1 /* $NetBSD: key.c,v 1.285 2024/09/02 18:56:20 andvar Exp $ */ 2 /* $FreeBSD: key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ 3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.285 2024/09/02 18:56:20 andvar Exp $"); 36 37 /* 38 * This code is referred to RFC 2367 39 */ 40 41 #if defined(_KERNEL_OPT) 42 #include "opt_inet.h" 43 #include "opt_ipsec.h" 44 #include "opt_gateway.h" 45 #include "opt_net_mpsafe.h" 46 #endif 47 48 #include <sys/types.h> 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/callout.h> 52 #include <sys/kernel.h> 53 #include <sys/mbuf.h> 54 #include <sys/domain.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/syslog.h> 62 #include <sys/once.h> 63 #include <sys/cprng.h> 64 #include <sys/psref.h> 65 #include <sys/lwp.h> 66 #include <sys/workqueue.h> 67 #include <sys/kmem.h> 68 #include <sys/cpu.h> 69 #include <sys/atomic.h> 70 #include <sys/pslist.h> 71 #include <sys/mutex.h> 72 #include <sys/condvar.h> 73 #include <sys/localcount.h> 74 #include <sys/pserialize.h> 75 #include <sys/hash.h> 76 #include <sys/xcall.h> 77 78 #include <net/if.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/ip.h> 84 #include <netinet/in_var.h> 85 #ifdef INET 86 #include <netinet/ip_var.h> 87 #endif 88 89 #ifdef INET6 90 #include <netinet/ip6.h> 91 #include <netinet6/in6_var.h> 92 #include <netinet6/ip6_var.h> 93 #endif /* INET6 */ 94 95 #ifdef INET 96 #include <netinet/in_pcb.h> 97 #endif 98 #ifdef INET6 99 #include <netinet6/in6_pcb.h> 100 #endif /* INET6 */ 101 102 #include <net/pfkeyv2.h> 103 #include <netipsec/keydb.h> 104 #include <netipsec/key.h> 105 #include <netipsec/keysock.h> 106 #include <netipsec/key_debug.h> 107 108 #include <netipsec/ipsec.h> 109 #ifdef INET6 110 #include <netipsec/ipsec6.h> 111 #endif 112 #include <netipsec/ipsec_private.h> 113 114 #include <netipsec/xform.h> 115 #include <netipsec/ipcomp.h> 116 117 #define FULLMASK 0xffu 118 #define _BITS(bytes) ((bytes) << 3) 119 120 #define PORT_NONE 0 121 #define PORT_LOOSE 1 122 #define PORT_STRICT 2 123 124 #ifndef SAHHASH_NHASH 125 #define SAHHASH_NHASH 128 126 #endif 127 128 #ifndef SAVLUT_NHASH 129 #define SAVLUT_NHASH 128 130 #endif 131 132 percpu_t *pfkeystat_percpu; 133 134 /* 135 * Note on SA reference counting: 136 * - SAs that are not in DEAD state will have (total external reference + 1) 137 * following value in reference count field. they cannot be freed and are 138 * referenced from SA header. 139 * - SAs that are in DEAD state will have (total external reference) 140 * in reference count field. they are ready to be freed. reference from 141 * SA header will be removed in key_delsav(), when the reference count 142 * field hits 0 (= no external reference other than from SA header. 143 */ 144 145 u_int32_t key_debug_level = 0; 146 static u_int key_spi_trycnt = 1000; 147 static u_int32_t key_spi_minval = 0x100; 148 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 149 static u_int32_t policy_id = 0; 150 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 151 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 152 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 153 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 154 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ 155 156 static u_int32_t acq_seq = 0; 157 158 /* 159 * Locking order: there is no order for now; it means that any locks aren't 160 * overlapped. 161 */ 162 /* 163 * Locking notes on SPD: 164 * - Modifications to the key_spd.splist must be done with holding key_spd.lock 165 * which is a adaptive mutex 166 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections 167 * - SP's lifetime is managed by localcount(9) 168 * - An SP that has been inserted to the key_spd.splist is initially referenced 169 * by none, i.e., a reference from the key_spd.splist isn't counted 170 * - When an SP is being destroyed, we change its state as DEAD, wait for 171 * references to the SP to be released, and then deallocate the SP 172 * (see key_unlink_sp) 173 * - Getting an SP 174 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx) 175 * - Must iterate the list and increment the reference count of a found SP 176 * (by key_sp_ref) in a pserialize read section 177 * - We can gain another reference from a held SP only if we check its state 178 * and take its reference in a pserialize read section 179 * (see esp_output for example) 180 * - We may get an SP from an SP cache. See below 181 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref) 182 * - Updating member variables of an SP 183 * - Most member variables of an SP are immutable 184 * - Only sp->state and sp->lastused can be changed 185 * - sp->state of an SP is updated only when destroying it under key_spd.lock 186 * - SP caches 187 * - SPs can be cached in PCBs 188 * - The lifetime of the caches is controlled by the global generation counter 189 * (ipsec_spdgen) 190 * - The global counter value is stored when an SP is cached 191 * - If the stored value is different from the global counter then the cache 192 * is considered invalidated 193 * - The counter is incremented when an SP is being destroyed 194 * - So checking the generation and taking a reference to an SP should be 195 * in a pserialize read section 196 * - Note that caching doesn't increment the reference counter of an SP 197 * - SPs in sockets 198 * - Userland programs can set a policy to a socket by 199 * setsockopt(IP_IPSEC_POLICY) 200 * - Such policies (SPs) are set to a socket (PCB) and also inserted to 201 * the key_spd.socksplist list (not the key_spd.splist) 202 * - Such a policy is destroyed when a corresponding socket is destroed, 203 * however, a socket can be destroyed in softint so we cannot destroy 204 * it directly instead we just mark it DEAD and delay the destruction 205 * until GC by the timer 206 * - SP origin 207 * - SPs can be created by both userland programs and kernel components. 208 * The SPs created in kernel must not be removed by userland programs, 209 * although the SPs can be read by userland programs. 210 */ 211 /* 212 * Locking notes on SAD: 213 * - Data structures 214 * - SAs are managed by the list called key_sad.sahlists and sav lists of 215 * sah entries 216 * - An sav is supposed to be an SA from a viewpoint of users 217 * - A sah has sav lists for each SA state 218 * - Multiple saves with the same saidx can exist 219 * - Only one entry has MATURE state and others should be DEAD 220 * - DEAD entries are just ignored from searching 221 * - All sav whose state is MATURE or DYING are registered to the lookup 222 * table called key_sad.savlut in addition to the savlists. 223 * - The table is used to search an sav without use of saidx. 224 * - Modifications to the key_sad.sahlists, sah.savlist and key_sad.savlut 225 * must be done with holding key_sad.lock which is a adaptive mutex 226 * - Read accesses to the key_sad.sahlists, sah.savlist and key_sad.savlut 227 * must be in pserialize(9) read sections 228 * - sah's lifetime is managed by localcount(9) 229 * - Getting an sah entry 230 * - We get an sah from the key_sad.sahlists 231 * - Must iterate the list and increment the reference count of a found sah 232 * (by key_sah_ref) in a pserialize read section 233 * - A gotten sah must be released after use by key_sah_unref 234 * - An sah is destroyed when its state become DEAD and no sav is 235 * listed to the sah 236 * - The destruction is done only in the timer (see key_timehandler_sad) 237 * - sav's lifetime is managed by localcount(9) 238 * - Getting an sav entry 239 * - First get an sah by saidx and get an sav from either of sah's savlists 240 * - Must iterate the list and increment the reference count of a found sav 241 * (by key_sa_ref) in a pserialize read section 242 * - We can gain another reference from a held SA only if we check its state 243 * and take its reference in a pserialize read section 244 * (see esp_output for example) 245 * - A gotten sav must be released after use by key_sa_unref 246 * - An sav is destroyed when its state become DEAD 247 */ 248 /* 249 * Locking notes on misc data: 250 * - All lists of key_misc are protected by key_misc.lock 251 * - key_misc.lock must be held even for read accesses 252 */ 253 254 /* SPD */ 255 static struct { 256 kmutex_t lock; 257 kcondvar_t cv_lc; 258 struct pslist_head splist[IPSEC_DIR_MAX]; 259 /* 260 * The list has SPs that are set to a socket via 261 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy. 262 */ 263 struct pslist_head socksplist; 264 265 pserialize_t psz; 266 kcondvar_t cv_psz; 267 bool psz_performing; 268 } key_spd __cacheline_aligned; 269 270 /* SAD */ 271 static struct { 272 kmutex_t lock; 273 kcondvar_t cv_lc; 274 struct pslist_head *sahlists; 275 u_long sahlistmask; 276 struct pslist_head *savlut; 277 u_long savlutmask; 278 279 pserialize_t psz; 280 kcondvar_t cv_psz; 281 bool psz_performing; 282 } key_sad __cacheline_aligned; 283 284 /* Misc data */ 285 static struct { 286 kmutex_t lock; 287 /* registed list */ 288 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1]; 289 #ifndef IPSEC_NONBLOCK_ACQUIRE 290 /* acquiring list */ 291 LIST_HEAD(_acqlist, secacq) acqlist; 292 #endif 293 #ifdef notyet 294 /* SP acquiring list */ 295 LIST_HEAD(_spacqlist, secspacq) spacqlist; 296 #endif 297 } key_misc __cacheline_aligned; 298 299 /* Macros for key_spd.splist */ 300 #define SPLIST_ENTRY_INIT(sp) \ 301 PSLIST_ENTRY_INIT((sp), pslist_entry) 302 #define SPLIST_ENTRY_DESTROY(sp) \ 303 PSLIST_ENTRY_DESTROY((sp), pslist_entry) 304 #define SPLIST_WRITER_REMOVE(sp) \ 305 PSLIST_WRITER_REMOVE((sp), pslist_entry) 306 #define SPLIST_READER_EMPTY(dir) \ 307 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 308 pslist_entry) == NULL) 309 #define SPLIST_READER_FOREACH(sp, dir) \ 310 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \ 311 struct secpolicy, pslist_entry) 312 #define SPLIST_WRITER_FOREACH(sp, dir) \ 313 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \ 314 struct secpolicy, pslist_entry) 315 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \ 316 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry) 317 #define SPLIST_WRITER_EMPTY(dir) \ 318 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 319 pslist_entry) == NULL) 320 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \ 321 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \ 322 pslist_entry) 323 #define SPLIST_WRITER_NEXT(sp) \ 324 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry) 325 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \ 326 do { \ 327 if (SPLIST_WRITER_EMPTY((dir))) { \ 328 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \ 329 } else { \ 330 struct secpolicy *__sp; \ 331 SPLIST_WRITER_FOREACH(__sp, (dir)) { \ 332 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \ 333 SPLIST_WRITER_INSERT_AFTER(__sp,\ 334 (new)); \ 335 break; \ 336 } \ 337 } \ 338 } \ 339 } while (0) 340 341 /* Macros for key_spd.socksplist */ 342 #define SOCKSPLIST_WRITER_FOREACH(sp) \ 343 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \ 344 struct secpolicy, pslist_entry) 345 #define SOCKSPLIST_READER_EMPTY() \ 346 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \ 347 pslist_entry) == NULL) 348 349 /* Macros for key_sad.sahlist */ 350 #define SAHLIST_ENTRY_INIT(sah) \ 351 PSLIST_ENTRY_INIT((sah), pslist_entry) 352 #define SAHLIST_ENTRY_DESTROY(sah) \ 353 PSLIST_ENTRY_DESTROY((sah), pslist_entry) 354 #define SAHLIST_WRITER_REMOVE(sah) \ 355 PSLIST_WRITER_REMOVE((sah), pslist_entry) 356 #define SAHLIST_READER_FOREACH(sah) \ 357 for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ 358 PSLIST_READER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ 359 struct secashead, pslist_entry) 360 #define SAHLIST_READER_FOREACH_SAIDX(sah, saidx) \ 361 PSLIST_READER_FOREACH((sah), \ 362 &key_sad.sahlists[key_saidxhash((saidx), \ 363 key_sad.sahlistmask)], \ 364 struct secashead, pslist_entry) 365 #define SAHLIST_WRITER_FOREACH(sah) \ 366 for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ 367 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ 368 struct secashead, pslist_entry) 369 #define SAHLIST_WRITER_INSERT_HEAD(sah) \ 370 PSLIST_WRITER_INSERT_HEAD( \ 371 &key_sad.sahlists[key_saidxhash(&(sah)->saidx, \ 372 key_sad.sahlistmask)], \ 373 (sah), pslist_entry) 374 375 /* Macros for key_sad.sahlist#savlist */ 376 #define SAVLIST_ENTRY_INIT(sav) \ 377 PSLIST_ENTRY_INIT((sav), pslist_entry) 378 #define SAVLIST_ENTRY_DESTROY(sav) \ 379 PSLIST_ENTRY_DESTROY((sav), pslist_entry) 380 #define SAVLIST_READER_FIRST(sah, state) \ 381 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 382 pslist_entry) 383 #define SAVLIST_WRITER_REMOVE(sav) \ 384 PSLIST_WRITER_REMOVE((sav), pslist_entry) 385 #define SAVLIST_READER_FOREACH(sav, sah, state) \ 386 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \ 387 struct secasvar, pslist_entry) 388 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \ 389 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \ 390 struct secasvar, pslist_entry) 391 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \ 392 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry) 393 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \ 394 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry) 395 #define SAVLIST_WRITER_EMPTY(sah, state) \ 396 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 397 pslist_entry) == NULL) 398 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \ 399 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \ 400 pslist_entry) 401 #define SAVLIST_WRITER_NEXT(sav) \ 402 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry) 403 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \ 404 do { \ 405 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \ 406 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\ 407 } else { \ 408 struct secasvar *__sav; \ 409 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \ 410 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\ 411 SAVLIST_WRITER_INSERT_AFTER(__sav,\ 412 (new)); \ 413 break; \ 414 } \ 415 } \ 416 } \ 417 } while (0) 418 #define SAVLIST_READER_NEXT(sav) \ 419 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry) 420 421 /* Macros for key_sad.savlut */ 422 #define SAVLUT_ENTRY_INIT(sav) \ 423 PSLIST_ENTRY_INIT((sav), pslist_entry_savlut) 424 #define SAVLUT_READER_FOREACH(sav, dst, proto, hash_key) \ 425 PSLIST_READER_FOREACH((sav), \ 426 &key_sad.savlut[key_savluthash(dst, proto, hash_key, \ 427 key_sad.savlutmask)], \ 428 struct secasvar, pslist_entry_savlut) 429 #define SAVLUT_WRITER_INSERT_HEAD(sav) \ 430 key_savlut_writer_insert_head((sav)) 431 #define SAVLUT_WRITER_REMOVE(sav) \ 432 do { \ 433 if (!(sav)->savlut_added) \ 434 break; \ 435 PSLIST_WRITER_REMOVE((sav), pslist_entry_savlut); \ 436 (sav)->savlut_added = false; \ 437 } while(0) 438 439 /* search order for SAs */ 440 /* 441 * This order is important because we must select the oldest SA 442 * for outbound processing. For inbound, This is not important. 443 */ 444 static const u_int saorder_state_valid_prefer_old[] = { 445 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 446 }; 447 static const u_int saorder_state_valid_prefer_new[] = { 448 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 449 }; 450 451 static const u_int saorder_state_alive[] = { 452 /* except DEAD */ 453 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 454 }; 455 static const u_int saorder_state_any[] = { 456 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 457 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 458 }; 459 460 #define SASTATE_ALIVE_FOREACH(s) \ 461 for (int _i = 0; \ 462 _i < __arraycount(saorder_state_alive) ? \ 463 (s) = saorder_state_alive[_i], true : false; \ 464 _i++) 465 #define SASTATE_ANY_FOREACH(s) \ 466 for (int _i = 0; \ 467 _i < __arraycount(saorder_state_any) ? \ 468 (s) = saorder_state_any[_i], true : false; \ 469 _i++) 470 #define SASTATE_USABLE_FOREACH(s) \ 471 for (int _i = 0; \ 472 _i < __arraycount(saorder_state_valid_prefer_new) ? \ 473 (s) = saorder_state_valid_prefer_new[_i], \ 474 true : false; \ 475 _i++) 476 477 static const int minsize[] = { 478 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 479 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 480 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 481 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 482 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 483 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 484 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 485 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 486 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 487 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 488 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 489 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 490 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 491 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 492 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 493 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 494 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 495 0, /* SADB_X_EXT_KMPRIVATE */ 496 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 497 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 498 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 499 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 500 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 501 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 502 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 503 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 504 }; 505 static const int maxsize[] = { 506 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 507 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 508 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 509 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 510 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 511 0, /* SADB_EXT_ADDRESS_SRC */ 512 0, /* SADB_EXT_ADDRESS_DST */ 513 0, /* SADB_EXT_ADDRESS_PROXY */ 514 0, /* SADB_EXT_KEY_AUTH */ 515 0, /* SADB_EXT_KEY_ENCRYPT */ 516 0, /* SADB_EXT_IDENTITY_SRC */ 517 0, /* SADB_EXT_IDENTITY_DST */ 518 0, /* SADB_EXT_SENSITIVITY */ 519 0, /* SADB_EXT_PROPOSAL */ 520 0, /* SADB_EXT_SUPPORTED_AUTH */ 521 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 522 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 523 0, /* SADB_X_EXT_KMPRIVATE */ 524 0, /* SADB_X_EXT_POLICY */ 525 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 526 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 527 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 528 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 529 0, /* SADB_X_EXT_NAT_T_OAI */ 530 0, /* SADB_X_EXT_NAT_T_OAR */ 531 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 532 }; 533 534 static int ipsec_esp_keymin = 256; 535 static int ipsec_esp_auth = 0; 536 static int ipsec_ah_keymin = 128; 537 static bool ipsec_allow_different_idtype = false; 538 539 #ifdef SYSCTL_DECL 540 SYSCTL_DECL(_net_key); 541 #endif 542 543 #ifdef SYSCTL_INT 544 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 545 &key_debug_level, 0, ""); 546 547 /* max count of trial for the decision of spi value */ 548 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 549 &key_spi_trycnt, 0, ""); 550 551 /* minimum spi value to allocate automatically. */ 552 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 553 &key_spi_minval, 0, ""); 554 555 /* maximun spi value to allocate automatically. */ 556 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 557 &key_spi_maxval, 0, ""); 558 559 /* interval to initialize randseed */ 560 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 561 &key_int_random, 0, ""); 562 563 /* lifetime for larval SA */ 564 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 565 &key_larval_lifetime, 0, ""); 566 567 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 568 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 569 &key_blockacq_count, 0, ""); 570 571 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 572 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 573 &key_blockacq_lifetime, 0, ""); 574 575 /* ESP auth */ 576 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 577 &ipsec_esp_auth, 0, ""); 578 579 /* minimum ESP key length */ 580 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 581 &ipsec_esp_keymin, 0, ""); 582 583 /* minimum AH key length */ 584 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 585 &ipsec_ah_keymin, 0, ""); 586 587 /* perfered old SA rather than new SA */ 588 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 589 &key_prefered_oldsa, 0, ""); 590 #endif /* SYSCTL_INT */ 591 592 #define __LIST_CHAINED(elm) \ 593 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 594 #define LIST_INSERT_TAIL(head, elm, type, field) \ 595 do {\ 596 struct type *curelm = LIST_FIRST(head); \ 597 if (curelm == NULL) {\ 598 LIST_INSERT_HEAD(head, elm, field); \ 599 } else { \ 600 while (LIST_NEXT(curelm, field)) \ 601 curelm = LIST_NEXT(curelm, field);\ 602 LIST_INSERT_AFTER(curelm, elm, field);\ 603 }\ 604 } while (0) 605 606 #define KEY_CHKSASTATE(head, sav) \ 607 /* do */ { \ 608 if ((head) != (sav)) { \ 609 IPSECLOG(LOG_DEBUG, \ 610 "state mismatched (TREE=%d SA=%d)\n", \ 611 (head), (sav)); \ 612 continue; \ 613 } \ 614 } /* while (0) */ 615 616 #define KEY_CHKSPDIR(head, sp) \ 617 do { \ 618 if ((head) != (sp)) { \ 619 IPSECLOG(LOG_DEBUG, \ 620 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\ 621 (head), (sp)); \ 622 } \ 623 } while (0) 624 625 /* 626 * set parameters into secasindex buffer. 627 * Must allocate secasindex buffer before calling this function. 628 */ 629 static int 630 key_setsecasidx(int, int, int, const struct sockaddr *, 631 const struct sockaddr *, struct secasindex *); 632 633 /* key statistics */ 634 struct _keystat { 635 u_long getspi_count; /* the avarage of count to try to get new SPI */ 636 } keystat; 637 638 static void 639 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *); 640 641 static const struct sockaddr * 642 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx) 643 { 644 645 return PFKEY_ADDR_SADDR(mhp->ext[idx]); 646 } 647 648 static void 649 key_fill_replymsg(struct mbuf *m, int seq) 650 { 651 struct sadb_msg *msg; 652 653 KASSERT(m->m_len >= sizeof(*msg)); 654 655 msg = mtod(m, struct sadb_msg *); 656 msg->sadb_msg_errno = 0; 657 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 658 if (seq != 0) 659 msg->sadb_msg_seq = seq; 660 } 661 662 #if 0 663 static void key_freeso(struct socket *); 664 static void key_freesp_so(struct secpolicy **); 665 #endif 666 static struct secpolicy *key_getsp (const struct secpolicyindex *); 667 static struct secpolicy *key_getspbyid (u_int32_t); 668 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *, bool); 669 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t, bool); 670 static void key_destroy_sp(struct secpolicy *); 671 static struct mbuf *key_gather_mbuf (struct mbuf *, 672 const struct sadb_msghdr *, int, int, ...); 673 static int key_api_spdadd(struct socket *, struct mbuf *, 674 const struct sadb_msghdr *); 675 static u_int32_t key_getnewspid (void); 676 static int key_api_spddelete(struct socket *, struct mbuf *, 677 const struct sadb_msghdr *); 678 static int key_api_spddelete2(struct socket *, struct mbuf *, 679 const struct sadb_msghdr *); 680 static int key_api_spdget(struct socket *, struct mbuf *, 681 const struct sadb_msghdr *); 682 static int key_api_spdflush(struct socket *, struct mbuf *, 683 const struct sadb_msghdr *); 684 static int key_api_spddump(struct socket *, struct mbuf *, 685 const struct sadb_msghdr *); 686 static struct mbuf * key_setspddump (int *errorp, pid_t); 687 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); 688 static int key_api_nat_map(struct socket *, struct mbuf *, 689 const struct sadb_msghdr *); 690 static struct mbuf *key_setdumpsp (struct secpolicy *, 691 u_int8_t, u_int32_t, pid_t); 692 static u_int key_getspreqmsglen (const struct secpolicy *); 693 static int key_spdexpire (struct secpolicy *); 694 static struct secashead *key_newsah (const struct secasindex *); 695 static void key_unlink_sah(struct secashead *); 696 static void key_destroy_sah(struct secashead *); 697 static bool key_sah_has_sav(struct secashead *); 698 static void key_sah_ref(struct secashead *); 699 static void key_sah_unref(struct secashead *); 700 static void key_init_sav(struct secasvar *); 701 static void key_wait_sav(struct secasvar *); 702 static void key_destroy_sav(struct secasvar *); 703 static struct secasvar *key_newsav(struct mbuf *, 704 const struct sadb_msghdr *, int *, int, const char*, int); 705 #define KEY_NEWSAV(m, sadb, e, proto) \ 706 key_newsav(m, sadb, e, proto, __func__, __LINE__) 707 static void key_delsav (struct secasvar *); 708 static struct secashead *key_getsah(const struct secasindex *, int); 709 static struct secashead *key_getsah_ref(const struct secasindex *, int); 710 static bool key_checkspidup(const struct secasindex *, u_int32_t); 711 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); 712 static int key_setsaval (struct secasvar *, struct mbuf *, 713 const struct sadb_msghdr *); 714 static void key_freesaval(struct secasvar *); 715 static int key_init_xform(struct secasvar *); 716 static void key_clear_xform(struct secasvar *); 717 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, 718 u_int8_t, u_int32_t, u_int32_t); 719 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); 720 static struct mbuf *key_setsadbxtype (u_int16_t); 721 static struct mbuf *key_setsadbxfrag (u_int16_t); 722 static void key_porttosaddr (union sockaddr_union *, u_int16_t); 723 static int key_checksalen (const union sockaddr_union *); 724 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, 725 u_int32_t, pid_t, u_int16_t, int); 726 static struct mbuf *key_setsadbsa (struct secasvar *); 727 static struct mbuf *key_setsadbaddr(u_int16_t, 728 const struct sockaddr *, u_int8_t, u_int16_t, int); 729 #if 0 730 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, 731 int, u_int64_t); 732 #endif 733 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); 734 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, 735 u_int32_t, int); 736 static void *key_newbuf (const void *, u_int); 737 #ifdef INET6 738 static int key_ismyaddr6 (const struct sockaddr_in6 *); 739 #endif 740 741 static void sysctl_net_keyv2_setup(struct sysctllog **); 742 static void sysctl_net_key_compat_setup(struct sysctllog **); 743 744 /* flags for key_saidx_match() */ 745 #define CMP_HEAD 1 /* protocol, addresses. */ 746 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 747 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 748 #define CMP_EXACTLY 4 /* all elements. */ 749 static int key_saidx_match(const struct secasindex *, 750 const struct secasindex *, int); 751 752 static int key_sockaddr_match(const struct sockaddr *, 753 const struct sockaddr *, int); 754 static int key_bb_match_withmask(const void *, const void *, u_int); 755 static u_int16_t key_satype2proto (u_int8_t); 756 static u_int8_t key_proto2satype (u_int16_t); 757 758 static int key_spidx_match_exactly(const struct secpolicyindex *, 759 const struct secpolicyindex *); 760 static int key_spidx_match_withmask(const struct secpolicyindex *, 761 const struct secpolicyindex *); 762 763 static int key_api_getspi(struct socket *, struct mbuf *, 764 const struct sadb_msghdr *); 765 static u_int32_t key_do_getnewspi (const struct sadb_spirange *, 766 const struct secasindex *); 767 static int key_handle_natt_info (struct secasvar *, 768 const struct sadb_msghdr *); 769 static int key_set_natt_ports (union sockaddr_union *, 770 union sockaddr_union *, 771 const struct sadb_msghdr *); 772 static int key_api_update(struct socket *, struct mbuf *, 773 const struct sadb_msghdr *); 774 #ifdef IPSEC_DOSEQCHECK 775 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); 776 #endif 777 static int key_api_add(struct socket *, struct mbuf *, 778 const struct sadb_msghdr *); 779 static int key_setident (struct secashead *, struct mbuf *, 780 const struct sadb_msghdr *); 781 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, 782 const struct sadb_msghdr *); 783 static int key_api_delete(struct socket *, struct mbuf *, 784 const struct sadb_msghdr *); 785 static int key_api_get(struct socket *, struct mbuf *, 786 const struct sadb_msghdr *); 787 788 static void key_getcomb_setlifetime (struct sadb_comb *); 789 static struct mbuf *key_getcomb_esp(int); 790 static struct mbuf *key_getcomb_ah(int); 791 static struct mbuf *key_getcomb_ipcomp(int); 792 static struct mbuf *key_getprop(const struct secasindex *, int); 793 794 static int key_acquire(const struct secasindex *, const struct secpolicy *, 795 int); 796 static int key_acquire_sendup_mbuf_later(struct mbuf *); 797 static void key_acquire_sendup_pending_mbuf(void); 798 #ifndef IPSEC_NONBLOCK_ACQUIRE 799 static struct secacq *key_newacq (const struct secasindex *); 800 static struct secacq *key_getacq (const struct secasindex *); 801 static struct secacq *key_getacqbyseq (u_int32_t); 802 #endif 803 #ifdef notyet 804 static struct secspacq *key_newspacq (const struct secpolicyindex *); 805 static struct secspacq *key_getspacq (const struct secpolicyindex *); 806 #endif 807 static int key_api_acquire(struct socket *, struct mbuf *, 808 const struct sadb_msghdr *); 809 static int key_api_register(struct socket *, struct mbuf *, 810 const struct sadb_msghdr *); 811 static int key_expire (struct secasvar *); 812 static int key_api_flush(struct socket *, struct mbuf *, 813 const struct sadb_msghdr *); 814 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, 815 int *lenp, pid_t pid); 816 static int key_api_dump(struct socket *, struct mbuf *, 817 const struct sadb_msghdr *); 818 static int key_api_promisc(struct socket *, struct mbuf *, 819 const struct sadb_msghdr *); 820 static int key_senderror (struct socket *, struct mbuf *, int); 821 static int key_validate_ext (const struct sadb_ext *, int); 822 static int key_align (struct mbuf *, struct sadb_msghdr *); 823 #if 0 824 static const char *key_getfqdn (void); 825 static const char *key_getuserfqdn (void); 826 #endif 827 static void key_sa_chgstate (struct secasvar *, u_int8_t); 828 829 static struct mbuf *key_alloc_mbuf(int, int); 830 static struct mbuf *key_alloc_mbuf_simple(int, int); 831 832 static void key_timehandler(void *); 833 static void key_timehandler_work(struct work *, void *); 834 static struct callout key_timehandler_ch; 835 static struct workqueue *key_timehandler_wq; 836 static struct work key_timehandler_wk; 837 838 static inline void 839 key_savlut_writer_insert_head(struct secasvar *sav); 840 static inline uint32_t 841 key_saidxhash(const struct secasindex *, u_long); 842 static inline uint32_t 843 key_savluthash(const struct sockaddr *, 844 uint32_t, uint32_t, u_long); 845 846 /* 847 * Utilities for percpu counters for sadb_lifetime_allocations and 848 * sadb_lifetime_bytes. 