a valid pte can always be readable */
1243 	if ((pte & (LX_BLKPAG_OS_WRITE | LX_BLKPAG_DBM)) != 0)
1244 		pteprot |= VM_PROT_WRITE;
1245 	if (l3pte_executable(pte, user))
1246 		pteprot |= VM_PROT_EXECUTE;
1247 
1248 #ifdef ARMV81_HAFDBS
1249 	if (aarch64_hafdbs_enabled != ID_AA64MMFR1_EL1_HAFDBS_NONE)
1250 		_pmap_reflect_refmod_in_pp(pte, pp);
1251 #endif
1252 	/* get prot mask from referenced/modified */
1253 	mdattr = pp->pp_pv.pv_va & (VM_PROT_READ | VM_PROT_WRITE);
1254 
1255 	/* new prot = prot & pteprot & mdattr */
1256 	pte = _pmap_pte_adjust_prot(pte, prot & pteprot, mdattr, user);
1257 	atomic_swap_64(ptep, pte);
1258 
1259 	struct pmap * const pm = pv->pv_pmap;
1260 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
1261 
1262 	AARCH64_TLBI_BY_ASID_VA(pai->pai_asid, trunc_page(pv->pv_va));
1263 }
1264 
1265 void
pmap_protect(struct pmap * pm,vaddr_t sva,vaddr_t eva,vm_prot_t prot)1266 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1267 {
1268 	pt_entry_t *ptep = NULL, pte;
1269 	vaddr_t va;
1270 	vsize_t blocksize = 0;
1271 	const bool user = (pm != pmap_kernel());
1272 
1273 	KASSERT((prot & VM_PROT_READ) || !(prot & VM_PROT_WRITE));
1274 
1275 	UVMHIST_FUNC(__func__);
1276 	UVMHIST_CALLARGS(pmaphist, "pm=%p, sva=%016lx, eva=%016lx, prot=%08x",
1277 	    pm, sva, eva, prot);
1278 
1279 	KASSERT_PM_ADDR(pm, sva);
1280 	KASSERT(!IN_DIRECTMAP_ADDR(sva));
1281 
1282 	/* PROT_EXEC requires implicit PROT_READ */
1283 	if (prot & VM_PROT_EXECUTE)
1284 		prot |= VM_PROT_READ;
1285 
1286 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1287 		PMAP_COUNT(protect_remove_fallback);
1288 		pmap_remove(pm, sva, eva);
1289 		return;
1290 	}
1291 	PMAP_COUNT(protect);
1292 
1293 	KDASSERT((sva & PAGE_MASK) == 0);
1294 	KDASSERT((eva & PAGE_MASK) == 0);
1295 
1296 	pm_lock(pm);
1297 
1298 	for (va = sva; va < eva; va = (va + blocksize) & ~(blocksize - 1)) {
1299 #ifdef UVMHIST
1300 		pt_entry_t opte;
1301 #endif
1302 		struct pmap_page *pp;
1303 		uint32_t mdattr;
1304 		bool executable;
1305 
1306 		/* va is belong to the same L3 table as before? */
1307 		if ((blocksize == L3_SIZE) && ((va & L3INDEXMASK) != 0))
1308 			ptep++;
1309 		else
1310 			ptep = _pmap_pte_lookup_bs(pm, va, &blocksize);
1311 
1312 		pte = *ptep;
1313 		if (!lxpde_valid(pte)) {
1314 			PMAP_COUNT(protect_none);
1315 			continue;
1316 		}
1317 
1318 		if ((pte & LX_BLKPAG_OS_WIRED) == 0) {
1319 			const paddr_t pa = lxpde_pa(pte);
1320 			struct vm_page *const pg = PHYS_TO_VM_PAGE(pa);
1321 
1322 			if (pg != NULL) {
1323 				pp = VM_PAGE_TO_PP(pg);
1324 				PMAP_COUNT(protect_managed);
1325 			} else {
1326 #ifdef __HAVE_PMAP_PV_TRACK
1327 				pp = pmap_pv_tracked(pa);
1328 #ifdef PMAPCOUNTERS
1329 				if (pp != NULL)
1330 					PMAP_COUNT(protect_pvmanaged);
1331 				else
1332 					PMAP_COUNT(protect_unmanaged);
1333 #endif
1334 #else
1335 				pp = NULL;
1336 				PMAP_COUNT(protect_unmanaged);
1337 #endif /* __HAVE_PMAP_PV_TRACK */
1338 			}
1339 		} else {	/* kenter */
1340 			pp = NULL;
1341 			PMAP_COUNT(protect_unmanaged);
1342 		}
1343 
1344 		if (pp != NULL) {
1345 #ifdef ARMV81_HAFDBS
1346 			if (aarch64_hafdbs_enabled != ID_AA64MMFR1_EL1_HAFDBS_NONE)
1347 				_pmap_reflect_refmod_in_pp(pte, pp);
1348 #endif
1349 			/* get prot mask from referenced/modified */
1350 			mdattr = pp->pp_pv.pv_va &
1351 			    (VM_PROT_READ | VM_PROT_WRITE);
1352 		} else {
1353 			/* unmanaged page */
1354 			mdattr = VM_PROT_ALL;
1355 		}
1356 
1357 #ifdef UVMHIST
1358 		opte = pte;
1359 #endif
1360 		executable = l3pte_executable(pte, user);
1361 		pte = _pmap_pte_adjust_prot(pte, prot, mdattr, user);
1362 
1363 		struct pmap_asid_info * const pai = PMAP_PAI(pm,
1364 		    cpu_tlb_info(ci));
1365 		if (!executable && (prot & VM_PROT_EXECUTE)) {
1366 			/* non-exec -> exec */
1367 			UVMHIST_LOG(pmaphist, "icache_sync: "
1368 			    "pm=%p, va=%016lx, pte: %016lx -> %016lx",
1369 			    pm, va, opte, pte);
1370 
1371 			if (!l3pte_readable(pte)) {
1372 				PTE_ICACHE_SYNC_PAGE(pte, ptep, pai->pai_asid,
1373 				    va);
1374 				atomic_swap_64(ptep, pte);
1375 				AARCH64_TLBI_BY_ASID_VA(pai->pai_asid, va);
1376 			} else {
1377 				atomic_swap_64(ptep, pte);
1378 				AARCH64_TLBI_BY_ASID_VA(pai->pai_asid, va);
1379 				cpu_icache_sync_range(va, PAGE_SIZE);
1380 			}
1381 		} else {
1382 			atomic_swap_64(ptep, pte);
1383 			AARCH64_TLBI_BY_ASID_VA(pai->pai_asid, va);
1384 		}
1385 	}
1386 
1387 	pm_unlock(pm);
1388 }
1389 
1390 #if defined(EFI_RUNTIME)
1391 void
pmap_activate_efirt(void)1392 pmap_activate_efirt(void)
1393 {
1394 	struct cpu_info *ci = curcpu();
1395 	struct pmap *pm = &efirt_pmap;
1396 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
1397 
1398 	UVMHIST_FUNC(__func__);
1399 	UVMHIST_CALLARGS(pmaphist, " (pm=%#jx)", (uintptr_t)pm, 0, 0, 0);
1400 
1401 	KASSERT(kpreempt_disabled());
1402 
1403 	ci->ci_pmap_asid_cur = pai->pai_asid;
1404 	UVMHIST_LOG(pmaphist, "setting asid to %#jx", pai->pai_asid,
1405 	    0, 0, 0);
1406 	tlb_set_asid(pai->pai_asid, pm);
1407 
1408 	/* Re-enable translation table walks using TTBR0 */
1409 	uint64_t tcr = reg_tcr_el1_read();
1410 	reg_tcr_el1_write(tcr & ~TCR_EPD0);
1411 	isb();
1412 	pm->pm_activated = true;
1413 
1414 	PMAP_COUNT(activate);
1415 }
1416 #endif
1417 
1418 void
pmap_activate(struct lwp * l)1419 pmap_activate(struct lwp *l)
1420 {
1421 	struct pmap *pm = l->l_proc->p_vmspace->vm_map.pmap;
1422 	uint64_t tcr;
1423 
1424 	UVMHIST_FUNC(__func__);
1425 	UVMHIST_CALLARGS(pmaphist, "lwp=%p (pid=%d, kernel=%u)", l,
1426 	    l->l_proc->p_pid, pm == pmap_kernel() ? 1 : 0, 0);
