xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/amdkfd/kfd_device.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: kfd_device.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2014 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: kfd_device.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $");
27 
28 #include <linux/bsearch.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include "kfd_priv.h"
32 #include "kfd_device_queue_manager.h"
33 #include "kfd_pm4_headers_vi.h"
34 #include "cwsr_trap_handler.h"
35 #include "kfd_iommu.h"
36 #include "amdgpu_amdkfd.h"
37 
38 #define MQD_SIZE_ALIGNED 768
39 
40 /*
41  * kfd_locked is used to lock the kfd driver during suspend or reset
42  * once locked, kfd driver will stop any further GPU execution.
43  * create process (open) will return -EAGAIN.
44  */
45 static atomic_t kfd_locked = ATOMIC_INIT(0);
46 
47 #ifdef CONFIG_DRM_AMDGPU_CIK
48 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
49 #endif
50 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
51 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
52 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
53 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
54 
55 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
56 #ifdef KFD_SUPPORT_IOMMU_V2
57 #ifdef CONFIG_DRM_AMDGPU_CIK
58 	[CHIP_KAVERI] = &gfx_v7_kfd2kgd,
59 #endif
60 	[CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
61 	[CHIP_RAVEN] = &gfx_v9_kfd2kgd,
62 #endif
63 #ifdef CONFIG_DRM_AMDGPU_CIK
64 	[CHIP_HAWAII] = &gfx_v7_kfd2kgd,
65 #endif
66 	[CHIP_TONGA] = &gfx_v8_kfd2kgd,
67 	[CHIP_FIJI] = &gfx_v8_kfd2kgd,
68 	[CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
69 	[CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
70 	[CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
71 	[CHIP_VEGAM] = &gfx_v8_kfd2kgd,
72 	[CHIP_VEGA10] = &gfx_v9_kfd2kgd,
73 	[CHIP_VEGA12] = &gfx_v9_kfd2kgd,
74 	[CHIP_VEGA20] = &gfx_v9_kfd2kgd,
75 	[CHIP_RENOIR] = &gfx_v9_kfd2kgd,
76 	[CHIP_ARCTURUS] = &arcturus_kfd2kgd,
77 	[CHIP_NAVI10] = &gfx_v10_kfd2kgd,
78 	[CHIP_NAVI12] = &gfx_v10_kfd2kgd,
79 	[CHIP_NAVI14] = &gfx_v10_kfd2kgd,
80 };
81 
82 #ifdef KFD_SUPPORT_IOMMU_V2
83 static const struct kfd_device_info kaveri_device_info = {
84 	.asic_family = CHIP_KAVERI,
85 	.asic_name = "kaveri",
86 	.max_pasid_bits = 16,
87 	/* max num of queues for KV.TODO should be a dynamic value */
88 	.max_no_of_hqd	= 24,
89 	.doorbell_size  = 4,
90 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
91 	.event_interrupt_class = &event_interrupt_class_cik,
92 	.num_of_watch_points = 4,
93 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
94 	.supports_cwsr = false,
95 	.needs_iommu_device = true,
96 	.needs_pci_atomics = false,
97 	.num_sdma_engines = 2,
98 	.num_xgmi_sdma_engines = 0,
99 	.num_sdma_queues_per_engine = 2,
100 };
101 
102 static const struct kfd_device_info carrizo_device_info = {
103 	.asic_family = CHIP_CARRIZO,
104 	.asic_name = "carrizo",
105 	.max_pasid_bits = 16,
106 	/* max num of queues for CZ.TODO should be a dynamic value */
107 	.max_no_of_hqd	= 24,
108 	.doorbell_size  = 4,
109 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
110 	.event_interrupt_class = &event_interrupt_class_cik,
111 	.num_of_watch_points = 4,
112 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
113 	.supports_cwsr = true,
114 	.needs_iommu_device = true,
115 	.needs_pci_atomics = false,
116 	.num_sdma_engines = 2,
117 	.num_xgmi_sdma_engines = 0,
118 	.num_sdma_queues_per_engine = 2,
119 };
120 
121 static const struct kfd_device_info raven_device_info = {
122 	.asic_family = CHIP_RAVEN,
123 	.asic_name = "raven",
124 	.max_pasid_bits = 16,
125 	.max_no_of_hqd  = 24,
126 	.doorbell_size  = 8,
127 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
128 	.event_interrupt_class = &event_interrupt_class_v9,
129 	.num_of_watch_points = 4,
130 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
131 	.supports_cwsr = true,
132 	.needs_iommu_device = true,
133 	.needs_pci_atomics = true,
134 	.num_sdma_engines = 1,
135 	.num_xgmi_sdma_engines = 0,
136 	.num_sdma_queues_per_engine = 2,
137 };
138 #endif
139 
140 static const struct kfd_device_info hawaii_device_info = {
141 	.asic_family = CHIP_HAWAII,
142 	.asic_name = "hawaii",
143 	.max_pasid_bits = 16,
144 	/* max num of queues for KV.TODO should be a dynamic value */
145 	.max_no_of_hqd	= 24,
146 	.doorbell_size  = 4,
