xref: /netbsd-src/sys/kern/subr_kmem.c (revision 4c2ca10b4ad8ebc3da3c454421b90ef67517d0cb)
1 /*	$NetBSD: subr_kmem.c,v 1.89 2023/09/10 14:29:13 ad Exp $	*/
2 
3 /*
4  * Copyright (c) 2009-2023 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran and Maxime Villard.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c)2006 YAMAMOTO Takashi,
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /*
59  * Allocator of kernel wired memory. This allocator has some debug features
60  * enabled with "option DIAGNOSTIC" and "option DEBUG".
61  */
62 
63 /*
64  * KMEM_SIZE: detect alloc/free size mismatch bugs.
65  *	Append to each allocation a fixed-sized footer and record the exact
66  *	user-requested allocation size in it.  When freeing, compare it with
67  *	kmem_free's "size" argument.
68  *
69  * This option is enabled on DIAGNOSTIC.
70  *
71  *  |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK| |
72  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+-+
73  *  |     |     |     |     |     |     |     |     |/////|U|
74  *  |     |     |     |     |     |     |     |     |/HSZ/|U|
75  *  |     |     |     |     |     |     |     |     |/////|U|
76  *  +-----+-----+-----+-----+-----+-----+-----+-----+-----+-+
77  *  | Buffer usable by the caller (requested size)  |Size |Unused
78  */
79 
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.89 2023/09/10 14:29:13 ad Exp $");
82 
83 #ifdef _KERNEL_OPT
84 #include "opt_kmem.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/callback.h>
89 #include <sys/kmem.h>
90 #include <sys/pool.h>
91 #include <sys/debug.h>
92 #include <sys/lockdebug.h>
93 #include <sys/cpu.h>
94 #include <sys/asan.h>
95 #include <sys/msan.h>
96 #include <sys/sdt.h>
97 
98 #include <uvm/uvm_extern.h>
99 #include <uvm/uvm_map.h>
100 
101 #include <lib/libkern/libkern.h>
102 
103 struct kmem_cache_info {
104 	size_t		kc_size;
105 	const char *	kc_name;
106 #ifdef KDTRACE_HOOKS
107 	const id_t	*kc_alloc_probe_id;
108 	const id_t	*kc_free_probe_id;
109 #endif
110 };
111 
112 #define	KMEM_CACHE_SIZES(F)						      \
113 	F(8, kmem-00008, kmem__00008)					      \
114 	F(16, kmem-00016, kmem__00016)					      \
115 	F(24, kmem-00024, kmem__00024)					      \
116 	F(32, kmem-00032, kmem__00032)					      \
117 	F(40, kmem-00040, kmem__00040)					      \
118 	F(48, kmem-00048, kmem__00048)					      \
119 	F(56, kmem-00056, kmem__00056)					      \
120 	F(64, kmem-00064, kmem__00064)					      \
121 	F(80, kmem-00080, kmem__00080)					      \
122 	F(96, kmem-00096, kmem__00096)					      \
123 	F(112, kmem-00112, kmem__00112)					      \
124 	F(128, kmem-00128, kmem__00128)					      \
125 	F(160, kmem-00160, kmem__00160)					      \
126 	F(192, kmem-00192, kmem__00192)					      \
127 	F(224, kmem-00224, kmem__00224)					      \