1427 
1428 	KASSERT(kpreempt_disabled());
1429 	KASSERT((reg_tcr_el1_read() & TCR_EPD0) != 0);
1430 
1431 	if (pm == pmap_kernel())
1432 		return;
1433 	if (l != curlwp)
1434 		return;
1435 
1436 	KASSERT(pm->pm_l0table != NULL);
1437 
1438 	/* this calls tlb_set_asid which calls cpu_set_ttbr0 */
1439 	pmap_tlb_asid_acquire(pm, l);
1440 
1441 	UVMHIST_LOG(pmaphist, "lwp=%p, asid=%d", l,
1442 	    PMAP_PAI(pm, cpu_tlb_info(ci))->pai_asid, 0, 0);
1443 
1444 	/* Re-enable translation table walks using TTBR0 */
1445 	tcr = reg_tcr_el1_read();
1446 	reg_tcr_el1_write(tcr & ~TCR_EPD0);
1447 	isb();
1448 
1449 	pm->pm_activated = true;
1450 
1451 	PMAP_COUNT(activate);
1452 }
1453 
1454 #if defined(EFI_RUNTIME)
1455 void
pmap_deactivate_efirt(void)1456 pmap_deactivate_efirt(void)
1457 {
1458 	struct cpu_info * const ci = curcpu();
1459 	struct pmap * const pm = &efirt_pmap;
1460 
1461 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1462 
1463 	KASSERT(kpreempt_disabled());
1464 
1465 	/* Disable translation table walks using TTBR0 */
1466 	uint64_t tcr = reg_tcr_el1_read();
1467 	reg_tcr_el1_write(tcr | TCR_EPD0);
1468 	isb();
1469 
1470 	UVMHIST_LOG(pmaphist, "setting asid to %#jx", KERNEL_PID,
1471 	    0, 0, 0);
1472 
1473 	ci->ci_pmap_asid_cur = KERNEL_PID;
1474         tlb_set_asid(KERNEL_PID, pmap_kernel());
1475 
1476 	pm->pm_activated = false;
1477 
1478 	PMAP_COUNT(deactivate);
1479 }
1480 #endif
1481 
1482 void
pmap_deactivate(struct lwp * l)1483 pmap_deactivate(struct lwp *l)
1484 {
1485 	struct pmap *pm = l->l_proc->p_vmspace->vm_map.pmap;
1486 	uint64_t tcr;
1487 
1488 	UVMHIST_FUNC(__func__);
1489 	UVMHIST_CALLARGS(pmaphist, "lwp=%p (pid=%d, (kernel=%u))", l,
1490 	    l->l_proc->p_pid, pm == pmap_kernel() ? 1 : 0, 0);
1491 
1492 	KASSERT(kpreempt_disabled());
1493 
1494 	/* Disable translation table walks using TTBR0 */
1495 	tcr = reg_tcr_el1_read();
1496 	reg_tcr_el1_write(tcr | TCR_EPD0);
1497 	isb();
1498 
1499 	UVMHIST_LOG(pmaphist, "lwp=%p, asid=%d", l,
1500 	    PMAP_PAI(pm, cpu_tlb_info(ci))->pai_asid, 0, 0);
1501 
1502 	pmap_tlb_asid_deactivate(pm);
1503 
1504 	pm->pm_activated = false;
1505 
1506 	PMAP_COUNT(deactivate);
1507 }
1508 
1509 struct pmap *
pmap_create(void)1510 pmap_create(void)
1511 {
1512 	struct pmap *pm;
1513 
1514 	UVMHIST_FUNC(__func__);
1515 	UVMHIST_CALLED(pmaphist);
1516 
1517 	pm = pool_cache_get(&_pmap_cache, PR_WAITOK);
1518 	memset(pm, 0, sizeof(*pm));
1519 	pm->pm_refcnt = 1;
1520 	pm->pm_idlepdp = 0;
1521 	LIST_INIT(&pm->pm_vmlist);
1522 	LIST_INIT(&pm->pm_pvlist);
1523 	mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
1524 
1525 	kcpuset_create(&pm->pm_active, true);
1526 	kcpuset_create(&pm->pm_onproc, true);
1527 
1528 	pm->pm_l0table_pa = pmap_alloc_pdp(pm, NULL, 0, true);
1529 	KASSERT(pm->pm_l0table_pa != POOL_PADDR_INVALID);
1530 	pm->pm_l0table = (pd_entry_t *)AARCH64_PA_TO_KVA(pm->pm_l0table_pa);
1531 	KASSERT(((vaddr_t)pm->pm_l0table & (PAGE_SIZE - 1)) == 0);
1532 
1533 	UVMHIST_LOG(pmaphist, "pm=%p, pm_l0table=%016lx, pm_l0table_pa=%016lx",
1534 	    pm, pm->pm_l0table, pm->pm_l0table_pa, 0);
1535 
1536 	PMAP_COUNT(create);
1537 	return pm;
1538 }
1539 
1540 void
pmap_destroy(struct pmap * pm)1541 pmap_destroy(struct pmap *pm)
1542 {
1543 	unsigned int refcnt;
1544 
1545 	UVMHIST_FUNC(__func__);
1546 	UVMHIST_CALLARGS(pmaphist, "pm=%p, pm_l0table=%016lx, refcnt=%jd",
1547 	    pm, pm->pm_l0table, pm->pm_refcnt, 0);
1548 
1549 	if (pm == NULL)
1550 		return;
1551 
1552 	if (pm == pmap_kernel())
1553 		panic("cannot destroy kernel pmap");
1554 
1555 	membar_release();
1556 	refcnt = atomic_dec_uint_nv(&pm->pm_refcnt);
1557 	if (refcnt > 0)
1558 		return;
1559 	membar_acquire();
1560 
1561 	KASSERT(LIST_EMPTY(&pm->pm_pvlist));
1562 	pmap_tlb_asid_release_all(pm);
1563 
1564 	_pmap_free_pdp_all(pm, true);
1565 	mutex_destroy(&pm->pm_lock);
1566 
1567 	kcpuset_destroy(pm->pm_active);
1568 	kcpuset_destroy(pm->pm_onproc);
1569 
1570 	pool_cache_put(&_pmap_cache, pm);
1571 
1572 	PMAP_COUNT(destroy);
1573 }
1574 
1575 static inline void
_pmap_pdp_setparent(struct pmap * pm,struct vm_page * pg,pt_entry_t * ptep)1576 _pmap_pdp_setparent(struct pmap *pm, struct vm_page *pg, pt_entry_t *ptep)
1577 {
1578 
1579 	if ((pm != pmap_kernel()) && (pg != NULL)) {
1580 		KASSERT(mutex_owned(&pm->pm_lock));
1581 		VM_PAGE_TO_MD(pg)->mdpg_ptep_parent = ptep;
1582 	}
1583 }
1584 
1585 /*
1586  * increment reference counter of the page descriptor page.
1587  * the reference counter should be equal to
1588  *  1 + num of valid entries the page has.
1589  */
1590 static inline void
_pmap_pdp_addref(struct pmap * pm,paddr_t pdppa,struct vm_page * pdppg_hint)1591 _pmap_pdp_addref(struct pmap *pm, paddr_t pdppa, struct vm_page *pdppg_hint)
1592 {
1593 	struct vm_page *pg;
1594 
1595 	/* kernel L0-L3 pages will never be freed */
1596 	if (pm == pmap_kernel())
1597 		return;
1598 
1599 #if defined(EFI_RUNTIME)
1600 	/* EFI runtme L0-L3 pages will never be freed */
1601 	if (pm == pmap_efirt())
1602 		return;
1603 #endif
1604 
1605 	KASSERT(mutex_owned(&pm->pm_lock));
1606 
1607 	/* no need for L0 page */
1608 	if (pm->pm_l0table_pa == pdppa)
1609 		return;
1610 
1611 	pg = pdppg_hint;
1612 	if (pg == NULL)
1613 		pg = PHYS_TO_VM_PAGE(pdppa);
1614 	KASSERT(pg != NULL);
1615 
1616 	pg->wire_count++;
1617 
1618 	KASSERTMSG(pg->wire_count <= (Ln_ENTRIES + 1),
1619 	    "pg=%p, wire_count=%d", pg, pg->wire_count);
1620 }
1621 
1622 /*
1623  * decrement reference counter of the page descriptor page.
1624  * if reference counter is 1(=empty), pages will be freed, and return true.
