1 // Copyright 2005, Google Inc. 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30 // The Google C++ Testing and Mocking Framework (Google Test) 31 // 32 // This header file declares functions and macros used internally by 33 // Google Test. They are subject to change without notice. 34 35 // IWYU pragma: private, include "gtest/gtest.h" 36 // IWYU pragma: friend gtest/.* 37 // IWYU pragma: friend gmock/.* 38 39 #ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ 40 #define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ 41 42 #include "gtest/internal/gtest-port.h" 43 44 #ifdef GTEST_OS_LINUX 45 #include <stdlib.h> 46 #include <sys/types.h> 47 #include <sys/wait.h> 48 #include <unistd.h> 49 #endif // GTEST_OS_LINUX 50 51 #if GTEST_HAS_EXCEPTIONS 52 #include <stdexcept> 53 #endif 54 55 #include <ctype.h> 56 #include <float.h> 57 #include <string.h> 58 59 #include <cstdint> 60 #include <functional> 61 #include <limits> 62 #include <map> 63 #include <set> 64 #include <string> 65 #include <type_traits> 66 #include <utility> 67 #include <vector> 68 69 #include "gtest/gtest-message.h" 70 #include "gtest/internal/gtest-filepath.h" 71 #include "gtest/internal/gtest-string.h" 72 #include "gtest/internal/gtest-type-util.h" 73 74 // Due to C++ preprocessor weirdness, we need double indirection to 75 // concatenate two tokens when one of them is __LINE__. Writing 76 // 77 // foo ## __LINE__ 78 // 79 // will result in the token foo__LINE__, instead of foo followed by 80 // the current line number. For more details, see 81 // https://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 82 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) 83 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar 84 85 // Stringifies its argument. 86 // Work around a bug in visual studio which doesn't accept code like this: 87 // 88 // #define GTEST_STRINGIFY_(name) #name 89 // #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ... 90 // MACRO(, x, y) 91 // 92 // Complaining about the argument to GTEST_STRINGIFY_ being empty. 93 // This is allowed by the spec. 94 #define GTEST_STRINGIFY_HELPER_(name, ...) #name 95 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, ) 96 97 namespace proto2 { 98 class MessageLite; 99 } 100 101 namespace testing { 102 103 // Forward declarations. 104 105 class AssertionResult; // Result of an assertion. 106 class Message; // Represents a failure message. 107 class Test; // Represents a test. 108 class TestInfo; // Information about a test. 109 class TestPartResult; // Result of a test part. 110 class UnitTest; // A collection of test suites. 111 112 template <typename T> 113 ::std::string PrintToString(const T& value); 114 115 namespace internal { 116 117 struct TraceInfo; // Information about a trace point. 118 class TestInfoImpl; // Opaque implementation of TestInfo 119 class UnitTestImpl; // Opaque implementation of UnitTest 120 121 // The text used in failure messages to indicate the start of the 122 // stack trace. 123 GTEST_API_ extern const char kStackTraceMarker[]; 124 125 // An IgnoredValue object can be implicitly constructed from ANY value. 126 class IgnoredValue { 127 struct Sink {}; 128 129 public: 130 // This constructor template allows any value to be implicitly 131 // converted to IgnoredValue. The object has no data member and 132 // doesn't try to remember anything about the argument. We 133 // deliberately omit the 'explicit' keyword in order to allow the 134 // conversion to be implicit. 135 // Disable the conversion if T already has a magical conversion operator. 136 // Otherwise we get ambiguity. 137 template <typename T, 138 typename std::enable_if<!std::is_convertible<T, Sink>::value, 139 int>::type = 0> 140 IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit) 141 }; 142 143 // Appends the user-supplied message to the Google-Test-generated message. 144 GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg, 145 const Message& user_msg); 146 147 #if GTEST_HAS_EXCEPTIONS 148 149 GTEST_DISABLE_MSC_WARNINGS_PUSH_( 150 4275 /* an exported class was derived from a class that was not exported */) 151 152 // This exception is thrown by (and only by) a failed Google Test 153 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions 154 // are enabled). We derive it from std::runtime_error, which is for 155 // errors presumably detectable only at run time. Since 156 // std::runtime_error inherits from std::exception, many testing 157 // frameworks know how to extract and print the message inside it. 158 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error { 159 public: 160 explicit GoogleTestFailureException(const TestPartResult& failure); 161 }; 162 163 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275 164 165 #endif // GTEST_HAS_EXCEPTIONS 166 167 namespace edit_distance { 168 // Returns the optimal edits to go from 'left' to 'right'. 169 // All edits cost the same, with replace having lower priority than 170 // add/remove. 171 // Simple implementation of the Wagner-Fischer algorithm. 172 // See https://en.wikipedia.org/wiki/Wagner-Fischer_algorithm 173 enum EditType { kMatch, kAdd, kRemove, kReplace }; 174 GTEST_API_ std::vector<EditType> CalculateOptimalEdits( 175 const std::vector<size_t>& left, const std::vector<size_t>& right); 176 177 // Same as above, but the input is represented as strings. 178 GTEST_API_ std::vector<EditType> CalculateOptimalEdits( 179 const std::vector<std::string>& left, 180 const std::vector<std::string>& right); 181 182 // Create a diff of the input strings in Unified diff format. 183 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left, 184 const std::vector<std::string>& right, 185 size_t context = 2); 186 187 } // namespace edit_distance 188 189 // Constructs and returns the message for an equality assertion 190 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. 191 // 192 // The first four parameters are the expressions used in the assertion 193 // and their values, as strings. For example, for ASSERT_EQ(foo, bar) 194 // where foo is 5 and bar is 6, we have: 195 // 196 // expected_expression: "foo" 197 // actual_expression: "bar" 198 // expected_value: "5" 199 // actual_value: "6" 200 // 201 // The ignoring_case parameter is true if and only if the assertion is a 202 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will 203 // be inserted into the message. 204 GTEST_API_ AssertionResult EqFailure(const char* expected_expression, 205 const char* actual_expression, 206 const std::string& expected_value, 207 const std::string& actual_value, 208 bool ignoring_case); 209 210 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. 211 GTEST_API_ std::string GetBoolAssertionFailureMessage( 212 const AssertionResult& assertion_result, const char* expression_text, 213 const char* actual_predicate_value, const char* expected_predicate_value); 214 215 // This template class represents an IEEE floating-point number 216 // (either single-precision or double-precision, depending on the 217 // template parameters). 