128 	F(256, kmem-00256, kmem__00256)					      \
129 	F(320, kmem-00320, kmem__00320)					      \
130 	F(384, kmem-00384, kmem__00384)					      \
131 	F(448, kmem-00448, kmem__00448)					      \
132 	F(512, kmem-00512, kmem__00512)					      \
133 	F(768, kmem-00768, kmem__00768)					      \
134 	F(1024, kmem-01024, kmem__01024)				      \
135 	/* end of KMEM_CACHE_SIZES */
136 
137 #define	KMEM_CACHE_BIG_SIZES(F)						      \
138 	F(2048, kmem-02048, kmem__02048)				      \
139 	F(4096, kmem-04096, kmem__04096)				      \
140 	F(8192, kmem-08192, kmem__08192)				      \
141 	F(16384, kmem-16384, kmem__16384)				      \
142 	/* end of KMEM_CACHE_BIG_SIZES */
143 
144 /* sdt:kmem:alloc:kmem-* probes */
145 #define	F(SZ, NAME, PROBENAME)						      \
146 	SDT_PROBE_DEFINE4(sdt, kmem, alloc, PROBENAME,			      \
147 	    "void *"/*ptr*/,						      \
148 	    "size_t"/*requested_size*/,					      \
149 	    "size_t"/*allocated_size*/,					      \
150 	    "km_flag_t"/*kmflags*/);
151 KMEM_CACHE_SIZES(F);
152 KMEM_CACHE_BIG_SIZES(F);
153 #undef	F
154 
155 /* sdt:kmem:free:kmem-* probes */
156 #define	F(SZ, NAME, PROBENAME)						      \
157 	SDT_PROBE_DEFINE3(sdt, kmem, free, PROBENAME,			      \
158 	    "void *"/*ptr*/,						      \
159 	    "size_t"/*requested_size*/,					      \
160 	    "size_t"/*allocated_size*/);
161 KMEM_CACHE_SIZES(F);
162 KMEM_CACHE_BIG_SIZES(F);
163 #undef	F
164 
165 /* sdt:kmem:alloc:large, sdt:kmem:free:large probes */
166 SDT_PROBE_DEFINE4(sdt, kmem, alloc, large,
167     "void *"/*ptr*/,
168     "size_t"/*requested_size*/,
169     "size_t"/*allocated_size*/,
170     "km_flag_t"/*kmflags*/);
171 SDT_PROBE_DEFINE3(sdt, kmem, free, large,
172     "void *"/*ptr*/,
173     "size_t"/*requested_size*/,
174     "size_t"/*allocated_size*/);
175 
176 #ifdef KDTRACE_HOOKS
177 #define	F(SZ, NAME, PROBENAME)						      \
178 	{ SZ, #NAME,							      \
179 	  &sdt_sdt_kmem_alloc_##PROBENAME->id,				      \
180 	  &sdt_sdt_kmem_free_##PROBENAME->id },
181 #else
182 #define	F(SZ, NAME, PROBENAME)	{ SZ, #NAME },
183 #endif
184 
185 static const struct kmem_cache_info kmem_cache_sizes[] = {
186 	KMEM_CACHE_SIZES(F)
187 	{ 0 }
188 };
189 
190 static const struct kmem_cache_info kmem_cache_big_sizes[] = {
191 	KMEM_CACHE_BIG_SIZES(F)
192 	{ 0 }
193 };
194 
195 #undef	F
196 
197 /*
198  * KMEM_ALIGN is the smallest guaranteed alignment and also the
199  * smallest allocateable quantum.
200  * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
201  */
202 #define	KMEM_ALIGN		8
203 #define	KMEM_SHIFT		3
204 #define	KMEM_MAXSIZE		1024
205 #define	KMEM_CACHE_COUNT	(KMEM_MAXSIZE >> KMEM_SHIFT)
206 
207 static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
208 static size_t kmem_cache_maxidx __read_mostly;