147 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
148 	.event_interrupt_class = &event_interrupt_class_cik,
149 	.num_of_watch_points = 4,
150 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
151 	.supports_cwsr = false,
152 	.needs_iommu_device = false,
153 	.needs_pci_atomics = false,
154 	.num_sdma_engines = 2,
155 	.num_xgmi_sdma_engines = 0,
156 	.num_sdma_queues_per_engine = 2,
157 };
158 
159 static const struct kfd_device_info tonga_device_info = {
160 	.asic_family = CHIP_TONGA,
161 	.asic_name = "tonga",
162 	.max_pasid_bits = 16,
163 	.max_no_of_hqd  = 24,
164 	.doorbell_size  = 4,
165 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
166 	.event_interrupt_class = &event_interrupt_class_cik,
167 	.num_of_watch_points = 4,
168 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
169 	.supports_cwsr = false,
170 	.needs_iommu_device = false,
171 	.needs_pci_atomics = true,
172 	.num_sdma_engines = 2,
173 	.num_xgmi_sdma_engines = 0,
174 	.num_sdma_queues_per_engine = 2,
175 };
176 
177 static const struct kfd_device_info fiji_device_info = {
178 	.asic_family = CHIP_FIJI,
179 	.asic_name = "fiji",
180 	.max_pasid_bits = 16,
181 	.max_no_of_hqd  = 24,
182 	.doorbell_size  = 4,
183 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
184 	.event_interrupt_class = &event_interrupt_class_cik,
185 	.num_of_watch_points = 4,
186 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
187 	.supports_cwsr = true,
188 	.needs_iommu_device = false,
189 	.needs_pci_atomics = true,
190 	.num_sdma_engines = 2,
191 	.num_xgmi_sdma_engines = 0,
192 	.num_sdma_queues_per_engine = 2,
193 };
194 
195 static const struct kfd_device_info fiji_vf_device_info = {
196 	.asic_family = CHIP_FIJI,
197 	.asic_name = "fiji",
198 	.max_pasid_bits = 16,
199 	.max_no_of_hqd  = 24,
200 	.doorbell_size  = 4,
201 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
202 	.event_interrupt_class = &event_interrupt_class_cik,
203 	.num_of_watch_points = 4,
204 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
205 	.supports_cwsr = true,
206 	.needs_iommu_device = false,
207 	.needs_pci_atomics = false,
208 	.num_sdma_engines = 2,
209 	.num_xgmi_sdma_engines = 0,
210 	.num_sdma_queues_per_engine = 2,
211 };
212 
213 
214 static const struct kfd_device_info polaris10_device_info = {
215 	.asic_family = CHIP_POLARIS10,
216 	.asic_name = "polaris10",
217 	.max_pasid_bits = 16,
218 	.max_no_of_hqd  = 24,
219 	.doorbell_size  = 4,
220 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
221 	.event_interrupt_class = &event_interrupt_class_cik,
222 	.num_of_watch_points = 4,
223 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
224 	.supports_cwsr = true,
225 	.needs_iommu_device = false,
226 	.needs_pci_atomics = true,
227 	.num_sdma_engines = 2,
228 	.num_xgmi_sdma_engines = 0,
229 	.num_sdma_queues_per_engine = 2,
230 };
231 
232 static const struct kfd_device_info polaris10_vf_device_info = {
233 	.asic_family = CHIP_POLARIS10,
234 	.asic_name = "polaris10",
235 	.max_pasid_bits = 16,
236 	.max_no_of_hqd  = 24,
237 	.doorbell_size  = 4,
238 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
239 	.event_interrupt_class = &event_interrupt_class_cik,
240 	.num_of_watch_points = 4,
241 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
242 	.supports_cwsr = true,
243 	.needs_iommu_device = false,
244 	.needs_pci_atomics = false,
245 	.num_sdma_engines = 2,
246 	.num_xgmi_sdma_engines = 0,
247 	.num_sdma_queues_per_engine = 2,
248 };
249 
250 static const struct kfd_device_info polaris11_device_info = {
251 	.asic_family = CHIP_POLARIS11,
252 	.asic_name = "polaris11",
253 	.max_pasid_bits = 16,
254 	.max_no_of_hqd  = 24,
255 	.doorbell_size  = 4,
256 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
257 	.event_interrupt_class = &event_interrupt_class_cik,
258 	.num_of_watch_points = 4,
259 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
260 	.supports_cwsr = true,
261 	.needs_iommu_device = false,
262 	.needs_pci_atomics = true,
263 	.num_sdma_engines = 2,
264 	.num_xgmi_sdma_engines = 0,
265 	.num_sdma_queues_per_engine = 2,
266 };
267 
268 static const struct kfd_device_info polaris12_device_info = {
269 	.asic_family = CHIP_POLARIS12,
270 	.asic_name = "polaris12",
271 	.max_pasid_bits = 16,
272 	.max_no_of_hqd  = 24,
273 	.doorbell_size  = 4,
274 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
275 	.event_interrupt_class = &event_interrupt_class_cik,