218 // 219 // The purpose of this class is to do more sophisticated number 220 // comparison. (Due to round-off error, etc, it's very unlikely that 221 // two floating-points will be equal exactly. Hence a naive 222 // comparison by the == operation often doesn't work.) 223 // 224 // Format of IEEE floating-point: 225 // 226 // The most-significant bit being the leftmost, an IEEE 227 // floating-point looks like 228 // 229 // sign_bit exponent_bits fraction_bits 230 // 231 // Here, sign_bit is a single bit that designates the sign of the 232 // number. 233 // 234 // For float, there are 8 exponent bits and 23 fraction bits. 235 // 236 // For double, there are 11 exponent bits and 52 fraction bits. 237 // 238 // More details can be found at 239 // https://en.wikipedia.org/wiki/IEEE_floating-point_standard. 240 // 241 // Template parameter: 242 // 243 // RawType: the raw floating-point type (either float or double) 244 template <typename RawType> 245 class FloatingPoint { 246 public: 247 // Defines the unsigned integer type that has the same size as the 248 // floating point number. 249 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; 250 251 // Constants. 252 253 // # of bits in a number. 254 static const size_t kBitCount = 8 * sizeof(RawType); 255 256 // # of fraction bits in a number. 257 static const size_t kFractionBitCount = 258 std::numeric_limits<RawType>::digits - 1; 259 260 // # of exponent bits in a number. 261 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; 262 263 // The mask for the sign bit. 264 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); 265 266 // The mask for the fraction bits. 267 static const Bits kFractionBitMask = ~static_cast<Bits>(0) >> 268 (kExponentBitCount + 1); 269 270 // The mask for the exponent bits. 271 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); 272 273 // How many ULP's (Units in the Last Place) we want to tolerate when 274 // comparing two numbers. The larger the value, the more error we 275 // allow. A 0 value means that two numbers must be exactly the same 276 // to be considered equal. 277 // 278 // The maximum error of a single floating-point operation is 0.5 279 // units in the last place. On Intel CPU's, all floating-point 280 // calculations are done with 80-bit precision, while double has 64 281 // bits. Therefore, 4 should be enough for ordinary use. 282 // 283 // See the following article for more details on ULP: 284 // https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ 285 static const uint32_t kMaxUlps = 4; 286 287 // Constructs a FloatingPoint from a raw floating-point number. 288 // 289 // On an Intel CPU, passing a non-normalized NAN (Not a Number) 290 // around may change its bits, although the new value is guaranteed 291 // to be also a NAN. Therefore, don't expect this constructor to 292 // preserve the bits in x when x is a NAN. 293 explicit FloatingPoint(const RawType& x) { u_.value_ = x; } 294 295 // Static methods 296 297 // Reinterprets a bit pattern as a floating-point number. 298 // 299 // This function is needed to test the AlmostEquals() method. 300 static RawType ReinterpretBits(const Bits bits) { 301 FloatingPoint fp(0); 302 fp.u_.bits_ = bits; 303 return fp.u_.value_; 304 } 305 306 // Returns the floating-point number that represent positive infinity. 307 static RawType Infinity() { return ReinterpretBits(kExponentBitMask); } 308 309 // Non-static methods 310 311 // Returns the bits that represents this number. 312 const Bits& bits() const { return u_.bits_; } 313 314 // Returns the exponent bits of this number. 315 Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } 316 317 // Returns the fraction bits of this number. 318 Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } 319 320 // Returns the sign bit of this number. 321 Bits sign_bit() const { return kSignBitMask & u_.bits_; } 322 323 // Returns true if and only if this is NAN (not a number). 324 bool is_nan() const { 325 // It's a NAN if the exponent bits are all ones and the fraction 326 // bits are not entirely zeros. 327 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); 328 } 329 330 // Returns true if and only if this number is at most kMaxUlps ULP's away 331 // from rhs. In particular, this function: 332 // 333 // - returns false if either number is (or both are) NAN. 334 // - treats really large numbers as almost equal to infinity. 335 // - thinks +0.0 and -0.0 are 0 DLP's apart. 336 bool AlmostEquals(const FloatingPoint& rhs) const { 337 // The IEEE standard says that any comparison operation involving 338 // a NAN must return false. 339 if (is_nan() || rhs.is_nan()) return false; 340 341 return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <= 342 kMaxUlps; 343 } 344 345 private: 346 // The data type used to store the actual floating-point number. 347 union FloatingPointUnion { 348 RawType value_; // The raw floating-point number. 349 Bits bits_; // The bits that represent the number. 350 }; 351 352 // Converts an integer from the sign-and-magnitude representation to 353 // the biased representation. More precisely, let N be 2 to the 354 // power of (kBitCount - 1), an integer x is represented by the 355 // unsigned number x + N. 356 // 357 // For instance, 358 // 359 // -N + 1 (the most negative number representable using 360 // sign-and-magnitude) is represented by 1; 361 // 0 is represented by N; and 362 // N - 1 (the biggest number representable using 363 // sign-and-magnitude) is represented by 2N - 1. 364 // 365 // Read https://en.wikipedia.org/wiki/Signed_number_representations 366 // for more details on signed number representations. 367 static Bits SignAndMagnitudeToBiased(const Bits& sam) { 368 if (kSignBitMask & sam) { 369 // sam represents a negative number. 370 return ~sam + 1; 371 } else { 372 // sam represents a positive number. 373 return kSignBitMask | sam; 374 } 375 } 376 377 // Given two numbers in the sign-and-magnitude representation, 378 // returns the distance between them as an unsigned number. 379 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1, 380 const Bits& sam2) { 381 const Bits biased1 = SignAndMagnitudeToBiased(sam1); 382 const Bits biased2 = SignAndMagnitudeToBiased(sam2); 383 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); 384 } 385 386 FloatingPointUnion u_; 387 }; 388 389 // Typedefs the instances of the FloatingPoint template class that we 390 // care to use. 391 typedef FloatingPoint<float> Float; 392 typedef FloatingPoint<double> Double; 393 394 // In order to catch the mistake of putting tests that use different 395 // test fixture classes in the same test suite, we need to assign 396 // unique IDs to fixture classes and compare them. The TypeId type is 397 // used to hold such IDs. The user should treat TypeId as an opaque 398 // type: the only operation allowed on TypeId values is to compare 399 // them for equality using the == operator. 400 typedef const void* TypeId; 401 402 template <typename T> 403 class TypeIdHelper { 404 public: 405 // dummy_ must not have a const type. Otherwise an overly eager 406 // compiler (e.g. MSVC 7.1 & 8.0) may try to merge 407 // TypeIdHelper<T>::dummy_ for different Ts as an "optimization". 