849 */ 850 #define LIFETIME_COUNTER_ALLOCATIONS 0 851 #define LIFETIME_COUNTER_BYTES 1 852 #define LIFETIME_COUNTER_SIZE 2 853 854 typedef uint64_t lifetime_counters_t[LIFETIME_COUNTER_SIZE]; 855 856 static void 857 key_sum_lifetime_counters(void *p, void *arg, struct cpu_info *ci __unused) 858 { 859 lifetime_counters_t *one = p; 860 lifetime_counters_t *sum = arg; 861 862 (*sum)[LIFETIME_COUNTER_ALLOCATIONS] += (*one)[LIFETIME_COUNTER_ALLOCATIONS]; 863 (*sum)[LIFETIME_COUNTER_BYTES] += (*one)[LIFETIME_COUNTER_BYTES]; 864 } 865 866 u_int 867 key_sp_refcnt(const struct secpolicy *sp) 868 { 869 870 /* FIXME */ 871 return 0; 872 } 873 874 void 875 key_sp_touch(struct secpolicy *sp) 876 { 877 878 sp->lastused = time_uptime; 879 } 880 881 static void 882 key_spd_pserialize_perform(void) 883 { 884 885 KASSERT(mutex_owned(&key_spd.lock)); 886 887 while (key_spd.psz_performing) 888 cv_wait(&key_spd.cv_psz, &key_spd.lock); 889 key_spd.psz_performing = true; 890 mutex_exit(&key_spd.lock); 891 892 pserialize_perform(key_spd.psz); 893 894 mutex_enter(&key_spd.lock); 895 key_spd.psz_performing = false; 896 cv_broadcast(&key_spd.cv_psz); 897 } 898 899 /* 900 * Remove the sp from the key_spd.splist and wait for references to the sp 901 * to be released. key_spd.lock must be held. 902 */ 903 static void 904 key_unlink_sp(struct secpolicy *sp) 905 { 906 907 KASSERT(mutex_owned(&key_spd.lock)); 908 909 sp->state = IPSEC_SPSTATE_DEAD; 910 SPLIST_WRITER_REMOVE(sp); 911 912 /* Invalidate all cached SPD pointers in the PCBs. */ 913 ipsec_invalpcbcacheall(); 914 915 KDASSERT(mutex_ownable(softnet_lock)); 916 key_spd_pserialize_perform(); 917 918 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 919 } 920 921 /* 922 * Return 0 when there are known to be no SP's for the specified 923 * direction. Otherwise return 1. This is used by IPsec code 924 * to optimize performance. 925 */ 926 int 927 key_havesp(u_int dir) 928 { 929 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 930 !SPLIST_READER_EMPTY(dir) : 1); 931 } 932 933 /* %%% IPsec policy management */ 934 /* 935 * allocating a SP for OUTBOUND or INBOUND packet. 936 * Must call key_freesp() later. 937 * OUT: NULL: not found 938 * others: found and return the pointer. 939 */ 940 struct secpolicy * 941 key_lookup_sp_byspidx(const struct secpolicyindex *spidx, 942 u_int dir, const char* where, int tag) 943 { 944 struct secpolicy *sp; 945 int s; 946 947 KASSERT(spidx != NULL); 948 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir); 949 950 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 951 952 /* get a SP entry */ 953 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 954 kdebug_secpolicyindex("objects", spidx); 955 } 956 957 s = pserialize_read_enter(); 958 SPLIST_READER_FOREACH(sp, dir) { 959 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 960 kdebug_secpolicyindex("in SPD", &sp->spidx); 961 } 962 963 if (sp->state == IPSEC_SPSTATE_DEAD) 964 continue; 965 if (key_spidx_match_withmask(&sp->spidx, spidx)) 966 goto found; 967 } 968 sp = NULL; 969 found: 970 if (sp) { 971 /* sanity check */ 972 KEY_CHKSPDIR(sp->spidx.dir, dir); 973 974 /* found a SPD entry */ 975 key_sp_touch(sp); 976 key_sp_ref(sp, where, tag); 977 } 978 pserialize_read_exit(s); 979 980 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 981 "DP return SP:%p (ID=%u) refcnt %u\n", 982 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 983 return sp; 984 } 985 986 /* 987 * return a policy that matches this particular inbound packet. 988 * XXX slow 989 */ 990 struct secpolicy * 991 key_gettunnel(const struct sockaddr *osrc, 992 const struct sockaddr *odst, 993 const struct sockaddr *isrc, 994 const struct sockaddr *idst, 995 const char* where, int tag) 996 { 997 struct secpolicy *sp; 998 const int dir = IPSEC_DIR_INBOUND; 999 int s; 1000 struct ipsecrequest *r1, *r2, *p; 1001 struct secpolicyindex spidx; 1002 1003 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 1004 1005 if (isrc->sa_family != idst->sa_family) { 1006 IPSECLOG(LOG_ERR, 1007 "address family mismatched src %u, dst %u.\n", 1008 isrc->sa_family, idst->sa_family); 1009 sp = NULL; 1010 goto done; 1011 } 1012 1013 s = pserialize_read_enter(); 1014 SPLIST_READER_FOREACH(sp, dir) { 1015 if (sp->state == IPSEC_SPSTATE_DEAD) 1016 continue; 1017 1018 r1 = r2 = NULL; 1019 for (p = sp->req; p; p = p->next) { 1020 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 1021 continue; 1022 1023 r1 = r2; 1024 r2 = p; 1025 1026 if (!r1) { 1027 /* here we look at address matches only */ 1028 spidx = sp->spidx; 1029 if (isrc->sa_len > sizeof(spidx.src) || 1030 idst->sa_len > sizeof(spidx.dst)) 1031 continue; 1032 memcpy(&spidx.src, isrc, isrc->sa_len); 1033 memcpy(&spidx.dst, idst, idst->sa_len); 1034 if (!key_spidx_match_withmask(&sp->spidx, &spidx)) 1035 continue; 1036 } else { 1037 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) || 1038 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE)) 1039 continue; 1040 } 1041 1042 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) || 1043 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE)) 1044 continue; 1045 1046 goto found; 1047 } 1048 } 1049 sp = NULL; 1050 found: 1051 if (sp) { 1052 key_sp_touch(sp); 1053 key_sp_ref(sp, where, tag); 1054 } 1055 pserialize_read_exit(s); 1056 done: 1057 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1058 "DP return SP:%p (ID=%u) refcnt %u\n", 1059 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 1060 return sp; 1061 } 1062 1063 /* 1064 * allocating an SA entry for an *OUTBOUND* packet. 1065 * checking each request entries in SP, and acquire an SA if need. 1066 * OUT: 0: there are valid requests. 1067 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 1068 */ 1069 int 1070 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx, 1071 struct secasvar **ret) 1072 { 1073 u_int level; 1074 int error; 1075 struct secasvar *sav; 1076 1077 KASSERT(isr != NULL); 1078 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT || 1079 saidx->mode == IPSEC_MODE_TUNNEL, 1080 "unexpected policy %u", saidx->mode); 1081 1082 /* get current level */ 1083 level = ipsec_get_reqlevel(isr); 1084 1085 /* 1086 * XXX guard against protocol callbacks from the crypto 1087 * thread as they reference ipsecrequest.sav which we 1088 * temporarily null out below. Need to rethink how we 1089 * handle bundled SA's in the callback thread. 1090 */ 1091 1092 sav = key_lookup_sa_bysaidx(saidx); 1093 if (sav != NULL) { 1094 *ret = sav; 1095 return 0; 1096 } 1097 1098 /* there is no SA */ 1099 error = key_acquire(saidx, isr->sp, M_NOWAIT); 1100 if (error != 0) { 1101 /* XXX What should I do ? */ 1102 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 1103 error); 1104 return error; 1105 } 1106 1107 if (level != IPSEC_LEVEL_REQUIRE) { 1108 /* XXX sigh, the interface to this routine is botched */ 1109 *ret = NULL; 1110 return 0; 1111 } else { 1112 return ENOENT; 1113 } 1114 } 1115 1116 /* 1117 * looking up a SA for policy entry from SAD. 1118 * NOTE: searching SAD of aliving state. 1119 * OUT: NULL: not found. 1120 * others: found and return the pointer. 1121 */ 1122 struct secasvar * 1123 key_lookup_sa_bysaidx(const struct secasindex *saidx) 1124 { 1125 struct secashead *sah; 1126 struct secasvar *sav = NULL; 1127 u_int stateidx, state; 1128 const u_int *saorder_state_valid; 1129 int arraysize; 1130 int s; 1131 1132 s = pserialize_read_enter(); 1133 sah = key_getsah(saidx, CMP_MODE_REQID); 1134 if (sah == NULL) 1135 goto out; 1136 1137 /* 1138 * search a valid state list for outbound packet. 1139 * This search order is important. 1140 */ 1141 if (key_prefered_oldsa) { 1142 saorder_state_valid = saorder_state_valid_prefer_old; 1143 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1144 } else { 1145 saorder_state_valid = saorder_state_valid_prefer_new; 1146 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1147 } 1148 1149 /* search valid state */ 1150 for (stateidx = 0; 1151 stateidx < arraysize; 1152 stateidx++) { 1153 1154 state = saorder_state_valid[stateidx]; 1155 1156 if (key_prefered_oldsa) 1157 sav = SAVLIST_READER_FIRST(sah, state); 1158 else { 1159 /* XXX need O(1) lookup */ 1160 struct secasvar *last = NULL; 1161 1162 SAVLIST_READER_FOREACH(sav, sah, state) 1163 last = sav; 1164 sav = last; 1165 } 1166 if (sav != NULL) { 1167 KEY_SA_REF(sav); 1168 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1169 "DP cause refcnt++:%d SA:%p\n", 1170 key_sa_refcnt(sav), sav); 1171 break; 1172 } 1173 } 1174 out: 1175 pserialize_read_exit(s); 1176 1177 return sav; 1178 } 1179 1180 #if 0 1181 static void 1182 key_sendup_message_delete(struct secasvar *sav) 1183 { 1184 struct mbuf *m, *result = 0; 1185 uint8_t satype; 1186 1187 satype = key_proto2satype(sav->sah->saidx.proto); 1188 if (satype == 0) 1189 goto msgfail; 1190 1191 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1); 1192 if (m == NULL) 1193 goto msgfail; 1194 result = m; 1195 1196 /* set sadb_address for saidx's. */ 1197 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 1198 _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); 1199 if (m == NULL) 1200 goto msgfail; 1201 m_cat(result, m); 1202 1203 /* set sadb_address for saidx's. */ 1204 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa, 1205 _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); 1206 if (m == NULL) 1207 goto msgfail; 1208 m_cat(result, m); 1209 1210 /* create SA extension */ 1211 m = key_setsadbsa(sav); 1212 if (m == NULL) 1213 goto msgfail; 1214 m_cat(result, m); 1215 1216 if (result->m_len < sizeof(struct sadb_msg)) { 1217 result = m_pullup(result, sizeof(struct sadb_msg)); 1218 if (result == NULL) 1219 goto msgfail; 1220 } 1221 1222 result->m_pkthdr.len = 0; 1223 for (m = result; m; m = m->m_next) 1224 result->m_pkthdr.len += m->m_len; 1225 mtod(result, struct sadb_msg *)->sadb_msg_len = 1226 PFKEY_UNIT64(result->m_pkthdr.len); 1227 1228 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 1229 result = NULL; 1230 msgfail: 1231 m_freem(result); 1232 } 1233 #endif 1234 1235 /* 1236 * allocating a usable SA entry for a *INBOUND* packet. 1237 * Must call key_freesav() later. 1238 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1239 * NULL: not found, or error occurred. 1240 * 1241 * In the comparison, no source address is used--for RFC2401 conformance. 1242 * To quote, from section 4.1: 1243 * A security association is uniquely identified by a triple consisting 1244 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1245 * security protocol (AH or ESP) identifier. 1246 * Note that, however, we do need to keep source address in IPsec SA. 1247 * IKE specification and PF_KEY specification do assume that we 1248 * keep source address in IPsec SA. We see a tricky situation here. 1249 * 1250 * sport and dport are used for NAT-T. network order is always used. 1251 */ 1252 struct secasvar * 1253 key_lookup_sa( 1254 const union sockaddr_union *dst, 1255 u_int proto, 1256 u_int32_t spi, 1257 u_int16_t sport, 1258 u_int16_t dport, 1259 const char* where, int tag) 1260 { 1261 struct secasvar *sav; 1262 int chkport; 1263 int s; 1264 1265 int must_check_spi = 1; 1266 int must_check_alg = 0; 1267 u_int16_t cpi = 0; 1268 u_int8_t algo = 0; 1269 uint32_t hash_key = spi; 1270 1271 if ((sport != 0) && (dport != 0)) 1272 chkport = PORT_STRICT; 1273 else 1274 chkport = PORT_NONE; 1275 1276 KASSERT(dst != NULL); 1277 1278 /* 1279 * XXX IPCOMP case 1280 * We use cpi to define spi here. In the case where cpi <= 1281 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not 1282 * the real spi. In this case, don't check the spi but check the 1283 * algorithm 1284 */ 1285 1286 if (proto == IPPROTO_IPCOMP) { 1287 u_int32_t tmp; 1288 tmp = ntohl(spi); 1289 cpi = (u_int16_t) tmp; 1290 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { 1291 algo = (u_int8_t) cpi; 1292 hash_key = algo; 1293 must_check_spi = 0; 1294 must_check_alg = 1; 1295 } 1296 } 1297 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1298 "DP from %s:%u check_spi=%d(%#x), check_alg=%d(%d), proto=%d\n", 1299 where, tag, 1300 must_check_spi, ntohl(spi), 1301 must_check_alg, algo, 1302 proto); 1303 1304 1305 /* 1306 * searching SAD. 1307 * XXX: to be checked internal IP header somewhere. Also when 1308 * IPsec tunnel packet is received. But ESP tunnel mode is 1309 * encrypted so we can't check internal IP header. 1310 */ 1311 s = pserialize_read_enter(); 1312 SAVLUT_READER_FOREACH(sav, &dst->sa, proto, hash_key) { 1313 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1314 "try match spi %#x, %#x\n", 1315 ntohl(spi), ntohl(sav->spi)); 1316 1317 /* do not return entries w/ unusable state */ 1318 if (!SADB_SASTATE_USABLE_P(sav)) { 1319 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1320 "bad state %d\n", sav->state); 1321 continue; 1322 } 1323 if (proto != sav->sah->saidx.proto) { 1324 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1325 "proto fail %d != %d\n", 1326 proto, sav->sah->saidx.proto); 1327 continue; 1328 } 1329 if (must_check_spi && spi != sav->spi) { 1330 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1331 "spi fail %#x != %#x\n", 1332 ntohl(spi), ntohl(sav->spi)); 1333 continue; 1334 } 1335 /* XXX only on the ipcomp case */ 1336 if (must_check_alg && algo != sav->alg_comp) { 1337 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1338 "algo fail %d != %d\n", 1339 algo, sav->alg_comp); 1340 continue; 1341 } 1342 1343 #if 0 /* don't check src */ 1344 /* Fix port in src->sa */ 1345 1346 /* check src address */ 1347 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE)) 1348 continue; 1349 #endif 1350 /* fix port of dst address XXX*/ 1351 key_porttosaddr(__UNCONST(dst), dport); 1352 /* check dst address */ 1353 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport)) 1354 continue; 1355 key_sa_ref(sav, where, tag); 1356 goto done; 1357 } 1358 sav = NULL; 1359 done: 1360 pserialize_read_exit(s); 1361 1362 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1363 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav)); 1364 return sav; 1365 } 1366 1367 static void 1368 key_validate_savlist(const struct secashead *sah, const u_int state) 1369 { 1370 #ifdef DEBUG 1371 struct secasvar *sav, *next; 1372 int s; 1373 1374 /* 1375 * The list should be sorted by lft_c->sadb_lifetime_addtime 1376 * in ascending order. 1377 */ 1378 s = pserialize_read_enter(); 1379 SAVLIST_READER_FOREACH(sav, sah, state) { 1380 next = SAVLIST_READER_NEXT(sav); 1381 if (next != NULL && 1382 sav->lft_c != NULL && next->lft_c != NULL) { 1383 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <= 1384 next->lft_c->sadb_lifetime_addtime, 1385 "savlist is not sorted: sah=%p, state=%d, " 1386 "sav=%" PRIu64 ", next=%" PRIu64, sah, state, 1387 sav->lft_c->sadb_lifetime_addtime, 1388 next->lft_c->sadb_lifetime_addtime); 1389 } 1390 } 1391 pserialize_read_exit(s); 1392 #endif 1393 } 1394 1395 void 1396 key_init_sp(struct secpolicy *sp) 1397 { 1398 1399 ASSERT_SLEEPABLE(); 1400 1401 sp->state = IPSEC_SPSTATE_ALIVE; 1402 if (sp->policy == IPSEC_POLICY_IPSEC) 1403 KASSERT(sp->req != NULL); 1404 localcount_init(&sp->localcount); 1405 SPLIST_ENTRY_INIT(sp); 1406 } 1407 1408 /* 1409 * Must be called in a pserialize read section. A held SP 1410 * must be released by key_sp_unref after use. 1411 */ 1412 void 1413 key_sp_ref(struct secpolicy *sp, const char* where, int tag) 1414 { 1415 1416 localcount_acquire(&sp->localcount); 1417 1418 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1419 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n", 1420 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1421 } 1422 1423 /* 1424 * Must be called without holding key_spd.lock because the lock 1425 * would be held in localcount_release. 1426 */ 1427 void 1428 key_sp_unref(struct secpolicy *sp, const char* where, int tag) 1429 { 1430 1431 KDASSERT(mutex_ownable(&key_spd.lock)); 1432 1433 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1434 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n", 1435 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1436 1437 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 1438 } 1439 1440 static void 1441 key_init_sav(struct secasvar *sav) 1442 { 1443 1444 ASSERT_SLEEPABLE(); 1445 1446 localcount_init(&sav->localcount); 1447 SAVLIST_ENTRY_INIT(sav); 1448 SAVLUT_ENTRY_INIT(sav); 1449 } 1450 1451 u_int 1452 key_sa_refcnt(const struct secasvar *sav) 1453 { 1454 1455 /* FIXME */ 1456 return 0; 1457 } 1458 1459 void 1460 key_sa_ref(struct secasvar *sav, const char* where, int tag) 1461 { 1462 1463 localcount_acquire(&sav->localcount); 1464 1465 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1466 "DP cause refcnt++: SA:%p from %s:%u\n", 1467 sav, where, tag); 1468 } 1469 1470 void 1471 key_sa_unref(struct secasvar *sav, const char* where, int tag) 1472 { 1473 1474 KDASSERT(mutex_ownable(&key_sad.lock)); 1475 1476 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1477 "DP cause refcnt--: SA:%p from %s:%u\n", 1478 sav, where, tag); 1479 1480 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1481 } 1482 1483 #if 0 1484 /* 1485 * Must be called after calling key_lookup_sp*(). 1486 * For the packet with socket. 1487 */ 1488 static void 1489 key_freeso(struct socket *so) 1490 { 1491 /* sanity check */ 1492 KASSERT(so != NULL); 1493 1494 switch (so->so_proto->pr_domain->dom_family) { 1495 #ifdef INET 1496 case PF_INET: 1497 { 1498 struct inpcb *pcb = sotoinpcb(so); 1499 1500 /* Does it have a PCB ? */ 1501 if (pcb == NULL) 1502 return; 1503 1504 struct inpcbpolicy *sp = pcb->inp_sp; 1505 key_freesp_so(&sp->sp_in); 1506 key_freesp_so(&sp->sp_out); 1507 } 1508 break; 1509 #endif 1510 #ifdef INET6 1511 case PF_INET6: 1512 { 1513 #ifdef HAVE_NRL_INPCB 1514 struct inpcb *pcb = sotoinpcb(so); 1515 struct inpcbpolicy *sp = pcb->inp_sp; 1516 1517 /* Does it have a PCB ? */ 1518 if (pcb == NULL) 1519 return; 1520 key_freesp_so(&sp->sp_in); 1521 key_freesp_so(&sp->sp_out); 1522 #else 1523 struct in6pcb *pcb = sotoin6pcb(so); 1524 1525 /* Does it have a PCB ? */ 1526 if (pcb == NULL) 1527 return; 1528 key_freesp_so(&pcb->in6p_sp->sp_in); 1529 key_freesp_so(&pcb->in6p_sp->sp_out); 1530 #endif 1531 } 1532 break; 1533 #endif /* INET6 */ 1534 default: 1535 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n", 1536 so->so_proto->pr_domain->dom_family); 1537 return; 1538 } 1539 } 1540 1541 static void 1542 key_freesp_so(struct secpolicy **sp) 1543 { 1544 1545 KASSERT(sp != NULL); 1546 KASSERT(*sp != NULL); 1547 1548 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1549 (*sp)->policy == IPSEC_POLICY_BYPASS) 1550 return; 1551 1552 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC, 1553 "invalid policy %u", (*sp)->policy); 1554 KEY_SP_UNREF(&sp); 1555 } 1556 #endif 1557 1558 static void 1559 key_sad_pserialize_perform(void) 1560 { 1561 1562 KASSERT(mutex_owned(&key_sad.lock)); 1563 1564 while (key_sad.psz_performing) 1565 cv_wait(&key_sad.cv_psz, &key_sad.lock); 1566 key_sad.psz_performing = true; 1567 mutex_exit(&key_sad.lock); 1568 1569 pserialize_perform(key_sad.psz); 1570 1571 mutex_enter(&key_sad.lock); 1572 key_sad.psz_performing = false; 1573 cv_broadcast(&key_sad.cv_psz); 1574 } 1575 1576 /* 1577 * Remove the sav from the savlist of its sah and wait for references to the sav 1578 * to be released. key_sad.lock must be held. 1579 */ 1580 static void 1581 key_unlink_sav(struct secasvar *sav) 1582 { 1583 1584 KASSERT(mutex_owned(&key_sad.lock)); 1585 1586 SAVLIST_WRITER_REMOVE(sav); 1587 SAVLUT_WRITER_REMOVE(sav); 1588 1589 KDASSERT(mutex_ownable(softnet_lock)); 1590 key_sad_pserialize_perform(); 1591 1592 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1593 } 1594 1595 /* 1596 * Destroy an sav where the sav must be unlinked from an sah 1597 * by say key_unlink_sav. 1598 */ 1599 static void 1600 key_destroy_sav(struct secasvar *sav) 1601 { 1602 1603 ASSERT_SLEEPABLE(); 1604 1605 localcount_fini(&sav->localcount); 1606 SAVLIST_ENTRY_DESTROY(sav); 1607 1608 key_delsav(sav); 1609 } 1610 1611 /* 1612 * Wait for references of a passed sav to go away. 1613 */ 1614 static void 1615 key_wait_sav(struct secasvar *sav) 1616 { 1617 1618 ASSERT_SLEEPABLE(); 1619 1620 mutex_enter(&key_sad.lock); 1621 KASSERT(sav->state == SADB_SASTATE_DEAD); 1622 KDASSERT(mutex_ownable(softnet_lock)); 1623 key_sad_pserialize_perform(); 1624 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1625 mutex_exit(&key_sad.lock); 1626 } 1627 1628 /* %%% SPD management */ 1629 /* 1630 * free security policy entry. 1631 */ 1632 static void 1633 key_destroy_sp(struct secpolicy *sp) 1634 { 1635 1636 SPLIST_ENTRY_DESTROY(sp); 1637 localcount_fini(&sp->localcount); 1638 1639 key_free_sp(sp); 1640 1641 key_update_used(); 1642 } 1643 1644 void 1645 key_free_sp(struct secpolicy *sp) 1646 { 1647 struct ipsecrequest *isr = sp->req, *nextisr; 1648 1649 while (isr != NULL) { 1650 nextisr = isr->next; 1651 kmem_free(isr, sizeof(*isr)); 1652 isr = nextisr; 1653 } 1654 1655 kmem_free(sp, sizeof(*sp)); 1656 } 1657 1658 void 1659 key_socksplist_add(struct secpolicy *sp) 1660 { 1661 1662 mutex_enter(&key_spd.lock); 1663 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry); 1664 mutex_exit(&key_spd.lock); 1665 1666 key_update_used(); 1667 } 1668 1669 /* 1670 * search SPD 1671 * OUT: NULL : not found 1672 * others : found, pointer to a SP. 1673 */ 1674 static struct secpolicy * 1675 key_getsp(const struct secpolicyindex *spidx) 1676 { 1677 struct secpolicy *sp; 1678 int s; 1679 1680 KASSERT(spidx != NULL); 1681 1682 s = pserialize_read_enter(); 1683 SPLIST_READER_FOREACH(sp, spidx->dir) { 1684 if (sp->state == IPSEC_SPSTATE_DEAD) 1685 continue; 1686 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1687 KEY_SP_REF(sp); 1688 pserialize_read_exit(s); 1689 return sp; 1690 } 1691 } 1692 pserialize_read_exit(s); 1693 1694 return NULL; 1695 } 1696 1697 /* 1698 * search SPD and remove found SP 1699 * OUT: NULL : not found 1700 * others : found, pointer to a SP. 1701 */ 1702 static struct secpolicy * 1703 key_lookup_and_remove_sp(const struct secpolicyindex *spidx, bool from_kernel) 1704 { 1705 struct secpolicy *sp = NULL; 1706 1707 mutex_enter(&key_spd.lock); 1708 SPLIST_WRITER_FOREACH(sp, spidx->dir) { 1709 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", 1710 sp->state); 1711 /* 1712 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1713 * removed by userland programs. 1714 */ 1715 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1716 continue; 1717 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1718 key_unlink_sp(sp); 1719 goto out; 1720 } 1721 } 1722 sp = NULL; 1723 out: 1724 mutex_exit(&key_spd.lock); 1725 1726 return sp; 1727 } 1728 1729 /* 1730 * get SP by index. 1731 * OUT: NULL : not found 1732 * others : found, pointer to a SP. 1733 */ 1734 static struct secpolicy * 1735 key_getspbyid(u_int32_t id) 1736 { 1737 struct secpolicy *sp; 1738 int s; 1739 1740 s = pserialize_read_enter(); 1741 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1742 if (sp->state == IPSEC_SPSTATE_DEAD) 1743 continue; 1744 if (sp->id == id) { 1745 KEY_SP_REF(sp); 1746 goto out; 1747 } 1748 } 1749 1750 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1751 if (sp->state == IPSEC_SPSTATE_DEAD) 1752 continue; 1753 if (sp->id == id) { 1754 KEY_SP_REF(sp); 1755 goto out; 1756 } 1757 } 1758 out: 1759 pserialize_read_exit(s); 1760 return sp; 1761 } 1762 1763 /* 1764 * get SP by index, remove and return it. 1765 * OUT: NULL : not found 1766 * others : found, pointer to a SP. 1767 */ 1768 static struct secpolicy * 1769 key_lookupbyid_and_remove_sp(u_int32_t id, bool from_kernel) 1770 { 1771 struct secpolicy *sp; 1772 1773 mutex_enter(&key_spd.lock); 1774 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1775 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", 1776 sp->state); 1777 /* 1778 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1779 * removed by userland programs. 1780 */ 1781 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1782 continue; 1783 if (sp->id == id) 1784 goto out; 1785 } 1786 1787 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1788 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", 1789 sp->state); 1790 /* 1791 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1792 * removed by userland programs. 1793 */ 1794 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1795 continue; 1796 if (sp->id == id) 1797 goto out; 1798 } 1799 out: 1800 if (sp != NULL) 1801 key_unlink_sp(sp); 1802 mutex_exit(&key_spd.lock); 1803 return sp; 1804 } 1805 1806 struct secpolicy * 1807 key_newsp(const char* where, int tag) 1808 { 1809 struct secpolicy *newsp = NULL; 1810 1811 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP); 1812 1813 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1814 "DP from %s:%u return SP:%p\n", where, tag, newsp); 1815 return newsp; 1816 } 1817 1818 /* 1819 * create secpolicy structure from sadb_x_policy structure. 1820 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1821 * so must be set properly later. 1822 */ 1823 static struct secpolicy * 1824 _key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error, 1825 bool from_kernel) 1826 { 1827 struct secpolicy *newsp; 1828 1829 KASSERT(!cpu_softintr_p()); 1830 KASSERT(xpl0 != NULL); 1831 KASSERT(len >= sizeof(*xpl0)); 1832 1833 if (len != PFKEY_EXTLEN(xpl0)) { 1834 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1835 *error = EINVAL; 1836 return NULL; 1837 } 1838 1839 newsp = KEY_NEWSP(); 1840 if (newsp == NULL) { 1841 *error = ENOBUFS; 1842 return NULL; 1843 } 1844 1845 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1846 newsp->policy = xpl0->sadb_x_policy_type; 1847 1848 /* check policy */ 1849 switch (xpl0->sadb_x_policy_type) { 1850 case IPSEC_POLICY_DISCARD: 1851 case IPSEC_POLICY_NONE: 1852 case IPSEC_POLICY_ENTRUST: 1853 case IPSEC_POLICY_BYPASS: 1854 newsp->req = NULL; 1855 *error = 0; 1856 return newsp; 1857 1858 case IPSEC_POLICY_IPSEC: 1859 /* Continued */ 1860 break; 1861 default: 1862 IPSECLOG(LOG_DEBUG, "invalid policy type.\n"); 1863 key_free_sp(newsp); 1864 *error = EINVAL; 1865 return NULL; 1866 } 1867 1868 /* IPSEC_POLICY_IPSEC */ 1869 { 1870 int tlen; 1871 const struct sadb_x_ipsecrequest *xisr; 1872 uint16_t xisr_reqid; 1873 struct ipsecrequest **p_isr = &newsp->req; 1874 1875 /* validity check */ 1876 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1877 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1878 *error = EINVAL; 1879 goto free_exit; 1880 } 1881 1882 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1883 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); 1884 1885 while (tlen > 0) { 1886 /* length check */ 1887 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1888 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n"); 1889 *error = EINVAL; 1890 goto free_exit; 1891 } 1892 1893 /* allocate request buffer */ 1894 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP); 1895 1896 /* set values */ 1897 (*p_isr)->next = NULL; 1898 1899 switch (xisr->sadb_x_ipsecrequest_proto) { 1900 case IPPROTO_ESP: 1901 case IPPROTO_AH: 1902 case IPPROTO_IPCOMP: 1903 break; 1904 default: 1905 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n", 1906 xisr->sadb_x_ipsecrequest_proto); 1907 *error = EPROTONOSUPPORT; 1908 goto free_exit; 1909 } 1910 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1911 1912 switch (xisr->sadb_x_ipsecrequest_mode) { 1913 case IPSEC_MODE_TRANSPORT: 1914 case IPSEC_MODE_TUNNEL: 1915 break; 1916 case IPSEC_MODE_ANY: 1917 default: 1918 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n", 1919 xisr->sadb_x_ipsecrequest_mode); 1920 *error = EINVAL; 1921 goto free_exit; 1922 } 1923 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1924 1925 switch (xisr->sadb_x_ipsecrequest_level) { 1926 case IPSEC_LEVEL_DEFAULT: 1927 case IPSEC_LEVEL_USE: 1928 case IPSEC_LEVEL_REQUIRE: 1929 break; 1930 case IPSEC_LEVEL_UNIQUE: 1931 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; 1932 /* validity check */ 1933 /* 1934 * case 1) from_kernel == false 1935 * That means the request comes from userland. 1936 * If range violation of reqid, kernel will 1937 * update it, don't refuse it. 1938 * 1939 * case 2) from_kernel == true 1940 * That means the request comes from kernel 1941 * (e.g. ipsec(4) I/F). 1942 * Use thre requested reqid to avoid inconsistency 1943 * between kernel's reqid and the reqid in pf_key 1944 * message sent to userland. The pf_key message is 1945 * built by diverting request mbuf. 1946 */ 1947 if (!from_kernel && 1948 xisr_reqid > IPSEC_MANUAL_REQID_MAX) { 1949 IPSECLOG(LOG_DEBUG, 1950 "reqid=%d range " 1951 "violation, updated by kernel.\n", 1952 xisr_reqid); 1953 xisr_reqid = 0; 1954 } 1955 1956 /* allocate new reqid id if reqid is zero. */ 1957 if (xisr_reqid == 0) { 1958 u_int16_t reqid = key_newreqid(); 1959 if (reqid == 0) { 1960 *error = ENOBUFS; 1961 goto free_exit; 1962 } 1963 (*p_isr)->saidx.reqid = reqid; 1964 } else { 1965 /* set it for manual keying. */ 1966 (*p_isr)->saidx.reqid = xisr_reqid; 1967 } 1968 break; 1969 1970 default: 1971 IPSECLOG(LOG_DEBUG, "invalid level=%u\n", 1972 xisr->sadb_x_ipsecrequest_level); 1973 *error = EINVAL; 1974 goto free_exit; 1975 } 1976 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1977 1978 /* set IP addresses if there */ 1979 /* 1980 * NOTE: 1981 * MOBIKE Extensions for PF_KEY draft says: 1982 * If tunnel mode is specified, the sadb_x_ipsecrequest 1983 * structure is followed by two sockaddr structures that 1984 * define the tunnel endpoint addresses. In the case that 1985 * transport mode is used, no additional addresses are 1986 * specified. 1987 * see: https://tools.ietf.org/html/draft-schilcher-mobike-pfkey-extension-01 1988 * 1989 * And then, the IP addresses will be set by 1990 * ipsec_fill_saidx_bymbuf() from packet in transport mode. 1991 * This behavior is used by NAT-T enabled ipsecif(4). 1992 */ 1993 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1994 const struct sockaddr *paddr; 1995 1996 paddr = (const struct sockaddr *)(xisr + 1); 1997 1998 /* validity check */ 1999 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { 2000 IPSECLOG(LOG_DEBUG, "invalid request " 2001 "address length.\n"); 2002 *error = EINVAL; 2003 goto free_exit; 2004 } 2005 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); 2006 2007 paddr = (const struct sockaddr *)((const char *)paddr 2008 + paddr->sa_len); 2009 2010 /* validity check */ 2011 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { 2012 IPSECLOG(LOG_DEBUG, "invalid request " 2013 "address length.\n"); 2014 *error = EINVAL; 2015 goto free_exit; 2016 } 2017 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); 2018 } 2019 2020 (*p_isr)->sp = newsp; 2021 2022 /* initialization for the next. */ 2023 p_isr = &(*p_isr)->next; 2024 tlen -= xisr->sadb_x_ipsecrequest_len; 2025 2026 /* validity check */ 2027 if (tlen < 0) { 2028 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n"); 2029 *error = EINVAL; 2030 goto free_exit; 2031 } 2032 2033 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr + 2034 xisr->sadb_x_ipsecrequest_len); 2035 } 2036 } 2037 2038 *error = 0; 2039 return newsp; 2040 2041 free_exit: 2042 key_free_sp(newsp); 2043 return NULL; 2044 } 2045 2046 struct secpolicy * 2047 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) 2048 { 2049 2050 return _key_msg2sp(xpl0, len, error, false); 2051 } 2052 2053 u_int16_t 2054 key_newreqid(void) 2055 { 2056 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 2057 2058 auto_reqid = (auto_reqid == 0xffff ? 2059 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 2060 2061 /* XXX should be unique check */ 2062 2063 return auto_reqid; 2064 } 2065 2066 /* 2067 * copy secpolicy struct to sadb_x_policy structure indicated. 2068 */ 2069 struct mbuf * 2070 key_sp2msg(const struct secpolicy *sp, int mflag) 2071 { 2072 struct sadb_x_policy *xpl; 2073 int tlen; 2074 char *p; 2075 struct mbuf *m; 2076 2077 KASSERT(sp != NULL); 2078 2079 tlen = key_getspreqmsglen(sp); 2080 2081 m = key_alloc_mbuf(tlen, mflag); 2082 if (!m || m->m_next) { /*XXX*/ 2083 m_freem(m); 2084 return NULL; 2085 } 2086 2087 m->m_len = tlen; 2088 m->m_next = NULL; 2089 xpl = mtod(m, struct sadb_x_policy *); 2090 memset(xpl, 0, tlen); 2091 2092 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 2093 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 2094 xpl->sadb_x_policy_type = sp->policy; 2095 xpl->sadb_x_policy_dir = sp->spidx.dir; 2096 xpl->sadb_x_policy_id = sp->id; 2097 if (sp->origin == IPSEC_SPORIGIN_KERNEL) 2098 xpl->sadb_x_policy_flags |= IPSEC_POLICY_FLAG_ORIGIN_KERNEL; 2099 p = (char *)xpl + sizeof(*xpl); 2100 2101 /* if is the policy for ipsec ? */ 2102 if (sp->policy == IPSEC_POLICY_IPSEC) { 2103 struct sadb_x_ipsecrequest *xisr; 2104 struct ipsecrequest *isr; 2105 2106 for (isr = sp->req; isr != NULL; isr = isr->next) { 2107 2108 xisr = (struct sadb_x_ipsecrequest *)p; 2109 2110 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 2111 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 2112 xisr->sadb_x_ipsecrequest_level = isr->level; 2113 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 2114 2115 p += sizeof(*xisr); 2116 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); 2117 p += isr->saidx.src.sa.sa_len; 2118 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); 2119 p += isr->saidx.src.sa.sa_len; 2120 2121 xisr->sadb_x_ipsecrequest_len = 2122 PFKEY_ALIGN8(sizeof(*xisr) 2123 + isr->saidx.src.sa.sa_len 2124 + isr->saidx.dst.sa.sa_len); 2125 } 2126 } 2127 2128 return m; 2129 } 2130 2131 /* 2132 * m will not be freed nor modified. It never return NULL. 2133 * If it returns a mbuf of M_PKTHDR, the mbuf ensures to have 2134 * contiguous length at least sizeof(struct sadb_msg). 