1625  * otherwise return false.
1626  * kernel page, or L0 page descriptor page will be never freed.
1627  */
1628 static bool
_pmap_pdp_delref(struct pmap * pm,paddr_t pdppa,bool do_free_pdp)1629 _pmap_pdp_delref(struct pmap *pm, paddr_t pdppa, bool do_free_pdp)
1630 {
1631 	struct vm_page *pg;
1632 	bool removed;
1633 	uint16_t wirecount;
1634 
1635 	/* kernel L0-L3 pages will never be freed */
1636 	if (pm == pmap_kernel())
1637 		return false;
1638 
1639 #if defined(EFI_RUNTIME)
1640 	/* EFI runtme L0-L3 pages will never be freed */
1641 	if (pm == pmap_efirt())
1642 		return false;
1643 #endif
1644 
1645 	KASSERT(mutex_owned(&pm->pm_lock));
1646 
1647 	/* no need for L0 page */
1648 	if (pm->pm_l0table_pa == pdppa)
1649 		return false;
1650 
1651 	pg = PHYS_TO_VM_PAGE(pdppa);
1652 	KASSERT(pg != NULL);
1653 
1654 	wirecount = --pg->wire_count;
1655 
1656 	if (!do_free_pdp) {
1657 		/*
1658 		 * pm_idlepdp is counted by only pmap_page_protect() with
1659 		 * VM_PROT_NONE. it is not correct because without considering
1660 		 * pmap_enter(), but useful hint to just sweep.
1661 		 */
1662 		if (wirecount == 1)
1663 			pm->pm_idlepdp++;
1664 		return false;
1665 	}
1666 
1667 	/* if no reference, free pdp */
1668 	removed = false;
1669 	while (wirecount == 1) {
1670 		pd_entry_t *ptep_in_parent, opte __diagused;
1671 		ptep_in_parent = VM_PAGE_TO_MD(pg)->mdpg_ptep_parent;
1672 		if (ptep_in_parent == NULL) {
1673 			/* no parent */
1674 			pmap_free_pdp(pm, pg);
1675 			removed = true;
1676 			break;
1677 		}
1678 
1679 		/* unlink from parent */
1680 		opte = atomic_swap_64(ptep_in_parent, 0);
1681 		KASSERT(lxpde_valid(opte));
1682 		wirecount = atomic_add_32_nv(&pg->wire_count, -1); /* 1 -> 0 */
1683 		KASSERT(wirecount == 0);
1684 		pmap_free_pdp(pm, pg);
1685 		removed = true;
1686 
1687 		/* L3->L2->L1. no need for L0 */
1688 		pdppa = AARCH64_KVA_TO_PA(trunc_page((vaddr_t)ptep_in_parent));
1689 		if (pdppa == pm->pm_l0table_pa)
1690 			break;
1691 
1692 		pg = PHYS_TO_VM_PAGE(pdppa);
1693 		KASSERT(pg != NULL);
1694 		KASSERTMSG(pg->wire_count >= 1,
1695 		    "wire_count=%d", pg->wire_count);
1696 		/* decrement wire_count of parent */
1697 		wirecount = atomic_add_32_nv(&pg->wire_count, -1);
1698 		KASSERTMSG(pg->wire_count <= (Ln_ENTRIES + 1),
1699 		    "pm=%p, pg=%p, wire_count=%d",
1700 		    pm, pg, pg->wire_count);
1701 	}
1702 
1703 	return removed;
1704 }
1705 
1706 /*
1707  * traverse L0 -> L1 -> L2 -> L3 table with growing pdp if needed.
1708  */
1709 static int
_pmap_get_pdp(struct pmap * pm,vaddr_t va,bool kenter,int flags,paddr_t * pap,struct vm_page ** pgp)1710 _pmap_get_pdp(struct pmap *pm, vaddr_t va, bool kenter, int flags,
1711     paddr_t *pap, struct vm_page **pgp)
1712 {
1713 	pd_entry_t *l0, *l1, *l2;
1714 	struct vm_page *pdppg, *pdppg0;
1715 	paddr_t pdppa, pdppa0;
1716 	unsigned int idx;
1717 	pd_entry_t pde;
1718 
1719 	KASSERT(kenter || mutex_owned(&pm->pm_lock));
1720 
1721 	l0 = pm->pm_l0table;
1722 
1723 	idx = l0pde_index(va);
1724 	pde = l0[idx];
1725 	if (!l0pde_valid(pde)) {
1726 		KASSERTMSG(!kenter || IN_MODULE_VA(va) || PMAP_EFIVA_P(va),
1727 		    "%s va %" PRIxVADDR, kenter ? "kernel" : "user", va);
1728 		/* no need to increment L0 occupancy. L0 page never freed */
1729 		pdppa = pmap_alloc_pdp(pm, &pdppg, flags, false);  /* L1 pdp */
1730 		if (pdppa == POOL_PADDR_INVALID) {
1731 			return ENOMEM;
1732 		}
1733 		atomic_swap_64(&l0[idx], pdppa | L0_TABLE);
1734 		_pmap_pdp_setparent(pm, pdppg, &l0[idx]);
1735 	} else {
1736 		pdppa = l0pde_pa(pde);
1737 		pdppg = NULL;
1738 	}
1739 	l1 = (void *)AARCH64_PA_TO_KVA(pdppa);
1740 
1741 	idx = l1pde_index(va);
1742 	pde = l1[idx];
1743 	if (!l1pde_valid(pde)) {
1744 		KASSERTMSG(!kenter || IN_MODULE_VA(va) || PMAP_EFIVA_P(va),
1745 		    "%s va %" PRIxVADDR, kenter ? "kernel" : "user", va);
1746 		pdppa0 = pdppa;
1747 		pdppg0 = pdppg;
1748 		pdppa = pmap_alloc_pdp(pm, &pdppg, flags, false);  /* L2 pdp */
1749 		if (pdppa == POOL_PADDR_INVALID) {
1750 			return ENOMEM;
1751 		}
1752 		atomic_swap_64(&l1[idx], pdppa | L1_TABLE);
1753 		_pmap_pdp_addref(pm, pdppa0, pdppg0);	/* L1 occupancy++ */
1754 		_pmap_pdp_setparent(pm, pdppg, &l1[idx]);
1755 	} else {
1756 		pdppa = l1pde_pa(pde);
1757 		pdppg = NULL;
1758 	}
1759 	l2 = (void *)AARCH64_PA_TO_KVA(pdppa);
1760 
1761 	idx = l2pde_index(va);
1762 	pde = l2[idx];
1763 	if (!l2pde_valid(pde)) {
1764 		KASSERTMSG(!kenter || IN_MODULE_VA(va) || PMAP_EFIVA_P(va),
1765 		    "%s va %" PRIxVADDR, kenter ? "kernel" : "user", va);
1766 		pdppa0 = pdppa;
1767 		pdppg0 = pdppg;
1768 		pdppa = pmap_alloc_pdp(pm, &pdppg, flags, false);  /* L3 pdp */
1769 		if (pdppa == POOL_PADDR_INVALID) {
1770 			return ENOMEM;
1771 		}
1772 		atomic_swap_64(&l2[idx], pdppa | L2_TABLE);
1773 		_pmap_pdp_addref(pm, pdppa0, pdppg0);	/* L2 occupancy++ */
1774 		_pmap_pdp_setparent(pm, pdppg, &l2[idx]);
1775 	} else {
1776 		pdppa = l2pde_pa(pde);
1777 		pdppg = NULL;
1778 	}
1779 	*pap = pdppa;
1780 	*pgp = pdppg;
1781 	return 0;
1782 }
1783 
1784 static int
_pmap_enter(struct pmap * pm,vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags,bool kenter)1785 _pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
1786     u_int flags, bool kenter)
1787 {
1788 	struct vm_page *pdppg;
1789 	struct pmap_page *pp, *opp, *pps[2];
1790 	struct pv_entry *spv, *opv = NULL;
1791 	pt_entry_t attr, pte, opte, *ptep;