408 static bool dummy_; 409 }; 410 411 template <typename T> 412 bool TypeIdHelper<T>::dummy_ = false; 413 414 // GetTypeId<T>() returns the ID of type T. Different values will be 415 // returned for different types. Calling the function twice with the 416 // same type argument is guaranteed to return the same ID. 417 template <typename T> 418 TypeId GetTypeId() { 419 // The compiler is required to allocate a different 420 // TypeIdHelper<T>::dummy_ variable for each T used to instantiate 421 // the template. Therefore, the address of dummy_ is guaranteed to 422 // be unique. 423 return &(TypeIdHelper<T>::dummy_); 424 } 425 426 // Returns the type ID of ::testing::Test. Always call this instead 427 // of GetTypeId< ::testing::Test>() to get the type ID of 428 // ::testing::Test, as the latter may give the wrong result due to a 429 // suspected linker bug when compiling Google Test as a Mac OS X 430 // framework. 431 GTEST_API_ TypeId GetTestTypeId(); 432 433 // Defines the abstract factory interface that creates instances 434 // of a Test object. 435 class TestFactoryBase { 436 public: 437 virtual ~TestFactoryBase() = default; 438 439 // Creates a test instance to run. The instance is both created and destroyed 440 // within TestInfoImpl::Run() 441 virtual Test* CreateTest() = 0; 442 443 protected: 444 TestFactoryBase() {} 445 446 private: 447 TestFactoryBase(const TestFactoryBase&) = delete; 448 TestFactoryBase& operator=(const TestFactoryBase&) = delete; 449 }; 450 451 // This class provides implementation of TestFactoryBase interface. 452 // It is used in TEST and TEST_F macros. 453 template <class TestClass> 454 class TestFactoryImpl : public TestFactoryBase { 455 public: 456 Test* CreateTest() override { return new TestClass; } 457 }; 458 459 #ifdef GTEST_OS_WINDOWS 460 461 // Predicate-formatters for implementing the HRESULT checking macros 462 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} 463 // We pass a long instead of HRESULT to avoid causing an 464 // include dependency for the HRESULT type. 465 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, 466 long hr); // NOLINT 467 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, 468 long hr); // NOLINT 469 470 #endif // GTEST_OS_WINDOWS 471 472 // Types of SetUpTestSuite() and TearDownTestSuite() functions. 473 using SetUpTestSuiteFunc = void (*)(); 474 using TearDownTestSuiteFunc = void (*)(); 475 476 struct CodeLocation { 477 CodeLocation(std::string a_file, int a_line) 478 : file(std::move(a_file)), line(a_line) {} 479 480 std::string file; 481 int line; 482 }; 483 484 // Helper to identify which setup function for TestCase / TestSuite to call. 485 // Only one function is allowed, either TestCase or TestSute but not both. 486 487 // Utility functions to help SuiteApiResolver 488 using SetUpTearDownSuiteFuncType = void (*)(); 489 490 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull( 491 SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) { 492 return a == def ? nullptr : a; 493 } 494 495 template <typename T> 496 // Note that SuiteApiResolver inherits from T because 497 // SetUpTestSuite()/TearDownTestSuite() could be protected. This way 498 // SuiteApiResolver can access them. 499 struct SuiteApiResolver : T { 500 // testing::Test is only forward declared at this point. So we make it a 501 // dependent class for the compiler to be OK with it. 502 using Test = 503 typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type; 504 505 static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename, 506 int line_num) { 507 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ 508 SetUpTearDownSuiteFuncType test_case_fp = 509 GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase); 510 SetUpTearDownSuiteFuncType test_suite_fp = 511 GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite); 512 513 GTEST_CHECK_(!test_case_fp || !test_suite_fp) 514 << "Test can not provide both SetUpTestSuite and SetUpTestCase, please " 515 "make sure there is only one present at " 516 << filename << ":" << line_num; 517 518 return test_case_fp != nullptr ? test_case_fp : test_suite_fp; 519 #else 520 (void)(filename); 521 (void)(line_num); 522 return &T::SetUpTestSuite; 523 #endif 524 } 525 526 static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename, 527 int line_num) { 528 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ 529 SetUpTearDownSuiteFuncType test_case_fp = 530 GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase); 531 SetUpTearDownSuiteFuncType test_suite_fp = 532 GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite); 533 534 GTEST_CHECK_(!test_case_fp || !test_suite_fp) 535 << "Test can not provide both TearDownTestSuite and TearDownTestCase," 536 " please make sure there is only one present at" 537 << filename << ":" << line_num; 538 539 return test_case_fp != nullptr ? test_case_fp : test_suite_fp; 540 #else 541 (void)(filename); 542 (void)(line_num); 543 return &T::TearDownTestSuite; 544 #endif 545 } 546 }; 547 548 // Creates a new TestInfo object and registers it with Google Test; 549 // returns the created object. 550 // 551 // Arguments: 552 // 553 // test_suite_name: name of the test suite 554 // name: name of the test 555 // type_param: the name of the test's type parameter, or NULL if 556 // this is not a typed or a type-parameterized test. 557 // value_param: text representation of the test's value parameter, 558 // or NULL if this is not a value-parameterized test. 559 // code_location: code location where the test is defined 560 // fixture_class_id: ID of the test fixture class 561 // set_up_tc: pointer to the function that sets up the test suite 562 // tear_down_tc: pointer to the function that tears down the test suite 563 // factory: pointer to the factory that creates a test object. 564 // The newly created TestInfo instance will assume 565 // ownership of the factory object. 566 GTEST_API_ TestInfo* MakeAndRegisterTestInfo( 567 std::string test_suite_name, const char* name, const char* type_param, 568 const char* value_param, CodeLocation code_location, 569 TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc, 570 TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory); 571 572 // If *pstr starts with the given prefix, modifies *pstr to be right 573 // past the prefix and returns true; otherwise leaves *pstr unchanged 574 // and returns false. None of pstr, *pstr, and prefix can be NULL. 575 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); 576 577 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ 578 /* class A needs to have dll-interface to be used by clients of class B */) 579 580 // State of the definition of a type-parameterized test suite. 581 class GTEST_API_ TypedTestSuitePState { 582 public: 583 TypedTestSuitePState() : registered_(false) {} 584 585 // Adds the given test name to defined_test_names_ and return true 586 // if the test suite hasn't been registered; otherwise aborts the 587 // program. 