276 	.num_of_watch_points = 4,
277 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
278 	.supports_cwsr = true,
279 	.needs_iommu_device = false,
280 	.needs_pci_atomics = true,
281 	.num_sdma_engines = 2,
282 	.num_xgmi_sdma_engines = 0,
283 	.num_sdma_queues_per_engine = 2,
284 };
285 
286 static const struct kfd_device_info vegam_device_info = {
287 	.asic_family = CHIP_VEGAM,
288 	.asic_name = "vegam",
289 	.max_pasid_bits = 16,
290 	.max_no_of_hqd  = 24,
291 	.doorbell_size  = 4,
292 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
293 	.event_interrupt_class = &event_interrupt_class_cik,
294 	.num_of_watch_points = 4,
295 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
296 	.supports_cwsr = true,
297 	.needs_iommu_device = false,
298 	.needs_pci_atomics = true,
299 	.num_sdma_engines = 2,
300 	.num_xgmi_sdma_engines = 0,
301 	.num_sdma_queues_per_engine = 2,
302 };
303 
304 static const struct kfd_device_info vega10_device_info = {
305 	.asic_family = CHIP_VEGA10,
306 	.asic_name = "vega10",
307 	.max_pasid_bits = 16,
308 	.max_no_of_hqd  = 24,
309 	.doorbell_size  = 8,
310 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
311 	.event_interrupt_class = &event_interrupt_class_v9,
312 	.num_of_watch_points = 4,
313 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
314 	.supports_cwsr = true,
315 	.needs_iommu_device = false,
316 	.needs_pci_atomics = false,
317 	.num_sdma_engines = 2,
318 	.num_xgmi_sdma_engines = 0,
319 	.num_sdma_queues_per_engine = 2,
320 };
321 
322 static const struct kfd_device_info vega10_vf_device_info = {
323 	.asic_family = CHIP_VEGA10,
324 	.asic_name = "vega10",
325 	.max_pasid_bits = 16,
326 	.max_no_of_hqd  = 24,
327 	.doorbell_size  = 8,
328 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
329 	.event_interrupt_class = &event_interrupt_class_v9,
330 	.num_of_watch_points = 4,
331 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
332 	.supports_cwsr = true,
333 	.needs_iommu_device = false,
334 	.needs_pci_atomics = false,
335 	.num_sdma_engines = 2,
336 	.num_xgmi_sdma_engines = 0,
337 	.num_sdma_queues_per_engine = 2,
338 };
339 
340 static const struct kfd_device_info vega12_device_info = {
341 	.asic_family = CHIP_VEGA12,
342 	.asic_name = "vega12",
343 	.max_pasid_bits = 16,
344 	.max_no_of_hqd  = 24,
345 	.doorbell_size  = 8,
346 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
347 	.event_interrupt_class = &event_interrupt_class_v9,
348 	.num_of_watch_points = 4,
349 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
350 	.supports_cwsr = true,
351 	.needs_iommu_device = false,
352 	.needs_pci_atomics = false,
353 	.num_sdma_engines = 2,
354 	.num_xgmi_sdma_engines = 0,
355 	.num_sdma_queues_per_engine = 2,
356 };
357 
358 static const struct kfd_device_info vega20_device_info = {
359 	.asic_family = CHIP_VEGA20,
360 	.asic_name = "vega20",
361 	.max_pasid_bits = 16,
362 	.max_no_of_hqd	= 24,
363 	.doorbell_size	= 8,
364 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
365 	.event_interrupt_class = &event_interrupt_class_v9,
366 	.num_of_watch_points = 4,
367 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
368 	.supports_cwsr = true,
369 	.needs_iommu_device = false,
370 	.needs_pci_atomics = false,
371 	.num_sdma_engines = 2,
372 	.num_xgmi_sdma_engines = 0,
373 	.num_sdma_queues_per_engine = 8,
374 };
375 
376 static const struct kfd_device_info arcturus_device_info = {
377 	.asic_family = CHIP_ARCTURUS,
378 	.asic_name = "arcturus",
379 	.max_pasid_bits = 16,
380 	.max_no_of_hqd	= 24,
381 	.doorbell_size	= 8,
382 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
383 	.event_interrupt_class = &event_interrupt_class_v9,
384 	.num_of_watch_points = 4,
385 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
386 	.supports_cwsr = true,
387 	.needs_iommu_device = false,
388 	.needs_pci_atomics = false,
389 	.num_sdma_engines = 2,
390 	.num_xgmi_sdma_engines = 6,
391 	.num_sdma_queues_per_engine = 8,
392 };
393 
394 static const struct kfd_device_info renoir_device_info = {
395 	.asic_family = CHIP_RENOIR,
396 	.asic_name = "renoir",
397 	.max_pasid_bits = 16,
398 	.max_no_of_hqd  = 24,
399 	.doorbell_size  = 8,
400 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
401 	.event_interrupt_class = &event_interrupt_class_v9,
402 	.num_of_watch_points = 4,
403 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
404 	.supports_cwsr = true,
405 	.needs_iommu_device = false,