2135 */ 2136 static struct mbuf * 2137 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 2138 int ndeep, int nitem, ...) 2139 { 2140 va_list ap; 2141 int idx; 2142 int i; 2143 struct mbuf *result = NULL, *n; 2144 int len; 2145 2146 KASSERT(m != NULL); 2147 KASSERT(mhp != NULL); 2148 KASSERT(!cpu_softintr_p()); 2149 2150 va_start(ap, nitem); 2151 for (i = 0; i < nitem; i++) { 2152 idx = va_arg(ap, int); 2153 KASSERT(idx >= 0); 2154 KASSERT(idx <= SADB_EXT_MAX); 2155 /* don't attempt to pull empty extension */ 2156 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 2157 continue; 2158 if (idx != SADB_EXT_RESERVED && 2159 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 2160 continue; 2161 2162 if (idx == SADB_EXT_RESERVED) { 2163 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN); 2164 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2165 MGETHDR(n, M_WAITOK, MT_DATA); 2166 n->m_len = len; 2167 n->m_next = NULL; 2168 m_copydata(m, 0, sizeof(struct sadb_msg), 2169 mtod(n, void *)); 2170 } else if (i < ndeep) { 2171 len = mhp->extlen[idx]; 2172 n = key_alloc_mbuf(len, M_WAITOK); 2173 KASSERT(n->m_next == NULL); 2174 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 2175 mtod(n, void *)); 2176 } else { 2177 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 2178 M_WAITOK); 2179 } 2180 KASSERT(n != NULL); 2181 2182 if (result) 2183 m_cat(result, n); 2184 else 2185 result = n; 2186 } 2187 va_end(ap); 2188 2189 KASSERT(result != NULL); 2190 if ((result->m_flags & M_PKTHDR) != 0) { 2191 result->m_pkthdr.len = 0; 2192 for (n = result; n; n = n->m_next) 2193 result->m_pkthdr.len += n->m_len; 2194 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 2195 } 2196 2197 return result; 2198 } 2199 2200 /* 2201 * The argument _sp must not overwrite until SP is created and registered 2202 * successfully. 2203 */ 2204 static int 2205 key_spdadd(struct socket *so, struct mbuf *m, 2206 const struct sadb_msghdr *mhp, struct secpolicy **_sp, 2207 bool from_kernel) 2208 { 2209 const struct sockaddr *src, *dst; 2210 const struct sadb_x_policy *xpl0; 2211 struct sadb_x_policy *xpl; 2212 const struct sadb_lifetime *lft = NULL; 2213 struct secpolicyindex spidx; 2214 struct secpolicy *newsp; 2215 int error; 2216 uint32_t sadb_x_policy_id; 2217 2218 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2219 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2220 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2221 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2222 return key_senderror(so, m, EINVAL); 2223 } 2224 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2225 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2226 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2227 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2228 return key_senderror(so, m, EINVAL); 2229 } 2230 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 2231 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < 2232 sizeof(struct sadb_lifetime)) { 2233 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2234 return key_senderror(so, m, EINVAL); 2235 } 2236 lft = mhp->ext[SADB_EXT_LIFETIME_HARD]; 2237 } 2238 2239 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2240 2241 /* checking the direction. */ 2242 switch (xpl0->sadb_x_policy_dir) { 2243 case IPSEC_DIR_INBOUND: 2244 case IPSEC_DIR_OUTBOUND: 2245 break; 2246 default: 2247 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2248 return key_senderror(so, m, EINVAL); 2249 } 2250 2251 /* check policy */ 2252 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */ 2253 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || 2254 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 2255 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n"); 2256 return key_senderror(so, m, EINVAL); 2257 } 2258 2259 /* policy requests are mandatory when action is ipsec. */ 2260 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && 2261 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2262 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2263 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n"); 2264 return key_senderror(so, m, EINVAL); 2265 } 2266 2267 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 2268 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 2269 2270 /* sanity check on addr pair */ 2271 if (src->sa_family != dst->sa_family) 2272 return key_senderror(so, m, EINVAL); 2273 if (src->sa_len != dst->sa_len) 2274 return key_senderror(so, m, EINVAL); 2275 2276 key_init_spidx_bymsghdr(&spidx, mhp); 2277 2278 /* 2279 * checking there is SP already or not. 2280 * SPDUPDATE doesn't depend on whether there is a SP or not. 2281 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 2282 * then error. 2283 */ 2284 { 2285 struct secpolicy *sp; 2286 2287 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2288 sp = key_lookup_and_remove_sp(&spidx, from_kernel); 2289 if (sp != NULL) 2290 key_destroy_sp(sp); 2291 } else { 2292 sp = key_getsp(&spidx); 2293 if (sp != NULL) { 2294 KEY_SP_UNREF(&sp); 2295 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n"); 2296 return key_senderror(so, m, EEXIST); 2297 } 2298 } 2299 } 2300 2301 /* allocation new SP entry */ 2302 newsp = _key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error, from_kernel); 2303 if (newsp == NULL) { 2304 return key_senderror(so, m, error); 2305 } 2306 2307 newsp->id = key_getnewspid(); 2308 if (newsp->id == 0) { 2309 kmem_free(newsp, sizeof(*newsp)); 2310 return key_senderror(so, m, ENOBUFS); 2311 } 2312 2313 newsp->spidx = spidx; 2314 newsp->created = time_uptime; 2315 newsp->lastused = newsp->created; 2316 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2317 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2318 if (from_kernel) 2319 newsp->origin = IPSEC_SPORIGIN_KERNEL; 2320 else 2321 newsp->origin = IPSEC_SPORIGIN_USER; 2322 2323 key_init_sp(newsp); 2324 if (from_kernel) 2325 KEY_SP_REF(newsp); 2326 2327 sadb_x_policy_id = newsp->id; 2328 2329 if (_sp != NULL) 2330 *_sp = newsp; 2331 2332 mutex_enter(&key_spd.lock); 2333 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp); 2334 mutex_exit(&key_spd.lock); 2335 /* 2336 * We don't have a reference to newsp, so we must not touch newsp from 2337 * now on. If you want to do, you must take a reference beforehand. 2338 */ 2339 newsp = NULL; 2340 2341 #ifdef notyet 2342 /* delete the entry in key_misc.spacqlist */ 2343 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2344 struct secspacq *spacq = key_getspacq(&spidx); 2345 if (spacq != NULL) { 2346 /* reset counter in order to deletion by timehandler. */ 2347 spacq->created = time_uptime; 2348 spacq->count = 0; 2349 } 2350 } 2351 #endif 2352 2353 /* Invalidate all cached SPD pointers in the PCBs. */ 2354 ipsec_invalpcbcacheall(); 2355 2356 #if defined(GATEWAY) 2357 /* Invalidate the ipflow cache, as well. */ 2358 ipflow_invalidate_all(0); 2359 #ifdef INET6 2360 if (in6_present) 2361 ip6flow_invalidate_all(0); 2362 #endif /* INET6 */ 2363 #endif /* GATEWAY */ 2364 2365 key_update_used(); 2366 2367 { 2368 struct mbuf *n, *mpolicy; 2369 int off; 2370 2371 /* create new sadb_msg to reply. */ 2372 if (lft) { 2373 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2374 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2375 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2376 } else { 2377 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2378 SADB_X_EXT_POLICY, 2379 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2380 } 2381 2382 key_fill_replymsg(n, 0); 2383 off = 0; 2384 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2385 sizeof(*xpl), &off); 2386 if (mpolicy == NULL) { 2387 /* n is already freed */ 2388 /* 2389 * valid sp has been created, so we does not overwrite _sp 2390 * NULL here. let caller decide to use the sp or not. 2391 */ 2392 return key_senderror(so, m, ENOBUFS); 2393 } 2394 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); 2395 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2396 m_freem(n); 2397 /* ditto */ 2398 return key_senderror(so, m, EINVAL); 2399 } 2400 2401 xpl->sadb_x_policy_id = sadb_x_policy_id; 2402 2403 m_freem(m); 2404 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2405 } 2406 } 2407 2408 /* 2409 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 2410 * add an entry to SP database, when received 2411 * <base, address(SD), (lifetime(H),) policy> 2412 * from the user(?). 2413 * Adding to SP database, 2414 * and send 2415 * <base, address(SD), (lifetime(H),) policy> 2416 * to the socket which was send. 2417 * 2418 * SPDADD set a unique policy entry. 2419 * SPDSETIDX like SPDADD without a part of policy requests. 2420 * SPDUPDATE replace a unique policy entry. 2421 * 2422 * m will always be freed. 2423 */ 2424 static int 2425 key_api_spdadd(struct socket *so, struct mbuf *m, 2426 const struct sadb_msghdr *mhp) 2427 { 2428 2429 return key_spdadd(so, m, mhp, NULL, false); 2430 } 2431 2432 struct secpolicy * 2433 key_kpi_spdadd(struct mbuf *m) 2434 { 2435 struct sadb_msghdr mh; 2436 int error; 2437 struct secpolicy *sp = NULL; 2438 2439 error = key_align(m, &mh); 2440 if (error) 2441 return NULL; 2442 2443 error = key_spdadd(NULL, m, &mh, &sp, true); 2444 if (error) { 2445 /* 2446 * Currently, when key_spdadd() cannot send a PFKEY message 2447 * which means SP has been created, key_spdadd() returns error 2448 * although SP is created successfully. 2449 * Kernel components would not care PFKEY messages, so return 2450 * the "sp" regardless of error code. key_spdadd() overwrites 2451 * the argument only if SP is created successfully. 2452 */ 2453 } 2454 return sp; 2455 } 2456 2457 /* 2458 * get new policy id. 2459 * OUT: 2460 * 0: failure. 2461 * others: success. 2462 */ 2463 static u_int32_t 2464 key_getnewspid(void) 2465 { 2466 u_int32_t newid = 0; 2467 int count = key_spi_trycnt; /* XXX */ 2468 struct secpolicy *sp; 2469 2470 /* when requesting to allocate spi ranged */ 2471 while (count--) { 2472 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 2473 2474 sp = key_getspbyid(newid); 2475 if (sp == NULL) 2476 break; 2477 2478 KEY_SP_UNREF(&sp); 2479 } 2480 2481 if (count == 0 || newid == 0) { 2482 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n"); 2483 return 0; 2484 } 2485 2486 return newid; 2487 } 2488 2489 /* 2490 * SADB_SPDDELETE processing 2491 * receive 2492 * <base, address(SD), policy(*)> 2493 * from the user(?), and set SADB_SASTATE_DEAD, 2494 * and send, 2495 * <base, address(SD), policy(*)> 2496 * to the ikmpd. 2497 * policy(*) including direction of policy. 2498 * 2499 * m will always be freed. 2500 */ 2501 static int 2502 key_api_spddelete(struct socket *so, struct mbuf *m, 2503 const struct sadb_msghdr *mhp) 2504 { 2505 struct sadb_x_policy *xpl0; 2506 struct secpolicyindex spidx; 2507 struct secpolicy *sp; 2508 2509 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2510 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2511 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2512 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2513 return key_senderror(so, m, EINVAL); 2514 } 2515 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2516 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2517 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2518 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2519 return key_senderror(so, m, EINVAL); 2520 } 2521 2522 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2523 2524 /* checking the direction. */ 2525 switch (xpl0->sadb_x_policy_dir) { 2526 case IPSEC_DIR_INBOUND: 2527 case IPSEC_DIR_OUTBOUND: 2528 break; 2529 default: 2530 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2531 return key_senderror(so, m, EINVAL); 2532 } 2533 2534 /* make secindex */ 2535 key_init_spidx_bymsghdr(&spidx, mhp); 2536 2537 /* Is there SP in SPD ? */ 2538 sp = key_lookup_and_remove_sp(&spidx, false); 2539 if (sp == NULL) { 2540 IPSECLOG(LOG_DEBUG, "no SP found.\n"); 2541 return key_senderror(so, m, EINVAL); 2542 } 2543 2544 /* save policy id to buffer to be returned. */ 2545 xpl0->sadb_x_policy_id = sp->id; 2546 2547 key_destroy_sp(sp); 2548 2549 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2550 2551 { 2552 struct mbuf *n; 2553 2554 /* create new sadb_msg to reply. */ 2555 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2556 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2557 key_fill_replymsg(n, 0); 2558 m_freem(m); 2559 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2560 } 2561 } 2562 2563 static struct mbuf * 2564 key_alloc_mbuf_simple(int len, int mflag) 2565 { 2566 struct mbuf *n; 2567 2568 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 2569 2570 MGETHDR(n, mflag, MT_DATA); 2571 if (n && len > MHLEN) { 2572 MCLGET(n, mflag); 2573 if ((n->m_flags & M_EXT) == 0) { 2574 m_freem(n); 2575 n = NULL; 2576 } 2577 } 2578 return n; 2579 } 2580 2581 /* 2582 * SADB_SPDDELETE2 processing 2583 * receive 2584 * <base, policy(*)> 2585 * from the user(?), and set SADB_SASTATE_DEAD, 2586 * and send, 2587 * <base, policy(*)> 2588 * to the ikmpd. 2589 * policy(*) including direction of policy. 2590 * 2591 * m will always be freed. 2592 */ 2593 static int 2594 key_spddelete2(struct socket *so, struct mbuf *m, 2595 const struct sadb_msghdr *mhp, bool from_kernel) 2596 { 2597 u_int32_t id; 2598 struct secpolicy *sp; 2599 const struct sadb_x_policy *xpl; 2600 2601 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2602 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2603 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2604 return key_senderror(so, m, EINVAL); 2605 } 2606 2607 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2608 id = xpl->sadb_x_policy_id; 2609 2610 /* Is there SP in SPD ? */ 2611 sp = key_lookupbyid_and_remove_sp(id, from_kernel); 2612 if (sp == NULL) { 2613 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2614 return key_senderror(so, m, EINVAL); 2615 } 2616 2617 key_destroy_sp(sp); 2618 2619 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2620 2621 { 2622 struct mbuf *n, *nn; 2623 int off, len; 2624 2625 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 2626 2627 /* create new sadb_msg to reply. */ 2628 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2629 2630 n = key_alloc_mbuf_simple(len, M_WAITOK); 2631 n->m_len = len; 2632 n->m_next = NULL; 2633 off = 0; 2634 2635 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 2636 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2637 2638 KASSERTMSG(off == len, "length inconsistency"); 2639 2640 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2641 mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); 2642 2643 n->m_pkthdr.len = 0; 2644 for (nn = n; nn; nn = nn->m_next) 2645 n->m_pkthdr.len += nn->m_len; 2646 2647 key_fill_replymsg(n, 0); 2648 m_freem(m); 2649 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2650 } 2651 } 2652 2653 /* 2654 * SADB_SPDDELETE2 processing 2655 * receive 2656 * <base, policy(*)> 2657 * from the user(?), and set SADB_SASTATE_DEAD, 2658 * and send, 2659 * <base, policy(*)> 2660 * to the ikmpd. 2661 * policy(*) including direction of policy. 2662 * 2663 * m will always be freed. 2664 */ 2665 static int 2666 key_api_spddelete2(struct socket *so, struct mbuf *m, 2667 const struct sadb_msghdr *mhp) 2668 { 2669 2670 return key_spddelete2(so, m, mhp, false); 2671 } 2672 2673 int 2674 key_kpi_spddelete2(struct mbuf *m) 2675 { 2676 struct sadb_msghdr mh; 2677 int error; 2678 2679 error = key_align(m, &mh); 2680 if (error) 2681 return EINVAL; 2682 2683 return key_spddelete2(NULL, m, &mh, true); 2684 } 2685 2686 /* 2687 * SADB_X_GET processing 2688 * receive 2689 * <base, policy(*)> 2690 * from the user(?), 2691 * and send, 2692 * <base, address(SD), policy> 2693 * to the ikmpd. 2694 * policy(*) including direction of policy. 2695 * 2696 * m will always be freed. 2697 */ 2698 static int 2699 key_api_spdget(struct socket *so, struct mbuf *m, 2700 const struct sadb_msghdr *mhp) 2701 { 2702 u_int32_t id; 2703 struct secpolicy *sp; 2704 struct mbuf *n; 2705 const struct sadb_x_policy *xpl; 2706 2707 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2708 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2709 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2710 return key_senderror(so, m, EINVAL); 2711 } 2712 2713 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2714 id = xpl->sadb_x_policy_id; 2715 2716 /* Is there SP in SPD ? */ 2717 sp = key_getspbyid(id); 2718 if (sp == NULL) { 2719 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2720 return key_senderror(so, m, ENOENT); 2721 } 2722 2723 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2724 mhp->msg->sadb_msg_pid); 2725 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */ 2726 m_freem(m); 2727 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2728 } 2729 2730 #ifdef notyet 2731 /* 2732 * SADB_X_SPDACQUIRE processing. 2733 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2734 * send 2735 * <base, policy(*)> 2736 * to KMD, and expect to receive 2737 * <base> with SADB_X_SPDACQUIRE if error occurred, 2738 * or 2739 * <base, policy> 2740 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2741 * policy(*) is without policy requests. 2742 * 2743 * 0 : succeed 2744 * others: error number 2745 */ 2746 int 2747 key_spdacquire(const struct secpolicy *sp) 2748 { 2749 struct mbuf *result = NULL, *m; 2750 struct secspacq *newspacq; 2751 int error; 2752 2753 KASSERT(sp != NULL); 2754 KASSERTMSG(sp->req == NULL, "called but there is request"); 2755 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC, 2756 "policy mismathed. IPsec is expected"); 2757 2758 /* Get an entry to check whether sent message or not. */ 2759 newspacq = key_getspacq(&sp->spidx); 2760 if (newspacq != NULL) { 2761 if (key_blockacq_count < newspacq->count) { 2762 /* reset counter and do send message. */ 2763 newspacq->count = 0; 2764 } else { 2765 /* increment counter and do nothing. */ 2766 newspacq->count++; 2767 return 0; 2768 } 2769 } else { 2770 /* make new entry for blocking to send SADB_ACQUIRE. */ 2771 newspacq = key_newspacq(&sp->spidx); 2772 if (newspacq == NULL) 2773 return ENOBUFS; 2774 2775 /* add to key_misc.acqlist */ 2776 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain); 2777 } 2778 2779 /* create new sadb_msg to reply. */ 2780 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2781 if (!m) { 2782 error = ENOBUFS; 2783 goto fail; 2784 } 2785 result = m; 2786 2787 result->m_pkthdr.len = 0; 2788 for (m = result; m; m = m->m_next) 2789 result->m_pkthdr.len += m->m_len; 2790 2791 mtod(result, struct sadb_msg *)->sadb_msg_len = 2792 PFKEY_UNIT64(result->m_pkthdr.len); 2793 2794 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2795 2796 fail: 2797 m_freem(result); 2798 return error; 2799 } 2800 #endif /* notyet */ 2801 2802 /* 2803 * SADB_SPDFLUSH processing 2804 * receive 2805 * <base> 2806 * from the user, and free all entries in secpctree. 2807 * and send, 2808 * <base> 2809 * to the user. 2810 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2811 * 2812 * m will always be freed. 2813 */ 2814 static int 2815 key_api_spdflush(struct socket *so, struct mbuf *m, 2816 const struct sadb_msghdr *mhp) 2817 { 2818 struct sadb_msg *newmsg; 2819 struct secpolicy *sp; 2820 u_int dir; 2821 2822 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2823 return key_senderror(so, m, EINVAL); 2824 2825 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2826 retry: 2827 mutex_enter(&key_spd.lock); 2828 SPLIST_WRITER_FOREACH(sp, dir) { 2829 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, 2830 "sp->state=%u", sp->state); 2831 /* 2832 * Userlang programs can remove SPs created by userland 2833 * probrams only, that is, they cannot remove SPs 2834 * created in kernel(e.g. ipsec(4) I/F). 2835 */ 2836 if (sp->origin == IPSEC_SPORIGIN_USER) { 2837 key_unlink_sp(sp); 2838 mutex_exit(&key_spd.lock); 2839 key_destroy_sp(sp); 2840 goto retry; 2841 } 2842 } 2843 mutex_exit(&key_spd.lock); 2844 } 2845 2846 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2847 2848 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2849 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 2850 return key_senderror(so, m, ENOBUFS); 2851 } 2852 2853 m_freem(m->m_next); 2854 m->m_next = NULL; 2855 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2856 newmsg = mtod(m, struct sadb_msg *); 2857 newmsg->sadb_msg_errno = 0; 2858 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2859 2860 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2861 } 2862 2863 static struct sockaddr key_src = { 2864 .sa_len = 2, 2865 .sa_family = PF_KEY, 2866 }; 2867 2868 static struct mbuf * 2869 key_setspddump_chain(int *errorp, int *lenp, pid_t pid) 2870 { 2871 struct secpolicy *sp; 2872 int cnt; 2873 u_int dir; 2874 struct mbuf *m, *n, *prev; 2875 int totlen; 2876 2877 KASSERT(mutex_owned(&key_spd.lock)); 2878 2879 *lenp = 0; 2880 2881 /* search SPD entry and get buffer size. */ 2882 cnt = 0; 2883 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2884 SPLIST_WRITER_FOREACH(sp, dir) { 2885 cnt++; 2886 } 2887 } 2888 2889 if (cnt == 0) { 2890 *errorp = ENOENT; 2891 return (NULL); 2892 } 2893 2894 m = NULL; 2895 prev = m; 2896 totlen = 0; 2897 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2898 SPLIST_WRITER_FOREACH(sp, dir) { 2899 --cnt; 2900 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 2901 2902 totlen += n->m_pkthdr.len; 2903 if (!m) { 2904 m = n; 2905 } else { 2906 prev->m_nextpkt = n; 2907 } 2908 prev = n; 2909 } 2910 } 2911 2912 *lenp = totlen; 2913 *errorp = 0; 2914 return (m); 2915 } 2916 2917 /* 2918 * SADB_SPDDUMP processing 2919 * receive 2920 * <base> 2921 * from the user, and dump all SP leaves 2922 * and send, 2923 * <base> ..... 2924 * to the ikmpd. 2925 * 2926 * m will always be freed. 2927 */ 2928 static int 2929 key_api_spddump(struct socket *so, struct mbuf *m0, 2930 const struct sadb_msghdr *mhp) 2931 { 2932 struct mbuf *n; 2933 int error, len; 2934 int ok; 2935 pid_t pid; 2936 2937 pid = mhp->msg->sadb_msg_pid; 2938 /* 2939 * If the requestor has insufficient socket-buffer space 2940 * for the entire chain, nobody gets any response to the DUMP. 2941 * XXX For now, only the requestor ever gets anything. 2942 * Moreover, if the requestor has any space at all, they receive 2943 * the entire chain, otherwise the request is refused with ENOBUFS. 2944 */ 2945 if (sbspace(&so->so_rcv) <= 0) { 2946 return key_senderror(so, m0, ENOBUFS); 2947 } 2948 2949 mutex_enter(&key_spd.lock); 2950 n = key_setspddump_chain(&error, &len, pid); 2951 mutex_exit(&key_spd.lock); 2952 2953 if (n == NULL) { 2954 return key_senderror(so, m0, ENOENT); 2955 } 2956 { 2957 net_stat_ref_t ps = PFKEY_STAT_GETREF(); 2958 _NET_STATINC_REF(ps, PFKEY_STAT_IN_TOTAL); 2959 _NET_STATADD_REF(ps, PFKEY_STAT_IN_BYTES, len); 2960 PFKEY_STAT_PUTREF(); 2961 } 2962 2963 /* 2964 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 2965 * The requestor receives either the entire chain, or an 2966 * error message with ENOBUFS. 2967 */ 2968 2969 /* 2970 * sbappendchainwith record takes the chain of entries, one 2971 * packet-record per SPD entry, prepends the key_src sockaddr 2972 * to each packet-record, links the sockaddr mbufs into a new 2973 * list of records, then appends the entire resulting 2974 * list to the requesting socket. 2975 */ 2976 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 2977 SB_PRIO_ONESHOT_OVERFLOW); 2978 2979 if (!ok) { 2980 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 2981 m_freem(n); 2982 return key_senderror(so, m0, ENOBUFS); 2983 } 2984 2985 m_freem(m0); 2986 return error; 2987 } 2988 2989 /* 2990 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 2991 */ 2992 static int 2993 key_api_nat_map(struct socket *so, struct mbuf *m, 2994 const struct sadb_msghdr *mhp) 2995 { 2996 struct sadb_x_nat_t_type *type; 2997 struct sadb_x_nat_t_port *sport; 2998 struct sadb_x_nat_t_port *dport; 2999 struct sadb_address *iaddr, *raddr; 3000 struct sadb_x_nat_t_frag *frag; 3001 3002 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 3003 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 3004 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { 3005 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 3006 return key_senderror(so, m, EINVAL); 3007 } 3008 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 3009 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 3010 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 3011 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 3012 return key_senderror(so, m, EINVAL); 3013 } 3014 3015 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 3016 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 3017 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3018 return key_senderror(so, m, EINVAL); 3019 } 3020 3021 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 3022 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 3023 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3024 return key_senderror(so, m, EINVAL); 3025 } 3026 3027 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 3028 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 3029 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3030 return key_senderror(so, m, EINVAL); 3031 } 3032 3033 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 3034 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 3035 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 3036 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 3037 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 3038 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 3039 3040 /* 3041 * XXX handle that, it should also contain a SA, or anything 3042 * that enable to update the SA information. 3043 */ 3044 3045 return 0; 3046 } 3047 3048 /* 3049 * Never return NULL. 3050 */ 3051 static struct mbuf * 3052 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) 3053 { 3054 struct mbuf *result = NULL, *m; 3055 3056 KASSERT(!cpu_softintr_p()); 3057 3058 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, 3059 key_sp_refcnt(sp), M_WAITOK); 3060 result = m; 3061 3062 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3063 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3064 m_cat(result, m); 3065 3066 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3067 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3068 m_cat(result, m); 3069 3070 m = key_sp2msg(sp, M_WAITOK); 3071 m_cat(result, m); 3072 3073 KASSERT(result->m_flags & M_PKTHDR); 3074 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3075 3076 result->m_pkthdr.len = 0; 3077 for (m = result; m; m = m->m_next) 3078 result->m_pkthdr.len += m->m_len; 3079 3080 mtod(result, struct sadb_msg *)->sadb_msg_len = 3081 PFKEY_UNIT64(result->m_pkthdr.len); 3082 3083 return result; 3084 } 3085 3086 /* 3087 * get PFKEY message length for security policy and request. 3088 */ 3089 static u_int 3090 key_getspreqmsglen(const struct secpolicy *sp) 3091 { 3092 u_int tlen; 3093 3094 tlen = sizeof(struct sadb_x_policy); 3095 3096 /* if is the policy for ipsec ? */ 3097 if (sp->policy != IPSEC_POLICY_IPSEC) 3098 return tlen; 3099 3100 /* get length of ipsec requests */ 3101 { 3102 const struct ipsecrequest *isr; 3103 int len; 3104 3105 for (isr = sp->req; isr != NULL; isr = isr->next) { 3106 len = sizeof(struct sadb_x_ipsecrequest) 3107 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; 3108 3109 tlen += PFKEY_ALIGN8(len); 3110 } 3111 } 3112 3113 return tlen; 3114 } 3115 3116 /* 3117 * SADB_SPDEXPIRE processing 3118 * send 3119 * <base, address(SD), lifetime(CH), policy> 3120 * to KMD by PF_KEY. 3121 * 3122 * OUT: 0 : succeed 3123 * others : error number 3124 */ 3125 static int 3126 key_spdexpire(struct secpolicy *sp) 3127 { 3128 int s; 3129 struct mbuf *result = NULL, *m; 3130 int len; 3131 int error = -1; 3132 struct sadb_lifetime *lt; 3133 3134 /* XXX: Why do we lock ? */ 3135 s = splsoftnet(); /*called from softclock()*/ 3136 3137 KASSERT(sp != NULL); 3138 3139 /* set msg header */ 3140 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK); 3141 result = m; 3142 3143 /* create lifetime extension (current and hard) */ 3144 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 3145 m = key_alloc_mbuf(len, M_WAITOK); 3146 KASSERT(m->m_next == NULL); 3147 3148 memset(mtod(m, void *), 0, len); 3149 lt = mtod(m, struct sadb_lifetime *); 3150 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3151 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3152 lt->sadb_lifetime_allocations = 0; 3153 lt->sadb_lifetime_bytes = 0; 3154 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created); 3155 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused); 3156 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 3157 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3158 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 3159 lt->sadb_lifetime_allocations = 0; 3160 lt->sadb_lifetime_bytes = 0; 3161 lt->sadb_lifetime_addtime = sp->lifetime; 3162 lt->sadb_lifetime_usetime = sp->validtime; 3163 m_cat(result, m); 3164 3165 /* set sadb_address for source */ 3166 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, 3167 sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3168 m_cat(result, m); 3169 3170 /* set sadb_address for destination */ 3171 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, 3172 sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3173 m_cat(result, m); 3174 3175 /* set secpolicy */ 3176 m = key_sp2msg(sp, M_WAITOK); 3177 m_cat(result, m); 3178 3179 KASSERT(result->m_flags & M_PKTHDR); 3180 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3181 3182 result->m_pkthdr.len = 0; 3183 for (m = result; m; m = m->m_next) 3184 result->m_pkthdr.len += m->m_len; 3185 3186 mtod(result, struct sadb_msg *)->sadb_msg_len = 3187 PFKEY_UNIT64(result->m_pkthdr.len); 3188 3189 error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 3190 splx(s); 3191 return error; 3192 } 3193 3194 /* %%% SAD management */ 3195 /* 3196 * allocating a memory for new SA head, and copy from the values of mhp. 3197 * OUT: NULL : failure due to the lack of memory. 