1792 	pd_entry_t *l3;
1793 	paddr_t pdppa;
1794 	uint32_t mdattr;
1795 	unsigned int idx;
1796 	int error = 0;
1797 #if defined(EFI_RUNTIME)
1798 	const bool efirt_p = pm == pmap_efirt();
1799 #else
1800 	const bool efirt_p = false;
1801 #endif
1802 	const bool kernel_p = pm == pmap_kernel();
1803 	const bool user = !kernel_p && !efirt_p;
1804 	bool need_sync_icache, need_enter_pv;
1805 
1806 	UVMHIST_FUNC(__func__);
1807 	UVMHIST_CALLARGS(pmaphist, "pm=%p, kentermode=%d", pm, kenter, 0, 0);
1808 	UVMHIST_LOG(pmaphist, "va=%016lx, pa=%016lx, prot=%08x, flags=%08x",
1809 	    va, pa, prot, flags);
1810 
1811 	KASSERT_PM_ADDR(pm, va);
1812 	KASSERT(!IN_DIRECTMAP_ADDR(va));
1813 	KASSERT((prot & VM_PROT_ALL) != VM_PROT_NONE);
1814 	KASSERT(pa < AARCH64_MAX_PA);
1815 
1816 #ifdef PMAPCOUNTERS
1817 	PMAP_COUNT(mappings);
1818 	if (_pmap_color(va) == _pmap_color(pa)) {
1819 		if (user) {
1820 			PMAP_COUNT(user_mappings);
1821 		} else {
1822 			PMAP_COUNT(kern_mappings);
1823 		}
1824 	} else if (flags & PMAP_WIRED) {
1825 		if (user) {
1826 			PMAP_COUNT(user_mappings_bad_wired);
1827 		} else {
1828 			PMAP_COUNT(kern_mappings_bad_wired);
1829 		}
1830 	} else {
1831 		if (user) {
1832 			PMAP_COUNT(user_mappings_bad);
1833 		} else {
1834 			PMAP_COUNT(kern_mappings_bad);
1835 		}
1836 	}
1837 #endif
1838 
1839 	if (kenter) {
1840 		pp = NULL;
1841 		spv = NULL;
1842 		need_enter_pv = false;
1843 	} else {
1844 		struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
1845 		if (pg != NULL) {
1846 			pp = VM_PAGE_TO_PP(pg);
1847 			PMAP_COUNT(managed_mappings);
1848 		} else {
1849 #ifdef __HAVE_PMAP_PV_TRACK
1850 			pp = pmap_pv_tracked(pa);
1851 #ifdef PMAPCOUNTERS
1852 			if (pp != NULL)
1853 				PMAP_COUNT(pvmanaged_mappings);
1854 			else
1855 				PMAP_COUNT(unmanaged_mappings);
1856 #endif
1857 #else
1858 			pp = NULL;
1859 			PMAP_COUNT(unmanaged_mappings);
1860 #endif /* __HAVE_PMAP_PV_TRACK */
1861 		}
1862 
1863 		if (pp != NULL) {
1864 			/*
1865 			 * allocate pv in advance of pm_lock().
1866 			 */
1867 			spv = pool_cache_get(&_pmap_pv_pool, PR_NOWAIT);
1868 			need_enter_pv = true;
1869 		} else {
1870 			spv = NULL;
1871 			need_enter_pv = false;
1872 		}
1873 
1874 		pm_lock(pm);
1875 		if (pm->pm_idlepdp >= PDPSWEEP_TRIGGER) {
1876 			_pmap_sweep_pdp(pm);
1877 		}
1878 	}
1879 
1880 	/*
1881 	 * traverse L0 -> L1 -> L2 -> L3 table with growing pdp if needed.
1882 	 */
1883 	error = _pmap_get_pdp(pm, va, kenter, flags, &pdppa, &pdppg);
1884 	if (error != 0) {
1885 		if (flags & PMAP_CANFAIL) {
1886 			goto fail0;
1887 		}
1888 		panic("%s: cannot allocate L3 table error=%d", __func__,
1889 		    error);
1890 	}
1891 
1892 	l3 = (void *)AARCH64_PA_TO_KVA(pdppa);
1893 
1894 	idx = l3pte_index(va);
1895 	ptep = &l3[idx];	/* as PTE */
1896 	opte = *ptep;
1897 	need_sync_icache = (prot & VM_PROT_EXECUTE) && !efirt_p;
1898 
1899 	/* for lock ordering for old page and new page */
1900 	pps[0] = pp;
1901 	pps[1] = NULL;
1902 
1903 	/* remap? */
1904 	if (l3pte_valid(opte)) {
1905 		bool need_remove_pv;
1906 
1907 		KASSERT(!kenter);	/* pmap_kenter_pa() cannot override */
1908 		if (opte & LX_BLKPAG_OS_WIRED) {
1909 			_pmap_adj_wired_count(pm, -1);
1910 		}
1911 		_pmap_adj_resident_count(pm, -1);
1912 #ifdef PMAPCOUNTERS
1913 		PMAP_COUNT(remappings);
1914 		if (user) {
1915 			PMAP_COUNT(user_mappings_changed);
1916 		} else {
1917 			PMAP_COUNT(kern_mappings_changed);
1918 		}
1919 #endif
1920 		UVMHIST_LOG(pmaphist,
1921 		    "va=%016lx has already mapped."
1922 		    " old-pa=%016lx new-pa=%016lx, old-pte=%016llx",
1923 		    va, l3pte_pa(opte), pa, opte);
1924 
1925 		if (pa == l3pte_pa(opte)) {
1926 			/* old and new pte have same pa, no need to update pv */
1927 			need_remove_pv = (pp == NULL);
1928 			need_enter_pv = false;
1929 			if (need_sync_icache && l3pte_executable(opte, user))
1930 				need_sync_icache = false;
1931 		} else {
1932 			need_remove_pv = true;
1933 		}
1934 
1935 		if (need_remove_pv &&
1936 		    ((opp = phys_to_pp(l3pte_pa(opte))) != NULL)) {
1937 			/*
1938 			 * need to lock both pp and opp(old pp)
1939 			 * against deadlock, and 'pp' maybe NULL.
1940 			 */
1941 			if (pp < opp) {
1942 				pps[0] = pp;
1943 				pps[1] = opp;
1944 			} else {
1945 				pps[0] = opp;
1946 				pps[1] = pp;
1947 			}
1948 			if (pps[0] != NULL)
1949 				pmap_pv_lock(pps[0]);
1950 			if (pps[1] != NULL)
1951 				pmap_pv_lock(pps[1]);
1952 			opv = _pmap_remove_pv(opp, pm, va, opte);
1953 		} else {
1954 			if (pp != NULL)
1955 				pmap_pv_lock(pp);
1956 		}
1957 		opte = atomic_swap_64(ptep, 0);
1958 	} else {
1959 		if (pp != NULL)
1960 			pmap_pv_lock(pp);
1961 	}
1962 
1963 	if (!l3pte_valid(opte))
1964 		_pmap_pdp_addref(pm, pdppa, pdppg);	/* L3 occupancy++ */
1965 
1966 	/*
1967 	 * read permission is treated as an access permission internally.
1968 	 * require to add PROT_READ even if only PROT_WRITE or PROT_EXEC
1969 	 */
1970 	if (prot & (VM_PROT_WRITE | VM_PROT_EXECUTE))
1971 		prot |= VM_PROT_READ;
1972 	if (flags & (VM_PROT_WRITE | VM_PROT_EXECUTE))
1973 		flags |= VM_PROT_READ;
1974 
1975 	mdattr = VM_PROT_READ | VM_PROT_WRITE;
1976 	if (need_enter_pv) {
1977 		KASSERT(!kenter);
1978 		error = _pmap_enter_pv(pp, pm, &spv, va, ptep, pa, flags);
1979 		if (error != 0) {
1980 			/*
1981 			 * If pmap_enter() fails,
1982 			 * it must not leave behind an existing pmap entry.