406 	.needs_pci_atomics = false,
407 	.num_sdma_engines = 1,
408 	.num_xgmi_sdma_engines = 0,
409 	.num_sdma_queues_per_engine = 2,
410 };
411 
412 static const struct kfd_device_info navi10_device_info = {
413 	.asic_family = CHIP_NAVI10,
414 	.asic_name = "navi10",
415 	.max_pasid_bits = 16,
416 	.max_no_of_hqd  = 24,
417 	.doorbell_size  = 8,
418 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
419 	.event_interrupt_class = &event_interrupt_class_v9,
420 	.num_of_watch_points = 4,
421 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
422 	.needs_iommu_device = false,
423 	.supports_cwsr = true,
424 	.needs_pci_atomics = false,
425 	.num_sdma_engines = 2,
426 	.num_xgmi_sdma_engines = 0,
427 	.num_sdma_queues_per_engine = 8,
428 };
429 
430 static const struct kfd_device_info navi12_device_info = {
431 	.asic_family = CHIP_NAVI12,
432 	.asic_name = "navi12",
433 	.max_pasid_bits = 16,
434 	.max_no_of_hqd  = 24,
435 	.doorbell_size  = 8,
436 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
437 	.event_interrupt_class = &event_interrupt_class_v9,
438 	.num_of_watch_points = 4,
439 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
440 	.needs_iommu_device = false,
441 	.supports_cwsr = true,
442 	.needs_pci_atomics = false,
443 	.num_sdma_engines = 2,
444 	.num_xgmi_sdma_engines = 0,
445 	.num_sdma_queues_per_engine = 8,
446 };
447 
448 static const struct kfd_device_info navi14_device_info = {
449 	.asic_family = CHIP_NAVI14,
450 	.asic_name = "navi14",
451 	.max_pasid_bits = 16,
452 	.max_no_of_hqd  = 24,
453 	.doorbell_size  = 8,
454 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
455 	.event_interrupt_class = &event_interrupt_class_v9,
456 	.num_of_watch_points = 4,
457 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
458 	.needs_iommu_device = false,
459 	.supports_cwsr = true,
460 	.needs_pci_atomics = false,
461 	.num_sdma_engines = 2,
462 	.num_xgmi_sdma_engines = 0,
463 	.num_sdma_queues_per_engine = 8,
464 };
465 
466 /* For each entry, [0] is regular and [1] is virtualisation device. */
467 static const struct kfd_device_info *kfd_supported_devices[][2] = {
468 #ifdef KFD_SUPPORT_IOMMU_V2
469 	[CHIP_KAVERI] = {&kaveri_device_info, NULL},
470 	[CHIP_CARRIZO] = {&carrizo_device_info, NULL},
471 	[CHIP_RAVEN] = {&raven_device_info, NULL},
472 #endif
473 	[CHIP_HAWAII] = {&hawaii_device_info, NULL},
474 	[CHIP_TONGA] = {&tonga_device_info, NULL},
475 	[CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
476 	[CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
477 	[CHIP_POLARIS11] = {&polaris11_device_info, NULL},
478 	[CHIP_POLARIS12] = {&polaris12_device_info, NULL},
479 	[CHIP_VEGAM] = {&vegam_device_info, NULL},
480 	[CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
481 	[CHIP_VEGA12] = {&vega12_device_info, NULL},
482 	[CHIP_VEGA20] = {&vega20_device_info, NULL},
483 	[CHIP_RENOIR] = {&renoir_device_info, NULL},
484 	[CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
485 	[CHIP_NAVI10] = {&navi10_device_info, NULL},
486 	[CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
487 	[CHIP_NAVI14] = {&navi14_device_info, NULL},
488 };
489 
490 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
491 				unsigned int chunk_size);
492 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
493 
494 static int kfd_resume(struct kfd_dev *kfd);
495 
kgd2kfd_probe(struct kgd_dev * kgd,struct pci_dev * pdev,unsigned int asic_type,bool vf)496 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
497 	struct pci_dev *pdev, unsigned int asic_type, bool vf)
498 {
499 	struct kfd_dev *kfd;
500 	const struct kfd_device_info *device_info;
501 	const struct kfd2kgd_calls *f2g;
502 
503 	if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
504 		|| asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
505 		dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
506 		return NULL; /* asic_type out of range */
507 	}
508 
509 	device_info = kfd_supported_devices[asic_type][vf];
510 	f2g = kfd2kgd_funcs[asic_type];
511 
512 	if (!device_info || !f2g) {
513 		dev_err(kfd_device, "%s %s not supported in kfd\n",
514 			amdgpu_asic_name[asic_type], vf ? "VF" : "");
515 		return NULL;
516 	}
517 
518 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
519 	if (!kfd)
520 		return NULL;
521 
522 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
523 	 * 32 and 64-bit requests are possible and must be
524 	 * supported.