3198 * others : pointer to new SA head. 3199 */ 3200 static struct secashead * 3201 key_newsah(const struct secasindex *saidx) 3202 { 3203 struct secashead *newsah; 3204 int i; 3205 3206 KASSERT(saidx != NULL); 3207 3208 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP); 3209 for (i = 0; i < __arraycount(newsah->savlist); i++) 3210 PSLIST_INIT(&newsah->savlist[i]); 3211 newsah->saidx = *saidx; 3212 3213 localcount_init(&newsah->localcount); 3214 /* Take a reference for the caller */ 3215 localcount_acquire(&newsah->localcount); 3216 3217 /* Add to the sah list */ 3218 SAHLIST_ENTRY_INIT(newsah); 3219 newsah->state = SADB_SASTATE_MATURE; 3220 mutex_enter(&key_sad.lock); 3221 SAHLIST_WRITER_INSERT_HEAD(newsah); 3222 mutex_exit(&key_sad.lock); 3223 3224 return newsah; 3225 } 3226 3227 static bool 3228 key_sah_has_sav(struct secashead *sah) 3229 { 3230 u_int state; 3231 3232 KASSERT(mutex_owned(&key_sad.lock)); 3233 3234 SASTATE_ANY_FOREACH(state) { 3235 if (!SAVLIST_WRITER_EMPTY(sah, state)) 3236 return true; 3237 } 3238 3239 return false; 3240 } 3241 3242 static void 3243 key_unlink_sah(struct secashead *sah) 3244 { 3245 3246 KASSERT(!cpu_softintr_p()); 3247 KASSERT(mutex_owned(&key_sad.lock)); 3248 KASSERTMSG(sah->state == SADB_SASTATE_DEAD, "sah->state=%u", sah->state); 3249 3250 /* Remove from the sah list */ 3251 SAHLIST_WRITER_REMOVE(sah); 3252 3253 KDASSERT(mutex_ownable(softnet_lock)); 3254 key_sad_pserialize_perform(); 3255 3256 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3257 } 3258 3259 static void 3260 key_destroy_sah(struct secashead *sah) 3261 { 3262 3263 rtcache_free(&sah->sa_route); 3264 3265 SAHLIST_ENTRY_DESTROY(sah); 3266 localcount_fini(&sah->localcount); 3267 3268 if (sah->idents != NULL) 3269 kmem_free(sah->idents, sah->idents_len); 3270 if (sah->identd != NULL) 3271 kmem_free(sah->identd, sah->identd_len); 3272 3273 kmem_free(sah, sizeof(*sah)); 3274 } 3275 3276 /* 3277 * allocating a new SA with LARVAL state. 3278 * key_api_add() and key_api_getspi() call, 3279 * and copy the values of mhp into new buffer. 3280 * When SAD message type is GETSPI: 3281 * to set sequence number from acq_seq++, 3282 * to set zero to SPI. 3283 * not to call key_setsaval(). 3284 * OUT: NULL : fail 3285 * others : pointer to new secasvar. 3286 * 3287 * does not modify mbuf. does not free mbuf on error. 3288 */ 3289 static struct secasvar * 3290 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 3291 int *errp, int proto, const char* where, int tag) 3292 { 3293 struct secasvar *newsav; 3294 const struct sadb_sa *xsa; 3295 3296 KASSERT(!cpu_softintr_p()); 3297 KASSERT(m != NULL); 3298 KASSERT(mhp != NULL); 3299 KASSERT(mhp->msg != NULL); 3300 3301 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 3302 3303 switch (mhp->msg->sadb_msg_type) { 3304 case SADB_GETSPI: 3305 newsav->spi = 0; 3306 3307 #ifdef IPSEC_DOSEQCHECK 3308 /* sync sequence number */ 3309 if (mhp->msg->sadb_msg_seq == 0) 3310 newsav->seq = 3311 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 3312 else 3313 #endif 3314 newsav->seq = mhp->msg->sadb_msg_seq; 3315 break; 3316 3317 case SADB_ADD: 3318 /* sanity check */ 3319 if (mhp->ext[SADB_EXT_SA] == NULL) { 3320 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 3321 *errp = EINVAL; 3322 goto error; 3323 } 3324 xsa = mhp->ext[SADB_EXT_SA]; 3325 newsav->spi = xsa->sadb_sa_spi; 3326 newsav->seq = mhp->msg->sadb_msg_seq; 3327 break; 3328 default: 3329 *errp = EINVAL; 3330 goto error; 3331 } 3332 3333 /* copy sav values */ 3334 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 3335 *errp = key_setsaval(newsav, m, mhp); 3336 if (*errp) 3337 goto error; 3338 } else { 3339 /* We don't allow lft_c to be NULL */ 3340 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime), 3341 KM_SLEEP); 3342 newsav->lft_c_counters_percpu = 3343 percpu_alloc(sizeof(lifetime_counters_t)); 3344 } 3345 3346 /* reset created */ 3347 newsav->created = time_uptime; 3348 newsav->pid = mhp->msg->sadb_msg_pid; 3349 3350 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3351 "DP from %s:%u return SA:%p spi=%#x proto=%d\n", 3352 where, tag, newsav, ntohl(newsav->spi), proto); 3353 return newsav; 3354 3355 error: 3356 KASSERT(*errp != 0); 3357 kmem_free(newsav, sizeof(*newsav)); 3358 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3359 "DP from %s:%u return SA:NULL\n", where, tag); 3360 return NULL; 3361 } 3362 3363 3364 static void 3365 key_clear_xform(struct secasvar *sav) 3366 { 3367 3368 /* 3369 * Cleanup xform state. Note that zeroize'ing causes the 3370 * keys to be cleared; otherwise we must do it ourself. 3371 */ 3372 if (sav->tdb_xform != NULL) { 3373 sav->tdb_xform->xf_zeroize(sav); 3374 sav->tdb_xform = NULL; 3375 } else { 3376 if (sav->key_auth != NULL) 3377 explicit_memset(_KEYBUF(sav->key_auth), 0, 3378 _KEYLEN(sav->key_auth)); 3379 if (sav->key_enc != NULL) 3380 explicit_memset(_KEYBUF(sav->key_enc), 0, 3381 _KEYLEN(sav->key_enc)); 3382 } 3383 } 3384 3385 /* 3386 * free() SA variable entry. 3387 */ 3388 static void 3389 key_delsav(struct secasvar *sav) 3390 { 3391 3392 key_clear_xform(sav); 3393 key_freesaval(sav); 3394 kmem_free(sav, sizeof(*sav)); 3395 } 3396 3397 /* 3398 * Must be called in a pserialize read section. A held sah 3399 * must be released by key_sah_unref after use. 3400 */ 3401 static void 3402 key_sah_ref(struct secashead *sah) 3403 { 3404 3405 localcount_acquire(&sah->localcount); 3406 } 3407 3408 /* 3409 * Must be called without holding key_sad.lock because the lock 3410 * would be held in localcount_release. 3411 */ 3412 static void 3413 key_sah_unref(struct secashead *sah) 3414 { 3415 3416 KDASSERT(mutex_ownable(&key_sad.lock)); 3417 3418 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3419 } 3420 3421 /* 3422 * Search SAD and return sah. Must be called in a pserialize 3423 * read section. 3424 * OUT: 3425 * NULL : not found 3426 * others : found, pointer to a SA. 3427 */ 3428 static struct secashead * 3429 key_getsah(const struct secasindex *saidx, int flag) 3430 { 3431 struct secashead *sah; 3432 3433 SAHLIST_READER_FOREACH_SAIDX(sah, saidx) { 3434 if (sah->state == SADB_SASTATE_DEAD) 3435 continue; 3436 if (key_saidx_match(&sah->saidx, saidx, flag)) 3437 return sah; 3438 } 3439 3440 return NULL; 3441 } 3442 3443 /* 3444 * Search SAD and return sah. If sah is returned, the caller must call 3445 * key_sah_unref to releaset a reference. 3446 * OUT: 3447 * NULL : not found 3448 * others : found, pointer to a SA. 3449 */ 3450 static struct secashead * 3451 key_getsah_ref(const struct secasindex *saidx, int flag) 3452 { 3453 struct secashead *sah; 3454 int s; 3455 3456 s = pserialize_read_enter(); 3457 sah = key_getsah(saidx, flag); 3458 if (sah != NULL) 3459 key_sah_ref(sah); 3460 pserialize_read_exit(s); 3461 3462 return sah; 3463 } 3464 3465 /* 3466 * check not to be duplicated SPI. 3467 * NOTE: this function is too slow due to searching all SAD. 3468 * OUT: 3469 * NULL : not found 3470 * others : found, pointer to a SA. 3471 */ 3472 static bool 3473 key_checkspidup(const struct secasindex *saidx, u_int32_t spi) 3474 { 3475 struct secashead *sah; 3476 struct secasvar *sav; 3477 3478 /* check address family */ 3479 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3480 IPSECLOG(LOG_DEBUG, 3481 "address family mismatched src %u, dst %u.\n", 3482 saidx->src.sa.sa_family, saidx->dst.sa.sa_family); 3483 return false; 3484 } 3485 3486 /* check all SAD */ 3487 /* key_ismyaddr may sleep, so use mutex, not pserialize, here. */ 3488 mutex_enter(&key_sad.lock); 3489 SAHLIST_WRITER_FOREACH(sah) { 3490 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3491 continue; 3492 sav = key_getsavbyspi(sah, spi); 3493 if (sav != NULL) { 3494 KEY_SA_UNREF(&sav); 3495 mutex_exit(&key_sad.lock); 3496 return true; 3497 } 3498 } 3499 mutex_exit(&key_sad.lock); 3500 3501 return false; 3502 } 3503 3504 /* 3505 * search SAD litmited alive SA, protocol, SPI. 3506 * OUT: 3507 * NULL : not found 3508 * others : found, pointer to a SA. 3509 */ 3510 static struct secasvar * 3511 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 3512 { 3513 struct secasvar *sav = NULL; 3514 u_int state; 3515 int s; 3516 3517 /* search all status */ 3518 s = pserialize_read_enter(); 3519 SASTATE_ALIVE_FOREACH(state) { 3520 SAVLIST_READER_FOREACH(sav, sah, state) { 3521 /* sanity check */ 3522 if (sav->state != state) { 3523 IPSECLOG(LOG_DEBUG, 3524 "invalid sav->state (queue: %d SA: %d)\n", 3525 state, sav->state); 3526 continue; 3527 } 3528 3529 if (sav->spi == spi) { 3530 KEY_SA_REF(sav); 3531 goto out; 3532 } 3533 } 3534 } 3535 out: 3536 pserialize_read_exit(s); 3537 3538 return sav; 3539 } 3540 3541 /* 3542 * Search SAD litmited alive SA by an SPI and remove it from a list. 3543 * OUT: 3544 * NULL : not found 3545 * others : found, pointer to a SA. 3546 */ 3547 static struct secasvar * 3548 key_lookup_and_remove_sav(struct secashead *sah, u_int32_t spi, 3549 const struct secasvar *hint) 3550 { 3551 struct secasvar *sav = NULL; 3552 u_int state; 3553 3554 /* search all status */ 3555 mutex_enter(&key_sad.lock); 3556 SASTATE_ALIVE_FOREACH(state) { 3557 SAVLIST_WRITER_FOREACH(sav, sah, state) { 3558 KASSERT(sav->state == state); 3559 3560 if (sav->spi == spi) { 3561 if (hint != NULL && hint != sav) 3562 continue; 3563 sav->state = SADB_SASTATE_DEAD; 3564 SAVLIST_WRITER_REMOVE(sav); 3565 SAVLUT_WRITER_REMOVE(sav); 3566 goto out; 3567 } 3568 } 3569 } 3570 out: 3571 mutex_exit(&key_sad.lock); 3572 3573 return sav; 3574 } 3575 3576 /* 3577 * Free allocated data to member variables of sav: 3578 * sav->replay, sav->key_* and sav->lft_*. 3579 */ 3580 static void 3581 key_freesaval(struct secasvar *sav) 3582 { 3583 3584 KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", 3585 key_sa_refcnt(sav)); 3586 3587 if (sav->replay != NULL) 3588 kmem_free(sav->replay, sav->replay_len); 3589 if (sav->key_auth != NULL) 3590 kmem_free(sav->key_auth, sav->key_auth_len); 3591 if (sav->key_enc != NULL) 3592 kmem_free(sav->key_enc, sav->key_enc_len); 3593 if (sav->lft_c_counters_percpu != NULL) { 3594 percpu_free(sav->lft_c_counters_percpu, 3595 sizeof(lifetime_counters_t)); 3596 } 3597 if (sav->lft_c != NULL) 3598 kmem_free(sav->lft_c, sizeof(*(sav->lft_c))); 3599 if (sav->lft_h != NULL) 3600 kmem_free(sav->lft_h, sizeof(*(sav->lft_h))); 3601 if (sav->lft_s != NULL) 3602 kmem_free(sav->lft_s, sizeof(*(sav->lft_s))); 3603 } 3604 3605 /* 3606 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3607 * You must update these if need. 3608 * OUT: 0: success. 3609 * !0: failure. 3610 * 3611 * does not modify mbuf. does not free mbuf on error. 3612 */ 3613 static int 3614 key_setsaval(struct secasvar *sav, struct mbuf *m, 3615 const struct sadb_msghdr *mhp) 3616 { 3617 int error = 0; 3618 3619 KASSERT(!cpu_softintr_p()); 3620 KASSERT(m != NULL); 3621 KASSERT(mhp != NULL); 3622 KASSERT(mhp->msg != NULL); 3623 3624 /* We shouldn't initialize sav variables while someone uses it. */ 3625 KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", 3626 key_sa_refcnt(sav)); 3627 3628 /* SA */ 3629 if (mhp->ext[SADB_EXT_SA] != NULL) { 3630 const struct sadb_sa *sa0; 3631 3632 sa0 = mhp->ext[SADB_EXT_SA]; 3633 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3634 error = EINVAL; 3635 goto fail; 3636 } 3637 3638 sav->alg_auth = sa0->sadb_sa_auth; 3639 sav->alg_enc = sa0->sadb_sa_encrypt; 3640 sav->flags = sa0->sadb_sa_flags; 3641 3642 /* replay window */ 3643 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3644 size_t len = sizeof(struct secreplay) + 3645 sa0->sadb_sa_replay; 3646 sav->replay = kmem_zalloc(len, KM_SLEEP); 3647 sav->replay_len = len; 3648 if (sa0->sadb_sa_replay != 0) 3649 sav->replay->bitmap = (char*)(sav->replay+1); 3650 sav->replay->wsize = sa0->sadb_sa_replay; 3651 } 3652 } 3653 3654 /* Authentication keys */ 3655 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3656 const struct sadb_key *key0; 3657 int len; 3658 3659 key0 = mhp->ext[SADB_EXT_KEY_AUTH]; 3660 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3661 3662 error = 0; 3663 if (len < sizeof(*key0)) { 3664 error = EINVAL; 3665 goto fail; 3666 } 3667 switch (mhp->msg->sadb_msg_satype) { 3668 case SADB_SATYPE_AH: 3669 case SADB_SATYPE_ESP: 3670 case SADB_X_SATYPE_TCPSIGNATURE: 3671 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3672 sav->alg_auth != SADB_X_AALG_NULL) 3673 error = EINVAL; 3674 break; 3675 case SADB_X_SATYPE_IPCOMP: 3676 default: 3677 error = EINVAL; 3678 break; 3679 } 3680 if (error) { 3681 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n"); 3682 goto fail; 3683 } 3684 3685 sav->key_auth = key_newbuf(key0, len); 3686 sav->key_auth_len = len; 3687 } 3688 3689 /* Encryption key */ 3690 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3691 const struct sadb_key *key0; 3692 int len; 3693 3694 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3695 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3696 3697 error = 0; 3698 if (len < sizeof(*key0)) { 3699 error = EINVAL; 3700 goto fail; 3701 } 3702 switch (mhp->msg->sadb_msg_satype) { 3703 case SADB_SATYPE_ESP: 3704 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3705 sav->alg_enc != SADB_EALG_NULL) { 3706 error = EINVAL; 3707 break; 3708 } 3709 sav->key_enc = key_newbuf(key0, len); 3710 sav->key_enc_len = len; 3711 break; 3712 case SADB_X_SATYPE_IPCOMP: 3713 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3714 error = EINVAL; 3715 sav->key_enc = NULL; /*just in case*/ 3716 break; 3717 case SADB_SATYPE_AH: 3718 case SADB_X_SATYPE_TCPSIGNATURE: 3719 default: 3720 error = EINVAL; 3721 break; 3722 } 3723 if (error) { 3724 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n"); 3725 goto fail; 3726 } 3727 } 3728 3729 /* set iv */ 3730 sav->ivlen = 0; 3731 3732 switch (mhp->msg->sadb_msg_satype) { 3733 case SADB_SATYPE_AH: 3734 error = xform_init(sav, XF_AH); 3735 break; 3736 case SADB_SATYPE_ESP: 3737 error = xform_init(sav, XF_ESP); 3738 break; 3739 case SADB_X_SATYPE_IPCOMP: 3740 error = xform_init(sav, XF_IPCOMP); 3741 break; 3742 case SADB_X_SATYPE_TCPSIGNATURE: 3743 error = xform_init(sav, XF_TCPSIGNATURE); 3744 break; 3745 default: 3746 error = EOPNOTSUPP; 3747 break; 3748 } 3749 if (error) { 3750 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u (%d)\n", 3751 mhp->msg->sadb_msg_satype, error); 3752 goto fail; 3753 } 3754 3755 /* reset created */ 3756 sav->created = time_uptime; 3757 3758 /* make lifetime for CURRENT */ 3759 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP); 3760 3761 sav->lft_c->sadb_lifetime_len = 3762 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3763 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3764 sav->lft_c->sadb_lifetime_allocations = 0; 3765 sav->lft_c->sadb_lifetime_bytes = 0; 3766 sav->lft_c->sadb_lifetime_addtime = time_uptime; 3767 sav->lft_c->sadb_lifetime_usetime = 0; 3768 3769 sav->lft_c_counters_percpu = percpu_alloc(sizeof(lifetime_counters_t)); 3770 3771 /* lifetimes for HARD and SOFT */ 3772 { 3773 const struct sadb_lifetime *lft0; 3774 3775 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD]; 3776 if (lft0 != NULL) { 3777 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3778 error = EINVAL; 3779 goto fail; 3780 } 3781 sav->lft_h = key_newbuf(lft0, sizeof(*lft0)); 3782 } 3783 3784 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3785 if (lft0 != NULL) { 3786 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3787 error = EINVAL; 3788 goto fail; 3789 } 3790 sav->lft_s = key_newbuf(lft0, sizeof(*lft0)); 3791 /* to be initialize ? */ 3792 } 3793 } 3794 3795 return 0; 3796 3797 fail: 3798 key_clear_xform(sav); 3799 key_freesaval(sav); 3800 3801 return error; 3802 } 3803 3804 /* 3805 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3806 * OUT: 0: valid 3807 * other: errno 3808 */ 3809 static int 3810 key_init_xform(struct secasvar *sav) 3811 { 3812 int error; 3813 3814 /* We shouldn't initialize sav variables while someone uses it. */ 3815 KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", 3816 key_sa_refcnt(sav)); 3817 3818 /* check SPI value */ 3819 switch (sav->sah->saidx.proto) { 3820 case IPPROTO_ESP: 3821 case IPPROTO_AH: 3822 if (ntohl(sav->spi) <= 255) { 3823 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n", 3824 (u_int32_t)ntohl(sav->spi)); 3825 return EINVAL; 3826 } 3827 break; 3828 } 3829 3830 /* check algo */ 3831 switch (sav->sah->saidx.proto) { 3832 case IPPROTO_AH: 3833 case IPPROTO_TCP: 3834 if (sav->alg_enc != SADB_EALG_NONE) { 3835 IPSECLOG(LOG_DEBUG, 3836 "protocol %u and algorithm mismatched %u != %u.\n", 3837 sav->sah->saidx.proto, 3838 sav->alg_enc, SADB_EALG_NONE); 3839 return EINVAL; 3840 } 3841 break; 3842 case IPPROTO_IPCOMP: 3843 if (sav->alg_auth != SADB_AALG_NONE) { 3844 IPSECLOG(LOG_DEBUG, 3845 "protocol %u and algorithm mismatched %d != %d.\n", 3846 sav->sah->saidx.proto, 3847 sav->alg_auth, SADB_AALG_NONE); 3848 return(EINVAL); 3849 } 3850 break; 3851 default: 3852 break; 3853 } 3854 3855 /* check satype */ 3856 switch (sav->sah->saidx.proto) { 3857 case IPPROTO_ESP: 3858 /* check flags */ 3859 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3860 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3861 IPSECLOG(LOG_DEBUG, 3862 "invalid flag (derived) given to old-esp.\n"); 3863 return EINVAL; 3864 } 3865 error = xform_init(sav, XF_ESP); 3866 break; 3867 case IPPROTO_AH: 3868 /* check flags */ 3869 if (sav->flags & SADB_X_EXT_DERIV) { 3870 IPSECLOG(LOG_DEBUG, 3871 "invalid flag (derived) given to AH SA.\n"); 3872 return EINVAL; 3873 } 3874 error = xform_init(sav, XF_AH); 3875 break; 3876 case IPPROTO_IPCOMP: 3877 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3878 && ntohl(sav->spi) >= 0x10000) { 3879 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n"); 3880 return(EINVAL); 3881 } 3882 error = xform_init(sav, XF_IPCOMP); 3883 break; 3884 case IPPROTO_TCP: 3885 error = xform_init(sav, XF_TCPSIGNATURE); 3886 break; 3887 default: 3888 IPSECLOG(LOG_DEBUG, "Invalid satype.\n"); 3889 error = EPROTONOSUPPORT; 3890 break; 3891 } 3892 3893 return error; 3894 } 3895 3896 /* 3897 * subroutine for SADB_GET and SADB_DUMP. It never return NULL. 3898 */ 3899 static struct mbuf * 3900 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3901 u_int32_t seq, u_int32_t pid) 3902 { 3903 struct mbuf *result = NULL, *tres = NULL, *m; 3904 int l = 0; 3905 int i; 3906 void *p; 3907 struct sadb_lifetime lt; 3908 int dumporder[] = { 3909 SADB_EXT_SA, SADB_X_EXT_SA2, 3910 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3911 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3912 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3913 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3914 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3915 SADB_X_EXT_NAT_T_TYPE, 3916 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3917 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3918 SADB_X_EXT_NAT_T_FRAG, 3919 3920 }; 3921 3922 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK); 3923 result = m; 3924 3925 for (i = __arraycount(dumporder) - 1; i >= 0; i--) { 3926 m = NULL; 3927 p = NULL; 3928 switch (dumporder[i]) { 3929 case SADB_EXT_SA: 3930 m = key_setsadbsa(sav); 3931 break; 3932 3933 case SADB_X_EXT_SA2: 3934 m = key_setsadbxsa2(sav->sah->saidx.mode, 3935 sav->replay ? sav->replay->count : 0, 3936 sav->sah->saidx.reqid); 3937 break; 3938 3939 case SADB_EXT_ADDRESS_SRC: 3940 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3941 &sav->sah->saidx.src.sa, 3942 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3943 break; 3944 3945 case SADB_EXT_ADDRESS_DST: 3946 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3947 &sav->sah->saidx.dst.sa, 3948 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3949 break; 3950 3951 case SADB_EXT_KEY_AUTH: 3952 if (!sav->key_auth) 3953 continue; 3954 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3955 p = sav->key_auth; 3956 break; 3957 3958 case SADB_EXT_KEY_ENCRYPT: 3959 if (!sav->key_enc) 3960 continue; 3961 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3962 p = sav->key_enc; 3963 break; 3964 3965 case SADB_EXT_LIFETIME_CURRENT: { 3966 lifetime_counters_t sum = {0}; 3967 3968 KASSERT(sav->lft_c != NULL); 3969 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3970 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); 3971 lt.sadb_lifetime_addtime = 3972 time_mono_to_wall(lt.sadb_lifetime_addtime); 3973 lt.sadb_lifetime_usetime = 3974 time_mono_to_wall(lt.sadb_lifetime_usetime); 3975 percpu_foreach_xcall(sav->lft_c_counters_percpu, 3976 XC_HIGHPRI_IPL(IPL_SOFTNET), 3977 key_sum_lifetime_counters, sum); 3978 lt.sadb_lifetime_allocations = 3979 sum[LIFETIME_COUNTER_ALLOCATIONS]; 3980 lt.sadb_lifetime_bytes = 3981 sum[LIFETIME_COUNTER_BYTES]; 3982 p = < 3983 break; 3984 } 3985 3986 case SADB_EXT_LIFETIME_HARD: 3987 if (!sav->lft_h) 3988 continue; 3989 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3990 p = sav->lft_h; 3991 break; 3992 3993 case SADB_EXT_LIFETIME_SOFT: 3994 if (!sav->lft_s) 3995 continue; 3996 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3997 p = sav->lft_s; 3998 break; 3999 4000 case SADB_X_EXT_NAT_T_TYPE: 4001 m = key_setsadbxtype(sav->natt_type); 4002 break; 4003 4004 case SADB_X_EXT_NAT_T_DPORT: 4005 if (sav->natt_type == 0) 4006 continue; 4007 m = key_setsadbxport( 4008 key_portfromsaddr(&sav->sah->saidx.dst), 4009 SADB_X_EXT_NAT_T_DPORT); 4010 break; 4011 4012 case SADB_X_EXT_NAT_T_SPORT: 4013 if (sav->natt_type == 0) 4014 continue; 4015 m = key_setsadbxport( 4016 key_portfromsaddr(&sav->sah->saidx.src), 4017 SADB_X_EXT_NAT_T_SPORT); 4018 break; 4019 4020 case SADB_X_EXT_NAT_T_FRAG: 4021 /* don't send frag info if not set */ 4022 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET) 4023 continue; 4024 m = key_setsadbxfrag(sav->esp_frag); 4025 break; 4026 4027 case SADB_X_EXT_NAT_T_OAI: 4028 case SADB_X_EXT_NAT_T_OAR: 4029 continue; 4030 4031 case SADB_EXT_ADDRESS_PROXY: 4032 case SADB_EXT_IDENTITY_SRC: 4033 case SADB_EXT_IDENTITY_DST: 4034 /* XXX: should we brought from SPD ? */ 4035 case SADB_EXT_SENSITIVITY: 4036 default: 4037 continue; 4038 } 4039 4040 KASSERT(!(m && p)); 4041 KASSERT(m != NULL || p != NULL); 4042 if (p && tres) { 4043 M_PREPEND(tres, l, M_WAITOK); 4044 memcpy(mtod(tres, void *), p, l); 4045 continue; 4046 } 4047 if (p) { 4048 m = key_alloc_mbuf(l, M_WAITOK); 4049 m_copyback(m, 0, l, p); 4050 } 4051 4052 if (tres) 4053 m_cat(m, tres); 4054 tres = m; 4055 } 4056 4057 m_cat(result, tres); 4058 tres = NULL; /* avoid free on error below */ 4059 4060 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 4061 4062 result->m_pkthdr.len = 0; 4063 for (m = result; m; m = m->m_next) 4064 result->m_pkthdr.len += m->m_len; 4065 4066 mtod(result, struct sadb_msg *)->sadb_msg_len = 4067 PFKEY_UNIT64(result->m_pkthdr.len); 4068 4069 return result; 4070 } 4071 4072 4073 /* 4074 * set a type in sadb_x_nat_t_type 4075 */ 4076 static struct mbuf * 4077 key_setsadbxtype(u_int16_t type) 4078 { 4079 struct mbuf *m; 4080 size_t len; 4081 struct sadb_x_nat_t_type *p; 4082 4083 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 4084 4085 m = key_alloc_mbuf(len, M_WAITOK); 4086 KASSERT(m->m_next == NULL); 4087 4088 p = mtod(m, struct sadb_x_nat_t_type *); 4089 4090 memset(p, 0, len); 4091 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 4092 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 4093 p->sadb_x_nat_t_type_type = type; 4094 4095 return m; 4096 } 4097 /* 4098 * set a port in sadb_x_nat_t_port. port is in network order 4099 */ 4100 static struct mbuf * 4101 key_setsadbxport(u_int16_t port, u_int16_t type) 4102 { 4103 struct mbuf *m; 4104 size_t len; 4105 struct sadb_x_nat_t_port *p; 4106 4107 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 4108 4109 m = key_alloc_mbuf(len, M_WAITOK); 4110 KASSERT(m->m_next == NULL); 4111 4112 p = mtod(m, struct sadb_x_nat_t_port *); 4113 4114 memset(p, 0, len); 4115 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 4116 p->sadb_x_nat_t_port_exttype = type; 4117 p->sadb_x_nat_t_port_port = port; 4118 4119 return m; 4120 } 4121 4122 /* 4123 * set fragmentation info in sadb_x_nat_t_frag 4124 */ 4125 static struct mbuf * 4126 key_setsadbxfrag(u_int16_t flen) 4127 { 4128 struct mbuf *m; 4129 size_t len; 4130 struct sadb_x_nat_t_frag *p; 4131 4132 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag)); 4133 4134 m = key_alloc_mbuf(len, M_WAITOK); 4135 KASSERT(m->m_next == NULL); 4136 4137 p = mtod(m, struct sadb_x_nat_t_frag *); 4138 4139 memset(p, 0, len); 4140 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len); 4141 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG; 4142 p->sadb_x_nat_t_frag_fraglen = flen; 4143 4144 return m; 4145 } 4146 4147 /* 4148 * Get port from sockaddr, port is in network order 4149 */ 4150 u_int16_t 4151 key_portfromsaddr(const union sockaddr_union *saddr) 4152 { 4153 u_int16_t port; 4154 4155 switch (saddr->sa.sa_family) { 4156 case AF_INET: { 4157 port = saddr->sin.sin_port; 4158 break; 4159 } 4160 #ifdef INET6 4161 case AF_INET6: { 4162 port = saddr->sin6.sin6_port; 4163 break; 4164 } 4165 #endif 4166 default: 4167 printf("%s: unexpected address family\n", __func__); 4168 port = 0; 4169 break; 4170 } 4171 4172 return port; 4173 } 4174 4175 4176 /* 4177 * Set port is struct sockaddr. port is in network order 4178 */ 4179 static void 4180 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) 4181 { 4182 switch (saddr->sa.sa_family) { 4183 case AF_INET: { 4184 saddr->sin.sin_port = port; 4185 break; 4186 } 4187 #ifdef INET6 4188 case AF_INET6: { 4189 saddr->sin6.sin6_port = port; 4190 break; 4191 } 4192 #endif 4193 default: 4194 printf("%s: unexpected address family %d\n", __func__, 4195 saddr->sa.sa_family); 4196 break; 4197 } 4198 4199 return; 4200 } 4201 4202 /* 4203 * Safety check sa_len 4204 */ 4205 static int 4206 key_checksalen(const union sockaddr_union *saddr) 4207 { 4208 switch (saddr->sa.sa_family) { 4209 case AF_INET: 4210 if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) 4211 return -1; 4212 break; 4213 #ifdef INET6 4214 case AF_INET6: 4215 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) 4216 return -1; 4217 break; 4218 #endif 4219 default: 4220 printf("%s: unexpected sa_family %d\n", __func__, 4221 saddr->sa.sa_family); 4222 return -1; 4223 break; 4224 } 4225 return 0; 4226 } 4227 4228 4229 /* 4230 * set data into sadb_msg. 4231 */ 4232 static struct mbuf * 4233 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, 4234 u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag) 4235 { 4236 struct mbuf *m; 4237 struct sadb_msg *p; 4238 int len; 4239 4240 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 4241 4242 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4243 4244 m = key_alloc_mbuf_simple(len, mflag); 4245 if (!m) 4246 return NULL; 4247 m->m_pkthdr.len = m->m_len = len; 4248 m->m_next = NULL; 4249 4250 p = mtod(m, struct sadb_msg *); 4251 4252 memset(p, 0, len); 4253 p->sadb_msg_version = PF_KEY_V2; 4254 p->sadb_msg_type = type; 4255 p->sadb_msg_errno = 0; 4256 p->sadb_msg_satype = satype; 4257 p->sadb_msg_len = PFKEY_UNIT64(tlen); 4258 p->sadb_msg_reserved = reserved; 4259 p->sadb_msg_seq = seq; 4260 p->sadb_msg_pid = (u_int32_t)pid; 4261 4262 return m; 4263 } 4264 4265 /* 4266 * copy secasvar data into sadb_address. 4267 */ 4268 static struct mbuf * 4269 key_setsadbsa(struct secasvar *sav) 4270 { 4271 struct mbuf *m; 4272 struct sadb_sa *p; 4273 int len; 4274 4275 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4276 m = key_alloc_mbuf(len, M_WAITOK); 4277 KASSERT(m->m_next == NULL); 4278 4279 p = mtod(m, struct sadb_sa *); 4280 4281 memset(p, 0, len); 4282 p->sadb_sa_len = PFKEY_UNIT64(len); 4283 p->sadb_sa_exttype = SADB_EXT_SA; 4284 p->sadb_sa_spi = sav->spi; 4285 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 4286 p->sadb_sa_state = sav->state; 4287 p->sadb_sa_auth = sav->alg_auth; 4288 p->sadb_sa_encrypt = sav->alg_enc; 4289 p->sadb_sa_flags = sav->flags; 4290 4291 return m; 4292 } 4293 4294 static uint8_t 4295 key_sabits(const struct sockaddr *saddr) 4296 { 4297 switch (saddr->sa_family) { 4298 case AF_INET: 4299 return _BITS(sizeof(struct in_addr)); 4300 case AF_INET6: 4301 return _BITS(sizeof(struct in6_addr)); 4302 default: 4303 return FULLMASK; 4304 } 4305 } 4306 4307 /* 4308 * set data into sadb_address. 4309 */ 4310 static struct mbuf * 4311 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 4312 u_int8_t prefixlen, u_int16_t ul_proto, int mflag) 4313 { 4314 struct mbuf *m; 4315 struct sadb_address *p; 4316 size_t len; 4317 4318 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 4319 PFKEY_ALIGN8(saddr->sa_len); 4320 m = key_alloc_mbuf(len, mflag); 4321 if (!m || m->m_next) { /*XXX*/ 4322 m_freem(m); 4323 return NULL; 4324 } 4325 4326 p = mtod(m, struct sadb_address *); 4327 4328 memset(p, 0, len); 4329 p->sadb_address_len = PFKEY_UNIT64(len); 4330 p->sadb_address_exttype = exttype; 4331 p->sadb_address_proto = ul_proto; 4332 if (prefixlen == FULLMASK) { 4333 prefixlen = key_sabits(saddr); 4334 } 4335 p->sadb_address_prefixlen = prefixlen; 4336 p->sadb_address_reserved = 0; 4337 4338 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 4339 saddr, saddr->sa_len); 4340 4341 return m; 4342 } 4343 4344 #if 0 4345 /* 4346 * set data into sadb_ident. 4347 */ 4348 static struct mbuf * 4349 key_setsadbident(u_int16_t exttype, u_int16_t idtype, 4350 void *string, int stringlen, u_int64_t id) 4351 { 4352 struct mbuf *m; 4353 struct sadb_ident *p; 4354 size_t len; 4355 4356 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); 4357 m = key_alloc_mbuf(len); 4358 if (!m || m->m_next) { /*XXX*/ 4359 m_freem(m); 4360 return NULL; 4361 } 4362 4363 p = mtod(m, struct sadb_ident *); 4364 4365 memset(p, 0, len); 4366 p->sadb_ident_len = PFKEY_UNIT64(len); 4367 p->sadb_ident_exttype = exttype; 4368 p->sadb_ident_type = idtype; 4369 p->sadb_ident_reserved = 0; 4370 p->sadb_ident_id = id; 4371 4372 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), 4373 string, stringlen); 4374 4375 return m; 4376 } 4377 #endif 4378 4379 /* 4380 * set data into sadb_x_sa2. 4381 */ 4382 static struct mbuf * 4383 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) 4384 { 4385 struct mbuf *m; 4386 struct sadb_x_sa2 *p; 4387 size_t len; 4388 4389 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 4390 m = key_alloc_mbuf(len, M_WAITOK); 4391 KASSERT(m->m_next == NULL); 4392 4393 p = mtod(m, struct sadb_x_sa2 *); 4394 4395 memset(p, 0, len); 4396 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 4397 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 4398 p->sadb_x_sa2_mode = mode; 4399 p->sadb_x_sa2_reserved1 = 0; 4400 p->sadb_x_sa2_reserved2 = 0; 4401 p->sadb_x_sa2_sequence = seq; 4402 p->sadb_x_sa2_reqid = reqid; 4403 4404 return m; 4405 } 4406 4407 /* 4408 * set data into sadb_x_policy 4409 */ 4410 static struct mbuf * 4411 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id, 4412 int mflag) 4413 { 4414 struct mbuf *m; 4415 struct sadb_x_policy *p; 4416 size_t len; 4417 4418 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4419 m = key_alloc_mbuf(len, mflag); 4420 if (!m || m->m_next) { /*XXX*/ 4421 m_freem(m); 4422 return NULL; 4423 } 4424 4425 p = mtod(m, struct sadb_x_policy *); 4426 4427 memset(p, 0, len); 4428 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4429 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4430 p->sadb_x_policy_type = type; 4431 p->sadb_x_policy_dir = dir; 4432 p->sadb_x_policy_id = id; 4433 4434 return m; 4435 } 4436 4437 /* %%% utilities */ 4438 /* 4439 * copy a buffer into the new buffer allocated. 4440 */ 4441 static void * 4442 key_newbuf(const void *src, u_int len) 4443 { 4444 void *new; 4445 4446 new = kmem_alloc(len, KM_SLEEP); 4447 memcpy(new, src, len); 4448 4449 return new; 4450 } 4451 4452 /* compare my own address 4453 * OUT: 1: true, i.e. my address. 4454 * 0: false 4455 */ 4456 int 4457 key_ismyaddr(const struct sockaddr *sa) 4458 { 4459 #ifdef INET 4460 const struct sockaddr_in *sin; 4461 const struct in_ifaddr *ia; 4462 int s; 4463 #endif 4464 4465 KASSERT(sa != NULL); 4466 4467 switch (sa->sa_family) { 4468 #ifdef INET 4469 case AF_INET: 4470 sin = (const struct sockaddr_in *)sa; 4471 s = pserialize_read_enter(); 4472 IN_ADDRLIST_READER_FOREACH(ia) { 4473 if (sin->sin_family == ia->ia_addr.sin_family && 4474 sin->sin_len == ia->ia_addr.sin_len && 4475 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 4476 { 4477 pserialize_read_exit(s); 4478 return 1; 4479 } 4480 } 4481 pserialize_read_exit(s); 4482 break; 4483 #endif 4484 #ifdef INET6 4485 case AF_INET6: 4486 return key_ismyaddr6((const struct sockaddr_in6 *)sa); 4487 #endif 4488 } 4489 4490 return 0; 4491 } 4492 4493 #ifdef INET6 4494 /* 4495 * compare my own address for IPv6. 