588 bool AddTestName(const char* file, int line, const char* case_name, 589 const char* test_name) { 590 if (registered_) { 591 fprintf(stderr, 592 "%s Test %s must be defined before " 593 "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n", 594 FormatFileLocation(file, line).c_str(), test_name, case_name); 595 fflush(stderr); 596 posix::Abort(); 597 } 598 registered_tests_.emplace(test_name, CodeLocation(file, line)); 599 return true; 600 } 601 602 bool TestExists(const std::string& test_name) const { 603 return registered_tests_.count(test_name) > 0; 604 } 605 606 const CodeLocation& GetCodeLocation(const std::string& test_name) const { 607 RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name); 608 GTEST_CHECK_(it != registered_tests_.end()); 609 return it->second; 610 } 611 612 // Verifies that registered_tests match the test names in 613 // defined_test_names_; returns registered_tests if successful, or 614 // aborts the program otherwise. 615 const char* VerifyRegisteredTestNames(const char* test_suite_name, 616 const char* file, int line, 617 const char* registered_tests); 618 619 private: 620 typedef ::std::map<std::string, CodeLocation, std::less<>> RegisteredTestsMap; 621 622 bool registered_; 623 RegisteredTestsMap registered_tests_; 624 }; 625 626 // Legacy API is deprecated but still available 627 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ 628 using TypedTestCasePState = TypedTestSuitePState; 629 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ 630 631 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 632 633 // Skips to the first non-space char after the first comma in 'str'; 634 // returns NULL if no comma is found in 'str'. 635 inline const char* SkipComma(const char* str) { 636 const char* comma = strchr(str, ','); 637 if (comma == nullptr) { 638 return nullptr; 639 } 640 while (IsSpace(*(++comma))) { 641 } 642 return comma; 643 } 644 645 // Returns the prefix of 'str' before the first comma in it; returns 646 // the entire string if it contains no comma. 647 inline std::string GetPrefixUntilComma(const char* str) { 648 const char* comma = strchr(str, ','); 649 return comma == nullptr ? str : std::string(str, comma); 650 } 651 652 // Splits a given string on a given delimiter, populating a given 653 // vector with the fields. 654 void SplitString(const ::std::string& str, char delimiter, 655 ::std::vector<::std::string>* dest); 656 657 // The default argument to the template below for the case when the user does 658 // not provide a name generator. 659 struct DefaultNameGenerator { 660 template <typename T> 661 static std::string GetName(int i) { 662 return StreamableToString(i); 663 } 664 }; 665 666 template <typename Provided = DefaultNameGenerator> 667 struct NameGeneratorSelector { 668 typedef Provided type; 669 }; 670 671 template <typename NameGenerator> 672 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {} 673 674 template <typename NameGenerator, typename Types> 675 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) { 676 result->push_back(NameGenerator::template GetName<typename Types::Head>(i)); 677 GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result, 678 i + 1); 679 } 680 681 template <typename NameGenerator, typename Types> 682 std::vector<std::string> GenerateNames() { 683 std::vector<std::string> result; 684 GenerateNamesRecursively<NameGenerator>(Types(), &result, 0); 685 return result; 686 } 687 688 // TypeParameterizedTest<Fixture, TestSel, Types>::Register() 689 // registers a list of type-parameterized tests with Google Test. The 690 // return value is insignificant - we just need to return something 691 // such that we can call this function in a namespace scope. 692 // 693 // Implementation note: The GTEST_TEMPLATE_ macro declares a template 694 // template parameter. It's defined in gtest-type-util.h. 695 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types> 696 class TypeParameterizedTest { 697 public: 698 // 'index' is the index of the test in the type list 'Types' 699 // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite, 700 // Types). Valid values for 'index' are [0, N - 1] where N is the 701 // length of Types. 702 static bool Register(const char* prefix, CodeLocation code_location, 703 const char* case_name, const char* test_names, int index, 704 const std::vector<std::string>& type_names = 705 GenerateNames<DefaultNameGenerator, Types>()) { 706 typedef typename Types::Head Type; 707 typedef Fixture<Type> FixtureClass; 708 typedef typename GTEST_BIND_(TestSel, Type) TestClass; 709 710 // First, registers the first type-parameterized test in the type 711 // list. 712 MakeAndRegisterTestInfo( 713 (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + 714 "/" + type_names[static_cast<size_t>(index)]), 715 StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(), 716 GetTypeName<Type>().c_str(), 717 nullptr, // No value parameter. 718 code_location, GetTypeId<FixtureClass>(), 719 SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite( 720 code_location.file.c_str(), code_location.line), 721 SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite( 722 code_location.file.c_str(), code_location.line), 723 new TestFactoryImpl<TestClass>); 724 725 // Next, recurses (at compile time) with the tail of the type list. 726 return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>:: 727 Register(prefix, std::move(code_location), case_name, test_names, 728 index + 1, type_names); 729 } 730 }; 731 732 // The base case for the compile time recursion. 733 template <GTEST_TEMPLATE_ Fixture, class TestSel> 734 class TypeParameterizedTest<Fixture, TestSel, internal::None> { 735 public: 736 static bool Register(const char* /*prefix*/, CodeLocation, 737 const char* /*case_name*/, const char* /*test_names*/, 738 int /*index*/, 739 const std::vector<std::string>& = 740 std::vector<std::string>() /*type_names*/) { 741 return true; 742 } 743 }; 744 745 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name, 746 CodeLocation code_location); 747 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation( 748 const char* case_name); 749 750 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register() 751 // registers *all combinations* of 'Tests' and 'Types' with Google 752 // Test. The return value is insignificant - we just need to return 753 // something such that we can call this function in a namespace scope. 754 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types> 755 class TypeParameterizedTestSuite { 756 public: 757 static bool Register(const char* prefix, CodeLocation code_location, 758 const TypedTestSuitePState* state, const char* case_name, 759 const char* test_names, 760 const std::vector<std::string>& type_names = 761 GenerateNames<DefaultNameGenerator, Types>()) { 762 RegisterTypeParameterizedTestSuiteInstantiation(case_name); 763 std::string test_name = 764 StripTrailingSpaces(GetPrefixUntilComma(test_names)); 765 if (!state->TestExists(test_name)) { 766 fprintf(stderr, "Failed to get code location for test %s.%s at %s.", 767 case_name, test_name.c_str(), 768 FormatFileLocation(code_location.file.c_str(), code_location.line) 769 .c_str()); 770 fflush(stderr); 771 posix::Abort(); 772 } 773 const CodeLocation& test_location = state->GetCodeLocation(test_name); 774 775 typedef typename Tests::Head Head; 776 777 // First, register the first test in 'Test' for each type in 'Types'. 