525 	 */
526 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
527 	if (device_info->needs_pci_atomics &&
528 	    !kfd->pci_atomic_requested) {
529 		dev_info(kfd_device,
530 			 "skipped device %x:%x, PCI rejects atomics\n",
531 			 pdev->vendor, pdev->device);
532 		kfree(kfd);
533 		return NULL;
534 	}
535 
536 	kfd->kgd = kgd;
537 	kfd->device_info = device_info;
538 	kfd->pdev = pdev;
539 	kfd->init_complete = false;
540 	kfd->kfd2kgd = f2g;
541 	atomic_set(&kfd->compute_profile, 0);
542 
543 	mutex_init(&kfd->doorbell_mutex);
544 	memset(&kfd->doorbell_available_index, 0,
545 		sizeof(kfd->doorbell_available_index));
546 
547 	atomic_set(&kfd->sram_ecc_flag, 0);
548 
549 	return kfd;
550 }
551 
kfd_cwsr_init(struct kfd_dev * kfd)552 static void kfd_cwsr_init(struct kfd_dev *kfd)
553 {
554 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
555 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
556 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
557 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
558 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
559 		} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
560 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
561 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
562 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
563 		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
564 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
565 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
566 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
567 		} else {
568 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
569 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
570 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
571 		}
572 
573 		kfd->cwsr_enabled = true;
574 	}
575 }
576 
kgd2kfd_device_init(struct kfd_dev * kfd,struct drm_device * ddev,const struct kgd2kfd_shared_resources * gpu_resources)577 bool kgd2kfd_device_init(struct kfd_dev *kfd,
578 			 struct drm_device *ddev,
579 			 const struct kgd2kfd_shared_resources *gpu_resources)
580 {
581 	unsigned int size;
582 
583 	kfd->ddev = ddev;
584 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
585 			KGD_ENGINE_MEC1);
586 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
587 			KGD_ENGINE_SDMA1);
588 	kfd->shared_resources = *gpu_resources;
589 
590 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
591 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
592 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
593 			- kfd->vm_info.first_vmid_kfd + 1;
594 
595 	/* Verify module parameters regarding mapped process number*/
596 	if ((hws_max_conc_proc < 0)
597 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
598 		dev_err(kfd_device,
599 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
600 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
601 			kfd->vm_info.vmid_num_kfd);
602 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
603 	} else
604 		kfd->max_proc_per_quantum = hws_max_conc_proc;
605 
606 	/* Allocate global GWS that is shared by all KFD processes */
607 	if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd,
608 			amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) {
609 		dev_err(kfd_device, "Could not allocate %d gws\n",
610 			amdgpu_amdkfd_get_num_gws(kfd->kgd));
611 		goto out;
612 	}
613 	/* calculate max size of mqds needed for queues */
614 	size = max_num_of_queues_per_device *
615 			kfd->device_info->mqd_size_aligned;
616 
617 	/*
618 	 * calculate max size of runlist packet.
619 	 * There can be only 2 packets at once
620 	 */
621 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
622 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
623 		+ sizeof(struct pm4_mes_runlist)) * 2;
624 
625 	/* Add size of HIQ & DIQ */
626 	size += KFD_KERNEL_QUEUE_SIZE * 2;
627 
628 	/* add another 512KB for all other allocations on gart (HPD, fences) */
629 	size += 512 * 1024;
630 
631 	if (amdgpu_amdkfd_alloc_gtt_mem(
632 			kfd->kgd, size, &kfd->gtt_mem,
633 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
634 			false)) {
635 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
636 		goto alloc_gtt_mem_failure;
637 	}
638 
639 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
640 
641 	/* Initialize GTT sa with 512 byte chunk size */
642 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
643 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
644 		goto kfd_gtt_sa_init_error;
645 	}
646 
647 	if (kfd_doorbell_init(kfd)) {
648 		dev_err(kfd_device,
649 			"Error initializing doorbell aperture\n");
650 		goto kfd_doorbell_error;
651 	}
652 
653 	if (kfd->kfd2kgd->get_hive_id)
654 		kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
655 
656 	if (kfd_interrupt_init(kfd)) {
657 		dev_err(kfd_device, "Error initializing interrupts\n");
658 		goto kfd_interrupt_error;
659 	}
660 
661 	kfd->dqm = device_queue_manager_init(kfd);
662 	if (!kfd->dqm) {
663 		dev_err(kfd_device, "Error initializing queue manager\n");
664 		goto device_queue_manager_error;
665 	}
666 
667 	if (kfd_iommu_device_init(kfd)) {
668 		dev_err(kfd_device, "Error initializing iommuv2\n");
669 		goto device_iommu_error;
670 	}
671 
672 	kfd_cwsr_init(kfd);
673 
674 	if (kfd_resume(kfd))
675 		goto kfd_resume_error;
676 
677 	kfd->dbgmgr = NULL;
678 
679 	if (kfd_topology_add_device(kfd)) {
680 		dev_err(kfd_device, "Error adding device to topology\n");
681 		goto kfd_topology_add_device_error;
682 	}
683 
684 	kfd->init_complete = true;
685 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
686 		 kfd->pdev->device);
687 
688 	pr_debug("Starting kfd with the following scheduling policy %d\n",
689 		kfd->dqm->sched_policy);
690 
691 	goto out;
692 
693 kfd_topology_add_device_error:
694 kfd_resume_error:
695 device_iommu_error:
696 	device_queue_manager_uninit(kfd->dqm);
697 device_queue_manager_error:
698 	kfd_interrupt_exit(kfd);
699 kfd_interrupt_error:
700 	kfd_doorbell_fini(kfd);
701 kfd_doorbell_error:
702 	kfd_gtt_sa_fini(kfd);
703 kfd_gtt_sa_init_error:
704 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
705 alloc_gtt_mem_failure:
706 	if (hws_gws_support)
707 		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
708 	dev_err(kfd_device,
709 		"device %x:%x NOT added due to errors\n",
710 		kfd->pdev->vendor, kfd->pdev->device);
711 out:
712 	return kfd->init_complete;
713 }
714 
kgd2kfd_device_exit(struct kfd_dev * kfd)715 void kgd2kfd_device_exit(struct kfd_dev *kfd)
716 {
717 	if (kfd->init_complete) {
718 		kgd2kfd_suspend(kfd);
719 		device_queue_manager_uninit(kfd->dqm);
720 		kfd_interrupt_exit(kfd);
721 		kfd_topology_remove_device(kfd);
722 		kfd_doorbell_fini(kfd);
723 		kfd_gtt_sa_fini(kfd);
724 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
725 		if (hws_gws_support)
726 			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
727 	}
728 
729 	kfree(kfd);
730 }
731 
kgd2kfd_pre_reset(struct kfd_dev * kfd)732 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
733 {
734 	if (!kfd->init_complete)
735 		return 0;
736 
737 	kfd->dqm->ops.pre_reset(kfd->dqm);
738 
739 	kgd2kfd_suspend(kfd);
740 
741 	kfd_signal_reset_event(kfd);
742 	return 0;
743 }
744 
745 /*
746  * Fix me. KFD won't be able to resume existing process for now.