209 
210 #define	KMEM_BIG_ALIGN		2048
211 #define	KMEM_BIG_SHIFT		11
212 #define	KMEM_BIG_MAXSIZE	16384
213 #define	KMEM_CACHE_BIG_COUNT	(KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
214 
215 static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
216 static size_t kmem_cache_big_maxidx __read_mostly;
217 
218 #if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
219 #define	KMEM_SIZE
220 #endif
221 
222 #if defined(DEBUG) && defined(_HARDKERNEL)
223 static void *kmem_freecheck;
224 #endif
225 
226 #if defined(KMEM_SIZE)
227 #define	SIZE_SIZE	sizeof(size_t)
228 static void kmem_size_set(void *, size_t);
229 static void kmem_size_check(void *, size_t);
230 #else
231 #define	SIZE_SIZE	0
232 #define	kmem_size_set(p, sz)	/* nothing */
233 #define	kmem_size_check(p, sz)	/* nothing */
234 #endif
235 
236 #ifndef KDTRACE_HOOKS
237 
238 static const id_t **const kmem_cache_alloc_probe_id = NULL;
239 static const id_t **const kmem_cache_big_alloc_probe_id = NULL;
240 static const id_t **const kmem_cache_free_probe_id = NULL;
241 static const id_t **const kmem_cache_big_free_probe_id = NULL;
242 
243 #define	KMEM_CACHE_PROBE(ARRAY, INDEX, PTR, REQSIZE, ALLOCSIZE, FLAGS)	      \
244 	__nothing
245 
246 #else
247 
248 static const id_t *kmem_cache_alloc_probe_id[KMEM_CACHE_COUNT];
249 static const id_t *kmem_cache_big_alloc_probe_id[KMEM_CACHE_COUNT];
250 static const id_t *kmem_cache_free_probe_id[KMEM_CACHE_COUNT];
251 static const id_t *kmem_cache_big_free_probe_id[KMEM_CACHE_COUNT];
252 
253 #define	KMEM_CACHE_PROBE(ARRAY, INDEX, PTR, REQSIZE, ALLOCSIZE, FLAGS) do     \
254 {									      \
255 	id_t id;							      \
256 									      \
257 	KDASSERT((INDEX) < __arraycount(ARRAY));			      \
258 	if (__predict_false((id = *(ARRAY)[INDEX]) != 0)) {		      \
259 		(*sdt_probe_func)(id,					      \
260 		    (uintptr_t)(PTR),					      \
261 		    (uintptr_t)(REQSIZE),				      \
262 		    (uintptr_t)(ALLOCSIZE),				      \
263 		    (uintptr_t)(FLAGS),					      \
264 		    (uintptr_t)0);					      \
265 	}								      \
266 } while (0)
267 
268 #endif	/* KDTRACE_HOOKS */
269 
270 #define	KMEM_CACHE_ALLOC_PROBE(I, P, RS, AS, F)				      \
271 	KMEM_CACHE_PROBE(kmem_cache_alloc_probe_id, I, P, RS, AS, F)
272 #define	KMEM_CACHE_BIG_ALLOC_PROBE(I, P, RS, AS, F)			      \
273 	KMEM_CACHE_PROBE(kmem_cache_big_alloc_probe_id, I, P, RS, AS, F)
274 #define	KMEM_CACHE_FREE_PROBE(I, P, RS, AS)				      \
275 	KMEM_CACHE_PROBE(kmem_cache_free_probe_id, I, P, RS, AS, 0)
276 #define	KMEM_CACHE_BIG_FREE_PROBE(I, P, RS, AS)				      \
277 	KMEM_CACHE_PROBE(kmem_cache_big_free_probe_id, I, P, RS, AS, 0)
278 
279 CTASSERT(KM_SLEEP == PR_WAITOK);
280 CTASSERT(KM_NOSLEEP == PR_NOWAIT);
281 
282 /*
283  * kmem_intr_alloc: allocate wired memory.