778 TypeParameterizedTest<Fixture, Head, Types>::Register( 779 prefix, test_location, case_name, test_names, 0, type_names); 780 781 // Next, recurses (at compile time) with the tail of the test list. 782 return TypeParameterizedTestSuite<Fixture, typename Tests::Tail, 783 Types>::Register(prefix, 784 std::move(code_location), 785 state, case_name, 786 SkipComma(test_names), 787 type_names); 788 } 789 }; 790 791 // The base case for the compile time recursion. 792 template <GTEST_TEMPLATE_ Fixture, typename Types> 793 class TypeParameterizedTestSuite<Fixture, internal::None, Types> { 794 public: 795 static bool Register(const char* /*prefix*/, const CodeLocation&, 796 const TypedTestSuitePState* /*state*/, 797 const char* /*case_name*/, const char* /*test_names*/, 798 const std::vector<std::string>& = 799 std::vector<std::string>() /*type_names*/) { 800 return true; 801 } 802 }; 803 804 // Returns the current OS stack trace as an std::string. 805 // 806 // The maximum number of stack frames to be included is specified by 807 // the gtest_stack_trace_depth flag. The skip_count parameter 808 // specifies the number of top frames to be skipped, which doesn't 809 // count against the number of frames to be included. 810 // 811 // For example, if Foo() calls Bar(), which in turn calls 812 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in 813 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. 814 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(int skip_count); 815 816 // Helpers for suppressing warnings on unreachable code or constant 817 // condition. 818 819 // Always returns true. 820 GTEST_API_ bool AlwaysTrue(); 821 822 // Always returns false. 823 inline bool AlwaysFalse() { return !AlwaysTrue(); } 824 825 // Helper for suppressing false warning from Clang on a const char* 826 // variable declared in a conditional expression always being NULL in 827 // the else branch. 828 struct GTEST_API_ ConstCharPtr { 829 ConstCharPtr(const char* str) : value(str) {} 830 operator bool() const { return true; } 831 const char* value; 832 }; 833 834 // Helper for declaring std::string within 'if' statement 835 // in pre C++17 build environment. 836 struct TrueWithString { 837 TrueWithString() = default; 838 explicit TrueWithString(const char* str) : value(str) {} 839 explicit TrueWithString(const std::string& str) : value(str) {} 840 explicit operator bool() const { return true; } 841 std::string value; 842 }; 843 844 // A simple Linear Congruential Generator for generating random 845 // numbers with a uniform distribution. Unlike rand() and srand(), it 846 // doesn't use global state (and therefore can't interfere with user 847 // code). Unlike rand_r(), it's portable. An LCG isn't very random, 848 // but it's good enough for our purposes. 849 class GTEST_API_ Random { 850 public: 851 static const uint32_t kMaxRange = 1u << 31; 852 853 explicit Random(uint32_t seed) : state_(seed) {} 854 855 void Reseed(uint32_t seed) { state_ = seed; } 856 857 // Generates a random number from [0, range). Crashes if 'range' is 858 // 0 or greater than kMaxRange. 859 uint32_t Generate(uint32_t range); 860 861 private: 862 uint32_t state_; 863 Random(const Random&) = delete; 864 Random& operator=(const Random&) = delete; 865 }; 866 867 // Turns const U&, U&, const U, and U all into U. 868 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ 869 typename std::remove_const<typename std::remove_reference<T>::type>::type 870 871 // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant 872 // that's true if and only if T has methods DebugString() and ShortDebugString() 873 // that return std::string. 874 template <typename T> 875 class HasDebugStringAndShortDebugString { 876 private: 877 template <typename C> 878 static auto CheckDebugString(C*) -> typename std::is_same< 879 std::string, decltype(std::declval<const C>().DebugString())>::type; 880 template <typename> 881 static std::false_type CheckDebugString(...); 882 883 template <typename C> 884 static auto CheckShortDebugString(C*) -> typename std::is_same< 885 std::string, decltype(std::declval<const C>().ShortDebugString())>::type; 886 template <typename> 887 static std::false_type CheckShortDebugString(...); 888 889 using HasDebugStringType = decltype(CheckDebugString<T>(nullptr)); 890 using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr)); 891 892 public: 893 static constexpr bool value = 894 HasDebugStringType::value && HasShortDebugStringType::value; 895 }; 896 897 #ifdef GTEST_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL 898 template <typename T> 899 constexpr bool HasDebugStringAndShortDebugString<T>::value; 900 #endif 901 902 // When the compiler sees expression IsContainerTest<C>(0), if C is an 903 // STL-style container class, the first overload of IsContainerTest 904 // will be viable (since both C::iterator* and C::const_iterator* are 905 // valid types and NULL can be implicitly converted to them). It will 906 // be picked over the second overload as 'int' is a perfect match for 907 // the type of argument 0. If C::iterator or C::const_iterator is not 908 // a valid type, the first overload is not viable, and the second 909 // overload will be picked. Therefore, we can determine whether C is 910 // a container class by checking the type of IsContainerTest<C>(0). 911 // The value of the expression is insignificant. 912 // 913 // In C++11 mode we check the existence of a const_iterator and that an 914 // iterator is properly implemented for the container. 915 // 916 // For pre-C++11 that we look for both C::iterator and C::const_iterator. 917 // The reason is that C++ injects the name of a class as a member of the 918 // class itself (e.g. you can refer to class iterator as either 919 // 'iterator' or 'iterator::iterator'). If we look for C::iterator 920 // only, for example, we would mistakenly think that a class named 921 // iterator is an STL container. 922 // 923 // Also note that the simpler approach of overloading 924 // IsContainerTest(typename C::const_iterator*) and 925 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. 926 typedef int IsContainer; 927 template <class C, 928 class Iterator = decltype(::std::declval<const C&>().begin()), 929 class = decltype(::std::declval<const C&>().end()), 930 class = decltype(++::std::declval<Iterator&>()), 931 class = decltype(*::std::declval<Iterator>()), 932 class = typename C::const_iterator> 933 IsContainer IsContainerTest(int /* dummy */) { 934 return 0; 935 } 936 937 typedef char IsNotContainer; 938 template <class C> 939 IsNotContainer IsContainerTest(long /* dummy */) { 940 return '\0'; 941 } 942 943 // Trait to detect whether a type T is a hash table. 944 // The heuristic used is that the type contains an inner type `hasher` and does 945 // not contain an inner type `reverse_iterator`. 946 // If the container is iterable in reverse, then order might actually matter. 