747  * We will keep all existing process in a evicted state and
748  * wait the process to be terminated.
749  */
750 
kgd2kfd_post_reset(struct kfd_dev * kfd)751 int kgd2kfd_post_reset(struct kfd_dev *kfd)
752 {
753 	int ret;
754 
755 	if (!kfd->init_complete)
756 		return 0;
757 
758 	ret = kfd_resume(kfd);
759 	if (ret)
760 		return ret;
761 	atomic_dec(&kfd_locked);
762 
763 	atomic_set(&kfd->sram_ecc_flag, 0);
764 
765 	return 0;
766 }
767 
kfd_is_locked(void)768 bool kfd_is_locked(void)
769 {
770 	return  (atomic_read(&kfd_locked) > 0);
771 }
772 
kgd2kfd_suspend(struct kfd_dev * kfd)773 void kgd2kfd_suspend(struct kfd_dev *kfd)
774 {
775 	if (!kfd->init_complete)
776 		return;
777 
778 	/* For first KFD device suspend all the KFD processes */
779 	if (atomic_inc_return(&kfd_locked) == 1)
780 		kfd_suspend_all_processes();
781 
782 	kfd->dqm->ops.stop(kfd->dqm);
783 
784 	kfd_iommu_suspend(kfd);
785 }
786 
kgd2kfd_resume(struct kfd_dev * kfd)787 int kgd2kfd_resume(struct kfd_dev *kfd)
788 {
789 	int ret, count;
790 
791 	if (!kfd->init_complete)
792 		return 0;
793 
794 	ret = kfd_resume(kfd);
795 	if (ret)
796 		return ret;
797 
798 	count = atomic_dec_return(&kfd_locked);
799 	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
800 	if (count == 0)
801 		ret = kfd_resume_all_processes();
802 
803 	return ret;
804 }
805 
kfd_resume(struct kfd_dev * kfd)806 static int kfd_resume(struct kfd_dev *kfd)
807 {
808 	int err = 0;
809 
810 	err = kfd_iommu_resume(kfd);
811 	if (err) {
812 		dev_err(kfd_device,
813 			"Failed to resume IOMMU for device %x:%x\n",
814 			kfd->pdev->vendor, kfd->pdev->device);
815 		return err;
816 	}
817 
818 	err = kfd->dqm->ops.start(kfd->dqm);
819 	if (err) {
820 		dev_err(kfd_device,
821 			"Error starting queue manager for device %x:%x\n",
822 			kfd->pdev->vendor, kfd->pdev->device);
823 		goto dqm_start_error;
824 	}
825 
826 	return err;
827 
828 dqm_start_error:
829 	kfd_iommu_suspend(kfd);
830 	return err;
831 }
832 
kfd_queue_work(struct workqueue_struct * wq,struct work_struct * work)833 static inline void kfd_queue_work(struct workqueue_struct *wq,
834 				  struct work_struct *work)
835 {
836 	int cpu, new_cpu;
837 
838 	cpu = new_cpu = smp_processor_id();
839 	do {
840 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
841 		if (cpu_to_node(new_cpu) == numa_node_id())
842 			break;
843 	} while (cpu != new_cpu);
844 
845 	queue_work_on(new_cpu, wq, work);
846 }
847 
848 /* This is called directly from KGD at ISR. */
kgd2kfd_interrupt(struct kfd_dev * kfd,const void * ih_ring_entry)849 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
850 {
851 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
852 	bool is_patched = false;
853 	unsigned long flags;
854 
855 	if (!kfd->init_complete)
856 		return;
857 
858 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
859 		dev_err_once(kfd_device, "Ring entry too small\n");
860 		return;
861 	}
862 
863 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
864 
865 	if (kfd->interrupts_active
866 	    && interrupt_is_wanted(kfd, ih_ring_entry,
867 				   patched_ihre, &is_patched)
868 	    && enqueue_ih_ring_entry(kfd,
869 				     is_patched ? patched_ihre : ih_ring_entry))
870 		kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
871 
872 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
873 }
874 
kgd2kfd_quiesce_mm(struct mm_struct * mm)875 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
876 {
877 	struct kfd_process *p;
878 	int r;
879 
880 	/* Because we are called from arbitrary context (workqueue) as opposed
881 	 * to process context, kfd_process could attempt to exit while we are
882 	 * running so the lookup function increments the process ref count.
