xref: /netbsd-src/sys/kern/subr_kcpuset.c (revision 59e0001f2c76f540e0d2715b1f987bb546a238ec)
1 /*	$NetBSD: subr_kcpuset.c,v 1.20 2023/09/23 18:21:11 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2011, 2023 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Kernel CPU set implementation.
34  *
35  * Interface can be used by kernel subsystems as a unified dynamic CPU
36  * bitset implementation handling many CPUs.  Facility also supports early
37  * use by MD code on boot, as it fixups bitsets on further boot.
38  *
39  * TODO:
40  * - Handle "reverse" bitset on fixup/grow.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.20 2023/09/23 18:21:11 ad Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/types.h>
48 
49 #include <sys/atomic.h>
50 #include <sys/intr.h>
51 #include <sys/sched.h>
52 #include <sys/kcpuset.h>
53 #include <sys/kmem.h>
54 
55 /* Number of CPUs to support. */
56 #define	KC_MAXCPUS		roundup2(MAXCPUS, 32)
57 
58 /*
59  * Structure of dynamic CPU set in the kernel.
60  */
61 struct kcpuset {
62 	uint32_t		bits[0];
63 };
64 
65 typedef struct kcpuset_impl {
66 	/* Reference count. */
67 	u_int			kc_refcnt;
68 	/* Next to free, if non-NULL (used when multiple references). */
69 	struct kcpuset *	kc_next;
70 	/* Actual variable-sized field of bits. */
71 	struct kcpuset		kc_field;
72 } kcpuset_impl_t;
73 
74 #define	KC_BITS_OFF		(offsetof(struct kcpuset_impl, kc_field))
75 #define	KC_GETSTRUCT(b)		((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
76 #define	KC_GETCSTRUCT(b)	((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF))
77 
78 /* Sizes of a single bitset. */
79 #define	KC_SHIFT		5
80 #define	KC_MASK			31
81 
82 /* An array of noted early kcpuset creations and data. */
83 #define	KC_SAVE_NITEMS		8
84 
85 /* Structures for early boot mechanism (must be statically initialised). */
86 static kcpuset_t **		kc_noted_early[KC_SAVE_NITEMS];
87 static uint32_t			kc_bits_early[KC_SAVE_NITEMS];
88 static int			kc_last_idx = 0;
89 static bool			kc_initialised = false;
90 
91 #define	KC_BITSIZE_EARLY	sizeof(kc_bits_early[0])
92 #define	KC_NFIELDS_EARLY	1
93 
94 /*
95  * The size of whole bitset fields and amount of fields.
96  * The whole size must statically initialise for early case.
97  */
98 static size_t			kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
99 static size_t			kc_nfields __read_mostly = KC_NFIELDS_EARLY;
100 static size_t			kc_memsize __read_mostly;
101 
102 static kcpuset_t *		kcpuset_create_raw(bool);
103 
104 /*
105  * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
106  * to dynamically allocated sets.
107  */
108 void
kcpuset_sysinit(void)109 kcpuset_sysinit(void)
110 {
111 	kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
112 	int i, s;
113 
114 	/* Set a kcpuset_t sizes. */
115 	kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
116 	kc_bitsize = sizeof(uint32_t) * kc_nfields;
117 	kc_memsize = sizeof(kcpuset_impl_t) + kc_bitsize;
118 	KASSERT(kc_nfields != 0);
119 	KASSERT(kc_bitsize != 0);
120 
121 	/* First, pre-allocate kcpuset entries. */
122 	for (i = 0; i < kc_last_idx; i++) {
123 		kcp = kcpuset_create_raw(true);
124 		kc_dynamic[i] = kcp;
125 	}
126 
127 	/*
128 	 * Prepare to convert all early noted kcpuset uses to dynamic sets.
129 	 * All processors, except the one we are currently running (primary),
130 	 * must not be spinned yet.  Since MD facilities can use kcpuset,
131 	 * raise the IPL to high.
132 	 */
133 	KASSERT(mp_online == false);
134 
135 	s = splhigh();
136 	for (i = 0; i < kc_last_idx; i++) {
137 		/*
138 		 * Transfer the bits from early static storage to the kcpuset.
139 		 */
140 		KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
141 		memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
142 
143 		/*
144 		 * Store the new pointer, pointing to the allocated kcpuset.