947 template <typename T> 948 struct IsHashTable { 949 private: 950 template <typename U> 951 static char test(typename U::hasher*, typename U::reverse_iterator*); 952 template <typename U> 953 static int test(typename U::hasher*, ...); 954 template <typename U> 955 static char test(...); 956 957 public: 958 static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int); 959 }; 960 961 template <typename T> 962 const bool IsHashTable<T>::value; 963 964 template <typename C, 965 bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)> 966 struct IsRecursiveContainerImpl; 967 968 template <typename C> 969 struct IsRecursiveContainerImpl<C, false> : public std::false_type {}; 970 971 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to 972 // obey the same inconsistencies as the IsContainerTest, namely check if 973 // something is a container is relying on only const_iterator in C++11 and 974 // is relying on both const_iterator and iterator otherwise 975 template <typename C> 976 struct IsRecursiveContainerImpl<C, true> { 977 using value_type = decltype(*std::declval<typename C::const_iterator>()); 978 using type = 979 std::is_same<typename std::remove_const< 980 typename std::remove_reference<value_type>::type>::type, 981 C>; 982 }; 983 984 // IsRecursiveContainer<Type> is a unary compile-time predicate that 985 // evaluates whether C is a recursive container type. A recursive container 986 // type is a container type whose value_type is equal to the container type 987 // itself. An example for a recursive container type is 988 // boost::filesystem::path, whose iterator has a value_type that is equal to 989 // boost::filesystem::path. 990 template <typename C> 991 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {}; 992 993 // Utilities for native arrays. 994 995 // ArrayEq() compares two k-dimensional native arrays using the 996 // elements' operator==, where k can be any integer >= 0. When k is 997 // 0, ArrayEq() degenerates into comparing a single pair of values. 998 999 template <typename T, typename U> 1000 bool ArrayEq(const T* lhs, size_t size, const U* rhs); 1001 1002 // This generic version is used when k is 0. 1003 template <typename T, typename U> 1004 inline bool ArrayEq(const T& lhs, const U& rhs) { 1005 return lhs == rhs; 1006 } 1007 1008 // This overload is used when k >= 1. 1009 template <typename T, typename U, size_t N> 1010 inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) { 1011 return internal::ArrayEq(lhs, N, rhs); 1012 } 1013 1014 // This helper reduces code bloat. If we instead put its logic inside 1015 // the previous ArrayEq() function, arrays with different sizes would 1016 // lead to different copies of the template code. 1017 template <typename T, typename U> 1018 bool ArrayEq(const T* lhs, size_t size, const U* rhs) { 1019 for (size_t i = 0; i != size; i++) { 1020 if (!internal::ArrayEq(lhs[i], rhs[i])) return false; 1021 } 1022 return true; 1023 } 1024 1025 // Finds the first element in the iterator range [begin, end) that 1026 // equals elem. Element may be a native array type itself. 1027 template <typename Iter, typename Element> 1028 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { 1029 for (Iter it = begin; it != end; ++it) { 1030 if (internal::ArrayEq(*it, elem)) return it; 1031 } 1032 return end; 1033 } 1034 1035 // CopyArray() copies a k-dimensional native array using the elements' 1036 // operator=, where k can be any integer >= 0. When k is 0, 1037 // CopyArray() degenerates into copying a single value. 1038 1039 template <typename T, typename U> 1040 void CopyArray(const T* from, size_t size, U* to); 1041 1042 // This generic version is used when k is 0. 1043 template <typename T, typename U> 1044 inline void CopyArray(const T& from, U* to) { 1045 *to = from; 1046 } 1047 1048 // This overload is used when k >= 1. 1049 template <typename T, typename U, size_t N> 1050 inline void CopyArray(const T (&from)[N], U (*to)[N]) { 1051 internal::CopyArray(from, N, *to); 1052 } 1053 1054 // This helper reduces code bloat. If we instead put its logic inside 1055 // the previous CopyArray() function, arrays with different sizes 1056 // would lead to different copies of the template code. 1057 template <typename T, typename U> 1058 void CopyArray(const T* from, size_t size, U* to) { 1059 for (size_t i = 0; i != size; i++) { 1060 internal::CopyArray(from[i], to + i); 1061 } 1062 } 1063 1064 // The relation between an NativeArray object (see below) and the 1065 // native array it represents. 1066 // We use 2 different structs to allow non-copyable types to be used, as long 1067 // as RelationToSourceReference() is passed. 1068 struct RelationToSourceReference {}; 1069 struct RelationToSourceCopy {}; 1070 1071 // Adapts a native array to a read-only STL-style container. Instead 1072 // of the complete STL container concept, this adaptor only implements 1073 // members useful for Google Mock's container matchers. New members 1074 // should be added as needed. To simplify the implementation, we only 1075 // support Element being a raw type (i.e. having no top-level const or 1076 // reference modifier). It's the client's responsibility to satisfy 1077 // this requirement. Element can be an array type itself (hence 1078 // multi-dimensional arrays are supported). 1079 template <typename Element> 1080 class NativeArray { 1081 public: 1082 // STL-style container typedefs. 1083 typedef Element value_type; 1084 typedef Element* iterator; 1085 typedef const Element* const_iterator; 1086 1087 // Constructs from a native array. References the source. 1088 NativeArray(const Element* array, size_t count, RelationToSourceReference) { 1089 InitRef(array, count); 1090 } 1091 1092 // Constructs from a native array. Copies the source. 1093 NativeArray(const Element* array, size_t count, RelationToSourceCopy) { 1094 InitCopy(array, count); 1095 } 1096 1097 // Copy constructor. 1098 NativeArray(const NativeArray& rhs) { 1099 (this->*rhs.clone_)(rhs.array_, rhs.size_); 1100 } 1101 1102 ~NativeArray() { 1103 if (clone_ != &NativeArray::InitRef) delete[] array_; 1104 } 1105 1106 // STL-style container methods. 1107 size_t size() const { return size_; } 1108 const_iterator begin() const { return array_; } 1109 const_iterator end() const { return array_ + size_; } 1110 bool operator==(const NativeArray& rhs) const { 1111 return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin()); 1112 } 1113 1114 private: 1115 static_assert(!std::is_const<Element>::value, "Type must not be const"); 1116 static_assert(!std::is_reference<Element>::value, 1117 "Type must not be a reference"); 1118 1119 // Initializes this object with a copy of the input. 1120 void InitCopy(const Element* array, size_t a_size) { 1121 Element* const copy = new Element[a_size]; 1122 CopyArray(array, a_size, copy); 1123 array_ = copy; 1124 size_ = a_size; 1125 clone_ = &NativeArray::InitCopy; 1126 } 1127 1128 // Initializes this object with a reference of the input. 1129 void InitRef(const Element* array, size_t a_size) { 1130 array_ = array; 1131 size_ = a_size; 1132 clone_ = &NativeArray::InitRef; 1133 } 1134 1135 const Element* array_; 1136 size_t size_; 1137 void (NativeArray::*clone_)(const Element*, size_t); 1138 }; 1139 1140 template <size_t> 1141 struct Ignore { 1142 Ignore(...); // NOLINT 1143 }; 1144 1145 template <typename> 1146 struct ElemFromListImpl; 1147 template <size_t... I> 1148 struct ElemFromListImpl<std::index_sequence<I...