1983 			 */
1984 			if (lxpde_valid(opte)) {
1985 				KASSERT((vaddr_t)l3 == trunc_page((vaddr_t)ptep));
1986 				_pmap_pdp_delref(pm, AARCH64_KVA_TO_PA((vaddr_t)l3),
1987 				    true);
1988 				struct pmap_asid_info * const pai = PMAP_PAI(pm,
1989 				    cpu_tlb_info(ci));
1990 
1991 				AARCH64_TLBI_BY_ASID_VA(pai->pai_asid, va);
1992 			}
1993 			PMAP_COUNT(pv_entry_cannotalloc);
1994 			if (flags & PMAP_CANFAIL)
1995 				goto fail1;
1996 			panic("pmap_enter: failed to allocate pv_entry");
1997 		}
1998 	}
1999 
2000 	if (pp != NULL) {
2001 		/* update referenced/modified flags */
2002 		KASSERT(!kenter);
2003 		pp->pp_pv.pv_va |= (flags & (VM_PROT_READ | VM_PROT_WRITE));
2004 		mdattr &= (uint32_t)pp->pp_pv.pv_va;
2005 	}
2006 
2007 #ifdef PMAPCOUNTERS
2008 	switch (flags & PMAP_CACHE_MASK) {
2009 	case PMAP_NOCACHE:
2010 	case PMAP_NOCACHE_OVR:
2011 		PMAP_COUNT(uncached_mappings);
2012 		break;
2013 	}
2014 #endif
2015 
2016 	attr = L3_PAGE | (kenter ? 0 : LX_BLKPAG_NG);
2017 	attr = _pmap_pte_adjust_prot(attr, prot, mdattr, user);
2018 	attr = _pmap_pte_adjust_cacheflags(attr, flags);
2019 	if (VM_MAXUSER_ADDRESS > va && !efirt_p)
2020 		attr |= LX_BLKPAG_APUSER;
2021 	if (flags & PMAP_WIRED)
2022 		attr |= LX_BLKPAG_OS_WIRED;
2023 #ifdef MULTIPROCESSOR
2024 	attr |= LX_BLKPAG_SH_IS;
2025 #endif
2026 
2027 	pte = pa | attr;
2028 
2029 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
2030 	const tlb_asid_t asid = pai->pai_asid;
2031 
2032 	if (need_sync_icache) {
2033 		/* non-exec -> exec */
2034 		UVMHIST_LOG(pmaphist,
2035 		    "icache_sync: pm=%p, va=%016lx, pte: %016lx -> %016lx",
2036 		    pm, va, opte, pte);
2037 
2038 		if (!l3pte_readable(pte)) {
2039 			PTE_ICACHE_SYNC_PAGE(pte, ptep, asid, va);
2040 			atomic_swap_64(ptep, pte);
2041 			AARCH64_TLBI_BY_ASID_VA(asid, va);
2042 		} else {
2043 			atomic_swap_64(ptep, pte);
2044 			AARCH64_TLBI_BY_ASID_VA(asid, va);
2045 			cpu_icache_sync_range(va, PAGE_SIZE);
2046 		}
2047 	} else {
2048 		atomic_swap_64(ptep, pte);
2049 		AARCH64_TLBI_BY_ASID_VA(asid, va);
2050 	}
2051 
2052 	if (pte & LX_BLKPAG_OS_WIRED) {
2053 		_pmap_adj_wired_count(pm, 1);
2054 	}
2055 	_pmap_adj_resident_count(pm, 1);
2056 
2057  fail1:
2058 	if (pps[1] != NULL)
2059 		pmap_pv_unlock(pps[1]);
2060 	if (pps[0] != NULL)
2061 		pmap_pv_unlock(pps[0]);
2062  fail0:
2063 	if (!kenter) {
2064 		pm_unlock(pm);
2065 
2066 		/* spare pv was not used. discard */
2067 		if (spv != NULL)
2068 			pool_cache_put(&_pmap_pv_pool, spv);
2069 
2070 		if (opv != NULL)
2071 			pool_cache_put(&_pmap_pv_pool, opv);
2072 	}
2073 
2074 	return error;
2075 }
2076 
2077 int
pmap_enter(struct pmap * pm,vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags)2078 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2079 {
2080 	return _pmap_enter(pm, va, pa, prot, flags, false);
2081 }
2082 
2083 
2084 bool
pmap_remove_all(struct pmap * pm)2085 pmap_remove_all(struct pmap *pm)
2086 {
2087 	struct pmap_page *pp;
2088 	struct pv_entry *pv, *pvtmp, *opv, *pvtofree = NULL;
2089 	pt_entry_t pte, *ptep;
2090 	paddr_t pa;
2091 
2092 	UVMHIST_FUNC(__func__);
2093 	UVMHIST_CALLARGS(pmaphist, "pm=%p", pm, 0, 0, 0);
2094 
2095 	KASSERT(pm != pmap_kernel());
2096 
2097 	UVMHIST_LOG(pmaphist, "pm=%p, asid=%d", pm,
2098 	    PMAP_PAI(pm, cpu_tlb_info(ci))->pai_asid, 0, 0);
2099 
2100 	pm_lock(pm);
2101 
2102 	LIST_FOREACH_SAFE(pv, &pm->pm_pvlist, pv_proc, pvtmp) {
2103 		ptep = pv->pv_ptep;
2104 		pte = *ptep;
2105 
2106 		KASSERTMSG(lxpde_valid(pte),
2107 		    "pte is not valid: pmap=%p, va=%016lx",
2108 		    pm, pv->pv_va);
2109 
2110 		pa = lxpde_pa(pte);
2111 		pp = phys_to_pp(pa);
2112 
2113 		KASSERTMSG(pp != NULL,
2114 		    "no pmap_page of physical address:%016lx, "
2115 		    "pmap=%p, va=%016lx",
2116 		    pa, pm, pv->pv_va);
2117 
2118 		pmap_pv_lock(pp);
2119 		opv = _pmap_remove_pv(pp, pm, trunc_page(pv->pv_va), pte);
2120 		pmap_pv_unlock(pp);
2121 		if (opv != NULL) {
2122 			opv->pv_next = pvtofree;
2123 			pvtofree = opv;
2124 		}
2125 	}
2126 	/* all PTE should now be cleared */
2127 	pm->pm_stats.wired_count = 0;
2128 	pm->pm_stats.resident_count = 0;
2129 
2130 	/* clear L0 page table page */
2131 	pmap_zero_page(pm->pm_l0table_pa);
2132 
2133 	aarch64_tlbi_by_asid(PMAP_PAI(pm, cpu_tlb_info(ci))->pai_asid);
2134 
2135 	/* free L1-L3 page table pages, but not L0 */
2136 	_pmap_free_pdp_all(pm, false);
2137 
2138 	pm_unlock(pm);
2139 
2140 	for (pv = pvtofree; pv != NULL; pv = pvtmp) {
2141 		pvtmp = pv->pv_next;
2142 		pool_cache_put(&_pmap_pv_pool, pv);
2143 	}
2144 
2145 	return true;
2146 }
2147 
2148 static void
_pmap_remove(struct pmap * pm,vaddr_t sva,vaddr_t eva,bool kremove,struct pv_entry ** pvtofree)2149 _pmap_remove(struct pmap *pm, vaddr_t sva, vaddr_t eva, bool kremove,
2150     struct pv_entry **pvtofree)
2151 {
2152 	pt_entry_t pte, *ptep = NULL;
2153 	struct pmap_page *pp;
2154 	struct pv_entry *opv;
2155 	paddr_t pa;
2156 	vaddr_t va;
2157 	vsize_t blocksize = 0;
2158 	bool pdpremoved;
2159 
2160 	UVMHIST_FUNC(__func__);
2161 	UVMHIST_CALLARGS(pmaphist, "pm=%p, sva=%016lx, eva=%016lx, kremove=%d",
2162 	    pm, sva, eva, kremove);
2163 
2164 	KASSERT(kremove || mutex_owned(&pm->pm_lock));
2165 
2166 	for (va = sva; (va < eva) && (pm->pm_stats.resident_count != 0);
2167 	    va = (va + blocksize) & ~(blocksize - 1)) {
2168 
2169 		/* va is belong to the same L3 table as before? */
2170 		if ((blocksize == L3_SIZE) && ((va & L3INDEXMASK) != 0))
2171 			ptep++;
2172 		else
2173 			ptep = _pmap_pte_lookup_bs(pm, va, &blocksize);
2174 
2175 		pte = *ptep;
2176 		if (!lxpde_valid(pte))
2177 			continue;
2178 
2179 		if (!kremove) {
2180 			pa = lxpde_pa(pte);
2181 			pp = phys_to_pp(pa);
2182 			if (pp != NULL) {
2183 
2184 				pmap_pv_lock(pp);
2185 				opv = _pmap_remove_pv(pp, pm, va, pte);
2186 				pmap_pv_unlock(pp);
2187 				if (opv != NULL) {
2188 					opv->pv_next = *pvtofree;
2189 					*pvtofree = opv;
2190 				}
2191 			}
2192 		}
2193 
2194 		pte = atomic_swap_64(ptep, 0);
2195 		if (!lxpde_valid(pte))
2196 			continue;
2197 		struct pmap_asid_info * const pai = PMAP_PAI(pm,
2198 		    cpu_tlb_info(ci));
2199 
2200 		pdpremoved = _pmap_pdp_delref(pm,
2201 		    AARCH64_KVA_TO_PA(trunc_page((vaddr_t)ptep)), true);
2202 		AARCH64_TLBI_BY_ASID_VA(pai->pai_asid, va);
2203 
2204 		if (pdpremoved) {
2205 			/*
2206 			 * this Ln page table page has been removed.