145 		 * Note: we are not in an interrupt context and it is the only
146 		 * CPU running - thus store is safe (e.g. no need for pointer
147 		 * variable to be volatile).
148 		 */
149 		*kc_noted_early[i] = kc_dynamic[i];
150 	}
151 	kc_initialised = true;
152 	kc_last_idx = 0;
153 	splx(s);
154 }
155 
156 /*
157  * kcpuset_early_ptr: note an early boot use by saving the pointer and
158  * returning a pointer to a static, temporary bit field.
159  */
160 static kcpuset_t *
kcpuset_early_ptr(kcpuset_t ** kcptr)161 kcpuset_early_ptr(kcpuset_t **kcptr)
162 {
163 	kcpuset_t *kcp;
164 	int s;
165 
166 	s = splhigh();
167 	if (kc_last_idx < KC_SAVE_NITEMS) {
168 		/*
169 		 * Save the pointer, return pointer to static early field.
170 		 * Need to zero it out.
171 		 */
172 		kc_noted_early[kc_last_idx] = kcptr;
173 		kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
174 		kc_last_idx++;
175 		memset(kcp, 0, KC_BITSIZE_EARLY);
176 		KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
177 	} else {
178 		panic("kcpuset(9): all early-use entries exhausted; "
179 		    "increase KC_SAVE_NITEMS\n");
180 	}
181 	splx(s);
182 
183 	return kcp;
184 }
185 
186 /*
187  * Routines to create or destroy the CPU set.
188  * Early boot case is handled.
189  */
190 
191 static kcpuset_t *
kcpuset_create_raw(bool zero)192 kcpuset_create_raw(bool zero)
193 {
194 	kcpuset_impl_t *kc;
195 
196 	kc = kmem_alloc(kc_memsize, KM_SLEEP);
197 	kc->kc_refcnt = 1;
198 	kc->kc_next = NULL;
199 
200 	if (zero) {
201 		memset(&kc->kc_field, 0, kc_bitsize);
202 	}
203 
204 	/* Note: return pointer to the actual field of bits. */
205 	KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
206 	return &kc->kc_field;
207 }
208 
209 void
kcpuset_create(kcpuset_t ** retkcp,bool zero)210 kcpuset_create(kcpuset_t **retkcp, bool zero)
211 {
212 	if (__predict_false(!kc_initialised)) {
213 		/* Early boot use - special case. */
214 		*retkcp = kcpuset_early_ptr(retkcp);
215 		return;
216 	}
217 	*retkcp = kcpuset_create_raw(zero);
218 }
219 
220 void
kcpuset_clone(kcpuset_t ** retkcp,const kcpuset_t * kcp)221 kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp)
222 {
223 	kcpuset_create(retkcp, false);
224 	memcpy(*retkcp, kcp, kc_bitsize);
225 }
226 
227 void
kcpuset_destroy(kcpuset_t * kcp)228 kcpuset_destroy(kcpuset_t *kcp)
229 {
230 	const size_t size = kc_memsize;
231 	kcpuset_impl_t *kc;
232 
233 	KASSERT(kc_initialised);
234 	KASSERT(kcp != NULL);
235 
236 	do {
237 		kc = KC_GETSTRUCT(kcp);
238 		kcp = kc->kc_next;
239 		kmem_free(kc, size);
240 	} while (kcp);
241 }
242 
243 /*
244  * Routines to reference/unreference the CPU set.
245  * Note: early boot case is not supported by these routines.
246  */
247 
248 void
kcpuset_use(kcpuset_t * kcp)249 kcpuset_use(kcpuset_t *kcp)
250 {
251 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
252 
253 	KASSERT(kc_initialised);
254 	atomic_inc_uint(&kc->kc_refcnt);
255 }
256 
257 void
kcpuset_unuse(kcpuset_t * kcp,kcpuset_t ** lst)258 kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
259 {
260 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
261 
262 	KASSERT(kc_initialised);
263 	KASSERT(kc->kc_refcnt > 0);
264 
265 	membar_release();
266 	if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
267 		return;
268 	}
269 	membar_acquire();
270 	KASSERT(kc->kc_next == NULL);
271 	if (lst == NULL) {
272 		kcpuset_destroy(kcp);
273 		return;
274 	}
275 	kc->kc_next = *lst;
276 	*lst = kcp;
277 }
278 
279 /*
280  * Routines to transfer the CPU set from / to userspace.