284  */
285 void *
kmem_intr_alloc(size_t requested_size,km_flag_t kmflags)286 kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
287 {
288 #ifdef KASAN
289 	const size_t origsize = requested_size;
290 #endif
291 	size_t allocsz, index;
292 	size_t size;
293 	pool_cache_t pc;
294 	uint8_t *p;
295 
296 	KASSERT(requested_size > 0);
297 
298 	KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP));
299 	KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP));
300 
301 	kasan_add_redzone(&requested_size);
302 	size = kmem_roundup_size(requested_size);
303 	allocsz = size + SIZE_SIZE;
304 
305 	if ((index = ((allocsz - 1) >> KMEM_SHIFT))
306 	    < kmem_cache_maxidx) {
307 		pc = kmem_cache[index];
308 		p = pool_cache_get(pc, kmflags);
309 		KMEM_CACHE_ALLOC_PROBE(index,
310 		    p, requested_size, allocsz, kmflags);
311 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
312 	    < kmem_cache_big_maxidx) {
313 		pc = kmem_cache_big[index];
314 		p = pool_cache_get(pc, kmflags);
315 		KMEM_CACHE_BIG_ALLOC_PROBE(index,
316 		    p, requested_size, allocsz, kmflags);
317 	} else {
318 		int ret = uvm_km_kmem_alloc(kmem_va_arena,
319 		    (vsize_t)round_page(size),
320 		    ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
321 		     | VM_INSTANTFIT, (vmem_addr_t *)&p);
322 		SDT_PROBE4(sdt, kmem, alloc, large,
323 		    ret ? NULL : p, requested_size, round_page(size), kmflags);
324 		if (ret) {
325 			return NULL;
326 		}
327 		FREECHECK_OUT(&kmem_freecheck, p);
328 		KASSERT(size < coherency_unit ||
329 		    ALIGNED_POINTER(p, coherency_unit));
330 		return p;
331 	}
332 
333 	if (__predict_true(p != NULL)) {
334 		FREECHECK_OUT(&kmem_freecheck, p);
335 		kmem_size_set(p, requested_size);
336 		kasan_mark(p, origsize, size, KASAN_KMEM_REDZONE);
337 		return p;
338 	}
339 
340 	KASSERT(size < coherency_unit || ALIGNED_POINTER(p, coherency_unit));
341 	return p;
342 }
343 
344 /*
345  * kmem_intr_zalloc: allocate zeroed wired memory.
346  */
347 void *
kmem_intr_zalloc(size_t size,km_flag_t kmflags)348 kmem_intr_zalloc(size_t size, km_flag_t kmflags)
349 {
350 	void *p;
351 
352 	p = kmem_intr_alloc(size, kmflags);
353 	if (__predict_true(p != NULL)) {
354 		memset(p, 0, size);
355 	}
356 	return p;
357 }
358 
359 /*
360  * kmem_intr_free: free wired memory allocated by kmem_alloc.
361  */
362 void
kmem_intr_free(void * p,size_t requested_size)363 kmem_intr_free(void *p, size_t requested_size)
364 {
365 	size_t allocsz, index;
366 	size_t size;
367 	pool_cache_t pc;
368 
369 	KASSERT(p != NULL);
370 	KASSERTMSG(requested_size > 0, "kmem_intr_free(%p, 0)", p);
371 
372 	kasan_add_redzone(&requested_size);
373 	size = kmem_roundup_size(requested_size);
374 	allocsz = size + SIZE_SIZE;
375 
376 	if ((index = ((allocsz - 1) >> KMEM_SHIFT))
377 	    < kmem_cache_maxidx) {
378 		KMEM_CACHE_FREE_PROBE(index, p, requested_size, allocsz);
379 		pc = kmem_cache[index];
380 	} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
381 	    < kmem_cache_big_maxidx) {
382 		KMEM_CACHE_BIG_FREE_PROBE(index, p, requested_size, allocsz);
383 		pc = kmem_cache_big[index];
384 	} else {
385 		FREECHECK_IN(&kmem_freecheck, p);
386 		SDT_PROBE3(sdt, kmem, free, large,
387 		    p, requested_size, round_page(size));
388 		uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
389 		    round_page(size));
390 		return;
391 	}
392 
393 	kasan_mark(p, size, size, 0);
394 
395 	kmem_size_check(p, requested_size);
396 	FREECHECK_IN(&kmem_freecheck, p);
397 	LOCKDEBUG_MEM_CHECK(p, size);
398 
399 	pool_cache_put(pc, p);
400 }
401 
402 /* -------------------------------- Kmem API -------------------------------- */
403 
404 /*
405  * kmem_alloc: allocate wired memory.
406  * => must not be called from interrupt context.