883 	 */
884 	p = kfd_lookup_process_by_mm(mm);
885 	if (!p)
886 		return -ESRCH;
887 
888 	r = kfd_process_evict_queues(p);
889 
890 	kfd_unref_process(p);
891 	return r;
892 }
893 
kgd2kfd_resume_mm(struct mm_struct * mm)894 int kgd2kfd_resume_mm(struct mm_struct *mm)
895 {
896 	struct kfd_process *p;
897 	int r;
898 
899 	/* Because we are called from arbitrary context (workqueue) as opposed
900 	 * to process context, kfd_process could attempt to exit while we are
901 	 * running so the lookup function increments the process ref count.
902 	 */
903 	p = kfd_lookup_process_by_mm(mm);
904 	if (!p)
905 		return -ESRCH;
906 
907 	r = kfd_process_restore_queues(p);
908 
909 	kfd_unref_process(p);
910 	return r;
911 }
912 
913 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
914  *   prepare for safe eviction of KFD BOs that belong to the specified
915  *   process.
916  *
917  * @mm: mm_struct that identifies the specified KFD process
918  * @fence: eviction fence attached to KFD process BOs
919  *
920  */
kgd2kfd_schedule_evict_and_restore_process(struct mm_struct * mm,struct dma_fence * fence)921 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
922 					       struct dma_fence *fence)
923 {
924 	struct kfd_process *p;
925 	unsigned long active_time;
926 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
927 
928 	if (!fence)
929 		return -EINVAL;
930 
931 	if (dma_fence_is_signaled(fence))
932 		return 0;
933 
934 	p = kfd_lookup_process_by_mm(mm);
935 	if (!p)
936 		return -ENODEV;
937 
938 	if (fence->seqno == p->last_eviction_seqno)
939 		goto out;
940 
941 	p->last_eviction_seqno = fence->seqno;
942 
943 	/* Avoid KFD process starvation. Wait for at least
944 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
945 	 */
946 	active_time = get_jiffies_64() - p->last_restore_timestamp;
947 	if (delay_jiffies > active_time)
948 		delay_jiffies -= active_time;
949 	else
950 		delay_jiffies = 0;
951 
952 	/* During process initialization eviction_work.dwork is initialized
953 	 * to kfd_evict_bo_worker
954 	 */
955 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
956 out:
957 	kfd_unref_process(p);
958 	return 0;
959 }
960 
kfd_gtt_sa_init(struct kfd_dev * kfd,unsigned int buf_size,unsigned int chunk_size)961 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
962 				unsigned int chunk_size)
963 {
964 	unsigned int num_of_longs;
965 
966 	if (WARN_ON(buf_size < chunk_size))
967 		return -EINVAL;
968 	if (WARN_ON(buf_size == 0))
969 		return -EINVAL;
970 	if (WARN_ON(chunk_size == 0))
971 		return -EINVAL;
972 
973 	kfd->gtt_sa_chunk_size = chunk_size;
974 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
975 
976 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
977 		BITS_PER_LONG;
978 
979 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
980 
981 	if (!kfd->gtt_sa_bitmap)
982 		return -ENOMEM;
983 
984 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
985 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
986 
987 	mutex_init(&kfd->gtt_sa_lock);
988 
989 	return 0;
990 
991 }
992 
kfd_gtt_sa_fini(struct kfd_dev * kfd)993 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
994 {
995 	mutex_destroy(&kfd->gtt_sa_lock);
996 	kfree(kfd->gtt_sa_bitmap);
997 }
998 
kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,unsigned int bit_num,unsigned int chunk_size)999 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1000 						unsigned int bit_num,
1001 						unsigned int chunk_size)
1002 {
1003 	return start_addr + bit_num * chunk_size;
1004 }
1005 
kfd_gtt_sa_calc_cpu_addr(void * start_addr,unsigned int bit_num,unsigned int chunk_size)1006 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1007 						unsigned int bit_num,
1008 						unsigned int chunk_size)
1009 {
1010 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1011 }
1012 
kfd_gtt_sa_allocate(struct kfd_dev * kfd,unsigned int size,struct kfd_mem_obj ** mem_obj)1013 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1014 			struct kfd_mem_obj **mem_obj)
1015 {
1016 	unsigned int found, start_search, cur_size;
1017 
1018 	if (size == 0)
1019 		return -EINVAL;
1020 
1021 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1022 		return -ENOMEM;
1023 
1024 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1025 	if (!(*mem_obj))
1026 		return -ENOMEM;
1027 
1028 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1029 
1030 	start_search = 0;
1031 
1032 	mutex_lock(&kfd->gtt_sa_lock);
1033 
1034 kfd_gtt_restart_search:
1035 	/* Find the first chunk that is free */
1036 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1037 					kfd->gtt_sa_num_of_chunks,