4496 * 1: ours 4497 * 0: other 4498 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 4499 */ 4500 #include <netinet6/in6_var.h> 4501 4502 static int 4503 key_ismyaddr6(const struct sockaddr_in6 *sin6) 4504 { 4505 struct in6_ifaddr *ia; 4506 int s; 4507 struct psref psref; 4508 int bound; 4509 int ours = 1; 4510 4511 bound = curlwp_bind(); 4512 s = pserialize_read_enter(); 4513 IN6_ADDRLIST_READER_FOREACH(ia) { 4514 if (key_sockaddr_match((const struct sockaddr *)&sin6, 4515 (const struct sockaddr *)&ia->ia_addr, 0)) { 4516 pserialize_read_exit(s); 4517 goto ours; 4518 } 4519 4520 if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { 4521 bool ingroup; 4522 4523 ia6_acquire(ia, &psref); 4524 pserialize_read_exit(s); 4525 4526 /* 4527 * XXX Multicast 4528 * XXX why do we care about multlicast here while we don't care 4529 * about IPv4 multicast?? 4530 * XXX scope 4531 */ 4532 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp); 4533 if (ingroup) { 4534 ia6_release(ia, &psref); 4535 goto ours; 4536 } 4537 4538 s = pserialize_read_enter(); 4539 ia6_release(ia, &psref); 4540 } 4541 4542 } 4543 pserialize_read_exit(s); 4544 4545 /* loopback, just for safety */ 4546 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4547 goto ours; 4548 4549 ours = 0; 4550 ours: 4551 curlwp_bindx(bound); 4552 4553 return ours; 4554 } 4555 #endif /*INET6*/ 4556 4557 /* 4558 * compare two secasindex structure. 4559 * flag can specify to compare 2 saidxes. 4560 * compare two secasindex structure without both mode and reqid. 4561 * don't compare port. 4562 * IN: 4563 * saidx0: source, it can be in SAD. 4564 * saidx1: object. 4565 * OUT: 4566 * 1 : equal 4567 * 0 : not equal 4568 */ 4569 static int 4570 key_saidx_match( 4571 const struct secasindex *saidx0, 4572 const struct secasindex *saidx1, 4573 int flag) 4574 { 4575 int chkport; 4576 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst; 4577 4578 KASSERT(saidx0 != NULL); 4579 KASSERT(saidx1 != NULL); 4580 4581 /* sanity */ 4582 if (saidx0->proto != saidx1->proto) 4583 return 0; 4584 4585 if (flag == CMP_EXACTLY) { 4586 if (saidx0->mode != saidx1->mode) 4587 return 0; 4588 if (saidx0->reqid != saidx1->reqid) 4589 return 0; 4590 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4591 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4592 return 0; 4593 } else { 4594 4595 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4596 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { 4597 /* 4598 * If reqid of SPD is non-zero, unique SA is required. 4599 * The result must be of same reqid in this case. 4600 */ 4601 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4602 return 0; 4603 } 4604 4605 if (flag == CMP_MODE_REQID) { 4606 if (saidx0->mode != IPSEC_MODE_ANY && 4607 saidx0->mode != saidx1->mode) 4608 return 0; 4609 } 4610 4611 4612 sa0src = &saidx0->src.sa; 4613 sa0dst = &saidx0->dst.sa; 4614 sa1src = &saidx1->src.sa; 4615 sa1dst = &saidx1->dst.sa; 4616 /* 4617 * If NAT-T is enabled, check ports for tunnel mode. 4618 * For ipsecif(4), check ports for transport mode, too. 4619 * Don't check ports if they are set to zero 4620 * in the SPD: This means we have a non-generated 4621 * SPD which can't know UDP ports. 4622 */ 4623 if (saidx1->mode == IPSEC_MODE_TUNNEL || 4624 saidx1->mode == IPSEC_MODE_TRANSPORT) 4625 chkport = PORT_LOOSE; 4626 else 4627 chkport = PORT_NONE; 4628 4629 if (!key_sockaddr_match(sa0src, sa1src, chkport)) { 4630 return 0; 4631 } 4632 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) { 4633 return 0; 4634 } 4635 } 4636 4637 return 1; 4638 } 4639 4640 /* 4641 * compare two secindex structure exactly. 4642 * IN: 4643 * spidx0: source, it is often in SPD. 4644 * spidx1: object, it is often from PFKEY message. 4645 * OUT: 4646 * 1 : equal 4647 * 0 : not equal 4648 */ 4649 static int 4650 key_spidx_match_exactly( 4651 const struct secpolicyindex *spidx0, 4652 const struct secpolicyindex *spidx1) 4653 { 4654 4655 KASSERT(spidx0 != NULL); 4656 KASSERT(spidx1 != NULL); 4657 4658 /* sanity */ 4659 if (spidx0->prefs != spidx1->prefs || 4660 spidx0->prefd != spidx1->prefd || 4661 spidx0->ul_proto != spidx1->ul_proto) 4662 return 0; 4663 4664 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) && 4665 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT); 4666 } 4667 4668 /* 4669 * compare two secindex structure with mask. 4670 * IN: 4671 * spidx0: source, it is often in SPD. 4672 * spidx1: object, it is often from IP header. 4673 * OUT: 4674 * 1 : equal 4675 * 0 : not equal 4676 */ 4677 static int 4678 key_spidx_match_withmask( 4679 const struct secpolicyindex *spidx0, 4680 const struct secpolicyindex *spidx1) 4681 { 4682 4683 KASSERT(spidx0 != NULL); 4684 KASSERT(spidx1 != NULL); 4685 4686 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4687 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4688 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4689 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) { 4690 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, ".sa wrong\n"); 4691 return 0; 4692 } 4693 4694 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4695 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && 4696 spidx0->ul_proto != spidx1->ul_proto) { 4697 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "proto wrong\n"); 4698 return 0; 4699 } 4700 4701 switch (spidx0->src.sa.sa_family) { 4702 case AF_INET: 4703 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && 4704 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) { 4705 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 src port wrong\n"); 4706 return 0; 4707 } 4708 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr, 4709 &spidx1->src.sin.sin_addr, spidx0->prefs)) { 4710 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 src addr wrong\n"); 4711 return 0; 4712 } 4713 break; 4714 case AF_INET6: 4715 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && 4716 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) { 4717 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src port wrong\n"); 4718 return 0; 4719 } 4720 /* 4721 * scope_id check. if sin6_scope_id is 0, we regard it 4722 * as a wildcard scope, which matches any scope zone ID. 4723 */ 4724 if (spidx0->src.sin6.sin6_scope_id && 4725 spidx1->src.sin6.sin6_scope_id && 4726 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) { 4727 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src scope wrong\n"); 4728 return 0; 4729 } 4730 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr, 4731 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) { 4732 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src addr wrong\n"); 4733 return 0; 4734 } 4735 break; 4736 default: 4737 /* XXX */ 4738 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) { 4739 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "src memcmp wrong\n"); 4740 return 0; 4741 } 4742 break; 4743 } 4744 4745 switch (spidx0->dst.sa.sa_family) { 4746 case AF_INET: 4747 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && 4748 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) { 4749 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 dst port wrong\n"); 4750 return 0; 4751 } 4752 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr, 4753 &spidx1->dst.sin.sin_addr, spidx0->prefd)) { 4754 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 dst addr wrong\n"); 4755 return 0; 4756 } 4757 break; 4758 case AF_INET6: 4759 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && 4760 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) { 4761 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 dst port wrong\n"); 4762 return 0; 4763 } 4764 /* 4765 * scope_id check. if sin6_scope_id is 0, we regard it 4766 * as a wildcard scope, which matches any scope zone ID. 4767 */ 4768 if (spidx0->src.sin6.sin6_scope_id && 4769 spidx1->src.sin6.sin6_scope_id && 4770 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) { 4771 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "DP v6 dst scope wrong\n"); 4772 return 0; 4773 } 4774 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr, 4775 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) { 4776 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 dst addr wrong\n"); 4777 return 0; 4778 } 4779 break; 4780 default: 4781 /* XXX */ 4782 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) { 4783 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "dst memcmp wrong\n"); 4784 return 0; 4785 } 4786 break; 4787 } 4788 4789 /* XXX Do we check other field ? e.g. flowinfo */ 4790 4791 return 1; 4792 } 4793 4794 /* returns 0 on match */ 4795 static int 4796 key_portcomp(in_port_t port1, in_port_t port2, int howport) 4797 { 4798 switch (howport) { 4799 case PORT_NONE: 4800 return 0; 4801 case PORT_LOOSE: 4802 if (port1 == 0 || port2 == 0) 4803 return 0; 4804 /*FALLTHROUGH*/ 4805 case PORT_STRICT: 4806 if (port1 != port2) { 4807 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4808 "port fail %d != %d\n", ntohs(port1), ntohs(port2)); 4809 return 1; 4810 } 4811 return 0; 4812 default: 4813 KASSERT(0); 4814 return 1; 4815 } 4816 } 4817 4818 /* returns 1 on match */ 4819 static int 4820 key_sockaddr_match( 4821 const struct sockaddr *sa1, 4822 const struct sockaddr *sa2, 4823 int howport) 4824 { 4825 const struct sockaddr_in *sin1, *sin2; 4826 const struct sockaddr_in6 *sin61, *sin62; 4827 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN]; 4828 4829 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { 4830 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4831 "fam/len fail %d != %d || %d != %d\n", 4832 sa1->sa_family, sa2->sa_family, sa1->sa_len, 4833 sa2->sa_len); 4834 return 0; 4835 } 4836 4837 switch (sa1->sa_family) { 4838 case AF_INET: 4839 if (sa1->sa_len != sizeof(struct sockaddr_in)) { 4840 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4841 "len fail %d != %zu\n", 4842 sa1->sa_len, sizeof(struct sockaddr_in)); 4843 return 0; 4844 } 4845 sin1 = (const struct sockaddr_in *)sa1; 4846 sin2 = (const struct sockaddr_in *)sa2; 4847 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) { 4848 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4849 "addr fail %s != %s\n", 4850 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4851 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2)); 4852 return 0; 4853 } 4854 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) { 4855 return 0; 4856 } 4857 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4858 "addr success %s[%d] == %s[%d]\n", 4859 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4860 ntohs(sin1->sin_port), 4861 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2), 4862 ntohs(sin2->sin_port)); 4863 break; 4864 case AF_INET6: 4865 sin61 = (const struct sockaddr_in6 *)sa1; 4866 sin62 = (const struct sockaddr_in6 *)sa2; 4867 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4868 return 0; /*EINVAL*/ 4869 4870 if (sin61->sin6_scope_id != sin62->sin6_scope_id) { 4871 return 0; 4872 } 4873 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) { 4874 return 0; 4875 } 4876 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) { 4877 return 0; 4878 } 4879 break; 4880 default: 4881 if (memcmp(sa1, sa2, sa1->sa_len) != 0) 4882 return 0; 4883 break; 4884 } 4885 4886 return 1; 4887 } 4888 4889 /* 4890 * compare two buffers with mask. 4891 * IN: 4892 * addr1: source 4893 * addr2: object 4894 * bits: Number of bits to compare 4895 * OUT: 4896 * 1 : equal 4897 * 0 : not equal 4898 */ 4899 static int 4900 key_bb_match_withmask(const void *a1, const void *a2, u_int bits) 4901 { 4902 const unsigned char *p1 = a1; 4903 const unsigned char *p2 = a2; 4904 4905 /* XXX: This could be considerably faster if we compare a word 4906 * at a time, but it is complicated on LSB Endian machines */ 4907 4908 /* Handle null pointers */ 4909 if (p1 == NULL || p2 == NULL) 4910 return (p1 == p2); 4911 4912 while (bits >= 8) { 4913 if (*p1++ != *p2++) 4914 return 0; 4915 bits -= 8; 4916 } 4917 4918 if (bits > 0) { 4919 u_int8_t mask = ~((1<<(8-bits))-1); 4920 if ((*p1 & mask) != (*p2 & mask)) 4921 return 0; 4922 } 4923 return 1; /* Match! */ 4924 } 4925 4926 static void 4927 key_timehandler_spd(void) 4928 { 4929 u_int dir; 4930 struct secpolicy *sp; 4931 volatile time_t now; 4932 4933 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4934 retry: 4935 mutex_enter(&key_spd.lock); 4936 /* 4937 * To avoid for sp->created to overtake "now" because of 4938 * waiting mutex, set time_uptime here. 4939 */ 4940 now = time_uptime; 4941 SPLIST_WRITER_FOREACH(sp, dir) { 4942 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, 4943 "sp->state=%u", sp->state); 4944 4945 if (sp->lifetime == 0 && sp->validtime == 0) 4946 continue; 4947 4948 if ((sp->lifetime && now - sp->created > sp->lifetime) || 4949 (sp->validtime && now - sp->lastused > sp->validtime)) { 4950 key_unlink_sp(sp); 4951 mutex_exit(&key_spd.lock); 4952 key_spdexpire(sp); 4953 key_destroy_sp(sp); 4954 goto retry; 4955 } 4956 } 4957 mutex_exit(&key_spd.lock); 4958 } 4959 4960 retry_socksplist: 4961 mutex_enter(&key_spd.lock); 4962 SOCKSPLIST_WRITER_FOREACH(sp) { 4963 if (sp->state != IPSEC_SPSTATE_DEAD) 4964 continue; 4965 4966 key_unlink_sp(sp); 4967 mutex_exit(&key_spd.lock); 4968 key_destroy_sp(sp); 4969 goto retry_socksplist; 4970 } 4971 mutex_exit(&key_spd.lock); 4972 } 4973 4974 static void 4975 key_timehandler_sad(void) 4976 { 4977 struct secashead *sah; 4978 int s; 4979 volatile time_t now; 4980 4981 restart: 4982 mutex_enter(&key_sad.lock); 4983 SAHLIST_WRITER_FOREACH(sah) { 4984 /* If sah has been dead and has no sav, then delete it */ 4985 if (sah->state == SADB_SASTATE_DEAD && 4986 !key_sah_has_sav(sah)) { 4987 key_unlink_sah(sah); 4988 mutex_exit(&key_sad.lock); 4989 key_destroy_sah(sah); 4990 goto restart; 4991 } 4992 } 4993 mutex_exit(&key_sad.lock); 4994 4995 s = pserialize_read_enter(); 4996 SAHLIST_READER_FOREACH(sah) { 4997 struct secasvar *sav; 4998 4999 key_sah_ref(sah); 5000 pserialize_read_exit(s); 5001 5002 /* if LARVAL entry doesn't become MATURE, delete it. */ 5003 mutex_enter(&key_sad.lock); 5004 restart_sav_LARVAL: 5005 /* 5006 * Same as key_timehandler_spd(), set time_uptime here. 5007 */ 5008 now = time_uptime; 5009 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) { 5010 if (now - sav->created > key_larval_lifetime) { 5011 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5012 goto restart_sav_LARVAL; 5013 } 5014 } 5015 mutex_exit(&key_sad.lock); 5016 5017 /* 5018 * check MATURE entry to start to send expire message 5019 * whether or not. 5020 */ 5021 restart_sav_MATURE: 5022 mutex_enter(&key_sad.lock); 5023 /* 5024 * ditto 5025 */ 5026 now = time_uptime; 5027 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) { 5028 /* we don't need to check. */ 5029 if (sav->lft_s == NULL) 5030 continue; 5031 5032 /* sanity check */ 5033 KASSERT(sav->lft_c != NULL); 5034 5035 /* check SOFT lifetime */ 5036 if (sav->lft_s->sadb_lifetime_addtime != 0 && 5037 now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 5038 /* 5039 * check SA to be used whether or not. 5040 * when SA hasn't been used, delete it. 5041 */ 5042 if (sav->lft_c->sadb_lifetime_usetime == 0) { 5043 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5044 mutex_exit(&key_sad.lock); 5045 } else { 5046 key_sa_chgstate(sav, SADB_SASTATE_DYING); 5047 mutex_exit(&key_sad.lock); 5048 /* 5049 * XXX If we keep to send expire 5050 * message in the status of 5051 * DYING. Do remove below code. 5052 */ 5053 key_expire(sav); 5054 } 5055 goto restart_sav_MATURE; 5056 } 5057 /* check SOFT lifetime by bytes */ 5058 /* 5059 * XXX I don't know the way to delete this SA 5060 * when new SA is installed. Caution when it's 5061 * installed too big lifetime by time. 5062 */ 5063 else { 5064 uint64_t lft_c_bytes = 0; 5065 lifetime_counters_t sum = {0}; 5066 5067 percpu_foreach_xcall(sav->lft_c_counters_percpu, 5068 XC_HIGHPRI_IPL(IPL_SOFTNET), 5069 key_sum_lifetime_counters, sum); 5070 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 5071 5072 if (sav->lft_s->sadb_lifetime_bytes == 0 || 5073 sav->lft_s->sadb_lifetime_bytes >= lft_c_bytes) 5074 continue; 5075 5076 key_sa_chgstate(sav, SADB_SASTATE_DYING); 5077 mutex_exit(&key_sad.lock); 5078 /* 5079 * XXX If we keep to send expire 5080 * message in the status of 5081 * DYING. Do remove below code. 5082 */ 5083 key_expire(sav); 5084 goto restart_sav_MATURE; 5085 } 5086 } 5087 mutex_exit(&key_sad.lock); 5088 5089 /* check DYING entry to change status to DEAD. */ 5090 mutex_enter(&key_sad.lock); 5091 restart_sav_DYING: 5092 /* 5093 * ditto 5094 */ 5095 now = time_uptime; 5096 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) { 5097 /* we don't need to check. */ 5098 if (sav->lft_h == NULL) 5099 continue; 5100 5101 /* sanity check */ 5102 KASSERT(sav->lft_c != NULL); 5103 5104 if (sav->lft_h->sadb_lifetime_addtime != 0 && 5105 now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 5106 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5107 goto restart_sav_DYING; 5108 } 5109 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 5110 else if (sav->lft_s != NULL 5111 && sav->lft_s->sadb_lifetime_addtime != 0 5112 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 5113 /* 5114 * XXX: should be checked to be 5115 * installed the valid SA. 5116 */ 5117 5118 /* 5119 * If there is no SA then sending 5120 * expire message. 5121 */ 5122 key_expire(sav); 5123 } 5124 #endif 5125 /* check HARD lifetime by bytes */ 5126 else { 5127 uint64_t lft_c_bytes = 0; 5128 lifetime_counters_t sum = {0}; 5129 5130 percpu_foreach_xcall(sav->lft_c_counters_percpu, 5131 XC_HIGHPRI_IPL(IPL_SOFTNET), 5132 key_sum_lifetime_counters, sum); 5133 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 5134 5135 if (sav->lft_h->sadb_lifetime_bytes == 0 || 5136 sav->lft_h->sadb_lifetime_bytes >= lft_c_bytes) 5137 continue; 5138 5139 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5140 goto restart_sav_DYING; 5141 } 5142 } 5143 mutex_exit(&key_sad.lock); 5144 5145 /* delete entry in DEAD */ 5146 restart_sav_DEAD: 5147 mutex_enter(&key_sad.lock); 5148 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) { 5149 key_unlink_sav(sav); 5150 mutex_exit(&key_sad.lock); 5151 key_destroy_sav(sav); 5152 goto restart_sav_DEAD; 5153 } 5154 mutex_exit(&key_sad.lock); 5155 5156 s = pserialize_read_enter(); 5157 key_sah_unref(sah); 5158 } 5159 pserialize_read_exit(s); 5160 } 5161 5162 static void 5163 key_timehandler_acq(void) 5164 { 5165 #ifndef IPSEC_NONBLOCK_ACQUIRE 5166 struct secacq *acq, *nextacq; 5167 volatile time_t now; 5168 5169 restart: 5170 mutex_enter(&key_misc.lock); 5171 /* 5172 * Same as key_timehandler_spd(), set time_uptime here. 5173 */ 5174 now = time_uptime; 5175 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) { 5176 if (now - acq->created > key_blockacq_lifetime) { 5177 LIST_REMOVE(acq, chain); 5178 mutex_exit(&key_misc.lock); 5179 kmem_free(acq, sizeof(*acq)); 5180 goto restart; 5181 } 5182 } 5183 mutex_exit(&key_misc.lock); 5184 #endif 5185 } 5186 5187 static void 5188 key_timehandler_spacq(void) 5189 { 5190 #ifdef notyet 5191 struct secspacq *acq, *nextacq; 5192 time_t now = time_uptime; 5193 5194 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) { 5195 if (now - acq->created > key_blockacq_lifetime) { 5196 KASSERT(__LIST_CHAINED(acq)); 5197 LIST_REMOVE(acq, chain); 5198 kmem_free(acq, sizeof(*acq)); 5199 } 5200 } 5201 #endif 5202 } 5203 5204 static unsigned int key_timehandler_work_enqueued = 0; 5205 5206 /* 5207 * time handler. 5208 * scanning SPD and SAD to check status for each entries, 5209 * and do to remove or to expire. 5210 */ 5211 static void 5212 key_timehandler_work(struct work *wk, void *arg) 5213 { 5214 5215 /* We can allow enqueuing another work at this point */ 5216 atomic_swap_uint(&key_timehandler_work_enqueued, 0); 5217 5218 key_timehandler_spd(); 5219 key_timehandler_sad(); 5220 key_timehandler_acq(); 5221 key_timehandler_spacq(); 5222 5223 key_acquire_sendup_pending_mbuf(); 5224 5225 /* do exchange to tick time !! */ 5226 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 5227 5228 return; 5229 } 5230 5231 static void 5232 key_timehandler(void *arg) 5233 { 5234 5235 /* Avoid enqueuing another work when one is already enqueued */ 5236 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1) 5237 return; 5238 5239 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL); 5240 } 5241 5242 u_long 5243 key_random(void) 5244 { 5245 u_long value; 5246 5247 key_randomfill(&value, sizeof(value)); 5248 return value; 5249 } 5250 5251 void 5252 key_randomfill(void *p, size_t l) 5253 { 5254 5255 cprng_fast(p, l); 5256 } 5257 5258 /* 5259 * map SADB_SATYPE_* to IPPROTO_*. 5260 * if satype == SADB_SATYPE then satype is mapped to ~0. 5261 * OUT: 5262 * 0: invalid satype. 5263 */ 5264 static u_int16_t 5265 key_satype2proto(u_int8_t satype) 5266 { 5267 switch (satype) { 5268 case SADB_SATYPE_UNSPEC: 5269 return IPSEC_PROTO_ANY; 5270 case SADB_SATYPE_AH: 5271 return IPPROTO_AH; 5272 case SADB_SATYPE_ESP: 5273 return IPPROTO_ESP; 5274 case SADB_X_SATYPE_IPCOMP: 5275 return IPPROTO_IPCOMP; 5276 case SADB_X_SATYPE_TCPSIGNATURE: 5277 return IPPROTO_TCP; 5278 default: 5279 return 0; 5280 } 5281 /* NOTREACHED */ 5282 } 5283 5284 /* 5285 * map IPPROTO_* to SADB_SATYPE_* 5286 * OUT: 5287 * 0: invalid protocol type. 5288 */ 5289 static u_int8_t 5290 key_proto2satype(u_int16_t proto) 5291 { 5292 switch (proto) { 5293 case IPPROTO_AH: 5294 return SADB_SATYPE_AH; 5295 case IPPROTO_ESP: 5296 return SADB_SATYPE_ESP; 5297 case IPPROTO_IPCOMP: 5298 return SADB_X_SATYPE_IPCOMP; 5299 case IPPROTO_TCP: 5300 return SADB_X_SATYPE_TCPSIGNATURE; 5301 default: 5302 return 0; 5303 } 5304 /* NOTREACHED */ 5305 } 5306 5307 static int 5308 key_setsecasidx(int proto, int mode, int reqid, 5309 const struct sockaddr *src, const struct sockaddr *dst, 5310 struct secasindex * saidx) 5311 { 5312 const union sockaddr_union *src_u = (const union sockaddr_union *)src; 5313 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst; 5314 5315 /* sa len safety check */ 5316 if (key_checksalen(src_u) != 0) 5317 return -1; 5318 if (key_checksalen(dst_u) != 0) 5319 return -1; 5320 5321 memset(saidx, 0, sizeof(*saidx)); 5322 saidx->proto = proto; 5323 saidx->mode = mode; 5324 saidx->reqid = reqid; 5325 memcpy(&saidx->src, src_u, src_u->sa.sa_len); 5326 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); 5327 5328 key_porttosaddr(&((saidx)->src), 0); 5329 key_porttosaddr(&((saidx)->dst), 0); 5330 return 0; 5331 } 5332 5333 static void 5334 key_init_spidx_bymsghdr(struct secpolicyindex *spidx, 5335 const struct sadb_msghdr *mhp) 5336 { 5337 const struct sadb_address *src0, *dst0; 5338 const struct sockaddr *src, *dst; 5339 const struct sadb_x_policy *xpl0; 5340 5341 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC]; 5342 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST]; 5343 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5344 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5345 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 5346 5347 memset(spidx, 0, sizeof(*spidx)); 5348 spidx->dir = xpl0->sadb_x_policy_dir; 5349 spidx->prefs = src0->sadb_address_prefixlen; 5350 spidx->prefd = dst0->sadb_address_prefixlen; 5351 spidx->ul_proto = src0->sadb_address_proto; 5352 /* XXX boundary check against sa_len */ 5353 memcpy(&spidx->src, src, src->sa_len); 5354 memcpy(&spidx->dst, dst, dst->sa_len); 5355 } 5356 5357 /* %%% PF_KEY */ 5358 /* 5359 * SADB_GETSPI processing is to receive 5360 * <base, (SA2), src address, dst address, (SPI range)> 5361 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 5362 * tree with the status of LARVAL, and send 5363 * <base, SA(*), address(SD)> 5364 * to the IKMPd. 5365 * 5366 * IN: mhp: pointer to the pointer to each header. 5367 * OUT: NULL if fail. 5368 * other if success, return pointer to the message to send. 5369 */ 5370 static int 5371 key_api_getspi(struct socket *so, struct mbuf *m, 5372 const struct sadb_msghdr *mhp) 5373 { 5374 const struct sockaddr *src, *dst; 5375 struct secasindex saidx; 5376 struct secashead *sah; 5377 struct secasvar *newsav; 5378 u_int8_t proto; 5379 u_int32_t spi; 5380 u_int8_t mode; 5381 u_int16_t reqid; 5382 int error; 5383 5384 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5385 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5386 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5387 return key_senderror(so, m, EINVAL); 5388 } 5389 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5390 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5391 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5392 return key_senderror(so, m, EINVAL); 5393 } 5394 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5395 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5396 mode = sa2->sadb_x_sa2_mode; 5397 reqid = sa2->sadb_x_sa2_reqid; 5398 } else { 5399 mode = IPSEC_MODE_ANY; 5400 reqid = 0; 5401 } 5402 5403 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5404 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5405 5406 /* map satype to proto */ 5407 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5408 if (proto == 0) { 5409 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5410 return key_senderror(so, m, EINVAL); 5411 } 5412 5413 5414 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5415 if (error != 0) 5416 return key_senderror(so, m, EINVAL); 5417 5418 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5419 if (error != 0) 5420 return key_senderror(so, m, EINVAL); 5421 5422 /* SPI allocation */ 5423 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx); 5424 if (spi == 0) 5425 return key_senderror(so, m, EINVAL); 5426 5427 /* get a SA index */ 5428 sah = key_getsah_ref(&saidx, CMP_REQID); 5429 if (sah == NULL) { 5430 /* create a new SA index */ 5431 sah = key_newsah(&saidx); 5432 if (sah == NULL) { 5433 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5434 return key_senderror(so, m, ENOBUFS); 5435 } 5436 } 5437 5438 /* get a new SA */ 5439 /* XXX rewrite */ 5440 newsav = KEY_NEWSAV(m, mhp, &error, proto); 5441 if (newsav == NULL) { 5442 key_sah_unref(sah); 5443 /* XXX don't free new SA index allocated in above. */ 5444 return key_senderror(so, m, error); 5445 } 5446 5447 /* set spi */ 5448 newsav->spi = htonl(spi); 5449 5450 /* Add to sah#savlist */ 5451 key_init_sav(newsav); 5452 newsav->sah = sah; 5453 newsav->state = SADB_SASTATE_LARVAL; 5454 mutex_enter(&key_sad.lock); 5455 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav); 5456 mutex_exit(&key_sad.lock); 5457 key_validate_savlist(sah, SADB_SASTATE_LARVAL); 5458 5459 key_sah_unref(sah); 5460 5461 #ifndef IPSEC_NONBLOCK_ACQUIRE 5462 /* delete the entry in key_misc.acqlist */ 5463 if (mhp->msg->sadb_msg_seq != 0) { 5464 struct secacq *acq; 5465 mutex_enter(&key_misc.lock); 5466 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 5467 if (acq != NULL) { 5468 /* reset counter in order to deletion by timehandler. */ 5469 acq->created = time_uptime; 5470 acq->count = 0; 5471 } 5472 mutex_exit(&key_misc.lock); 5473 } 5474 #endif 5475 5476 { 5477 struct mbuf *n, *nn; 5478 struct sadb_sa *m_sa; 5479 int off, len; 5480 5481 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5482 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES); 5483 5484 /* create new sadb_msg to reply. */ 5485 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5486 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5487 5488 n = key_alloc_mbuf_simple(len, M_WAITOK); 5489 n->m_len = len; 5490 n->m_next = NULL; 5491 off = 0; 5492 5493 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 5494 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5495 5496 m_sa = (struct sadb_sa *)(mtod(n, char *) + off); 5497 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5498 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5499 m_sa->sadb_sa_spi = htonl(spi); 5500 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5501 5502 KASSERTMSG(off == len, "length inconsistency"); 5503 5504 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5505 SADB_EXT_ADDRESS_DST); 5506 5507 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 5508 5509 n->m_pkthdr.len = 0; 5510 for (nn = n; nn; nn = nn->m_next) 5511 n->m_pkthdr.len += nn->m_len; 5512 5513 key_fill_replymsg(n, newsav->seq); 5514 m_freem(m); 5515 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5516 } 5517 } 5518 5519 /* 5520 * allocating new SPI 5521 * called by key_api_getspi(). 5522 * OUT: 5523 * 0: failure. 5524 * others: success. 5525 */ 5526 static u_int32_t 5527 key_do_getnewspi(const struct sadb_spirange *spirange, 5528 const struct secasindex *saidx) 5529 { 5530 u_int32_t newspi; 5531 u_int32_t spmin, spmax; 5532 int count = key_spi_trycnt; 5533 5534 /* set spi range to allocate */ 5535 if (spirange != NULL) { 5536 spmin = spirange->sadb_spirange_min; 5537 spmax = spirange->sadb_spirange_max; 5538 } else { 5539 spmin = key_spi_minval; 5540 spmax = key_spi_maxval; 5541 } 5542 /* IPCOMP needs 2-byte SPI */ 5543 if (saidx->proto == IPPROTO_IPCOMP) { 5544 u_int32_t t; 5545 if (spmin >= 0x10000) 5546 spmin = 0xffff; 5547 if (spmax >= 0x10000) 5548 spmax = 0xffff; 5549 if (spmin > spmax) { 5550 t = spmin; spmin = spmax; spmax = t; 5551 } 5552 } 5553 5554 if (spmin == spmax) { 5555 if (key_checkspidup(saidx, htonl(spmin))) { 5556 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin); 5557 return 0; 5558 } 5559 5560 count--; /* taking one cost. */ 5561 newspi = spmin; 5562 5563 } else { 5564 5565 /* init SPI */ 5566 newspi = 0; 5567 5568 /* when requesting to allocate spi ranged */ 5569 while (count--) { 5570 /* generate pseudo-random SPI value ranged. */ 5571 newspi = spmin + (key_random() % (spmax - spmin + 1)); 5572 5573 if (!key_checkspidup(saidx, htonl(newspi))) 5574 break; 5575 } 5576 5577 if (count == 0 || newspi == 0) { 5578 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n"); 5579 return 0; 5580 } 5581 } 5582 5583 /* statistics */ 5584 keystat.getspi_count = 5585 (keystat.getspi_count + key_spi_trycnt - count) / 2; 5586 5587 return newspi; 5588 } 5589 5590 static int 5591 key_handle_natt_info(struct secasvar *sav, 5592 const struct sadb_msghdr *mhp) 5593 { 5594 const char *msg = "?" ; 5595 struct sadb_x_nat_t_type *type; 5596 struct sadb_x_nat_t_port *sport, *dport; 5597 struct sadb_address *iaddr, *raddr; 5598 struct sadb_x_nat_t_frag *frag; 5599 5600 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 5601 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 5602 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) 5603 return 0; 5604 5605 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) { 5606 msg = "TYPE"; 5607 goto bad; 5608 } 5609 5610 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) { 5611 msg = "SPORT"; 5612 goto bad; 5613 } 5614 5615 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5616 msg = "DPORT"; 5617 goto bad; 5618 } 5619 5620 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) { 5621 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5622 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) { 5623 msg = "OAI"; 5624 goto bad; 5625 } 5626 } 5627 5628 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5629 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5630 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5631 msg = "OAR"; 5632 goto bad; 5633 } 5634 } 5635 5636 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5637 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5638 msg = "FRAG"; 5639 goto bad; 5640 } 5641 } 5642 5643 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5644 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5645 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5646 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5647 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5648 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5649 5650 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5651 type->sadb_x_nat_t_type_type, 5652 ntohs(sport->sadb_x_nat_t_port_port), 5653 ntohs(dport->sadb_x_nat_t_port_port)); 5654 5655 sav->natt_type = type->sadb_x_nat_t_type_type; 5656 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); 5657 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); 5658 if (frag) 5659 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; 5660 else 5661 sav->esp_frag = IP_MAXPACKET; 5662 5663 return 0; 5664 bad: 5665 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg); 5666 __USE(msg); 5667 return -1; 5668 } 5669 5670 /* Just update the IPSEC_NAT_T ports if present */ 5671 static int 5672 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, 5673 const struct sadb_msghdr *mhp) 5674 { 5675 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5676 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5677 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5678 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5679 5680 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5681 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5682 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5683 struct sadb_x_nat_t_type *type; 5684 struct sadb_x_nat_t_port *sport; 5685 struct sadb_x_nat_t_port *dport; 5686 5687 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5688 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5689 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5690 IPSECLOG(LOG_DEBUG, "invalid message\n"); 5691 return -1; 5692 } 5693 5694 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5695 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5696 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5697 5698 key_porttosaddr(src, sport->sadb_x_nat_t_port_port); 5699 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port); 5700 5701 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5702 type->sadb_x_nat_t_type_type, 5703 ntohs(sport->sadb_x_nat_t_port_port), 5704 ntohs(dport->sadb_x_nat_t_port_port)); 5705 } 5706 5707 return 0; 5708 } 5709 5710 5711 /* 5712 * SADB_UPDATE processing 5713 * receive 5714 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5715 * key(AE), (identity(SD),) (sensitivity)> 5716 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5717 * and send 5718 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5719 * (identity(SD),) (sensitivity)> 5720 * to the ikmpd. 