>> { 1149 // We make Ignore a template to solve a problem with MSVC. 1150 // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but 1151 // MSVC doesn't understand how to deal with that pack expansion. 1152 // Use `0 * I` to have a single instantiation of Ignore. 1153 template <typename R> 1154 static R Apply(Ignore<0 * I>..., R (*)(), ...); 1155 }; 1156 1157 template <size_t N, typename... T> 1158 struct ElemFromList { 1159 using type = decltype(ElemFromListImpl<std::make_index_sequence<N>>::Apply( 1160 static_cast<T (*)()>(nullptr)...)); 1161 }; 1162 1163 struct FlatTupleConstructTag {}; 1164 1165 template <typename... T> 1166 class FlatTuple; 1167 1168 template <typename Derived, size_t I> 1169 struct FlatTupleElemBase; 1170 1171 template <typename... T, size_t I> 1172 struct FlatTupleElemBase<FlatTuple<T...>, I> { 1173 using value_type = typename ElemFromList<I, T...>::type; 1174 FlatTupleElemBase() = default; 1175 template <typename Arg> 1176 explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t) 1177 : value(std::forward<Arg>(t)) {} 1178 value_type value; 1179 }; 1180 1181 template <typename Derived, typename Idx> 1182 struct FlatTupleBase; 1183 1184 template <size_t... Idx, typename... T> 1185 struct FlatTupleBase<FlatTuple<T...>, std::index_sequence<Idx...>> 1186 : FlatTupleElemBase<FlatTuple<T...>, Idx>... { 1187 using Indices = std::index_sequence<Idx...>; 1188 FlatTupleBase() = default; 1189 template <typename... Args> 1190 explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args) 1191 : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{}, 1192 std::forward<Args>(args))... {} 1193 1194 template <size_t I> 1195 const typename ElemFromList<I, T...>::type& Get() const { 1196 return FlatTupleElemBase<FlatTuple<T...>, I>::value; 1197 } 1198 1199 template <size_t I> 1200 typename ElemFromList<I, T...>::type& Get() { 1201 return FlatTupleElemBase<FlatTuple<T...>, I>::value; 1202 } 1203 1204 template <typename F> 1205 auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) { 1206 return std::forward<F>(f)(Get<Idx>()...); 1207 } 1208 1209 template <typename F> 1210 auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) { 1211 return std::forward<F>(f)(Get<Idx>()...); 1212 } 1213 }; 1214 1215 // Analog to std::tuple but with different tradeoffs. 1216 // This class minimizes the template instantiation depth, thus allowing more 1217 // elements than std::tuple would. std::tuple has been seen to require an 1218 // instantiation depth of more than 10x the number of elements in some 1219 // implementations. 1220 // FlatTuple and ElemFromList are not recursive and have a fixed depth 1221 // regardless of T... 1222 // std::make_index_sequence, on the other hand, it is recursive but with an 1223 // instantiation depth of O(ln(N)). 1224 template <typename... T> 1225 class FlatTuple 1226 : private FlatTupleBase<FlatTuple<T...>, 1227 std::make_index_sequence<sizeof...(T)>> { 1228 using Indices = 1229 typename FlatTupleBase<FlatTuple<T...>, 1230 std::make_index_sequence<sizeof...(T)>>::Indices; 1231 1232 public: 1233 FlatTuple() = default; 1234 template <typename... Args> 1235 explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args) 1236 : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {} 1237 1238 using FlatTuple::FlatTupleBase::Apply; 1239 using FlatTuple::FlatTupleBase::Get; 1240 }; 1241 1242 // Utility functions to be called with static_assert to induce deprecation 1243 // warnings. 1244 GTEST_INTERNAL_DEPRECATED( 1245 "INSTANTIATE_TEST_CASE_P is deprecated, please use " 1246 "INSTANTIATE_TEST_SUITE_P") 1247 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; } 1248 1249 GTEST_INTERNAL_DEPRECATED( 1250 "TYPED_TEST_CASE_P is deprecated, please use " 1251 "TYPED_TEST_SUITE_P") 1252 constexpr bool TypedTestCase_P_IsDeprecated() { return true; } 1253 1254 GTEST_INTERNAL_DEPRECATED( 1255 "TYPED_TEST_CASE is deprecated, please use " 1256 "TYPED_TEST_SUITE") 1257 constexpr bool TypedTestCaseIsDeprecated() { return true; } 1258 1259 GTEST_INTERNAL_DEPRECATED( 1260 "REGISTER_TYPED_TEST_CASE_P is deprecated, please use " 1261 "REGISTER_TYPED_TEST_SUITE_P") 1262 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; } 1263 1264 GTEST_INTERNAL_DEPRECATED( 1265 "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use " 1266 "INSTANTIATE_TYPED_TEST_SUITE_P") 1267 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; } 1268 1269 } // namespace internal 1270 } // namespace testing 1271 1272 namespace std { 1273 // Some standard library implementations use `struct tuple_size` and some use 1274 // `class tuple_size`. Clang warns about the mismatch. 1275 // https://reviews.llvm.org/D55466 1276 #ifdef __clang__ 1277 #pragma clang diagnostic push 1278 #pragma clang diagnostic ignored "-Wmismatched-tags" 1279 #endif 1280 template <typename... Ts> 1281 struct tuple_size<testing::internal::FlatTuple<Ts...>> 1282 : std::integral_constant<size_t, sizeof...(Ts)> {}; 1283 #ifdef __clang__ 1284 #pragma clang diagnostic pop 1285 #endif 1286 } // namespace std 1287 1288 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \ 1289 ::testing::internal::AssertHelper(result_type, file, line, message) = \ 1290 ::testing::Message() 1291 1292 #define GTEST_MESSAGE_(message, result_type) \ 1293 GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) 1294 1295 #define GTEST_FATAL_FAILURE_(message) \ 1296 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) 1297 1298 #define GTEST_NONFATAL_FAILURE_(message) \ 1299 GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) 1300 1301 #define GTEST_SUCCESS_(message) \ 1302 GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) 1303 1304 #define GTEST_SKIP_(message) \ 1305 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip) 1306 1307 // Suppress MSVC warning 4072 (unreachable code) for the code following 1308 // statement if it returns or throws (or doesn't return or throw in some 1309 // situations). 1310 // NOTE: The "else" is important to keep this expansion to prevent a top-level 1311 // "else" from attaching to our "if". 1312 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ 1313 if (::testing::internal::AlwaysTrue()) { \ 1314 statement; \ 1315 } else /* NOLINT */ \ 1316 static_assert(true, "") // User must have a semicolon after expansion. 1317 1318 #if GTEST_HAS_EXCEPTIONS 1319 1320 namespace testing { 1321 namespace internal { 1322 1323 class NeverThrown { 1324 public: 1325 const char* what() const noexcept { 1326 return "this exception should never be thrown"; 1327 } 1328 }; 1329 1330 } // namespace internal 1331 } // namespace testing 1332 1333 #if GTEST_HAS_RTTI 1334 1335 #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e)) 1336 1337 #else // GTEST_HAS_RTTI 1338 1339 #define GTEST_EXCEPTION_TYPE_(e) \ 1340 std::string { "an std::exception-derived error" } 1341 1342 #endif // GTEST_HAS_RTTI 1343 1344 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \ 1345 catch (typename std::conditional< \ 1346 std::is_same<typename std::remove_cv<typename std::remove_reference< \ 1347 expected_exception>::type>::type, \ 1348 std::exception>::value, \ 1349 const ::testing::internal::NeverThrown&, const std::exception&>::type \ 1350 e) { \ 1351 gtest_msg.value = "Expected: " #statement \ 1352 " throws an exception of type " #expected_exception \ 1353 ".