2207 			 * skip to next Ln table
2208 			 */
2209 			blocksize *= Ln_ENTRIES;
2210 		}
2211 
2212 		if ((pte & LX_BLKPAG_OS_WIRED) != 0) {
2213 			_pmap_adj_wired_count(pm, -1);
2214 		}
2215 		_pmap_adj_resident_count(pm, -1);
2216 	}
2217 }
2218 
2219 void
pmap_remove(struct pmap * pm,vaddr_t sva,vaddr_t eva)2220 pmap_remove(struct pmap *pm, vaddr_t sva, vaddr_t eva)
2221 {
2222 	struct pv_entry *pvtofree = NULL;
2223 	struct pv_entry *pv, *pvtmp;
2224 
2225 	KASSERT_PM_ADDR(pm, sva);
2226 	KASSERT(!IN_DIRECTMAP_ADDR(sva));
2227 
2228 	pm_lock(pm);
2229 	_pmap_remove(pm, sva, eva, false, &pvtofree);
2230 	pm_unlock(pm);
2231 
2232 	for (pv = pvtofree; pv != NULL; pv = pvtmp) {
2233 		pvtmp = pv->pv_next;
2234 		pool_cache_put(&_pmap_pv_pool, pv);
2235 	}
2236 }
2237 
2238 static void
pmap_page_remove(struct pmap_page * pp,vm_prot_t prot)2239 pmap_page_remove(struct pmap_page *pp, vm_prot_t prot)
2240 {
2241 	struct pv_entry *pv, *pvtmp;
2242 	struct pv_entry *pvtofree = NULL;
2243 	struct pmap *pm;
2244 	pt_entry_t opte;
2245 
2246 	/* remove all pages reference to this physical page */
2247 	pmap_pv_lock(pp);
2248 	for (pv = &pp->pp_pv; pv != NULL;) {
2249 		if ((pm = pv->pv_pmap) == NULL) {
2250 			KASSERT(pv == &pp->pp_pv);
2251 			pv = pp->pp_pv.pv_next;
2252 			continue;
2253 		}
2254 		if (!pm_reverse_lock(pm, pp)) {
2255 			/* now retry */
2256 			pv = &pp->pp_pv;
2257 			continue;
2258 		}
2259 		opte = atomic_swap_64(pv->pv_ptep, 0);
2260 		struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
2261 		const vaddr_t va = trunc_page(pv->pv_va);
2262 
2263 		if (lxpde_valid(opte)) {
2264 			_pmap_pdp_delref(pm,
2265 			    AARCH64_KVA_TO_PA(trunc_page(
2266 			    (vaddr_t)pv->pv_ptep)), false);
2267 			AARCH64_TLBI_BY_ASID_VA(pai->pai_asid, va);
2268 
2269 			if ((opte & LX_BLKPAG_OS_WIRED) != 0) {
2270 				_pmap_adj_wired_count(pm, -1);
2271 			}
2272 			_pmap_adj_resident_count(pm, -1);
2273 		}
2274 		pvtmp = _pmap_remove_pv(pp, pm, va, opte);
2275 		if (pvtmp == NULL) {
2276 			KASSERT(pv == &pp->pp_pv);
2277 		} else {
2278 			KASSERT(pv == pvtmp);
2279 			KASSERT(pp->pp_pv.pv_next == pv->pv_next);
2280 			pv->pv_next = pvtofree;
2281 			pvtofree = pv;
2282 		}
2283 		pm_unlock(pm);
2284 		pv = pp->pp_pv.pv_next;
2285 	}
2286 	pmap_pv_unlock(pp);
2287 
2288 	for (pv = pvtofree; pv != NULL; pv = pvtmp) {
2289 		pvtmp = pv->pv_next;
2290 		pool_cache_put(&_pmap_pv_pool, pv);
2291 	}
2292 }
2293 
2294 #ifdef __HAVE_PMAP_PV_TRACK
2295 void
pmap_pv_protect(paddr_t pa,vm_prot_t prot)2296 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
2297 {
2298 	struct pmap_page *pp;
2299 
2300 	UVMHIST_FUNC(__func__);
2301 	UVMHIST_CALLARGS(pmaphist, "pa=%016lx, prot=%08x", pa, prot, 0, 0);
2302 
2303 	pp = pmap_pv_tracked(pa);
2304 	if (pp == NULL)
2305 		panic("pmap_pv_protect: page not pv-tracked: %#" PRIxPADDR, pa);
2306 
2307 	KASSERT(prot == VM_PROT_NONE);
2308 	pmap_page_remove(pp, prot);
2309 }
2310 #endif
2311 
2312 void
pmap_page_protect(struct vm_page * pg,vm_prot_t prot)2313 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2314 {
2315 	struct pv_entry *pv;
2316 	struct pmap_page *pp;
2317 	struct pmap *pm;
2318 
2319 	KASSERT((prot & VM_PROT_READ) || !(prot & VM_PROT_WRITE));
2320 
2321 	pp = VM_PAGE_TO_PP(pg);
2322 
2323 	UVMHIST_FUNC(__func__);
2324 	UVMHIST_CALLARGS(pmaphist, "pg=%p, pp=%p, pa=%016lx, prot=%08x",
2325 	    pg, pp, VM_PAGE_TO_PHYS(pg), prot);
2326 
2327 	/* do an unlocked check first */
2328 	if (atomic_load_relaxed(&pp->pp_pv.pv_pmap) == NULL &&
2329 	    atomic_load_relaxed(&pp->pp_pv.pv_next) == NULL) {
2330 		return;
2331 	}
2332 
2333 	if ((prot & (VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
2334 	    VM_PROT_NONE) {
2335 		pmap_page_remove(pp, prot);
2336 	} else {
2337 		pmap_pv_lock(pp);
2338 		pv = &pp->pp_pv;
2339 		while (pv != NULL) {
2340 			if ((pm = pv->pv_pmap) == NULL) {
2341 				KASSERT(pv == &pp->pp_pv);
2342 				pv = pv->pv_next;
2343 				continue;
2344 			}
2345 			if (!pm_reverse_lock(pm, pp)) {
2346 				/* retry */
2347 				pv = &pp->pp_pv;
2348 				continue;
2349 			}
2350 			_pmap_protect_pv(pp, pv, prot);
2351 			pm_unlock(pm);
2352 			pv = pv->pv_next;
2353 		}
2354 		pmap_pv_unlock(pp);
2355 	}
2356 }
2357 
2358 void
pmap_unwire(struct pmap * pm,vaddr_t va)2359 pmap_unwire(struct pmap *pm, vaddr_t va)
2360 {
2361 	pt_entry_t pte, *ptep;
2362 
2363 	UVMHIST_FUNC(__func__);
2364 	UVMHIST_CALLARGS(pmaphist, "pm=%p, va=%016lx", pm, va, 0, 0);
2365 
2366 	PMAP_COUNT(unwire);
2367 
2368 	KASSERT_PM_ADDR(pm, va);
2369 	KASSERT(!IN_DIRECTMAP_ADDR(va));
2370 
2371 	pm_lock(pm);
2372 	ptep = _pmap_pte_lookup_l3(pm, va);
2373 	if (ptep != NULL) {
2374 		pte = *ptep;
2375 		if (!l3pte_valid(pte) ||
2376 		    ((pte & LX_BLKPAG_OS_WIRED) == 0)) {
2377 			/* invalid pte, or pte is not wired */
2378 			PMAP_COUNT(unwire_failure);
2379 			pm_unlock(pm);
2380 			return;
2381 		}
2382 
2383 		pte &= ~LX_BLKPAG_OS_WIRED;
2384 		atomic_swap_64(ptep, pte);
2385 
2386 		_pmap_adj_wired_count(pm, -1);
2387 	}
2388 	pm_unlock(pm);
2389 }
2390 
2391 bool
pmap_fault_fixup(struct pmap * pm,vaddr_t va,vm_prot_t accessprot,bool user)2392 pmap_fault_fixup(struct pmap *pm, vaddr_t va, vm_prot_t accessprot, bool user)
2393 {
2394 	struct pmap_page *pp;
2395 	pt_entry_t *ptep, pte;
2396 	vm_prot_t pmap_prot;
2397 	paddr_t pa;
2398 	bool fixed = false;
2399 
2400 	UVMHIST_FUNC(__func__);
2401 	UVMHIST_CALLARGS(pmaphist, "pm=%p, va=%016lx, accessprot=%08x",
2402 	    pm, va, accessprot, 0);
2403 
2404 #if 0
2405 	KASSERT_PM_ADDR(pm, va);
2406 #else
2407 	if (((pm == pmap_kernel()) &&
2408 	    !(IN_RANGE(va, VM_MIN_KERNEL_ADDRESS, VM_MAX_KERNEL_ADDRESS))) ||
2409 	    ((pm != pmap_kernel()) &&
2410 	    !(IN_RANGE(va, VM_MIN_ADDRESS, VM_MAX_ADDRESS)))) {
2411 
2412 		UVMHIST_LOG(pmaphist,
2413 		    "pmap space and va mismatch: kernel=%jd, va=%016lx",
2414 		    pm == pmap_kernel(), va, 0, 0);
2415 		return false;
2416 	}
2417 #endif
2418 
2419 	pm_lock(pm);
2420 
2421 	ptep = _pmap_pte_lookup_l3(pm, va);
2422 	if (ptep == NULL) {
2423 		UVMHIST_LOG(pmaphist, "pte_lookup failure: va=%016lx",
2424 		    va, 0, 0, 0);
2425 		goto done;
2426 	}
2427 
2428 	pte = *ptep;
2429 	if (!l3pte_valid(pte)) {
2430 		UVMHIST_LOG(pmaphist, "invalid pte: %016llx: va=%016lx",
2431 		    pte, va, 0, 0);
2432 		goto done;
2433 	}
2434 
2435 	pa = l3pte_pa(*ptep);
2436 	pp = phys_to_pp(pa);
2437 	if (pp == NULL) {
2438 		UVMHIST_LOG(pmaphist, "pmap_page not found: va=%016lx", va, 0, 0, 0);
2439 		goto done;
2440 	}
2441 
2442 	/*
2443 	 * Get the prot specified by pmap_enter().