5721 * 5722 * m will always be freed. 5723 */ 5724 static int 5725 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5726 { 5727 struct sadb_sa *sa0; 5728 const struct sockaddr *src, *dst; 5729 struct secasindex saidx; 5730 struct secashead *sah; 5731 struct secasvar *sav, *newsav, *oldsav; 5732 u_int16_t proto; 5733 u_int8_t mode; 5734 u_int16_t reqid; 5735 int error; 5736 5737 /* map satype to proto */ 5738 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5739 if (proto == 0) { 5740 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5741 return key_senderror(so, m, EINVAL); 5742 } 5743 5744 if (mhp->ext[SADB_EXT_SA] == NULL || 5745 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5746 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5747 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5748 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5749 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5750 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5751 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5752 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5753 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5754 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5755 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5756 return key_senderror(so, m, EINVAL); 5757 } 5758 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5759 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5760 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5761 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5762 return key_senderror(so, m, EINVAL); 5763 } 5764 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5765 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5766 mode = sa2->sadb_x_sa2_mode; 5767 reqid = sa2->sadb_x_sa2_reqid; 5768 } else { 5769 mode = IPSEC_MODE_ANY; 5770 reqid = 0; 5771 } 5772 /* XXX boundary checking for other extensions */ 5773 5774 sa0 = mhp->ext[SADB_EXT_SA]; 5775 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5776 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5777 5778 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5779 if (error != 0) 5780 return key_senderror(so, m, EINVAL); 5781 5782 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5783 if (error != 0) 5784 return key_senderror(so, m, EINVAL); 5785 5786 /* get a SA header */ 5787 sah = key_getsah_ref(&saidx, CMP_REQID); 5788 if (sah == NULL) { 5789 IPSECLOG(LOG_DEBUG, "no SA index found.\n"); 5790 return key_senderror(so, m, ENOENT); 5791 } 5792 5793 /* set spidx if there */ 5794 /* XXX rewrite */ 5795 error = key_setident(sah, m, mhp); 5796 if (error) 5797 goto error_sah; 5798 5799 /* find a SA with sequence number. */ 5800 #ifdef IPSEC_DOSEQCHECK 5801 if (mhp->msg->sadb_msg_seq != 0) { 5802 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq); 5803 if (sav == NULL) { 5804 IPSECLOG(LOG_DEBUG, 5805 "no larval SA with sequence %u exists.\n", 5806 mhp->msg->sadb_msg_seq); 5807 error = ENOENT; 5808 goto error_sah; 5809 } 5810 } 5811 #else 5812 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5813 if (sav == NULL) { 5814 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n", 5815 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5816 error = EINVAL; 5817 goto error_sah; 5818 } 5819 #endif 5820 5821 /* validity check */ 5822 if (sav->sah->saidx.proto != proto) { 5823 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n", 5824 sav->sah->saidx.proto, proto); 5825 error = EINVAL; 5826 goto error; 5827 } 5828 #ifdef IPSEC_DOSEQCHECK 5829 if (sav->spi != sa0->sadb_sa_spi) { 5830 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n", 5831 (u_int32_t)ntohl(sav->spi), 5832 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5833 error = EINVAL; 5834 goto error; 5835 } 5836 #endif 5837 if (sav->pid != mhp->msg->sadb_msg_pid) { 5838 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n", 5839 sav->pid, mhp->msg->sadb_msg_pid); 5840 error = EINVAL; 5841 goto error; 5842 } 5843 5844 /* 5845 * Allocate a new SA instead of modifying the existing SA directly 5846 * to avoid race conditions. 5847 */ 5848 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 5849 5850 /* copy sav values */ 5851 newsav->spi = sav->spi; 5852 newsav->seq = sav->seq; 5853 newsav->created = sav->created; 5854 newsav->pid = sav->pid; 5855 newsav->sah = sav->sah; 5856 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5857 "DP from %s:%u update SA:%p to SA:%p spi=%#x proto=%d\n", 5858 __func__, __LINE__, sav, newsav, 5859 ntohl(newsav->spi), proto); 5860 5861 error = key_setsaval(newsav, m, mhp); 5862 if (error) { 5863 kmem_free(newsav, sizeof(*newsav)); 5864 goto error; 5865 } 5866 5867 error = key_handle_natt_info(newsav, mhp); 5868 if (error != 0) { 5869 key_delsav(newsav); 5870 goto error; 5871 } 5872 5873 error = key_init_xform(newsav); 5874 if (error != 0) { 5875 key_delsav(newsav); 5876 goto error; 5877 } 5878 5879 /* Add to sah#savlist */ 5880 key_init_sav(newsav); 5881 newsav->state = SADB_SASTATE_MATURE; 5882 mutex_enter(&key_sad.lock); 5883 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5884 SAVLUT_WRITER_INSERT_HEAD(newsav); 5885 mutex_exit(&key_sad.lock); 5886 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5887 5888 /* 5889 * We need to lookup and remove the sav atomically, so get it again 5890 * here by a special API while we have a reference to it. 5891 */ 5892 oldsav = key_lookup_and_remove_sav(sah, sa0->sadb_sa_spi, sav); 5893 KASSERT(oldsav == NULL || oldsav == sav); 5894 /* We can release the reference because of oldsav */ 5895 KEY_SA_UNREF(&sav); 5896 if (oldsav == NULL) { 5897 /* Someone has already removed the sav. Nothing to do. */ 5898 } else { 5899 key_wait_sav(oldsav); 5900 key_destroy_sav(oldsav); 5901 oldsav = NULL; 5902 } 5903 sav = NULL; 5904 5905 key_sah_unref(sah); 5906 sah = NULL; 5907 5908 { 5909 struct mbuf *n; 5910 5911 /* set msg buf from mhp */ 5912 n = key_getmsgbuf_x1(m, mhp); 5913 if (n == NULL) { 5914 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5915 return key_senderror(so, m, ENOBUFS); 5916 } 5917 5918 m_freem(m); 5919 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5920 } 5921 error: 5922 KEY_SA_UNREF(&sav); 5923 error_sah: 5924 key_sah_unref(sah); 5925 return key_senderror(so, m, error); 5926 } 5927 5928 /* 5929 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5930 * only called by key_api_update(). 5931 * OUT: 5932 * NULL : not found 5933 * others : found, pointer to a SA. 5934 */ 5935 #ifdef IPSEC_DOSEQCHECK 5936 static struct secasvar * 5937 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5938 { 5939 struct secasvar *sav; 5940 u_int state; 5941 int s; 5942 5943 state = SADB_SASTATE_LARVAL; 5944 5945 /* search SAD with sequence number ? */ 5946 s = pserialize_read_enter(); 5947 SAVLIST_READER_FOREACH(sav, sah, state) { 5948 KEY_CHKSASTATE(state, sav->state); 5949 5950 if (sav->seq == seq) { 5951 SA_ADDREF(sav); 5952 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5953 "DP cause refcnt++:%d SA:%p\n", 5954 key_sa_refcnt(sav), sav); 5955 break; 5956 } 5957 } 5958 pserialize_read_exit(s); 5959 5960 return sav; 5961 } 5962 #endif 5963 5964 /* 5965 * SADB_ADD processing 5966 * add an entry to SA database, when received 5967 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5968 * key(AE), (identity(SD),) (sensitivity)> 5969 * from the ikmpd, 5970 * and send 5971 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5972 * (identity(SD),) (sensitivity)> 5973 * to the ikmpd. 5974 * 5975 * IGNORE identity and sensitivity messages. 5976 * 5977 * m will always be freed. 5978 */ 5979 static int 5980 key_api_add(struct socket *so, struct mbuf *m, 5981 const struct sadb_msghdr *mhp) 5982 { 5983 struct sadb_sa *sa0; 5984 const struct sockaddr *src, *dst; 5985 struct secasindex saidx; 5986 struct secashead *sah; 5987 struct secasvar *newsav; 5988 u_int16_t proto; 5989 u_int8_t mode; 5990 u_int16_t reqid; 5991 int error; 5992 5993 /* map satype to proto */ 5994 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5995 if (proto == 0) { 5996 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5997 return key_senderror(so, m, EINVAL); 5998 } 5999 6000 if (mhp->ext[SADB_EXT_SA] == NULL || 6001 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6002 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6003 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 6004 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 6005 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 6006 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 6007 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 6008 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 6009 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 6010 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 6011 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6012 return key_senderror(so, m, EINVAL); 6013 } 6014 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6015 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6016 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6017 /* XXX need more */ 6018 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6019 return key_senderror(so, m, EINVAL); 6020 } 6021 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 6022 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 6023 mode = sa2->sadb_x_sa2_mode; 6024 reqid = sa2->sadb_x_sa2_reqid; 6025 } else { 6026 mode = IPSEC_MODE_ANY; 6027 reqid = 0; 6028 } 6029 6030 sa0 = mhp->ext[SADB_EXT_SA]; 6031 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6032 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6033 6034 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 6035 if (error != 0) 6036 return key_senderror(so, m, EINVAL); 6037 6038 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6039 if (error != 0) 6040 return key_senderror(so, m, EINVAL); 6041 6042 /* get a SA header */ 6043 sah = key_getsah_ref(&saidx, CMP_REQID); 6044 if (sah == NULL) { 6045 /* create a new SA header */ 6046 sah = key_newsah(&saidx); 6047 if (sah == NULL) { 6048 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6049 return key_senderror(so, m, ENOBUFS); 6050 } 6051 } 6052 6053 /* set spidx if there */ 6054 /* XXX rewrite */ 6055 error = key_setident(sah, m, mhp); 6056 if (error) 6057 goto error; 6058 6059 { 6060 struct secasvar *sav; 6061 6062 /* We can create new SA only if SPI is differenct. */ 6063 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6064 if (sav != NULL) { 6065 KEY_SA_UNREF(&sav); 6066 IPSECLOG(LOG_DEBUG, "SA already exists.\n"); 6067 error = EEXIST; 6068 goto error; 6069 } 6070 } 6071 6072 /* create new SA entry. */ 6073 newsav = KEY_NEWSAV(m, mhp, &error, proto); 6074 if (newsav == NULL) 6075 goto error; 6076 newsav->sah = sah; 6077 6078 error = key_handle_natt_info(newsav, mhp); 6079 if (error != 0) { 6080 key_delsav(newsav); 6081 error = EINVAL; 6082 goto error; 6083 } 6084 6085 error = key_init_xform(newsav); 6086 if (error != 0) { 6087 key_delsav(newsav); 6088 goto error; 6089 } 6090 6091 /* Add to sah#savlist */ 6092 key_init_sav(newsav); 6093 newsav->state = SADB_SASTATE_MATURE; 6094 mutex_enter(&key_sad.lock); 6095 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 6096 SAVLUT_WRITER_INSERT_HEAD(newsav); 6097 mutex_exit(&key_sad.lock); 6098 key_validate_savlist(sah, SADB_SASTATE_MATURE); 6099 6100 key_sah_unref(sah); 6101 sah = NULL; 6102 6103 /* 6104 * don't call key_freesav() here, as we would like to keep the SA 6105 * in the database on success. 6106 */ 6107 6108 { 6109 struct mbuf *n; 6110 6111 /* set msg buf from mhp */ 6112 n = key_getmsgbuf_x1(m, mhp); 6113 if (n == NULL) { 6114 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6115 return key_senderror(so, m, ENOBUFS); 6116 } 6117 6118 m_freem(m); 6119 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6120 } 6121 error: 6122 key_sah_unref(sah); 6123 return key_senderror(so, m, error); 6124 } 6125 6126 /* m is retained */ 6127 static int 6128 key_setident(struct secashead *sah, struct mbuf *m, 6129 const struct sadb_msghdr *mhp) 6130 { 6131 const struct sadb_ident *idsrc, *iddst; 6132 int idsrclen, iddstlen; 6133 6134 KASSERT(!cpu_softintr_p()); 6135 KASSERT(sah != NULL); 6136 KASSERT(m != NULL); 6137 KASSERT(mhp != NULL); 6138 KASSERT(mhp->msg != NULL); 6139 6140 /* 6141 * Can be called with an existing sah from key_api_update(). 6142 */ 6143 if (sah->idents != NULL) { 6144 kmem_free(sah->idents, sah->idents_len); 6145 sah->idents = NULL; 6146 sah->idents_len = 0; 6147 } 6148 if (sah->identd != NULL) { 6149 kmem_free(sah->identd, sah->identd_len); 6150 sah->identd = NULL; 6151 sah->identd_len = 0; 6152 } 6153 6154 /* don't make buffer if not there */ 6155 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 6156 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 6157 sah->idents = NULL; 6158 sah->identd = NULL; 6159 return 0; 6160 } 6161 6162 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 6163 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 6164 IPSECLOG(LOG_DEBUG, "invalid identity.\n"); 6165 return EINVAL; 6166 } 6167 6168 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC]; 6169 iddst = mhp->ext[SADB_EXT_IDENTITY_DST]; 6170 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 6171 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 6172 6173 /* validity check */ 6174 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 6175 IPSECLOG(LOG_DEBUG, "ident type mismatched src %u, dst %u.\n", 6176 idsrc->sadb_ident_type, iddst->sadb_ident_type); 6177 /* 6178 * Some VPN appliances(e.g. NetScreen) can send different 6179 * identifier types on IDii and IDir, so be able to allow 6180 * such message. 6181 */ 6182 if (!ipsec_allow_different_idtype) { 6183 return EINVAL; 6184 } 6185 } 6186 6187 switch (idsrc->sadb_ident_type) { 6188 case SADB_IDENTTYPE_PREFIX: 6189 case SADB_IDENTTYPE_FQDN: 6190 case SADB_IDENTTYPE_USERFQDN: 6191 default: 6192 /* XXX do nothing */ 6193 sah->idents = NULL; 6194 sah->identd = NULL; 6195 return 0; 6196 } 6197 6198 /* make structure */ 6199 sah->idents = kmem_alloc(idsrclen, KM_SLEEP); 6200 sah->idents_len = idsrclen; 6201 sah->identd = kmem_alloc(iddstlen, KM_SLEEP); 6202 sah->identd_len = iddstlen; 6203 memcpy(sah->idents, idsrc, idsrclen); 6204 memcpy(sah->identd, iddst, iddstlen); 6205 6206 return 0; 6207 } 6208 6209 /* 6210 * m will not be freed on return. It never return NULL. 6211 * it is caller's responsibility to free the result. 6212 */ 6213 static struct mbuf * 6214 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 6215 { 6216 struct mbuf *n; 6217 6218 KASSERT(m != NULL); 6219 KASSERT(mhp != NULL); 6220 KASSERT(mhp->msg != NULL); 6221 6222 /* create new sadb_msg to reply. */ 6223 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED, 6224 SADB_EXT_SA, SADB_X_EXT_SA2, 6225 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 6226 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 6227 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 6228 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 6229 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 6230 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG); 6231 6232 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 6233 6234 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 6235 mtod(n, struct sadb_msg *)->sadb_msg_len = 6236 PFKEY_UNIT64(n->m_pkthdr.len); 6237 6238 return n; 6239 } 6240 6241 static int key_delete_all (struct socket *, struct mbuf *, 6242 const struct sadb_msghdr *, u_int16_t); 6243 6244 /* 6245 * SADB_DELETE processing 6246 * receive 6247 * <base, SA(*), address(SD)> 6248 * from the ikmpd, and set SADB_SASTATE_DEAD, 6249 * and send, 6250 * <base, SA(*), address(SD)> 6251 * to the ikmpd. 6252 * 6253 * m will always be freed. 6254 */ 6255 static int 6256 key_api_delete(struct socket *so, struct mbuf *m, 6257 const struct sadb_msghdr *mhp) 6258 { 6259 struct sadb_sa *sa0; 6260 const struct sockaddr *src, *dst; 6261 struct secasindex saidx; 6262 struct secashead *sah; 6263 struct secasvar *sav = NULL; 6264 u_int16_t proto; 6265 int error; 6266 6267 /* map satype to proto */ 6268 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6269 if (proto == 0) { 6270 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6271 return key_senderror(so, m, EINVAL); 6272 } 6273 6274 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6275 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6276 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6277 return key_senderror(so, m, EINVAL); 6278 } 6279 6280 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6281 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6282 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6283 return key_senderror(so, m, EINVAL); 6284 } 6285 6286 if (mhp->ext[SADB_EXT_SA] == NULL) { 6287 /* 6288 * Caller wants us to delete all non-LARVAL SAs 6289 * that match the src/dst. This is used during 6290 * IKE INITIAL-CONTACT. 6291 */ 6292 IPSECLOG(LOG_DEBUG, "doing delete all.\n"); 6293 return key_delete_all(so, m, mhp, proto); 6294 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 6295 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6296 return key_senderror(so, m, EINVAL); 6297 } 6298 6299 sa0 = mhp->ext[SADB_EXT_SA]; 6300 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6301 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6302 6303 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6304 if (error != 0) 6305 return key_senderror(so, m, EINVAL); 6306 6307 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6308 if (error != 0) 6309 return key_senderror(so, m, EINVAL); 6310 6311 /* get a SA header */ 6312 sah = key_getsah_ref(&saidx, CMP_HEAD); 6313 if (sah != NULL) { 6314 /* get a SA with SPI. */ 6315 sav = key_lookup_and_remove_sav(sah, sa0->sadb_sa_spi, NULL); 6316 key_sah_unref(sah); 6317 } 6318 6319 if (sav == NULL) { 6320 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6321 return key_senderror(so, m, ENOENT); 6322 } 6323 6324 key_wait_sav(sav); 6325 key_destroy_sav(sav); 6326 sav = NULL; 6327 6328 { 6329 struct mbuf *n; 6330 6331 /* create new sadb_msg to reply. */ 6332 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6333 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6334 6335 key_fill_replymsg(n, 0); 6336 m_freem(m); 6337 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6338 } 6339 } 6340 6341 /* 6342 * delete all SAs for src/dst. Called from key_api_delete(). 6343 */ 6344 static int 6345 key_delete_all(struct socket *so, struct mbuf *m, 6346 const struct sadb_msghdr *mhp, u_int16_t proto) 6347 { 6348 const struct sockaddr *src, *dst; 6349 struct secasindex saidx; 6350 struct secashead *sah; 6351 struct secasvar *sav; 6352 u_int state; 6353 int error; 6354 6355 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6356 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6357 6358 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6359 if (error != 0) 6360 return key_senderror(so, m, EINVAL); 6361 6362 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6363 if (error != 0) 6364 return key_senderror(so, m, EINVAL); 6365 6366 sah = key_getsah_ref(&saidx, CMP_HEAD); 6367 if (sah != NULL) { 6368 /* Delete all non-LARVAL SAs. */ 6369 SASTATE_ALIVE_FOREACH(state) { 6370 if (state == SADB_SASTATE_LARVAL) 6371 continue; 6372 restart: 6373 mutex_enter(&key_sad.lock); 6374 SAVLIST_WRITER_FOREACH(sav, sah, state) { 6375 sav->state = SADB_SASTATE_DEAD; 6376 key_unlink_sav(sav); 6377 mutex_exit(&key_sad.lock); 6378 key_destroy_sav(sav); 6379 goto restart; 6380 } 6381 mutex_exit(&key_sad.lock); 6382 } 6383 key_sah_unref(sah); 6384 } 6385 { 6386 struct mbuf *n; 6387 6388 /* create new sadb_msg to reply. */ 6389 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6390 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6391 6392 key_fill_replymsg(n, 0); 6393 m_freem(m); 6394 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6395 } 6396 } 6397 6398 /* 6399 * SADB_GET processing 6400 * receive 6401 * <base, SA(*), address(SD)> 6402 * from the ikmpd, and get a SP and a SA to respond, 6403 * and send, 6404 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6405 * (identity(SD),) (sensitivity)> 6406 * to the ikmpd. 6407 * 6408 * m will always be freed. 6409 */ 6410 static int 6411 key_api_get(struct socket *so, struct mbuf *m, 6412 const struct sadb_msghdr *mhp) 6413 { 6414 struct sadb_sa *sa0; 6415 const struct sockaddr *src, *dst; 6416 struct secasindex saidx; 6417 struct secasvar *sav = NULL; 6418 u_int16_t proto; 6419 int error; 6420 6421 /* map satype to proto */ 6422 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6423 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6424 return key_senderror(so, m, EINVAL); 6425 } 6426 6427 if (mhp->ext[SADB_EXT_SA] == NULL || 6428 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6429 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6430 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6431 return key_senderror(so, m, EINVAL); 6432 } 6433 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6434 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6435 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6436 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6437 return key_senderror(so, m, EINVAL); 6438 } 6439 6440 sa0 = mhp->ext[SADB_EXT_SA]; 6441 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6442 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6443 6444 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6445 if (error != 0) 6446 return key_senderror(so, m, EINVAL); 6447 6448 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6449 if (error != 0) 6450 return key_senderror(so, m, EINVAL); 6451 6452 /* get a SA header */ 6453 { 6454 struct secashead *sah; 6455 int s = pserialize_read_enter(); 6456 6457 sah = key_getsah(&saidx, CMP_HEAD); 6458 if (sah != NULL) { 6459 /* get a SA with SPI. */ 6460 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6461 } 6462 pserialize_read_exit(s); 6463 } 6464 if (sav == NULL) { 6465 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6466 return key_senderror(so, m, ENOENT); 6467 } 6468 6469 { 6470 struct mbuf *n; 6471 u_int8_t satype; 6472 6473 /* map proto to satype */ 6474 satype = key_proto2satype(sav->sah->saidx.proto); 6475 if (satype == 0) { 6476 KEY_SA_UNREF(&sav); 6477 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n"); 6478 return key_senderror(so, m, EINVAL); 6479 } 6480 6481 /* create new sadb_msg to reply. */ 6482 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6483 mhp->msg->sadb_msg_pid); 6484 KEY_SA_UNREF(&sav); 6485 m_freem(m); 6486 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6487 } 6488 } 6489 6490 /* XXX make it sysctl-configurable? */ 6491 static void 6492 key_getcomb_setlifetime(struct sadb_comb *comb) 6493 { 6494 6495 comb->sadb_comb_soft_allocations = 1; 6496 comb->sadb_comb_hard_allocations = 1; 6497 comb->sadb_comb_soft_bytes = 0; 6498 comb->sadb_comb_hard_bytes = 0; 6499 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6500 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100; 6501 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */ 6502 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6503 } 6504 6505 /* 6506 * XXX reorder combinations by preference 6507 * XXX no idea if the user wants ESP authentication or not 6508 */ 6509 static struct mbuf * 6510 key_getcomb_esp(int mflag) 6511 { 6512 struct sadb_comb *comb; 6513 const struct enc_xform *algo; 6514 struct mbuf *result = NULL, *m, *n; 6515 int encmin; 6516 int i, off, o; 6517 int totlen; 6518 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6519 6520 m = NULL; 6521 for (i = 1; i <= SADB_EALG_MAX; i++) { 6522 algo = esp_algorithm_lookup(i); 6523 if (algo == NULL) 6524 continue; 6525 6526 /* discard algorithms with key size smaller than system min */ 6527 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 6528 continue; 6529 if (_BITS(algo->minkey) < ipsec_esp_keymin) 6530 encmin = ipsec_esp_keymin; 6531 else 6532 encmin = _BITS(algo->minkey); 6533 6534 if (ipsec_esp_auth) 6535 m = key_getcomb_ah(mflag); 6536 else { 6537 KASSERTMSG(l <= MLEN, 6538 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6539 MGET(m, mflag, MT_DATA); 6540 if (m) { 6541 m_align(m, l); 6542 m->m_len = l; 6543 m->m_next = NULL; 6544 memset(mtod(m, void *), 0, m->m_len); 6545 } 6546 } 6547 if (!m) 6548 goto fail; 6549 6550 totlen = 0; 6551 for (n = m; n; n = n->m_next) 6552 totlen += n->m_len; 6553 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l); 6554 6555 for (off = 0; off < totlen; off += l) { 6556 n = m_pulldown(m, off, l, &o); 6557 if (!n) { 6558 /* m is already freed */ 6559 goto fail; 6560 } 6561 comb = (struct sadb_comb *)(mtod(n, char *) + o); 6562 memset(comb, 0, sizeof(*comb)); 6563 key_getcomb_setlifetime(comb); 6564 comb->sadb_comb_encrypt = i; 6565 comb->sadb_comb_encrypt_minbits = encmin; 6566 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6567 } 6568 6569 if (!result) 6570 result = m; 6571 else 6572 m_cat(result, m); 6573 } 6574 6575 return result; 6576 6577 fail: 6578 m_freem(result); 6579 return NULL; 6580 } 6581 6582 static void 6583 key_getsizes_ah(const struct auth_hash *ah, int alg, 6584 u_int16_t* ksmin, u_int16_t* ksmax) 6585 { 6586 *ksmin = *ksmax = ah->keysize; 6587 if (ah->keysize == 0) { 6588 /* 6589 * Transform takes arbitrary key size but algorithm 6590 * key size is restricted. Enforce this here. 6591 */ 6592 switch (alg) { 6593 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; 6594 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; 6595 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break; 6596 default: 6597 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg); 6598 break; 6599 } 6600 } 6601 } 6602 6603 /* 6604 * XXX reorder combinations by preference 6605 */ 6606 static struct mbuf * 6607 key_getcomb_ah(int mflag) 6608 { 6609 struct sadb_comb *comb; 6610 const struct auth_hash *algo; 6611 struct mbuf *m; 6612 u_int16_t minkeysize, maxkeysize; 6613 int i; 6614 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6615 6616 m = NULL; 6617 for (i = 1; i <= SADB_AALG_MAX; i++) { 6618 #if 1 6619 /* we prefer HMAC algorithms, not old algorithms */ 6620 if (i != SADB_AALG_SHA1HMAC && 6621 i != SADB_AALG_MD5HMAC && 6622 i != SADB_X_AALG_SHA2_256 && 6623 i != SADB_X_AALG_SHA2_384 && 6624 i != SADB_X_AALG_SHA2_512) 6625 continue; 6626 #endif 6627 algo = ah_algorithm_lookup(i); 6628 if (!algo) 6629 continue; 6630 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6631 /* discard algorithms with key size smaller than system min */ 6632 if (_BITS(minkeysize) < ipsec_ah_keymin) 6633 continue; 6634 6635 if (!m) { 6636 KASSERTMSG(l <= MLEN, 6637 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6638 MGET(m, mflag, MT_DATA); 6639 if (m) { 6640 m_align(m, l); 6641 m->m_len = l; 6642 m->m_next = NULL; 6643 } 6644 } else 6645 M_PREPEND(m, l, mflag); 6646 if (!m) 6647 return NULL; 6648 6649 if (m->m_len < sizeof(struct sadb_comb)) { 6650 m = m_pullup(m, sizeof(struct sadb_comb)); 6651 if (m == NULL) 6652 return NULL; 6653 } 6654 6655 comb = mtod(m, struct sadb_comb *); 6656 memset(comb, 0, sizeof(*comb)); 6657 key_getcomb_setlifetime(comb); 6658 comb->sadb_comb_auth = i; 6659 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6660 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6661 } 6662 6663 return m; 6664 } 6665 6666 /* 6667 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6668 * XXX reorder combinations by preference 6669 */ 6670 static struct mbuf * 6671 key_getcomb_ipcomp(int mflag) 6672 { 6673 struct sadb_comb *comb; 6674 const struct comp_algo *algo; 6675 struct mbuf *m; 6676 int i; 6677 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6678 6679 m = NULL; 6680 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6681 algo = ipcomp_algorithm_lookup(i); 6682 if (!algo) 6683 continue; 6684 6685 if (!m) { 6686 KASSERTMSG(l <= MLEN, 6687 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6688 MGET(m, mflag, MT_DATA); 6689 if (m) { 6690 m_align(m, l); 6691 m->m_len = l; 6692 m->m_next = NULL; 6693 } 6694 } else 6695 M_PREPEND(m, l, mflag); 6696 if (!m) 6697 return NULL; 6698 6699 if (m->m_len < sizeof(struct sadb_comb)) { 6700 m = m_pullup(m, sizeof(struct sadb_comb)); 6701 if (m == NULL) 6702 return NULL; 6703 } 6704 6705 comb = mtod(m, struct sadb_comb *); 6706 memset(comb, 0, sizeof(*comb)); 6707 key_getcomb_setlifetime(comb); 6708 comb->sadb_comb_encrypt = i; 6709 /* what should we set into sadb_comb_*_{min,max}bits? */ 6710 } 6711 6712 return m; 6713 } 6714 6715 /* 6716 * XXX no way to pass mode (transport/tunnel) to userland 6717 * XXX replay checking? 6718 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6719 */ 6720 static struct mbuf * 6721 key_getprop(const struct secasindex *saidx, int mflag) 6722 { 6723 struct sadb_prop *prop; 6724 struct mbuf *m, *n; 6725 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6726 int totlen; 6727 6728 switch (saidx->proto) { 6729 case IPPROTO_ESP: 6730 m = key_getcomb_esp(mflag); 6731 break; 6732 case IPPROTO_AH: 6733 m = key_getcomb_ah(mflag); 6734 break; 6735 case IPPROTO_IPCOMP: 6736 m = key_getcomb_ipcomp(mflag); 6737 break; 6738 default: 6739 return NULL; 6740 } 6741 6742 if (!m) 6743 return NULL; 6744 M_PREPEND(m, l, mflag); 6745 if (!m) 6746 return NULL; 6747 6748 totlen = 0; 6749 for (n = m; n; n = n->m_next) 6750 totlen += n->m_len; 6751 6752 prop = mtod(m, struct sadb_prop *); 6753 memset(prop, 0, sizeof(*prop)); 6754 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6755 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6756 prop->sadb_prop_replay = 32; /* XXX */ 6757 6758 return m; 6759 } 6760 6761 /* 6762 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire(). 