\n Actual: it throws "; \ 1354 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \ 1355 gtest_msg.value += " with description \""; \ 1356 gtest_msg.value += e.what(); \ 1357 gtest_msg.value += "\"."; \ 1358 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ 1359 } 1360 1361 #else // GTEST_HAS_EXCEPTIONS 1362 1363 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) 1364 1365 #endif // GTEST_HAS_EXCEPTIONS 1366 1367 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \ 1368 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1369 if (::testing::internal::TrueWithString gtest_msg{}) { \ 1370 bool gtest_caught_expected = false; \ 1371 try { \ 1372 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 1373 } catch (expected_exception const&) { \ 1374 gtest_caught_expected = true; \ 1375 } \ 1376 GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \ 1377 catch (...) { \ 1378 gtest_msg.value = "Expected: " #statement \ 1379 " throws an exception of type " #expected_exception \ 1380 ".\n Actual: it throws a different type."; \ 1381 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ 1382 } \ 1383 if (!gtest_caught_expected) { \ 1384 gtest_msg.value = "Expected: " #statement \ 1385 " throws an exception of type " #expected_exception \ 1386 ".\n Actual: it throws nothing."; \ 1387 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ 1388 } \ 1389 } else /*NOLINT*/ \ 1390 GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__) \ 1391 : fail(gtest_msg.value.c_str()) 1392 1393 #if GTEST_HAS_EXCEPTIONS 1394 1395 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \ 1396 catch (std::exception const& e) { \ 1397 gtest_msg.value = "it throws "; \ 1398 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \ 1399 gtest_msg.value += " with description \""; \ 1400 gtest_msg.value += e.what(); \ 1401 gtest_msg.value += "\"."; \ 1402 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ 1403 } 1404 1405 #else // GTEST_HAS_EXCEPTIONS 1406 1407 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() 1408 1409 #endif // GTEST_HAS_EXCEPTIONS 1410 1411 #define GTEST_TEST_NO_THROW_(statement, fail) \ 1412 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1413 if (::testing::internal::TrueWithString gtest_msg{}) { \ 1414 try { \ 1415 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 1416 } \ 1417 GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \ 1418 catch (...) { \ 1419 gtest_msg.value = "it throws."; \ 1420 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ 1421 } \ 1422 } else \ 1423 GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__) \ 1424 : fail(("Expected: " #statement " doesn't throw an exception.\n" \ 1425 " Actual: " + \ 1426 gtest_msg.value) \ 1427 .c_str()) 1428 1429 #define GTEST_TEST_ANY_THROW_(statement, fail) \ 1430 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1431 if (::testing::internal::AlwaysTrue()) { \ 1432 bool gtest_caught_any = false; \ 1433 try { \ 1434 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 1435 } catch (...) { \ 1436 gtest_caught_any = true; \ 1437 } \ 1438 if (!gtest_caught_any) { \ 1439 goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ 1440 } \ 1441 } else \ 1442 GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__) \ 1443 : fail("Expected: " #statement \ 1444 " throws an exception.\n" \ 1445 " Actual: it doesn't.") 1446 1447 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be 1448 // either a boolean expression or an AssertionResult. text is a textual 1449 // representation of expression as it was passed into the EXPECT_TRUE. 1450 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ 1451 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1452 if (const ::testing::AssertionResult gtest_ar_ = \ 1453 ::testing::AssertionResult(expression)) \ 1454 ; \ 1455 else \ 1456 fail(::testing::internal::GetBoolAssertionFailureMessage( \ 1457 gtest_ar_, text, #actual, #expected) \ 1458 .c_str()) 1459 1460 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ 1461 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1462 if (::testing::internal::AlwaysTrue()) { \ 1463 const ::testing::internal::HasNewFatalFailureHelper \ 1464 gtest_fatal_failure_checker; \ 1465 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 1466 if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ 1467 goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ 1468 } \ 1469 } else /* NOLINT */ \ 1470 GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__) \ 1471 : fail("Expected: " #statement \ 1472 " doesn't generate new fatal " \ 1473 "failures in the current thread.\n" \ 1474 " Actual: it does.") 1475 1476 // Expands to the name of the class that implements the given test. 1477 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ 1478 test_suite_name##_##test_name##_Test 1479 1480 // Helper macro for defining tests. 1481 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \ 1482 static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \ 1483 "test_suite_name must not be empty"); \ 1484 static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \ 1485 "test_name must not be empty"); \ 1486 class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ 1487 : public parent_class { \ 1488 public: \ 1489 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default; \ 1490 ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \ 1491 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ 1492 (const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete; \ 1493 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \ 1494 const GTEST_TEST_CLASS_NAME_(test_suite_name, \ 1495 test_name) &) = delete; /* NOLINT */ \ 1496 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ 1497 (GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \ 1498 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \ 1499 GTEST_TEST_CLASS_NAME_(test_suite_name, \ 1500 test_name) &&) noexcept = delete; /* NOLINT */ \ 1501 \ 1502 private: \ 1503 void TestBody() override; \ 1504 GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED static ::testing::TestInfo* const \ 1505 test_info_; \ 1506 }; \ 1507 \ 1508 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \ 1509 test_name)::test_info_ = \ 1510 ::testing::internal::MakeAndRegisterTestInfo( \ 1511 #test_suite_name, #test_name, nullptr, nullptr, \ 1512 ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \ 1513 ::testing::internal::SuiteApiResolver< \ 1514 parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \ 1515 ::testing::internal::SuiteApiResolver< \ 1516 parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \ 1517 new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \ 1518 test_suite_name, test_name)>); \ 1519 void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody() 1520 1521 #endif // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ 1522