2444 	 * A valid pte is considered a readable page.
2445 	 * If DBM is 1, it is considered a writable page.
2446 	 */
2447 	pmap_prot = VM_PROT_READ;
2448 	if ((pte & (LX_BLKPAG_OS_WRITE | LX_BLKPAG_DBM)) != 0)
2449 		pmap_prot |= VM_PROT_WRITE;
2450 
2451 	if (l3pte_executable(pte, pm != pmap_kernel()))
2452 		pmap_prot |= VM_PROT_EXECUTE;
2453 
2454 	UVMHIST_LOG(pmaphist, "va=%016lx, pmapprot=%08x, accessprot=%08x",
2455 	    va, pmap_prot, accessprot, 0);
2456 
2457 	/* ignore except read/write */
2458 	accessprot &= (VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE);
2459 
2460 	/* PROT_EXEC requires implicit PROT_READ */
2461 	if (accessprot & VM_PROT_EXECUTE)
2462 		accessprot |= VM_PROT_READ;
2463 
2464 	/* no permission to read/write/execute for this page */
2465 	if ((pmap_prot & accessprot) != accessprot) {
2466 		UVMHIST_LOG(pmaphist, "no permission to access", 0, 0, 0, 0);
2467 		goto done;
2468 	}
2469 
2470 	/* pte is readable and writable, but occurred fault? probably copy(9) */
2471 	if ((pte & LX_BLKPAG_AF) && ((pte & LX_BLKPAG_AP) == LX_BLKPAG_AP_RW))
2472 		goto done;
2473 
2474 	pmap_pv_lock(pp);
2475 	if ((pte & LX_BLKPAG_AF) == 0) {
2476 		/* pte has no AF bit, set referenced and AF bit */
2477 		UVMHIST_LOG(pmaphist,
2478 		    "REFERENCED:"
2479 		    " va=%016lx, pa=%016lx, pte_prot=%08x, accessprot=%08x",
2480 		    va, pa, pmap_prot, accessprot);
2481 		pp->pp_pv.pv_va |= VM_PROT_READ;	/* set referenced */
2482 		pte |= LX_BLKPAG_AF;
2483 
2484 		PMAP_COUNT(fixup_referenced);
2485 	}
2486 	if ((accessprot & VM_PROT_WRITE) &&
2487 	    ((pte & LX_BLKPAG_AP) == LX_BLKPAG_AP_RO)) {
2488 		/* pte is not RW. set modified and RW */
2489 
2490 		UVMHIST_LOG(pmaphist, "MODIFIED:"
2491 		    " va=%016lx, pa=%016lx, pte_prot=%08x, accessprot=%08x",
2492 		    va, pa, pmap_prot, accessprot);
2493 		pp->pp_pv.pv_va |= VM_PROT_WRITE;	/* set modified */
2494 		pte &= ~LX_BLKPAG_AP;
2495 		pte |= LX_BLKPAG_AP_RW;
2496 
2497 		PMAP_COUNT(fixup_modified);
2498 	}
2499 	pmap_pv_unlock(pp);
2500 
2501 	atomic_swap_64(ptep, pte);
2502 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
2503 	AARCH64_TLBI_BY_ASID_VA(pai->pai_asid, va);
2504 
2505 	fixed = true;
2506 
2507  done:
2508 	pm_unlock(pm);
2509 	return fixed;
2510 }
2511 
2512 bool
pmap_clear_modify(struct vm_page * pg)2513 pmap_clear_modify(struct vm_page *pg)
2514 {
2515 	struct pv_entry *pv;
2516 	struct pmap_page * const pp = VM_PAGE_TO_PP(pg);
2517 	pt_entry_t *ptep, pte, opte;
2518 	vaddr_t va;
2519 #ifdef ARMV81_HAFDBS
2520 	bool modified;
2521 #endif
2522 
2523 	UVMHIST_FUNC(__func__);
2524 	UVMHIST_CALLARGS(pmaphist, "pg=%p, flags=%08x",
2525 	    pg, (int)(pp->pp_pv.pv_va & (PAGE_SIZE - 1)), 0, 0);
2526 
2527 	PMAP_COUNT(clear_modify);
2528 
2529 	/*
2530 	 * if this is a new page, assert it has no mappings and simply zap
2531 	 * the stored attributes without taking any locks.