407  */
408 void *
kmem_alloc(size_t size,km_flag_t kmflags)409 kmem_alloc(size_t size, km_flag_t kmflags)
410 {
411 	void *v;
412 
413 	KASSERT(!cpu_intr_p());
414 	KASSERT(!cpu_softintr_p());
415 
416 	v = kmem_intr_alloc(size, kmflags);
417 	if (__predict_true(v != NULL)) {
418 		kmsan_mark(v, size, KMSAN_STATE_UNINIT);
419 		kmsan_orig(v, size, KMSAN_TYPE_KMEM, __RET_ADDR);
420 	}
421 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
422 	return v;
423 }
424 
425 /*
426  * kmem_zalloc: allocate zeroed wired memory.
427  * => must not be called from interrupt context.
428  */
429 void *
kmem_zalloc(size_t size,km_flag_t kmflags)430 kmem_zalloc(size_t size, km_flag_t kmflags)
431 {
432 	void *v;
433 
434 	KASSERT(!cpu_intr_p());
435 	KASSERT(!cpu_softintr_p());
436 
437 	v = kmem_intr_zalloc(size, kmflags);
438 	KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
439 	return v;
440 }
441 
442 /*
443  * kmem_free: free wired memory allocated by kmem_alloc.
444  * => must not be called from interrupt context.
445  */
446 void
kmem_free(void * p,size_t size)447 kmem_free(void *p, size_t size)
448 {
449 
450 	KASSERT(!cpu_intr_p());
451 	KASSERT(!cpu_softintr_p());
452 
453 	kmem_intr_free(p, size);
454 	kmsan_mark(p, size, KMSAN_STATE_INITED);
455 }
456 
457 static size_t
kmem_create_caches(const struct kmem_cache_info * array,const id_t * alloc_probe_table[],const id_t * free_probe_table[],pool_cache_t alloc_table[],size_t maxsize,int shift,int ipl)458 kmem_create_caches(const struct kmem_cache_info *array,
459     const id_t *alloc_probe_table[], const id_t *free_probe_table[],
460     pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
461 {
462 	size_t maxidx = 0;
463 	size_t table_unit = (1 << shift);
464 	size_t size = table_unit;
465 	int i;
466 
467 	for (i = 0; array[i].kc_size != 0 ; i++) {
468 		const char *name = array[i].kc_name;
469 		size_t cache_size = array[i].kc_size;
470 		struct pool_allocator *pa;
471 		int flags = 0;
472 		pool_cache_t pc;
473 		size_t align;
474 
475 		/* check if we reached the requested size */
476 		if (cache_size > maxsize || cache_size > PAGE_SIZE) {
477 			break;
478 		}
479 
480 		/*
481 		 * Exclude caches with size not a factor or multiple of the
482 		 * coherency unit.
483 		 */
484 		if (cache_size < COHERENCY_UNIT) {
485 			if (COHERENCY_UNIT % cache_size > 0) {
486 			    	continue;
487 			}
488 			flags |= PR_NOTOUCH;
489 			align = KMEM_ALIGN;
490 		} else if ((cache_size & (PAGE_SIZE - 1)) == 0) {
491 			align = PAGE_SIZE;
492 		} else {
493 			if ((cache_size % COHERENCY_UNIT) > 0) {
494 				continue;
495 			}
496 			align = COHERENCY_UNIT;
497 		}
498 
499 		if ((cache_size >> shift) > maxidx) {
500 			maxidx = cache_size >> shift;
501 		}
502 
503 		pa = &pool_allocator_kmem;
504 		pc = pool_cache_init(cache_size, align, 0, flags,
505 		    name, pa, ipl, NULL, NULL, NULL);
506 
507 		while (size <= cache_size) {
508 			alloc_table[(size - 1) >> shift] = pc;
509 #ifdef KDTRACE_HOOKS
510 			if (alloc_probe_table) {
511 				alloc_probe_table[(size - 1) >> shift] =
512 				    array[i].kc_alloc_probe_id;
513 			}
514 			if (free_probe_table) {
515 				free_probe_table[(size - 1) >> shift] =
516 				    array[i].kc_free_probe_id;
517 			}
518 #endif
519 			size += table_unit;
520 		}
521 	}
522 	return maxidx;
523 }
524 
525 void
kmem_init(void)526 kmem_init(void)
527 {
528 	kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
529 	    kmem_cache_alloc_probe_id, kmem_cache_free_probe_id,
530 	    kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
531 	kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
532 	    kmem_cache_big_alloc_probe_id, kmem_cache_big_free_probe_id,
533 	    kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
534 }
535 
536 size_t
kmem_roundup_size(size_t size)537 kmem_roundup_size(size_t size)
538 {
539 	return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
540 }
541 
542 /*
543  * Used to dynamically allocate string with kmem accordingly to format.