281  * Note: early boot case is not supported by these routines.
282  */
283 
284 int
kcpuset_copyin(const cpuset_t * ucp,kcpuset_t * kcp,size_t len)285 kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
286 {
287 	kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
288 
289 	KASSERT(kc_initialised);
290 	KASSERT(kc->kc_refcnt > 0);
291 	KASSERT(kc->kc_next == NULL);
292 
293 	if (len > kc_bitsize) { /* XXX */
294 		return EINVAL;
295 	}
296 	return copyin(ucp, kcp, len);
297 }
298 
299 int
kcpuset_copyout(kcpuset_t * kcp,cpuset_t * ucp,size_t len)300 kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
301 {
302 	kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
303 
304 	KASSERT(kc_initialised);
305 	KASSERT(kc->kc_refcnt > 0);
306 	KASSERT(kc->kc_next == NULL);
307 
308 	if (len > kc_bitsize) { /* XXX */
309 		return EINVAL;
310 	}
311 	return copyout(kcp, ucp, len);
312 }
313 
314 void
kcpuset_export_u32(const kcpuset_t * kcp,uint32_t * bitfield,size_t len)315 kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
316 {
317 	size_t rlen = MIN(kc_bitsize, len);
318 
319 	KASSERT(kcp != NULL);
320 	memcpy(bitfield, kcp->bits, rlen);
321 }
322 
323 /*
324  * Routines to change bit field - zero, fill, copy, set, unset, etc.
325  */
326 
327 void
kcpuset_zero(kcpuset_t * kcp)328 kcpuset_zero(kcpuset_t *kcp)
329 {
330 
331 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
332 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
333 	memset(kcp, 0, kc_bitsize);
334 }
335 
336 void
kcpuset_fill(kcpuset_t * kcp)337 kcpuset_fill(kcpuset_t *kcp)
338 {
339 
340 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
341 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
342 	memset(kcp, ~0, kc_bitsize);
343 }
344 
345 void
kcpuset_copy(kcpuset_t * dkcp,const kcpuset_t * skcp)346 kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp)
347 {
348 
349 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
350 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
351 	memcpy(dkcp, skcp, kc_bitsize);
352 }
353 
354 void
kcpuset_set(kcpuset_t * kcp,cpuid_t i)355 kcpuset_set(kcpuset_t *kcp, cpuid_t i)
356 {
357 	const size_t j = i >> KC_SHIFT;
358 
359 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
360 	KASSERT(j < kc_nfields);
361 
362 	kcp->bits[j] |= __BIT(i & KC_MASK);
363 }
364 
365 void
kcpuset_clear(kcpuset_t * kcp,cpuid_t i)366 kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
367 {
368 	const size_t j = i >> KC_SHIFT;
369 
370 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
371 	KASSERT(j < kc_nfields);
372 
373 	kcp->bits[j] &= ~(__BIT(i & KC_MASK));
374 }
375 
376 bool
kcpuset_isset(const kcpuset_t * kcp,cpuid_t i)377 kcpuset_isset(const kcpuset_t *kcp, cpuid_t i)
378 {
379 	const size_t j = i >> KC_SHIFT;
380 
381 	KASSERT(kcp != NULL);
382 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0);
383 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
384 	KASSERT(j < kc_nfields);
385 
386 	return ((__BIT(i & KC_MASK)) & kcp->bits[j]) != 0;
387 }
388 
389 bool
kcpuset_isotherset(const kcpuset_t * kcp,cpuid_t i)390 kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i)
391 {
392 	const size_t j2 = i >> KC_SHIFT;
393 	const uint32_t mask = ~(__BIT(i & KC_MASK));
394 
395 	for (size_t j = 0; j < kc_nfields; j++) {
396 		const uint32_t bits = kcp->bits[j];
397 		if (bits && (j != j2 || (bits & mask) != 0)) {
398 			return true;
399 		}
400 	}
401 	return false;
402 }
403 
404 bool
kcpuset_iszero(const kcpuset_t * kcp)405 kcpuset_iszero(const kcpuset_t *kcp)
406 {
407 
408 	for (size_t j = 0; j < kc_nfields; j++) {