1038 					start_search);
1039 
1040 	pr_debug("Found = %d\n", found);
1041 
1042 	/* If there wasn't any free chunk, bail out */
1043 	if (found == kfd->gtt_sa_num_of_chunks)
1044 		goto kfd_gtt_no_free_chunk;
1045 
1046 	/* Update fields of mem_obj */
1047 	(*mem_obj)->range_start = found;
1048 	(*mem_obj)->range_end = found;
1049 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1050 					kfd->gtt_start_gpu_addr,
1051 					found,
1052 					kfd->gtt_sa_chunk_size);
1053 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1054 					kfd->gtt_start_cpu_ptr,
1055 					found,
1056 					kfd->gtt_sa_chunk_size);
1057 
1058 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1059 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1060 
1061 	/* If we need only one chunk, mark it as allocated and get out */
1062 	if (size <= kfd->gtt_sa_chunk_size) {
1063 		pr_debug("Single bit\n");
1064 		set_bit(found, kfd->gtt_sa_bitmap);
1065 		goto kfd_gtt_out;
1066 	}
1067 
1068 	/* Otherwise, try to see if we have enough contiguous chunks */
1069 	cur_size = size - kfd->gtt_sa_chunk_size;
1070 	do {
1071 		(*mem_obj)->range_end =
1072 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1073 					kfd->gtt_sa_num_of_chunks, ++found);
1074 		/*
1075 		 * If next free chunk is not contiguous than we need to
1076 		 * restart our search from the last free chunk we found (which
1077 		 * wasn't contiguous to the previous ones
1078 		 */
1079 		if ((*mem_obj)->range_end != found) {
1080 			start_search = found;
1081 			goto kfd_gtt_restart_search;
1082 		}
1083 
1084 		/*
1085 		 * If we reached end of buffer, bail out with error
1086 		 */
1087 		if (found == kfd->gtt_sa_num_of_chunks)
1088 			goto kfd_gtt_no_free_chunk;
1089 
1090 		/* Check if we don't need another chunk */
1091 		if (cur_size <= kfd->gtt_sa_chunk_size)
1092 			cur_size = 0;
1093 		else
1094 			cur_size -= kfd->gtt_sa_chunk_size;
1095 
1096 	} while (cur_size > 0);
1097 
1098 	pr_debug("range_start = %d, range_end = %d\n",
1099 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1100 
1101 	/* Mark the chunks as allocated */
1102 	for (found = (*mem_obj)->range_start;
1103 		found <= (*mem_obj)->range_end;
1104 		found++)
1105 		set_bit(found, kfd->gtt_sa_bitmap);
1106 
1107 kfd_gtt_out:
1108 	mutex_unlock(&kfd->gtt_sa_lock);
1109 	return 0;
1110 
1111 kfd_gtt_no_free_chunk:
1112 	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
1113 	mutex_unlock(&kfd->gtt_sa_lock);
1114 	kfree(mem_obj);
1115 	return -ENOMEM;
1116 }
1117 
kfd_gtt_sa_free(struct kfd_dev * kfd,struct kfd_mem_obj * mem_obj)1118 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1119 {
1120 	unsigned int bit;
1121 
1122 	/* Act like kfree when trying to free a NULL object */
1123 	if (!mem_obj)
1124 		return 0;
1125 
1126 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1127 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1128 
1129 	mutex_lock(&kfd->gtt_sa_lock);
1130 
1131 	/* Mark the chunks as free */
1132 	for (bit = mem_obj->range_start;
1133 		bit <= mem_obj->range_end;
1134 		bit++)
1135 		clear_bit(bit, kfd->gtt_sa_bitmap);
1136 
1137 	mutex_unlock(&kfd->gtt_sa_lock);
1138 
1139 	kfree(mem_obj);
1140 	return 0;
1141 }
1142 
kgd2kfd_set_sram_ecc_flag(struct kfd_dev * kfd)1143 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1144 {
1145 	if (kfd)
1146 		atomic_inc(&kfd->sram_ecc_flag);
1147 }
1148 
kfd_inc_compute_active(struct kfd_dev * kfd)1149 void kfd_inc_compute_active(struct kfd_dev *kfd)
1150 {
1151 	if (atomic_inc_return(&kfd->compute_profile) == 1)
1152 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1153 }
1154 
kfd_dec_compute_active(struct kfd_dev * kfd)1155 void kfd_dec_compute_active(struct kfd_dev *kfd)
1156 {
1157 	int count = atomic_dec_return(&kfd->compute_profile);
1158 
1159 	if (count == 0)
1160 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1161 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1162 }
1163 
1164 #if defined(CONFIG_DEBUG_FS)
1165 
1166 /* This function will send a package to HIQ to hang the HWS
1167  * which will trigger a GPU reset and bring the HWS back to normal state
1168  */
kfd_debugfs_hang_hws(struct kfd_dev * dev)1169 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1170 {
1171 	int r = 0;
1172 
1173 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1174 		pr_err("HWS is not enabled");
1175 		return -EINVAL;
1176 	}
1177 
1178 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
1179 	if (!r)
1180 		r = dqm_debugfs_execute_queues(dev->dqm);
1181 
1182 	return r;
1183 }
1184 
1185 #endif
1186