544  */
545 char *
kmem_asprintf(const char * fmt,...)546 kmem_asprintf(const char *fmt, ...)
547 {
548 	int size __diagused, len;
549 	va_list va;
550 	char *str;
551 
552 	va_start(va, fmt);
553 	len = vsnprintf(NULL, 0, fmt, va);
554 	va_end(va);
555 
556 	str = kmem_alloc(len + 1, KM_SLEEP);
557 
558 	va_start(va, fmt);
559 	size = vsnprintf(str, len + 1, fmt, va);
560 	va_end(va);
561 
562 	KASSERT(size == len);
563 
564 	return str;
565 }
566 
567 char *
kmem_strdupsize(const char * str,size_t * lenp,km_flag_t flags)568 kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags)
569 {
570 	size_t len = strlen(str) + 1;
571 	char *ptr = kmem_alloc(len, flags);
572 	if (ptr == NULL)
573 		return NULL;
574 
575 	if (lenp)
576 		*lenp = len;
577 	memcpy(ptr, str, len);
578 	return ptr;
579 }
580 
581 char *
kmem_strndup(const char * str,size_t maxlen,km_flag_t flags)582 kmem_strndup(const char *str, size_t maxlen, km_flag_t flags)
583 {
584 	KASSERT(str != NULL);
585 	KASSERT(maxlen != 0);
586 
587 	size_t len = strnlen(str, maxlen);
588 	char *ptr = kmem_alloc(len + 1, flags);
589 	if (ptr == NULL)
590 		return NULL;
591 
592 	memcpy(ptr, str, len);
593 	ptr[len] = '\0';
594 
595 	return ptr;
596 }
597 
598 void
kmem_strfree(char * str)599 kmem_strfree(char *str)
600 {
601 	if (str == NULL)
602 		return;
603 
604 	kmem_free(str, strlen(str) + 1);
605 }
606 
607 /*
608  * Utility routine to maybe-allocate a temporary buffer if the size
609  * is larger than we're willing to put on the stack.
610  */
611 void *
kmem_tmpbuf_alloc(size_t size,void * stackbuf,size_t stackbufsize,km_flag_t flags)612 kmem_tmpbuf_alloc(size_t size, void *stackbuf, size_t stackbufsize,
613     km_flag_t flags)
614 {
615 	if (size <= stackbufsize) {
616 		return stackbuf;
617 	}
618 
619 	return kmem_alloc(size, flags);
620 }
621 
622 void
kmem_tmpbuf_free(void * buf,size_t size,void * stackbuf)623 kmem_tmpbuf_free(void *buf, size_t size, void *stackbuf)
624 {
625 	if (buf != stackbuf) {
626 		kmem_free(buf, size);
627 	}
628 }
629 
630 /* --------------------------- DEBUG / DIAGNOSTIC --------------------------- */
631 
632 #if defined(KMEM_SIZE)
633 static void
kmem_size_set(void * p,size_t sz)634 kmem_size_set(void *p, size_t sz)
635 {
636 	memcpy((char *)p + sz, &sz, sizeof(size_t));
637 }
638 
639 static void
kmem_size_check(void * p,size_t sz)640 kmem_size_check(void *p, size_t sz)
641 {
642 	size_t hsz;
643 
644 	memcpy(&hsz, (char *)p + sz, sizeof(size_t));
645 
646 	if (hsz != sz) {
647 		panic("kmem_free(%p, %zu) != allocated size %zu; overwrote?",
648 		    p, sz, hsz);
649 	}
650 
651 	memset((char *)p + sz, 0xff, sizeof(size_t));
652 }
653 #endif /* defined(KMEM_SIZE) */
654