409 		if (kcp->bits[j] != 0) {
410 			return false;
411 		}
412 	}
413 	return true;
414 }
415 
416 bool
kcpuset_match(const kcpuset_t * kcp1,const kcpuset_t * kcp2)417 kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
418 {
419 
420 	return memcmp(kcp1, kcp2, kc_bitsize) == 0;
421 }
422 
423 bool
kcpuset_intersecting_p(const kcpuset_t * kcp1,const kcpuset_t * kcp2)424 kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
425 {
426 
427 	for (size_t j = 0; j < kc_nfields; j++) {
428 		if (kcp1->bits[j] & kcp2->bits[j])
429 			return true;
430 	}
431 	return false;
432 }
433 
434 cpuid_t
kcpuset_ffs(const kcpuset_t * kcp)435 kcpuset_ffs(const kcpuset_t *kcp)
436 {
437 
438 	for (size_t j = 0; j < kc_nfields; j++) {
439 		if (kcp->bits[j])
440 			return 32 * j + ffs(kcp->bits[j]);
441 	}
442 	return 0;
443 }
444 
445 cpuid_t
kcpuset_ffs_intersecting(const kcpuset_t * kcp1,const kcpuset_t * kcp2)446 kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
447 {
448 
449 	for (size_t j = 0; j < kc_nfields; j++) {
450 		uint32_t bits = kcp1->bits[j] & kcp2->bits[j];
451 		if (bits)
452 			return 32 * j + ffs(bits);
453 	}
454 	return 0;
455 }
456 
457 void
kcpuset_merge(kcpuset_t * kcp1,const kcpuset_t * kcp2)458 kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
459 {
460 
461 	for (size_t j = 0; j < kc_nfields; j++) {
462 		kcp1->bits[j] |= kcp2->bits[j];
463 	}
464 }
465 
466 void
kcpuset_intersect(kcpuset_t * kcp1,const kcpuset_t * kcp2)467 kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
468 {
469 
470 	for (size_t j = 0; j < kc_nfields; j++) {
471 		kcp1->bits[j] &= kcp2->bits[j];
472 	}
473 }
474 
475 void
kcpuset_remove(kcpuset_t * kcp1,const kcpuset_t * kcp2)476 kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
477 {
478 
479 	for (size_t j = 0; j < kc_nfields; j++) {
480 		kcp1->bits[j] &= ~kcp2->bits[j];
481 	}
482 }
483 
484 int
kcpuset_countset(const kcpuset_t * kcp)485 kcpuset_countset(const kcpuset_t *kcp)
486 {
487 	int count = 0;
488 
489 	for (size_t j = 0; j < kc_nfields; j++) {
490 		count += popcount32(kcp->bits[j]);
491 	}
492 	return count;
493 }
494 
495 /*
496  * Routines to set/clear the flags atomically.
497  */
498 
499 void
kcpuset_atomic_set(kcpuset_t * kcp,cpuid_t i)500 kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
501 {
502 	const size_t j = i >> KC_SHIFT;
503 
504 	KASSERT(j < kc_nfields);
505 	atomic_or_32(&kcp->bits[j], __BIT(i & KC_MASK));
506 }
507 
508 void
kcpuset_atomic_clear(kcpuset_t * kcp,cpuid_t i)509 kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
510 {
511 	const size_t j = i >> KC_SHIFT;
512 
513 	KASSERT(j < kc_nfields);
514 	atomic_and_32(&kcp->bits[j], ~(__BIT(i & KC_MASK)));
515 }
516 
517 void
kcpuset_atomicly_intersect(kcpuset_t * kcp1,const kcpuset_t * kcp2)518 kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
519 {
520 
521 	for (size_t j = 0; j < kc_nfields; j++) {
522 		if (kcp2->bits[j])
523 			atomic_and_32(&kcp1->bits[j], kcp2->bits[j]);
524 	}
525 }
526 
527 void
kcpuset_atomicly_merge(kcpuset_t * kcp1,const kcpuset_t * kcp2)528 kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
529 {
530 
531 	for (size_t j = 0; j < kc_nfields; j++) {
532 		if (kcp2->bits[j])
533 			atomic_or_32(&kcp1->bits[j], kcp2->bits[j]);
534 	}
535 }
536 
537 void
kcpuset_atomicly_remove(kcpuset_t * kcp1,const kcpuset_t * kcp2)538 kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
539 {
540 
541 	for (size_t j = 0; j < kc_nfields; j++) {
542 		if (kcp2->bits[j])
543 			atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]);
544 	}
545 }
546