6763 * send 6764 * <base, SA, address(SD), (address(P)), x_policy, 6765 * (identity(SD),) (sensitivity,) proposal> 6766 * to KMD, and expect to receive 6767 * <base> with SADB_ACQUIRE if error occurred, 6768 * or 6769 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6770 * from KMD by PF_KEY. 6771 * 6772 * XXX x_policy is outside of RFC2367 (KAME extension). 6773 * XXX sensitivity is not supported. 6774 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6775 * see comment for key_getcomb_ipcomp(). 6776 * 6777 * OUT: 6778 * 0 : succeed 6779 * others: error number 6780 */ 6781 static int 6782 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag) 6783 { 6784 struct mbuf *result = NULL, *m; 6785 #ifndef IPSEC_NONBLOCK_ACQUIRE 6786 struct secacq *newacq; 6787 #endif 6788 u_int8_t satype; 6789 int error = -1; 6790 u_int32_t seq; 6791 6792 /* sanity check */ 6793 KASSERT(saidx != NULL); 6794 satype = key_proto2satype(saidx->proto); 6795 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto); 6796 6797 #ifndef IPSEC_NONBLOCK_ACQUIRE 6798 /* 6799 * We never do anything about acquiring SA. There is another 6800 * solution that kernel blocks to send SADB_ACQUIRE message until 6801 * getting something message from IKEd. In later case, to be 6802 * managed with ACQUIRING list. 6803 */ 6804 /* Get an entry to check whether sending message or not. */ 6805 mutex_enter(&key_misc.lock); 6806 newacq = key_getacq(saidx); 6807 if (newacq != NULL) { 6808 if (key_blockacq_count < newacq->count) { 6809 /* reset counter and do send message. */ 6810 newacq->count = 0; 6811 } else { 6812 /* increment counter and do nothing. */ 6813 newacq->count++; 6814 mutex_exit(&key_misc.lock); 6815 return 0; 6816 } 6817 } else { 6818 /* make new entry for blocking to send SADB_ACQUIRE. */ 6819 newacq = key_newacq(saidx); 6820 if (newacq == NULL) { 6821 mutex_exit(&key_misc.lock); 6822 return ENOBUFS; 6823 } 6824 6825 /* add to key_misc.acqlist */ 6826 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain); 6827 } 6828 6829 seq = newacq->seq; 6830 mutex_exit(&key_misc.lock); 6831 #else 6832 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 6833 #endif 6834 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag); 6835 if (!m) { 6836 error = ENOBUFS; 6837 goto fail; 6838 } 6839 result = m; 6840 6841 /* set sadb_address for saidx's. */ 6842 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK, 6843 IPSEC_ULPROTO_ANY, mflag); 6844 if (!m) { 6845 error = ENOBUFS; 6846 goto fail; 6847 } 6848 m_cat(result, m); 6849 6850 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK, 6851 IPSEC_ULPROTO_ANY, mflag); 6852 if (!m) { 6853 error = ENOBUFS; 6854 goto fail; 6855 } 6856 m_cat(result, m); 6857 6858 /* XXX proxy address (optional) */ 6859 6860 /* set sadb_x_policy */ 6861 if (sp) { 6862 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6863 mflag); 6864 if (!m) { 6865 error = ENOBUFS; 6866 goto fail; 6867 } 6868 m_cat(result, m); 6869 } 6870 6871 /* XXX identity (optional) */ 6872 #if 0 6873 if (idexttype && fqdn) { 6874 /* create identity extension (FQDN) */ 6875 struct sadb_ident *id; 6876 int fqdnlen; 6877 6878 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6879 id = (struct sadb_ident *)p; 6880 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6881 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6882 id->sadb_ident_exttype = idexttype; 6883 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6884 memcpy(id + 1, fqdn, fqdnlen); 6885 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6886 } 6887 6888 if (idexttype) { 6889 /* create identity extension (USERFQDN) */ 6890 struct sadb_ident *id; 6891 int userfqdnlen; 6892 6893 if (userfqdn) { 6894 /* +1 for terminating-NUL */ 6895 userfqdnlen = strlen(userfqdn) + 1; 6896 } else 6897 userfqdnlen = 0; 6898 id = (struct sadb_ident *)p; 6899 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6900 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6901 id->sadb_ident_exttype = idexttype; 6902 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6903 /* XXX is it correct? */ 6904 if (curlwp) 6905 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); 6906 if (userfqdn && userfqdnlen) 6907 memcpy(id + 1, userfqdn, userfqdnlen); 6908 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6909 } 6910 #endif 6911 6912 /* XXX sensitivity (optional) */ 6913 6914 /* create proposal/combination extension */ 6915 m = key_getprop(saidx, mflag); 6916 #if 0 6917 /* 6918 * spec conformant: always attach proposal/combination extension, 6919 * the problem is that we have no way to attach it for ipcomp, 6920 * due to the way sadb_comb is declared in RFC2367. 6921 */ 6922 if (!m) { 6923 error = ENOBUFS; 6924 goto fail; 6925 } 6926 m_cat(result, m); 6927 #else 6928 /* 6929 * outside of spec; make proposal/combination extension optional. 6930 */ 6931 if (m) 6932 m_cat(result, m); 6933 #endif 6934 6935 KASSERT(result->m_flags & M_PKTHDR); 6936 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 6937 6938 result->m_pkthdr.len = 0; 6939 for (m = result; m; m = m->m_next) 6940 result->m_pkthdr.len += m->m_len; 6941 6942 mtod(result, struct sadb_msg *)->sadb_msg_len = 6943 PFKEY_UNIT64(result->m_pkthdr.len); 6944 6945 /* 6946 * Called from key_api_acquire that must come from userland, so 6947 * we can call key_sendup_mbuf immediately. 6948 */ 6949 if (mflag == M_WAITOK) 6950 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6951 /* 6952 * XXX we cannot call key_sendup_mbuf directly here because 6953 * it can cause a deadlock: 6954 * - We have a reference to an SP (and an SA) here 6955 * - key_sendup_mbuf will try to take key_so_mtx 6956 * - Some other thread may try to localcount_drain to the SP with 6957 * holding key_so_mtx in say key_api_spdflush 6958 * - In this case localcount_drain never return because key_sendup_mbuf 6959 * that has stuck on key_so_mtx never release a reference to the SP 6960 * 6961 * So defer key_sendup_mbuf to the timer. 6962 */ 6963 return key_acquire_sendup_mbuf_later(result); 6964 6965 fail: 6966 m_freem(result); 6967 return error; 6968 } 6969 6970 static struct mbuf *key_acquire_mbuf_head = NULL; 6971 static unsigned key_acquire_mbuf_count = 0; 6972 #define KEY_ACQUIRE_MBUF_MAX 10 6973 6974 static void 6975 key_acquire_sendup_pending_mbuf(void) 6976 { 6977 struct mbuf *m, *prev; 6978 int error; 6979 6980 again: 6981 prev = NULL; 6982 mutex_enter(&key_misc.lock); 6983 m = key_acquire_mbuf_head; 6984 /* Get an earliest mbuf (one at the tail of the list) */ 6985 while (m != NULL) { 6986 if (m->m_nextpkt == NULL) { 6987 if (prev != NULL) 6988 prev->m_nextpkt = NULL; 6989 if (m == key_acquire_mbuf_head) 6990 key_acquire_mbuf_head = NULL; 6991 key_acquire_mbuf_count--; 6992 break; 6993 } 6994 prev = m; 6995 m = m->m_nextpkt; 6996 } 6997 mutex_exit(&key_misc.lock); 6998 6999 if (m == NULL) 7000 return; 7001 7002 m->m_nextpkt = NULL; 7003 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 7004 if (error != 0) 7005 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n", 7006 error); 7007 7008 if (prev != NULL) 7009 goto again; 7010 } 7011 7012 static int 7013 key_acquire_sendup_mbuf_later(struct mbuf *m) 7014 { 7015 7016 mutex_enter(&key_misc.lock); 7017 /* Avoid queuing too much mbufs */ 7018 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) { 7019 mutex_exit(&key_misc.lock); 7020 m_freem(m); 7021 return ENOBUFS; /* XXX */ 7022 } 7023 /* Enqueue mbuf at the head of the list */ 7024 m->m_nextpkt = key_acquire_mbuf_head; 7025 key_acquire_mbuf_head = m; 7026 key_acquire_mbuf_count++; 7027 mutex_exit(&key_misc.lock); 7028 7029 /* Kick the timer */ 7030 key_timehandler(NULL); 7031 7032 return 0; 7033 } 7034 7035 #ifndef IPSEC_NONBLOCK_ACQUIRE 7036 static struct secacq * 7037 key_newacq(const struct secasindex *saidx) 7038 { 7039 struct secacq *newacq; 7040 7041 /* get new entry */ 7042 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP); 7043 if (newacq == NULL) { 7044 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7045 return NULL; 7046 } 7047 7048 /* copy secindex */ 7049 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); 7050 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 7051 newacq->created = time_uptime; 7052 newacq->count = 0; 7053 7054 return newacq; 7055 } 7056 7057 static struct secacq * 7058 key_getacq(const struct secasindex *saidx) 7059 { 7060 struct secacq *acq; 7061 7062 KASSERT(mutex_owned(&key_misc.lock)); 7063 7064 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 7065 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY)) 7066 return acq; 7067 } 7068 7069 return NULL; 7070 } 7071 7072 static struct secacq * 7073 key_getacqbyseq(u_int32_t seq) 7074 { 7075 struct secacq *acq; 7076 7077 KASSERT(mutex_owned(&key_misc.lock)); 7078 7079 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 7080 if (acq->seq == seq) 7081 return acq; 7082 } 7083 7084 return NULL; 7085 } 7086 #endif 7087 7088 #ifdef notyet 7089 static struct secspacq * 7090 key_newspacq(const struct secpolicyindex *spidx) 7091 { 7092 struct secspacq *acq; 7093 7094 /* get new entry */ 7095 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP); 7096 if (acq == NULL) { 7097 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7098 return NULL; 7099 } 7100 7101 /* copy secindex */ 7102 memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); 7103 acq->created = time_uptime; 7104 acq->count = 0; 7105 7106 return acq; 7107 } 7108 7109 static struct secspacq * 7110 key_getspacq(const struct secpolicyindex *spidx) 7111 { 7112 struct secspacq *acq; 7113 7114 LIST_FOREACH(acq, &key_misc.spacqlist, chain) { 7115 if (key_spidx_match_exactly(spidx, &acq->spidx)) 7116 return acq; 7117 } 7118 7119 return NULL; 7120 } 7121 #endif /* notyet */ 7122 7123 /* 7124 * SADB_ACQUIRE processing, 7125 * in first situation, is receiving 7126 * <base> 7127 * from the ikmpd, and clear sequence of its secasvar entry. 7128 * 7129 * In second situation, is receiving 7130 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 7131 * from a user land process, and return 7132 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 7133 * to the socket. 7134 * 7135 * m will always be freed. 7136 */ 7137 static int 7138 key_api_acquire(struct socket *so, struct mbuf *m, 7139 const struct sadb_msghdr *mhp) 7140 { 7141 const struct sockaddr *src, *dst; 7142 struct secasindex saidx; 7143 u_int16_t proto; 7144 int error; 7145 7146 /* 7147 * Error message from KMd. 7148 * We assume that if error was occurred in IKEd, the length of PFKEY 7149 * message is equal to the size of sadb_msg structure. 7150 * We do not raise error even if error occurred in this function. 7151 */ 7152 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 7153 #ifndef IPSEC_NONBLOCK_ACQUIRE 7154 struct secacq *acq; 7155 7156 /* check sequence number */ 7157 if (mhp->msg->sadb_msg_seq == 0) { 7158 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n"); 7159 m_freem(m); 7160 return 0; 7161 } 7162 7163 mutex_enter(&key_misc.lock); 7164 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 7165 if (acq == NULL) { 7166 mutex_exit(&key_misc.lock); 7167 /* 7168 * the specified larval SA is already gone, or we got 7169 * a bogus sequence number. we can silently ignore it. 7170 */ 7171 m_freem(m); 7172 return 0; 7173 } 7174 7175 /* reset acq counter in order to deletion by timehandler. */ 7176 acq->created = time_uptime; 7177 acq->count = 0; 7178 mutex_exit(&key_misc.lock); 7179 #endif 7180 m_freem(m); 7181 return 0; 7182 } 7183 7184 /* 7185 * This message is from user land. 7186 */ 7187 7188 /* map satype to proto */ 7189 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7190 if (proto == 0) { 7191 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7192 return key_senderror(so, m, EINVAL); 7193 } 7194 7195 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 7196 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 7197 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 7198 /* error */ 7199 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7200 return key_senderror(so, m, EINVAL); 7201 } 7202 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 7203 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 7204 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 7205 /* error */ 7206 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7207 return key_senderror(so, m, EINVAL); 7208 } 7209 7210 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 7211 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 7212 7213 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 7214 if (error != 0) 7215 return key_senderror(so, m, EINVAL); 7216 7217 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 7218 if (error != 0) 7219 return key_senderror(so, m, EINVAL); 7220 7221 /* get a SA index */ 7222 { 7223 struct secashead *sah; 7224 int s = pserialize_read_enter(); 7225 7226 sah = key_getsah(&saidx, CMP_MODE_REQID); 7227 if (sah != NULL) { 7228 pserialize_read_exit(s); 7229 IPSECLOG(LOG_DEBUG, "a SA exists already.\n"); 7230 return key_senderror(so, m, EEXIST); 7231 } 7232 pserialize_read_exit(s); 7233 } 7234 7235 error = key_acquire(&saidx, NULL, M_WAITOK); 7236 if (error != 0) { 7237 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 7238 error); 7239 return key_senderror(so, m, error); 7240 } 7241 7242 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 7243 } 7244 7245 /* 7246 * SADB_REGISTER processing. 7247 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7248 * receive 7249 * <base> 7250 * from the ikmpd, and register a socket to send PF_KEY messages, 7251 * and send 7252 * <base, supported> 7253 * to KMD by PF_KEY. 7254 * If socket is detached, must free from regnode. 7255 * 7256 * m will always be freed. 7257 */ 7258 static int 7259 key_api_register(struct socket *so, struct mbuf *m, 7260 const struct sadb_msghdr *mhp) 7261 { 7262 struct secreg *reg, *newreg = 0; 7263 7264 /* check for invalid register message */ 7265 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist)) 7266 return key_senderror(so, m, EINVAL); 7267 7268 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7269 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7270 goto setmsg; 7271 7272 /* Allocate regnode in advance, out of mutex */ 7273 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP); 7274 7275 /* check whether existing or not */ 7276 mutex_enter(&key_misc.lock); 7277 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) { 7278 if (reg->so == so) { 7279 IPSECLOG(LOG_DEBUG, "socket exists already.\n"); 7280 mutex_exit(&key_misc.lock); 7281 kmem_free(newreg, sizeof(*newreg)); 7282 return key_senderror(so, m, EEXIST); 7283 } 7284 } 7285 7286 newreg->so = so; 7287 ((struct keycb *)sotorawcb(so))->kp_registered++; 7288 7289 /* add regnode to key_misc.reglist. */ 7290 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain); 7291 mutex_exit(&key_misc.lock); 7292 7293 setmsg: 7294 { 7295 struct mbuf *n; 7296 struct sadb_supported *sup; 7297 u_int len, alen, elen; 7298 int off; 7299 int i; 7300 struct sadb_alg *alg; 7301 7302 /* create new sadb_msg to reply. */ 7303 alen = 0; 7304 for (i = 1; i <= SADB_AALG_MAX; i++) { 7305 if (ah_algorithm_lookup(i)) 7306 alen += sizeof(struct sadb_alg); 7307 } 7308 if (alen) 7309 alen += sizeof(struct sadb_supported); 7310 elen = 0; 7311 for (i = 1; i <= SADB_EALG_MAX; i++) { 7312 if (esp_algorithm_lookup(i)) 7313 elen += sizeof(struct sadb_alg); 7314 } 7315 if (elen) 7316 elen += sizeof(struct sadb_supported); 7317 7318 len = sizeof(struct sadb_msg) + alen + elen; 7319 7320 if (len > MCLBYTES) 7321 return key_senderror(so, m, ENOBUFS); 7322 7323 n = key_alloc_mbuf_simple(len, M_WAITOK); 7324 n->m_pkthdr.len = n->m_len = len; 7325 n->m_next = NULL; 7326 off = 0; 7327 7328 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 7329 key_fill_replymsg(n, 0); 7330 7331 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7332 7333 /* for authentication algorithm */ 7334 if (alen) { 7335 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7336 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7337 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7338 sup->sadb_supported_reserved = 0; 7339 off += PFKEY_ALIGN8(sizeof(*sup)); 7340 7341 for (i = 1; i <= SADB_AALG_MAX; i++) { 7342 const struct auth_hash *aalgo; 7343 u_int16_t minkeysize, maxkeysize; 7344 7345 aalgo = ah_algorithm_lookup(i); 7346 if (!aalgo) 7347 continue; 7348 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7349 alg->sadb_alg_id = i; 7350 alg->sadb_alg_ivlen = 0; 7351 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7352 alg->sadb_alg_minbits = _BITS(minkeysize); 7353 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7354 alg->sadb_alg_reserved = 0; 7355 off += PFKEY_ALIGN8(sizeof(*alg)); 7356 } 7357 } 7358 7359 /* for encryption algorithm */ 7360 if (elen) { 7361 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7362 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7363 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7364 sup->sadb_supported_reserved = 0; 7365 off += PFKEY_ALIGN8(sizeof(*sup)); 7366 7367 for (i = 1; i <= SADB_EALG_MAX; i++) { 7368 const struct enc_xform *ealgo; 7369 7370 ealgo = esp_algorithm_lookup(i); 7371 if (!ealgo) 7372 continue; 7373 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7374 alg->sadb_alg_id = i; 7375 alg->sadb_alg_ivlen = ealgo->blocksize; 7376 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7377 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7378 alg->sadb_alg_reserved = 0; 7379 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7380 } 7381 } 7382 7383 KASSERTMSG(off == len, "length inconsistency"); 7384 7385 m_freem(m); 7386 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7387 } 7388 } 7389 7390 /* 7391 * free secreg entry registered. 7392 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7393 */ 7394 void 7395 key_freereg(struct socket *so) 7396 { 7397 struct secreg *reg; 7398 int i; 7399 7400 KASSERT(!cpu_softintr_p()); 7401 KASSERT(so != NULL); 7402 7403 /* 7404 * check whether existing or not. 7405 * check all type of SA, because there is a potential that 7406 * one socket is registered to multiple type of SA. 7407 */ 7408 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7409 mutex_enter(&key_misc.lock); 7410 LIST_FOREACH(reg, &key_misc.reglist[i], chain) { 7411 if (reg->so == so) { 7412 LIST_REMOVE(reg, chain); 7413 break; 7414 } 7415 } 7416 mutex_exit(&key_misc.lock); 7417 if (reg != NULL) 7418 kmem_free(reg, sizeof(*reg)); 7419 } 7420 7421 return; 7422 } 7423 7424 /* 7425 * SADB_EXPIRE processing 7426 * send 7427 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7428 * to KMD by PF_KEY. 7429 * NOTE: We send only soft lifetime extension. 7430 * 7431 * OUT: 0 : succeed 7432 * others : error number 7433 */ 7434 static int 7435 key_expire(struct secasvar *sav) 7436 { 7437 int s; 7438 int satype; 7439 struct mbuf *result = NULL, *m; 7440 int len; 7441 int error = -1; 7442 struct sadb_lifetime *lt; 7443 lifetime_counters_t sum = {0}; 7444 7445 /* XXX: Why do we lock ? */ 7446 s = splsoftnet(); /*called from softclock()*/ 7447 7448 KASSERT(sav != NULL); 7449 7450 satype = key_proto2satype(sav->sah->saidx.proto); 7451 KASSERTMSG(satype != 0, "invalid proto is passed"); 7452 7453 /* set msg header */ 7454 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav), 7455 M_WAITOK); 7456 result = m; 7457 7458 /* create SA extension */ 7459 m = key_setsadbsa(sav); 7460 m_cat(result, m); 7461 7462 /* create SA extension */ 7463 m = key_setsadbxsa2(sav->sah->saidx.mode, 7464 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); 7465 m_cat(result, m); 7466 7467 /* create lifetime extension (current and soft) */ 7468 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7469 m = key_alloc_mbuf(len, M_WAITOK); 7470 KASSERT(m->m_next == NULL); 7471 7472 memset(mtod(m, void *), 0, len); 7473 lt = mtod(m, struct sadb_lifetime *); 7474 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7475 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7476 percpu_foreach_xcall(sav->lft_c_counters_percpu, 7477 XC_HIGHPRI_IPL(IPL_SOFTNET), key_sum_lifetime_counters, sum); 7478 lt->sadb_lifetime_allocations = sum[LIFETIME_COUNTER_ALLOCATIONS]; 7479 lt->sadb_lifetime_bytes = sum[LIFETIME_COUNTER_BYTES]; 7480 lt->sadb_lifetime_addtime = 7481 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime); 7482 lt->sadb_lifetime_usetime = 7483 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime); 7484 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 7485 memcpy(lt, sav->lft_s, sizeof(*lt)); 7486 m_cat(result, m); 7487 7488 /* set sadb_address for source */ 7489 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 7490 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7491 m_cat(result, m); 7492 7493 /* set sadb_address for destination */ 7494 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, 7495 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7496 m_cat(result, m); 7497 7498 if ((result->m_flags & M_PKTHDR) == 0) { 7499 error = EINVAL; 7500 goto fail; 7501 } 7502 7503 if (result->m_len < sizeof(struct sadb_msg)) { 7504 result = m_pullup(result, sizeof(struct sadb_msg)); 7505 if (result == NULL) { 7506 error = ENOBUFS; 7507 goto fail; 7508 } 7509 } 7510 7511 result->m_pkthdr.len = 0; 7512 for (m = result; m; m = m->m_next) 7513 result->m_pkthdr.len += m->m_len; 7514 7515 mtod(result, struct sadb_msg *)->sadb_msg_len = 7516 PFKEY_UNIT64(result->m_pkthdr.len); 7517 7518 splx(s); 7519 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7520 7521 fail: 7522 m_freem(result); 7523 splx(s); 7524 return error; 7525 } 7526 7527 /* 7528 * SADB_FLUSH processing 7529 * receive 7530 * <base> 7531 * from the ikmpd, and free all entries in secastree. 7532 * and send, 7533 * <base> 7534 * to the ikmpd. 7535 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7536 * 7537 * m will always be freed. 7538 */ 7539 static int 7540 key_api_flush(struct socket *so, struct mbuf *m, 7541 const struct sadb_msghdr *mhp) 7542 { 7543 struct sadb_msg *newmsg; 7544 struct secashead *sah; 7545 struct secasvar *sav; 7546 u_int16_t proto; 7547 u_int8_t state; 7548 int s; 7549 7550 /* map satype to proto */ 7551 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7552 if (proto == 0) { 7553 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7554 return key_senderror(so, m, EINVAL); 7555 } 7556 7557 /* no SATYPE specified, i.e. flushing all SA. */ 7558 s = pserialize_read_enter(); 7559 SAHLIST_READER_FOREACH(sah) { 7560 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7561 proto != sah->saidx.proto) 7562 continue; 7563 7564 key_sah_ref(sah); 7565 pserialize_read_exit(s); 7566 7567 SASTATE_ALIVE_FOREACH(state) { 7568 restart: 7569 mutex_enter(&key_sad.lock); 7570 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7571 sav->state = SADB_SASTATE_DEAD; 7572 key_unlink_sav(sav); 7573 mutex_exit(&key_sad.lock); 7574 key_destroy_sav(sav); 7575 goto restart; 7576 } 7577 mutex_exit(&key_sad.lock); 7578 } 7579 7580 s = pserialize_read_enter(); 7581 sah->state = SADB_SASTATE_DEAD; 7582 key_sah_unref(sah); 7583 } 7584 pserialize_read_exit(s); 7585 7586 if (m->m_len < sizeof(struct sadb_msg) || 7587 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7588 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7589 return key_senderror(so, m, ENOBUFS); 7590 } 7591 7592 m_freem(m->m_next); 7593 m->m_next = NULL; 7594 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7595 newmsg = mtod(m, struct sadb_msg *); 7596 newmsg->sadb_msg_errno = 0; 7597 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7598 7599 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7600 } 7601 7602 7603 static struct mbuf * 7604 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) 7605 { 7606 struct secashead *sah; 7607 struct secasvar *sav; 7608 u_int16_t proto; 7609 u_int8_t satype; 7610 u_int8_t state; 7611 int cnt; 7612 struct mbuf *m, *n, *prev; 7613 7614 KASSERT(mutex_owned(&key_sad.lock)); 7615 7616 *lenp = 0; 7617 7618 /* map satype to proto */ 7619 proto = key_satype2proto(req_satype); 7620 if (proto == 0) { 7621 *errorp = EINVAL; 7622 return (NULL); 7623 } 7624 7625 /* count sav entries to be sent to userland. */ 7626 cnt = 0; 7627 SAHLIST_WRITER_FOREACH(sah) { 7628 if (req_satype != SADB_SATYPE_UNSPEC && 7629 proto != sah->saidx.proto) 7630 continue; 7631 7632 SASTATE_ANY_FOREACH(state) { 7633 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7634 cnt++; 7635 } 7636 } 7637 } 7638 7639 if (cnt == 0) { 7640 *errorp = ENOENT; 7641 return (NULL); 7642 } 7643 7644 /* send this to the userland, one at a time. */ 7645 m = NULL; 7646 prev = m; 7647 SAHLIST_WRITER_FOREACH(sah) { 7648 if (req_satype != SADB_SATYPE_UNSPEC && 7649 proto != sah->saidx.proto) 7650 continue; 7651 7652 /* map proto to satype */ 7653 satype = key_proto2satype(sah->saidx.proto); 7654 if (satype == 0) { 7655 m_freem(m); 7656 *errorp = EINVAL; 7657 return (NULL); 7658 } 7659 7660 SASTATE_ANY_FOREACH(state) { 7661 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7662 n = key_setdumpsa(sav, SADB_DUMP, satype, 7663 --cnt, pid); 7664 if (!m) 7665 m = n; 7666 else 7667 prev->m_nextpkt = n; 7668 prev = n; 7669 } 7670 } 7671 } 7672 7673 if (!m) { 7674 *errorp = EINVAL; 7675 return (NULL); 7676 } 7677 7678 if ((m->m_flags & M_PKTHDR) != 0) { 7679 m->m_pkthdr.len = 0; 7680 for (n = m; n; n = n->m_next) 7681 m->m_pkthdr.len += n->m_len; 7682 } 7683 7684 *errorp = 0; 7685 return (m); 7686 } 7687 7688 /* 7689 * SADB_DUMP processing 7690 * dump all entries including status of DEAD in SAD. 7691 * receive 7692 * <base> 7693 * from the ikmpd, and dump all secasvar leaves 7694 * and send, 7695 * <base> ..... 7696 * to the ikmpd. 7697 * 7698 * m will always be freed. 7699 */ 7700 static int 7701 key_api_dump(struct socket *so, struct mbuf *m0, 7702 const struct sadb_msghdr *mhp) 7703 { 7704 u_int16_t proto; 7705 u_int8_t satype; 7706 struct mbuf *n; 7707 int error, len, ok; 7708 7709 /* map satype to proto */ 7710 satype = mhp->msg->sadb_msg_satype; 7711 proto = key_satype2proto(satype); 7712 if (proto == 0) { 7713 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7714 return key_senderror(so, m0, EINVAL); 7715 } 7716 7717 /* 7718 * If the requestor has insufficient socket-buffer space 7719 * for the entire chain, nobody gets any response to the DUMP. 7720 * XXX For now, only the requestor ever gets anything. 7721 * Moreover, if the requestor has any space at all, they receive 7722 * the entire chain, otherwise the request is refused with ENOBUFS. 7723 */ 7724 if (sbspace(&so->so_rcv) <= 0) { 7725 return key_senderror(so, m0, ENOBUFS); 7726 } 7727 7728 mutex_enter(&key_sad.lock); 7729 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); 7730 mutex_exit(&key_sad.lock); 7731 7732 if (n == NULL) { 7733 return key_senderror(so, m0, ENOENT); 7734 } 7735 { 7736 net_stat_ref_t ps = PFKEY_STAT_GETREF(); 7737 _NET_STATINC_REF(ps, PFKEY_STAT_IN_TOTAL); 7738 _NET_STATADD_REF(ps, PFKEY_STAT_IN_BYTES, len); 7739 PFKEY_STAT_PUTREF(); 7740 } 7741 7742 /* 7743 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 7744 * The requestor receives either the entire chain, or an 7745 * error message with ENOBUFS. 7746 * 7747 * sbappendaddrchain() takes the chain of entries, one 7748 * packet-record per SPD entry, prepends the key_src sockaddr 7749 * to each packet-record, links the sockaddr mbufs into a new 7750 * list of records, then appends the entire resulting 7751 * list to the requesting socket. 7752 */ 7753 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 7754 SB_PRIO_ONESHOT_OVERFLOW); 7755 7756 if (!ok) { 7757 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 7758 m_freem(n); 7759 return key_senderror(so, m0, ENOBUFS); 7760 } 7761 7762 m_freem(m0); 7763 return 0; 7764 } 7765 7766 /* 7767 * SADB_X_PROMISC processing 7768 * 7769 * m will always be freed. 7770 */ 7771 static int 7772 key_api_promisc(struct socket *so, struct mbuf *m, 7773 const struct sadb_msghdr *mhp) 7774 { 7775 int olen; 7776 7777 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7778 7779 if (olen < sizeof(struct sadb_msg)) { 7780 #if 1 7781 return key_senderror(so, m, EINVAL); 7782 #else 7783 m_freem(m); 7784 return 0; 7785 #endif 7786 } else if (olen == sizeof(struct sadb_msg)) { 7787 /* enable/disable promisc mode */ 7788 struct keycb *kp = (struct keycb *)sotorawcb(so); 7789 if (kp == NULL) 7790 return key_senderror(so, m, EINVAL); 7791 mhp->msg->sadb_msg_errno = 0; 7792 switch (mhp->msg->sadb_msg_satype) { 7793 case 0: 7794 case 1: 7795 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7796 break; 7797 default: 7798 return key_senderror(so, m, EINVAL); 7799 } 7800 7801 /* send the original message back to everyone */ 7802 mhp->msg->sadb_msg_errno = 0; 7803 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7804 } else { 7805 /* send packet as is */ 7806 7807 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7808 7809 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7810 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7811 } 7812 } 7813 7814 static int (*key_api_typesw[]) (struct socket *, struct mbuf *, 7815 const struct sadb_msghdr *) = { 7816 NULL, /* SADB_RESERVED */ 7817 key_api_getspi, /* SADB_GETSPI */ 7818 key_api_update, /* SADB_UPDATE */ 7819 key_api_add, /* SADB_ADD */ 7820 key_api_delete, /* SADB_DELETE */ 7821 key_api_get, /* SADB_GET */ 7822 key_api_acquire, /* SADB_ACQUIRE */ 7823 key_api_register, /* SADB_REGISTER */ 7824 NULL, /* SADB_EXPIRE */ 7825 key_api_flush, /* SADB_FLUSH */ 7826 key_api_dump, /* SADB_DUMP */ 7827 key_api_promisc, /* SADB_X_PROMISC */ 7828 NULL, /* SADB_X_PCHANGE */ 7829 key_api_spdadd, /* SADB_X_SPDUPDATE */ 7830 key_api_spdadd, /* SADB_X_SPDADD */ 7831 key_api_spddelete, /* SADB_X_SPDDELETE */ 7832 key_api_spdget, /* SADB_X_SPDGET */ 7833 NULL, /* SADB_X_SPDACQUIRE */ 7834 key_api_spddump, /* SADB_X_SPDDUMP */ 7835 key_api_spdflush, /* SADB_X_SPDFLUSH */ 7836 key_api_spdadd, /* SADB_X_SPDSETIDX */ 7837 NULL, /* SADB_X_SPDEXPIRE */ 7838 key_api_spddelete2, /* SADB_X_SPDDELETE2 */ 7839 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ 7840 }; 7841 7842 /* 7843 * parse sadb_msg buffer to process PFKEYv2, 7844 * and create a data to response if needed. 7845 * I think to be dealed with mbuf directly. 7846 * IN: 7847 * msgp : pointer to pointer to a received buffer pulluped. 7848 * This is rewrited to response. 7849 * so : pointer to socket. 7850 * OUT: 7851 * length for buffer to send to user process. 7852 */ 7853 int 7854 key_parse(struct mbuf *m, struct socket *so) 7855 { 7856 struct sadb_msg *msg; 7857 struct sadb_msghdr mh; 7858 u_int orglen; 7859 int error; 7860 7861 KASSERT(m != NULL); 7862 KASSERT(so != NULL); 7863 7864 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7865 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) { 7866 kdebug_sadb("passed sadb_msg", msg); 7867 } 7868 #endif 7869 7870 if (m->m_len < sizeof(struct sadb_msg)) { 7871 m = m_pullup(m, sizeof(struct sadb_msg)); 7872 if (!m) 7873 return ENOBUFS; 7874 } 7875 msg = mtod(m, struct sadb_msg *); 7876 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7877 7878 if ((m->m_flags & M_PKTHDR) == 0 || 7879 m->m_pkthdr.len != orglen) { 7880 IPSECLOG(LOG_DEBUG, "invalid message length.