2532 	 */
2533 	if ((pg->flags & PG_FAKE) != 0) {
2534 		KASSERT(atomic_load_relaxed(&pp->pp_pv.pv_pmap) == NULL);
2535 		KASSERT(atomic_load_relaxed(&pp->pp_pv.pv_next) == NULL);
2536 		atomic_store_relaxed(&pp->pp_pv.pv_va, 0);
2537 		return false;
2538 	}
2539 
2540 	pmap_pv_lock(pp);
2541 
2542 	if (
2543 #ifdef ARMV81_HAFDBS
2544 	    aarch64_hafdbs_enabled != ID_AA64MMFR1_EL1_HAFDBS_AD &&
2545 #endif
2546 	    (pp->pp_pv.pv_va & VM_PROT_WRITE) == 0) {
2547 		pmap_pv_unlock(pp);
2548 		return false;
2549 	}
2550 #ifdef ARMV81_HAFDBS
2551 	modified = ((pp->pp_pv.pv_va & VM_PROT_WRITE) != 0);
2552 #endif
2553 	pp->pp_pv.pv_va &= ~(vaddr_t)VM_PROT_WRITE;
2554 
2555 	for (pv = &pp->pp_pv; pv != NULL; pv = pv->pv_next) {
2556 		if (pv->pv_pmap == NULL) {
2557 			KASSERT(pv == &pp->pp_pv);
2558 			continue;
2559 		}
2560 
2561 		PMAP_COUNT(clear_modify_pages);
2562 
2563 		va = trunc_page(pv->pv_va);
2564 
2565 		ptep = pv->pv_ptep;
2566 		opte = pte = *ptep;
2567  tryagain:
2568 		if (!l3pte_valid(pte))
2569 			continue;
2570 		if ((pte & LX_BLKPAG_AP) == LX_BLKPAG_AP_RO)
2571 			continue;
2572 #ifdef ARMV81_HAFDBS
2573 		modified = true;
2574 #endif
2575 		/* clear write permission */
2576 		pte &= ~LX_BLKPAG_AP;
2577 		pte |= LX_BLKPAG_AP_RO;
2578 
2579 		/* XXX: possible deadlock if using PM_LOCK(). this is racy */
2580 		if ((pte = atomic_cas_64(ptep, opte, pte)) != opte) {
2581 			opte = pte;
2582 			goto tryagain;
2583 		}
2584 
2585 		struct pmap * const pm = pv->pv_pmap;
2586 		struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
2587 		AARCH64_TLBI_BY_ASID_VA(pai->pai_asid, va);
2588 
2589 		UVMHIST_LOG(pmaphist,
2590 		    "va=%016llx, ptep=%p, pa=%016lx, RW -> RO",
2591 		    va, ptep, l3pte_pa(pte), 0);
2592 	}
2593 
2594 	pmap_pv_unlock(pp);
2595 
2596 #ifdef ARMV81_HAFDBS
2597 	return modified;
2598 #else
2599 	return true;
2600 #endif
2601 }
2602 
2603 bool
pmap_clear_reference(struct vm_page * pg)2604 pmap_clear_reference(struct vm_page *pg)
2605 {
2606 	struct pv_entry *pv;
2607 	struct pmap_page * const pp = VM_PAGE_TO_PP(pg);
2608 	pt_entry_t *ptep, pte, opte;
2609 	vaddr_t va;
2610 #ifdef ARMV81_HAFDBS
2611 	bool referenced;
2612 #endif
2613 
2614 	UVMHIST_FUNC(__func__);
2615 	UVMHIST_CALLARGS(pmaphist, "pg=%p, pp=%p, flags=%08x",
2616 	    pg, pp, (int)(pp->pp_pv.pv_va & (PAGE_SIZE - 1)), 0);
2617 
2618 	pmap_pv_lock(pp);
2619 
2620 	if (
2621 #ifdef ARMV81_HAFDBS
2622 	    aarch64_hafdbs_enabled == ID_AA64MMFR1_EL1_HAFDBS_NONE &&
2623 #endif
2624 	    (pp->pp_pv.pv_va & VM_PROT_READ) == 0) {
2625 		pmap_pv_unlock(pp);
2626 		return false;
2627 	}
2628 #ifdef ARMV81_HAFDBS
2629 	referenced = ((pp->pp_pv.pv_va & VM_PROT_READ) != 0);
2630 #endif
2631 	pp->pp_pv.pv_va &= ~(vaddr_t)VM_PROT_READ;
2632 
2633 	PMAP_COUNT(clear_reference);
2634 	for (pv = &pp->pp_pv; pv != NULL; pv = pv->pv_next) {
2635 		if (pv->pv_pmap == NULL) {
2636 			KASSERT(pv == &pp->pp_pv);
2637 			continue;
2638 		}
2639 
2640 		PMAP_COUNT(clear_reference_pages);
2641 
2642 		va = trunc_page(pv->pv_va);
2643 
2644 		ptep = pv->pv_ptep;
2645 		opte = pte = *ptep;
2646  tryagain:
2647 		if (!l3pte_valid(pte))
2648 			continue;
2649 		if ((pte & LX_BLKPAG_AF) == 0)
2650 			continue;
2651 #ifdef ARMV81_HAFDBS
2652 		referenced = true;
2653 #endif
2654 		/* clear access permission */
2655 		pte &= ~LX_BLKPAG_AF;
2656 
2657 		/* XXX: possible deadlock if using PM_LOCK(). this is racy */
2658 		if ((pte = atomic_cas_64(ptep, opte, pte)) != opte) {
2659 			opte = pte;
2660 			goto tryagain;
2661 		}
2662 
2663 		struct pmap * const pm = pv->pv_pmap;
2664 		struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
2665 		AARCH64_TLBI_BY_ASID_VA(pai->pai_asid, va);
2666 
2667 		UVMHIST_LOG(pmaphist, "va=%016llx, ptep=%p, pa=%016lx, unse AF",
2668 		    va, ptep, l3pte_pa(pte), 0);
2669 	}
2670 
2671 	pmap_pv_unlock(pp);
2672 
2673 #ifdef ARMV81_HAFDBS
2674 	return referenced;
2675 #else
2676 	return true;
2677 #endif
2678 }
2679 
2680 bool
pmap_is_modified(struct vm_page * pg)2681 pmap_is_modified(struct vm_page *pg)
2682 {
2683 	struct pmap_page * const pp = VM_PAGE_TO_PP(pg);
2684 
2685 	if (pp->pp_pv.pv_va & VM_PROT_WRITE)
2686 		return true;
2687 
2688 #ifdef ARMV81_HAFDBS
2689 	/* check hardware dirty flag on each pte */
2690 	if (aarch64_hafdbs_enabled == ID_AA64MMFR1_EL1_HAFDBS_AD) {
2691 		struct pv_entry *pv;
2692 		pt_entry_t *ptep, pte;
2693 
2694 		pmap_pv_lock(pp);
2695 		for (pv = &pp->pp_pv; pv != NULL; pv = pv->pv_next) {
2696 			if (pv->pv_pmap == NULL) {
2697 				KASSERT(pv == &pp->pp_pv);
2698 				continue;
2699 			}
2700 
2701 			ptep = pv->pv_ptep;
2702 			pte = *ptep;
2703 			if (!l3pte_valid(pte))
2704 				continue;
2705 
2706 			if ((pte & LX_BLKPAG_AP) == LX_BLKPAG_AP_RW) {
2707 				pp->pp_pv.pv_va |= VM_PROT_WRITE;
2708 				pmap_pv_unlock(pp);
2709 				return true;
2710 			}
2711 		}
2712 		pmap_pv_unlock(pp);
2713 	}
2714 #endif
2715 
2716 	return false;
2717 }
2718 
2719 bool
pmap_is_referenced(struct vm_page * pg)2720 pmap_is_referenced(struct vm_page *pg)
2721 {
2722 	struct pmap_page * const pp = VM_PAGE_TO_PP(pg);
2723 
2724 	if (pp->pp_pv.pv_va & VM_PROT_READ)
2725 		return true;
2726 
2727 #ifdef ARMV81_HAFDBS
2728 	/* check hardware access flag on each pte */
2729 	if (aarch64_hafdbs_enabled != ID_AA64MMFR1_EL1_HAFDBS_NONE) {
2730 		struct pv_entry *pv;
2731 		pt_entry_t *ptep, pte;
2732 
2733 		pmap_pv_lock(pp);
2734 		for (pv = &pp->pp_pv; pv != NULL; pv = pv->pv_next) {
2735 			if (pv->pv_pmap == NULL) {
2736 				KASSERT(pv == &pp->pp_pv);
2737 				continue;
2738 			}
2739 
2740 			ptep = pv->pv_ptep;
2741 			pte = *ptep;
2742 			if (!l3pte_valid(pte))
2743 				continue;
2744 
2745 			if (pte & LX_BLKPAG_AF) {
2746 				pp->pp_pv.pv_va |= VM_PROT_READ;
2747 				pmap_pv_unlock(pp);
2748 				return true;
2749 			}
2750 		}
2751 		pmap_pv_unlock(pp);
2752 	}
2753 #endif
2754 
2755 	return false;
2756 }
2757 
2758 /* get pointer to kernel segment L2 or L3 table entry */
2759 pt_entry_t *
kvtopte(vaddr_t va)2760 kvtopte(vaddr_t va)
2761 {
2762 	KASSERT(IN_RANGE(va, VM_MIN_KERNEL_ADDRESS, VM_MAX_KERNEL_ADDRESS));
2763 
2764 	return _pmap_pte_lookup_bs(pmap_kernel(), va, NULL);
2765 }
2766 
2767 #ifdef DDB
2768 void
2769 pmap_db_pmap_print(struct pmap *pm,
2770     void (*pr)(const char *, ...) __printflike(1, 2))
2771 {
2772 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
2773 
2774 	pr(" pm_asid       = %d\n", pai->pai_asid);
2775 	pr(" pm_l0table    = %p\n", pm->pm_l0table);
2776 	pr(" pm_l0table_pa = %lx\n", pm->pm_l0table_pa);
2777 	pr(" pm_activated  = %d\n\n", pm->pm_activated);
2778 }
2779 #endif /* DDB */
2780