\n"); 7881 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7882 error = EINVAL; 7883 goto senderror; 7884 } 7885 7886 if (msg->sadb_msg_version != PF_KEY_V2) { 7887 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n", 7888 msg->sadb_msg_version); 7889 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); 7890 error = EINVAL; 7891 goto senderror; 7892 } 7893 7894 if (msg->sadb_msg_type > SADB_MAX) { 7895 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7896 msg->sadb_msg_type); 7897 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7898 error = EINVAL; 7899 goto senderror; 7900 } 7901 7902 /* for old-fashioned code - should be nuked */ 7903 if (m->m_pkthdr.len > MCLBYTES) { 7904 m_freem(m); 7905 return ENOBUFS; 7906 } 7907 if (m->m_next) { 7908 struct mbuf *n; 7909 7910 n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK); 7911 7912 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); 7913 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7914 n->m_next = NULL; 7915 m_freem(m); 7916 m = n; 7917 } 7918 7919 /* align the mbuf chain so that extensions are in contiguous region. */ 7920 error = key_align(m, &mh); 7921 if (error) 7922 return error; 7923 7924 if (m->m_next) { /*XXX*/ 7925 m_freem(m); 7926 return ENOBUFS; 7927 } 7928 7929 msg = mh.msg; 7930 7931 /* check SA type */ 7932 switch (msg->sadb_msg_satype) { 7933 case SADB_SATYPE_UNSPEC: 7934 switch (msg->sadb_msg_type) { 7935 case SADB_GETSPI: 7936 case SADB_UPDATE: 7937 case SADB_ADD: 7938 case SADB_DELETE: 7939 case SADB_GET: 7940 case SADB_ACQUIRE: 7941 case SADB_EXPIRE: 7942 IPSECLOG(LOG_DEBUG, 7943 "must specify satype when msg type=%u.\n", 7944 msg->sadb_msg_type); 7945 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7946 error = EINVAL; 7947 goto senderror; 7948 } 7949 break; 7950 case SADB_SATYPE_AH: 7951 case SADB_SATYPE_ESP: 7952 case SADB_X_SATYPE_IPCOMP: 7953 case SADB_X_SATYPE_TCPSIGNATURE: 7954 switch (msg->sadb_msg_type) { 7955 case SADB_X_SPDADD: 7956 case SADB_X_SPDDELETE: 7957 case SADB_X_SPDGET: 7958 case SADB_X_SPDDUMP: 7959 case SADB_X_SPDFLUSH: 7960 case SADB_X_SPDSETIDX: 7961 case SADB_X_SPDUPDATE: 7962 case SADB_X_SPDDELETE2: 7963 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n", 7964 msg->sadb_msg_type); 7965 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7966 error = EINVAL; 7967 goto senderror; 7968 } 7969 break; 7970 case SADB_SATYPE_RSVP: 7971 case SADB_SATYPE_OSPFV2: 7972 case SADB_SATYPE_RIPV2: 7973 case SADB_SATYPE_MIP: 7974 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n", 7975 msg->sadb_msg_satype); 7976 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7977 error = EOPNOTSUPP; 7978 goto senderror; 7979 case 1: /* XXX: What does it do? */ 7980 if (msg->sadb_msg_type == SADB_X_PROMISC) 7981 break; 7982 /*FALLTHROUGH*/ 7983 default: 7984 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7985 msg->sadb_msg_satype); 7986 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7987 error = EINVAL; 7988 goto senderror; 7989 } 7990 7991 /* check field of upper layer protocol and address family */ 7992 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && 7993 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7994 const struct sadb_address *src0, *dst0; 7995 const struct sockaddr *sa0, *da0; 7996 u_int plen; 7997 7998 src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; 7999 dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; 8000 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC); 8001 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST); 8002 8003 /* check upper layer protocol */ 8004 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 8005 IPSECLOG(LOG_DEBUG, 8006 "upper layer protocol mismatched src %u, dst %u.\n", 8007 src0->sadb_address_proto, dst0->sadb_address_proto); 8008 8009 goto invaddr; 8010 } 8011 8012 /* check family */ 8013 if (sa0->sa_family != da0->sa_family) { 8014 IPSECLOG(LOG_DEBUG, 8015 "address family mismatched src %u, dst %u.\n", 8016 sa0->sa_family, da0->sa_family); 8017 goto invaddr; 8018 } 8019 if (sa0->sa_len != da0->sa_len) { 8020 IPSECLOG(LOG_DEBUG, 8021 "address size mismatched src %u, dst %u.\n", 8022 sa0->sa_len, da0->sa_len); 8023 goto invaddr; 8024 } 8025 8026 switch (sa0->sa_family) { 8027 case AF_INET: 8028 if (sa0->sa_len != sizeof(struct sockaddr_in)) { 8029 IPSECLOG(LOG_DEBUG, 8030 "address size mismatched %u != %zu.\n", 8031 sa0->sa_len, sizeof(struct sockaddr_in)); 8032 goto invaddr; 8033 } 8034 break; 8035 case AF_INET6: 8036 if (sa0->sa_len != sizeof(struct sockaddr_in6)) { 8037 IPSECLOG(LOG_DEBUG, 8038 "address size mismatched %u != %zu.\n", 8039 sa0->sa_len, sizeof(struct sockaddr_in6)); 8040 goto invaddr; 8041 } 8042 break; 8043 default: 8044 IPSECLOG(LOG_DEBUG, "unsupported address family %u.\n", 8045 sa0->sa_family); 8046 error = EAFNOSUPPORT; 8047 goto senderror; 8048 } 8049 plen = key_sabits(sa0); 8050 8051 /* check max prefix length */ 8052 if (src0->sadb_address_prefixlen > plen || 8053 dst0->sadb_address_prefixlen > plen) { 8054 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n"); 8055 goto invaddr; 8056 } 8057 8058 /* 8059 * prefixlen == 0 is valid because there can be a case when 8060 * all addresses are matched. 8061 */ 8062 } 8063 8064 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) || 8065 key_api_typesw[msg->sadb_msg_type] == NULL) { 8066 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 8067 error = EINVAL; 8068 goto senderror; 8069 } 8070 8071 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh); 8072 8073 invaddr: 8074 error = EINVAL; 8075 senderror: 8076 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 8077 return key_senderror(so, m, error); 8078 } 8079 8080 static int 8081 key_senderror(struct socket *so, struct mbuf *m, int code) 8082 { 8083 struct sadb_msg *msg; 8084 8085 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 8086 8087 if (so == NULL) { 8088 /* 8089 * This means the request comes from kernel. 8090 * As the request comes from kernel, it is unnecessary to 8091 * send message to userland. Just return errcode directly. 8092 */ 8093 m_freem(m); 8094 return code; 8095 } 8096 8097 msg = mtod(m, struct sadb_msg *); 8098 msg->sadb_msg_errno = code; 8099 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 8100 } 8101 8102 /* 8103 * set the pointer to each header into message buffer. 8104 * m will be freed on error. 8105 * XXX larger-than-MCLBYTES extension? 8106 */ 8107 static int 8108 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 8109 { 8110 struct mbuf *n; 8111 struct sadb_ext *ext; 8112 size_t off, end; 8113 int extlen; 8114 int toff; 8115 8116 KASSERT(m != NULL); 8117 KASSERT(mhp != NULL); 8118 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 8119 8120 /* initialize */ 8121 memset(mhp, 0, sizeof(*mhp)); 8122 8123 mhp->msg = mtod(m, struct sadb_msg *); 8124 mhp->ext[0] = mhp->msg; /*XXX backward compat */ 8125 8126 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 8127 extlen = end; /*just in case extlen is not updated*/ 8128 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 8129 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 8130 if (!n) { 8131 /* m is already freed */ 8132 return ENOBUFS; 8133 } 8134 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 8135 8136 /* set pointer */ 8137 switch (ext->sadb_ext_type) { 8138 case SADB_EXT_SA: 8139 case SADB_EXT_ADDRESS_SRC: 8140 case SADB_EXT_ADDRESS_DST: 8141 case SADB_EXT_ADDRESS_PROXY: 8142 case SADB_EXT_LIFETIME_CURRENT: 8143 case SADB_EXT_LIFETIME_HARD: 8144 case SADB_EXT_LIFETIME_SOFT: 8145 case SADB_EXT_KEY_AUTH: 8146 case SADB_EXT_KEY_ENCRYPT: 8147 case SADB_EXT_IDENTITY_SRC: 8148 case SADB_EXT_IDENTITY_DST: 8149 case SADB_EXT_SENSITIVITY: 8150 case SADB_EXT_PROPOSAL: 8151 case SADB_EXT_SUPPORTED_AUTH: 8152 case SADB_EXT_SUPPORTED_ENCRYPT: 8153 case SADB_EXT_SPIRANGE: 8154 case SADB_X_EXT_POLICY: 8155 case SADB_X_EXT_SA2: 8156 case SADB_X_EXT_NAT_T_TYPE: 8157 case SADB_X_EXT_NAT_T_SPORT: 8158 case SADB_X_EXT_NAT_T_DPORT: 8159 case SADB_X_EXT_NAT_T_OAI: 8160 case SADB_X_EXT_NAT_T_OAR: 8161 case SADB_X_EXT_NAT_T_FRAG: 8162 /* duplicate check */ 8163 /* 8164 * XXX Are there duplication payloads of either 8165 * KEY_AUTH or KEY_ENCRYPT ? 8166 */ 8167 if (mhp->ext[ext->sadb_ext_type] != NULL) { 8168 IPSECLOG(LOG_DEBUG, 8169 "duplicate ext_type %u is passed.\n", 8170 ext->sadb_ext_type); 8171 m_freem(m); 8172 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); 8173 return EINVAL; 8174 } 8175 break; 8176 default: 8177 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n", 8178 ext->sadb_ext_type); 8179 m_freem(m); 8180 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); 8181 return EINVAL; 8182 } 8183 8184 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 8185 8186 if (key_validate_ext(ext, extlen)) { 8187 m_freem(m); 8188 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8189 return EINVAL; 8190 } 8191 8192 n = m_pulldown(m, off, extlen, &toff); 8193 if (!n) { 8194 /* m is already freed */ 8195 return ENOBUFS; 8196 } 8197 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 8198 8199 mhp->ext[ext->sadb_ext_type] = ext; 8200 mhp->extoff[ext->sadb_ext_type] = off; 8201 mhp->extlen[ext->sadb_ext_type] = extlen; 8202 } 8203 8204 if (off != end) { 8205 m_freem(m); 8206 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8207 return EINVAL; 8208 } 8209 8210 return 0; 8211 } 8212 8213 static int 8214 key_validate_ext(const struct sadb_ext *ext, int len) 8215 { 8216 const struct sockaddr *sa; 8217 enum { NONE, ADDR } checktype = NONE; 8218 int baselen = 0; 8219 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8220 8221 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8222 return EINVAL; 8223 8224 /* if it does not match minimum/maximum length, bail */ 8225 if (ext->sadb_ext_type >= __arraycount(minsize) || 8226 ext->sadb_ext_type >= __arraycount(maxsize)) 8227 return EINVAL; 8228 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8229 return EINVAL; 8230 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8231 return EINVAL; 8232 8233 /* more checks based on sadb_ext_type XXX need more */ 8234 switch (ext->sadb_ext_type) { 8235 case SADB_EXT_ADDRESS_SRC: 8236 case SADB_EXT_ADDRESS_DST: 8237 case SADB_EXT_ADDRESS_PROXY: 8238 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8239 checktype = ADDR; 8240 break; 8241 case SADB_EXT_IDENTITY_SRC: 8242 case SADB_EXT_IDENTITY_DST: 8243 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8244 SADB_X_IDENTTYPE_ADDR) { 8245 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8246 checktype = ADDR; 8247 } else 8248 checktype = NONE; 8249 break; 8250 default: 8251 checktype = NONE; 8252 break; 8253 } 8254 8255 switch (checktype) { 8256 case NONE: 8257 break; 8258 case ADDR: 8259 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8260 if (len < baselen + sal) 8261 return EINVAL; 8262 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8263 return EINVAL; 8264 break; 8265 } 8266 8267 return 0; 8268 } 8269 8270 static int 8271 key_do_init(void) 8272 { 8273 int i, error; 8274 8275 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE); 8276 8277 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE); 8278 cv_init(&key_spd.cv_lc, "key_sp_lc"); 8279 key_spd.psz = pserialize_create(); 8280 cv_init(&key_spd.cv_psz, "key_sp_psz"); 8281 key_spd.psz_performing = false; 8282 8283 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE); 8284 cv_init(&key_sad.cv_lc, "key_sa_lc"); 8285 key_sad.psz = pserialize_create(); 8286 cv_init(&key_sad.cv_psz, "key_sa_psz"); 8287 key_sad.psz_performing = false; 8288 8289 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); 8290 8291 callout_init(&key_timehandler_ch, CALLOUT_MPSAFE); 8292 error = workqueue_create(&key_timehandler_wq, "key_timehandler", 8293 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 8294 if (error != 0) 8295 panic("%s: workqueue_create failed (%d)\n", __func__, error); 8296 8297 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8298 PSLIST_INIT(&key_spd.splist[i]); 8299 } 8300 8301 PSLIST_INIT(&key_spd.socksplist); 8302 8303 key_sad.sahlists = hashinit(SAHHASH_NHASH, HASH_PSLIST, true, 8304 &key_sad.sahlistmask); 8305 key_sad.savlut = hashinit(SAVLUT_NHASH, HASH_PSLIST, true, 8306 &key_sad.savlutmask); 8307 8308 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8309 LIST_INIT(&key_misc.reglist[i]); 8310 } 8311 8312 #ifndef IPSEC_NONBLOCK_ACQUIRE 8313 LIST_INIT(&key_misc.acqlist); 8314 #endif 8315 #ifdef notyet 8316 LIST_INIT(&key_misc.spacqlist); 8317 #endif 8318 8319 /* system default */ 8320 ip4_def_policy.policy = IPSEC_POLICY_NONE; 8321 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE; 8322 localcount_init(&ip4_def_policy.localcount); 8323 8324 #ifdef INET6 8325 ip6_def_policy.policy = IPSEC_POLICY_NONE; 8326 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE; 8327 localcount_init(&ip6_def_policy.localcount); 8328 #endif 8329 8330 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 8331 8332 /* initialize key statistics */ 8333 keystat.getspi_count = 1; 8334 8335 aprint_verbose("IPsec: Initialized Security Association Processing.\n"); 8336 8337 return (0); 8338 } 8339 8340 void 8341 key_init(void) 8342 { 8343 static ONCE_DECL(key_init_once); 8344 8345 sysctl_net_keyv2_setup(NULL); 8346 sysctl_net_key_compat_setup(NULL); 8347 8348 RUN_ONCE(&key_init_once, key_do_init); 8349 8350 key_init_so(); 8351 } 8352 8353 /* 8354 * XXX: maybe This function is called after INBOUND IPsec processing. 8355 * 8356 * Special check for tunnel-mode packets. 8357 * We must make some checks for consistency between inner and outer IP header. 8358 * 8359 * xxx more checks to be provided 8360 */ 8361 int 8362 key_checktunnelsanity( 8363 struct secasvar *sav, 8364 u_int family, 8365 void *src, 8366 void *dst 8367 ) 8368 { 8369 8370 /* XXX: check inner IP header */ 8371 8372 return 1; 8373 } 8374 8375 #if 0 8376 #define hostnamelen strlen(hostname) 8377 8378 /* 8379 * Get FQDN for the host. 8380 * If the administrator configured hostname (by hostname(1)) without 8381 * domain name, returns nothing. 8382 */ 8383 static const char * 8384 key_getfqdn(void) 8385 { 8386 int i; 8387 int hasdot; 8388 static char fqdn[MAXHOSTNAMELEN + 1]; 8389 8390 if (!hostnamelen) 8391 return NULL; 8392 8393 /* check if it comes with domain name. */ 8394 hasdot = 0; 8395 for (i = 0; i < hostnamelen; i++) { 8396 if (hostname[i] == '.') 8397 hasdot++; 8398 } 8399 if (!hasdot) 8400 return NULL; 8401 8402 /* NOTE: hostname may not be NUL-terminated. */ 8403 memset(fqdn, 0, sizeof(fqdn)); 8404 memcpy(fqdn, hostname, hostnamelen); 8405 fqdn[hostnamelen] = '\0'; 8406 return fqdn; 8407 } 8408 8409 /* 8410 * get username@FQDN for the host/user. 8411 */ 8412 static const char * 8413 key_getuserfqdn(void) 8414 { 8415 const char *host; 8416 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; 8417 struct proc *p = curproc; 8418 char *q; 8419 8420 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) 8421 return NULL; 8422 if (!(host = key_getfqdn())) 8423 return NULL; 8424 8425 /* NOTE: s_login may not be-NUL terminated. */ 8426 memset(userfqdn, 0, sizeof(userfqdn)); 8427 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); 8428 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ 8429 q = userfqdn + strlen(userfqdn); 8430 *q++ = '@'; 8431 memcpy(q, host, strlen(host)); 8432 q += strlen(host); 8433 *q++ = '\0'; 8434 8435 return userfqdn; 8436 } 8437 #endif 8438 8439 /* record data transfer on SA, and update timestamps */ 8440 void 8441 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8442 { 8443 lifetime_counters_t *counters; 8444 8445 KASSERT(sav != NULL); 8446 KASSERT(sav->lft_c != NULL); 8447 KASSERT(m != NULL); 8448 8449 counters = percpu_getref(sav->lft_c_counters_percpu); 8450 8451 /* 8452 * XXX Currently, there is a difference of bytes size 8453 * between inbound and outbound processing. 8454 */ 8455 (*counters)[LIFETIME_COUNTER_BYTES] += m->m_pkthdr.len; 8456 /* to check bytes lifetime is done in key_timehandler(). */ 8457 8458 /* 8459 * We use the number of packets as the unit of 8460 * sadb_lifetime_allocations. We increment the variable 8461 * whenever {esp,ah}_{in,out}put is called. 8462 */ 8463 (*counters)[LIFETIME_COUNTER_ALLOCATIONS]++; 8464 /* XXX check for expires? */ 8465 8466 percpu_putref(sav->lft_c_counters_percpu); 8467 8468 /* 8469 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 8470 * in seconds. HARD and SOFT lifetime are measured by the time 8471 * difference (again in seconds) from sadb_lifetime_usetime. 8472 * 8473 * usetime 8474 * v expire expire 8475 * -----+-----+--------+---> t 8476 * <--------------> HARD 8477 * <-----> SOFT 8478 */ 8479 sav->lft_c->sadb_lifetime_usetime = time_uptime; 8480 /* XXX check for expires? */ 8481 8482 return; 8483 } 8484 8485 /* dumb version */ 8486 void 8487 key_sa_routechange(struct sockaddr *dst) 8488 { 8489 struct secashead *sah; 8490 int s; 8491 8492 s = pserialize_read_enter(); 8493 SAHLIST_READER_FOREACH(sah) { 8494 struct route *ro; 8495 const struct sockaddr *sa; 8496 8497 key_sah_ref(sah); 8498 pserialize_read_exit(s); 8499 8500 ro = &sah->sa_route; 8501 sa = rtcache_getdst(ro); 8502 if (sa != NULL && dst->sa_len == sa->sa_len && 8503 memcmp(dst, sa, dst->sa_len) == 0) 8504 rtcache_free(ro); 8505 8506 s = pserialize_read_enter(); 8507 key_sah_unref(sah); 8508 } 8509 pserialize_read_exit(s); 8510 8511 return; 8512 } 8513 8514 static void 8515 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 8516 { 8517 struct secasvar *_sav; 8518 8519 ASSERT_SLEEPABLE(); 8520 KASSERT(mutex_owned(&key_sad.lock)); 8521 8522 if (sav->state == state) 8523 return; 8524 8525 key_unlink_sav(sav); 8526 localcount_fini(&sav->localcount); 8527 SAVLIST_ENTRY_DESTROY(sav); 8528 key_init_sav(sav); 8529 8530 sav->state = state; 8531 if (!SADB_SASTATE_USABLE_P(sav)) { 8532 /* We don't need to care about the order */ 8533 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav); 8534 return; 8535 } 8536 /* 8537 * Sort the list by lft_c->sadb_lifetime_addtime 8538 * in ascending order. 8539 */ 8540 SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) { 8541 if (_sav->lft_c->sadb_lifetime_addtime > 8542 sav->lft_c->sadb_lifetime_addtime) { 8543 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav); 8544 break; 8545 } 8546 } 8547 if (_sav == NULL) { 8548 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav); 8549 } 8550 8551 SAVLUT_WRITER_INSERT_HEAD(sav); 8552 8553 key_validate_savlist(sav->sah, state); 8554 } 8555 8556 /* XXX too much? */ 8557 static struct mbuf * 8558 key_alloc_mbuf(int l, int mflag) 8559 { 8560 struct mbuf *m = NULL, *n; 8561 int len, t; 8562 8563 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 8564 8565 len = l; 8566 while (len > 0) { 8567 MGET(n, mflag, MT_DATA); 8568 if (n && len > MLEN) { 8569 MCLGET(n, mflag); 8570 if ((n->m_flags & M_EXT) == 0) { 8571 m_freem(n); 8572 n = NULL; 8573 } 8574 } 8575 if (!n) { 8576 m_freem(m); 8577 return NULL; 8578 } 8579 8580 n->m_next = NULL; 8581 n->m_len = 0; 8582 n->m_len = M_TRAILINGSPACE(n); 8583 /* use the bottom of mbuf, hoping we can prepend afterwards */ 8584 if (n->m_len > len) { 8585 t = (n->m_len - len) & ~(sizeof(long) - 1); 8586 n->m_data += t; 8587 n->m_len = len; 8588 } 8589 8590 len -= n->m_len; 8591 8592 if (m) 8593 m_cat(m, n); 8594 else 8595 m = n; 8596 } 8597 8598 return m; 8599 } 8600 8601 static struct mbuf * 8602 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) 8603 { 8604 struct secashead *sah; 8605 struct secasvar *sav; 8606 u_int16_t proto; 8607 u_int8_t satype; 8608 u_int8_t state; 8609 int cnt; 8610 struct mbuf *m, *n; 8611 8612 KASSERT(mutex_owned(&key_sad.lock)); 8613 8614 /* map satype to proto */ 8615 proto = key_satype2proto(req_satype); 8616 if (proto == 0) { 8617 *errorp = EINVAL; 8618 return (NULL); 8619 } 8620 8621 /* count sav entries to be sent to the userland. */ 8622 cnt = 0; 8623 SAHLIST_WRITER_FOREACH(sah) { 8624 if (req_satype != SADB_SATYPE_UNSPEC && 8625 proto != sah->saidx.proto) 8626 continue; 8627 8628 SASTATE_ANY_FOREACH(state) { 8629 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8630 cnt++; 8631 } 8632 } 8633 } 8634 8635 if (cnt == 0) { 8636 *errorp = ENOENT; 8637 return (NULL); 8638 } 8639 8640 /* send this to the userland, one at a time. */ 8641 m = NULL; 8642 SAHLIST_WRITER_FOREACH(sah) { 8643 if (req_satype != SADB_SATYPE_UNSPEC && 8644 proto != sah->saidx.proto) 8645 continue; 8646 8647 /* map proto to satype */ 8648 satype = key_proto2satype(sah->saidx.proto); 8649 if (satype == 0) { 8650 m_freem(m); 8651 *errorp = EINVAL; 8652 return (NULL); 8653 } 8654 8655 SASTATE_ANY_FOREACH(state) { 8656 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8657 n = key_setdumpsa(sav, SADB_DUMP, satype, 8658 --cnt, pid); 8659 if (!m) 8660 m = n; 8661 else 8662 m_cat(m, n); 8663 } 8664 } 8665 } 8666 8667 if (!m) { 8668 *errorp = EINVAL; 8669 return (NULL); 8670 } 8671 8672 if ((m->m_flags & M_PKTHDR) != 0) { 8673 m->m_pkthdr.len = 0; 8674 for (n = m; n; n = n->m_next) 8675 m->m_pkthdr.len += n->m_len; 8676 } 8677 8678 *errorp = 0; 8679 return (m); 8680 } 8681 8682 static struct mbuf * 8683 key_setspddump(int *errorp, pid_t pid) 8684 { 8685 struct secpolicy *sp; 8686 int cnt; 8687 u_int dir; 8688 struct mbuf *m, *n; 8689 8690 KASSERT(mutex_owned(&key_spd.lock)); 8691 8692 /* search SPD entry and get buffer size. */ 8693 cnt = 0; 8694 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8695 SPLIST_WRITER_FOREACH(sp, dir) { 8696 cnt++; 8697 } 8698 } 8699 8700 if (cnt == 0) { 8701 *errorp = ENOENT; 8702 return (NULL); 8703 } 8704 8705 m = NULL; 8706 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8707 SPLIST_WRITER_FOREACH(sp, dir) { 8708 --cnt; 8709 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 8710 8711 if (!m) 8712 m = n; 8713 else { 8714 m->m_pkthdr.len += n->m_pkthdr.len; 8715 m_cat(m, n); 8716 } 8717 } 8718 } 8719 8720 *errorp = 0; 8721 return (m); 8722 } 8723 8724 int 8725 key_get_used(void) { 8726 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) || 8727 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) || 8728 !SOCKSPLIST_READER_EMPTY(); 8729 } 8730 8731 void 8732 key_update_used(void) 8733 { 8734 switch (ipsec_enabled) { 8735 default: 8736 case 0: 8737 #ifdef notyet 8738 /* XXX: racy */ 8739 ipsec_used = 0; 8740 #endif 8741 break; 8742 case 1: 8743 #ifndef notyet 8744 /* XXX: racy */ 8745 if (!ipsec_used) 8746 #endif 8747 ipsec_used = key_get_used(); 8748 break; 8749 case 2: 8750 ipsec_used = 1; 8751 break; 8752 } 8753 } 8754 8755 static inline void 8756 key_savlut_writer_insert_head(struct secasvar *sav) 8757 { 8758 uint32_t hash_key; 8759 uint32_t hash; 8760 8761 KASSERT(mutex_owned(&key_sad.lock)); 8762 KASSERT(!sav->savlut_added); 8763 8764 hash_key = sav->spi; 8765 8766 hash = key_savluthash(&sav->sah->saidx.dst.sa, 8767 sav->sah->saidx.proto, hash_key, key_sad.savlutmask); 8768 8769 PSLIST_WRITER_INSERT_HEAD(&key_sad.savlut[hash], sav, 8770 pslist_entry_savlut); 8771 sav->savlut_added = true; 8772 } 8773 8774 /* 8775 * Calculate hash using protocol, source address, 8776 * and destination address included in saidx. 8777 */ 8778 static inline uint32_t 8779 key_saidxhash(const struct secasindex *saidx, u_long mask) 8780 { 8781 uint32_t hash32; 8782 const struct sockaddr_in *sin; 8783 const struct sockaddr_in6 *sin6; 8784 8785 hash32 = saidx->proto; 8786 8787 switch (saidx->src.sa.sa_family) { 8788 case AF_INET: 8789 sin = &saidx->src.sin; 8790 hash32 = hash32_buf(&sin->sin_addr, 8791 sizeof(sin->sin_addr), hash32); 8792 sin = &saidx->dst.sin; 8793 hash32 = hash32_buf(&sin->sin_addr, 8794 sizeof(sin->sin_addr), hash32 << 1); 8795 break; 8796 case AF_INET6: 8797 sin6 = &saidx->src.sin6; 8798 hash32 = hash32_buf(&sin6->sin6_addr, 8799 sizeof(sin6->sin6_addr), hash32); 8800 sin6 = &saidx->dst.sin6; 8801 hash32 = hash32_buf(&sin6->sin6_addr, 8802 sizeof(sin6->sin6_addr), hash32 << 1); 8803 break; 8804 default: 8805 hash32 = 0; 8806 break; 8807 } 8808 8809 return hash32 & mask; 8810 } 8811 8812 /* 8813 * Calculate hash using destination address, protocol, 8814 * and spi. Those parameter depend on the search of 8815 * key_lookup_sa(). 8816 */ 8817 static uint32_t 8818 key_savluthash(const struct sockaddr *dst, uint32_t proto, 8819 uint32_t spi, u_long mask) 8820 { 8821 uint32_t hash32; 8822 const struct sockaddr_in *sin; 8823 const struct sockaddr_in6 *sin6; 8824 8825 hash32 = hash32_buf(&proto, sizeof(proto), spi); 8826 8827 switch(dst->sa_family) { 8828 case AF_INET: 8829 sin = satocsin(dst); 8830 hash32 = hash32_buf(&sin->sin_addr, 8831 sizeof(sin->sin_addr), hash32); 8832 break; 8833 case AF_INET6: 8834 sin6 = satocsin6(dst); 8835 hash32 = hash32_buf(&sin6->sin6_addr, 8836 sizeof(sin6->sin6_addr), hash32); 8837 break; 8838 default: 8839 hash32 = 0; 8840 } 8841 8842 return hash32 & mask; 8843 } 8844 8845 static int 8846 sysctl_net_key_dumpsa(SYSCTLFN_ARGS) 8847 { 8848 struct mbuf *m, *n; 8849 int err2 = 0; 8850 char *p, *ep; 8851 size_t len; 8852 int error; 8853 8854 if (newp) 8855 return (EPERM); 8856 if (namelen != 1) 8857 return (EINVAL); 8858 8859 mutex_enter(&key_sad.lock); 8860 m = key_setdump(name[0], &error, l->l_proc->p_pid); 8861 mutex_exit(&key_sad.lock); 8862 if (!m) 8863 return (error); 8864 if (!oldp) 8865 *oldlenp = m->m_pkthdr.len; 8866 else { 8867 p = oldp; 8868 if (*oldlenp < m->m_pkthdr.len) { 8869 err2 = ENOMEM; 8870 ep = p + *oldlenp; 8871 } else { 8872 *oldlenp = m->m_pkthdr.len; 8873 ep = p + m->m_pkthdr.len; 8874 } 8875 for (n = m; n; n = n->m_next) { 8876 len = (ep - p < n->m_len) ? 8877 ep - p : n->m_len; 8878 error = copyout(mtod(n, const void *), p, len); 8879 p += len; 8880 if (error) 8881 break; 8882 } 8883 if (error == 0) 8884 error = err2; 8885 } 8886 m_freem(m); 8887 8888 return (error); 8889 } 8890 8891 static int 8892 sysctl_net_key_dumpsp(SYSCTLFN_ARGS) 8893 { 8894 struct mbuf *m, *n; 8895 int err2 = 0; 8896 char *p, *ep; 8897 size_t len; 8898 int error; 8899 8900 if (newp) 8901 return (EPERM); 8902 if (namelen != 0) 8903 return (EINVAL); 8904 8905 mutex_enter(&key_spd.lock); 8906 m = key_setspddump(&error, l->l_proc->p_pid); 8907 mutex_exit(&key_spd.lock); 8908 if (!m) 8909 return (error); 8910 if (!oldp) 8911 *oldlenp = m->m_pkthdr.len; 8912 else { 8913 p = oldp; 8914 if (*oldlenp < m->m_pkthdr.len) { 8915 err2 = ENOMEM; 8916 ep = p + *oldlenp; 8917 } else { 8918 *oldlenp = m->m_pkthdr.len; 8919 ep = p + m->m_pkthdr.len; 8920 } 8921 for (n = m; n; n = n->m_next) { 8922 len = (ep - p < n->m_len) ? ep - p : n->m_len; 8923 error = copyout(mtod(n, const void *), p, len); 8924 p += len; 8925 if (error) 8926 break; 8927 } 8928 if (error == 0) 8929 error = err2; 8930 } 8931 m_freem(m); 8932 8933 return (error); 8934 } 8935 8936 /* 8937 * Create sysctl tree for native IPSEC key knobs, originally 8938 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. 8939 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; 8940 * and in any case the part of our sysctl namespace used for dumping the 8941 * SPD and SA database *HAS* to be compatible with the KAME sysctl 8942 * namespace, for API reasons. 8943 * 8944 * Pending a consensus on the right way to fix this, add a level of 8945 * indirection in how we number the `native' IPSEC key nodes; 8946 * and (as requested by Andrew Brown) move registration of the 8947 * KAME-compatible names to a separate function. 8948 */ 8949 #if 0 8950 # define IPSEC_PFKEY PF_KEY_V2 8951 # define IPSEC_PFKEY_NAME "keyv2" 8952 #else 8953 # define IPSEC_PFKEY PF_KEY 8954 # define IPSEC_PFKEY_NAME "key" 8955 #endif 8956 8957 static int 8958 sysctl_net_key_stats(SYSCTLFN_ARGS) 8959 { 8960 8961 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); 8962 } 8963 8964 static void 8965 sysctl_net_keyv2_setup(struct sysctllog **clog) 8966 { 8967 8968 sysctl_createv(clog, 0, NULL, NULL, 8969 CTLFLAG_PERMANENT, 8970 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL, 8971 NULL, 0, NULL, 0, 8972 CTL_NET, IPSEC_PFKEY, CTL_EOL); 8973 8974 sysctl_createv(clog, 0, NULL, NULL, 8975 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8976 CTLTYPE_INT, "debug", NULL, 8977 NULL, 0, &key_debug_level, 0, 8978 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); 8979 sysctl_createv(clog, 0, NULL, NULL, 8980 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8981 CTLTYPE_INT, "spi_try", NULL, 8982 NULL, 0, &key_spi_trycnt, 0, 8983 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); 8984 sysctl_createv(clog, 0, NULL, NULL, 8985 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8986 CTLTYPE_INT, "spi_min_value", NULL, 8987 NULL, 0, &key_spi_minval, 0, 8988 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); 8989 sysctl_createv(clog, 0, NULL, NULL, 8990 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8991 CTLTYPE_INT, "spi_max_value", NULL, 8992 NULL, 0, &key_spi_maxval, 0, 8993 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); 8994 sysctl_createv(clog, 0, NULL, NULL, 8995 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8996 CTLTYPE_INT, "random_int", NULL, 8997 NULL, 0, &key_int_random, 0, 8998 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); 8999 sysctl_createv(clog, 0, NULL, NULL, 9000 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9001 CTLTYPE_INT, "larval_lifetime", NULL, 9002 NULL, 0, &key_larval_lifetime, 0, 9003 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); 9004 sysctl_createv(clog, 0, NULL, NULL, 9005 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9006 CTLTYPE_INT, "blockacq_count", NULL, 9007 NULL, 0, &key_blockacq_count, 0, 9008 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); 9009 sysctl_createv(clog, 0, NULL, NULL, 9010 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9011 CTLTYPE_INT, "blockacq_lifetime", NULL, 9012 NULL, 0, &key_blockacq_lifetime, 0, 9013 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); 9014 sysctl_createv(clog, 0, NULL, NULL, 9015 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9016 CTLTYPE_INT, "esp_keymin", NULL, 9017 NULL, 0, &ipsec_esp_keymin, 0, 9018 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); 9019 sysctl_createv(clog, 0, NULL, NULL, 9020 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9021 CTLTYPE_INT, "prefered_oldsa", NULL, 9022 NULL, 0, &key_prefered_oldsa, 0, 9023 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); 9024 sysctl_createv(clog, 0, NULL, NULL, 9025 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9026 CTLTYPE_INT, "esp_auth", NULL, 9027 NULL, 0, &ipsec_esp_auth, 0, 9028 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); 9029 sysctl_createv(clog, 0, NULL, NULL, 9030 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9031 CTLTYPE_INT, "ah_keymin", NULL, 9032 NULL, 0, &ipsec_ah_keymin, 0, 9033 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); 9034 sysctl_createv(clog, 0, NULL, NULL, 9035 CTLFLAG_PERMANENT, 9036 CTLTYPE_STRUCT, "stats", 9037 SYSCTL_DESCR("PF_KEY statistics"), 9038 sysctl_net_key_stats, 0, NULL, 0, 9039 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL); 9040 sysctl_createv(clog, 0, NULL, NULL, 9041 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9042 CTLTYPE_BOOL, "allow_different_idtype", NULL, 9043 NULL, 0, &ipsec_allow_different_idtype, 0, 9044 CTL_NET, IPSEC_PFKEY, KEYCTL_ALLOW_DIFFERENT_IDTYPE, CTL_EOL); 9045 } 9046 9047 /* 9048 * Register sysctl names used by setkey(8). For historical reasons, 9049 * and to share a single API, these names appear under { CTL_NET, PF_KEY } 9050 * for both IPSEC and KAME IPSEC. 9051 */ 9052 static void 9053 sysctl_net_key_compat_setup(struct sysctllog **clog) 9054 { 9055 9056 sysctl_createv(clog, 0, NULL, NULL, 9057 CTLFLAG_PERMANENT, 9058 CTLTYPE_NODE, "key", NULL, 9059 NULL, 0, NULL, 0, 9060 CTL_NET, PF_KEY, CTL_EOL); 9061 9062 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ 9063 sysctl_createv(clog, 0, NULL, NULL, 9064 CTLFLAG_PERMANENT, 9065 CTLTYPE_STRUCT, "dumpsa", NULL, 9066 sysctl_net_key_dumpsa, 0, NULL, 0, 9067 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); 9068 sysctl_createv(clog, 0, NULL, NULL, 9069 CTLFLAG_PERMANENT, 9070 CTLTYPE_STRUCT, "dumpsp", NULL, 9071 sysctl_net_key_dumpsp, 0, NULL, 0, 9072 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); 9073 } 9074