xref: /netbsd-src/sys/dev/pci/ixgbe/ixgbe_common.c (revision 4ab64dd8558009744b547d27ef7493447654442b)
1 /* $NetBSD: ixgbe_common.c,v 1.47 2023/10/06 14:48:08 msaitoh Exp $ */
2 
3 /******************************************************************************
4   SPDX-License-Identifier: BSD-3-Clause
5 
6   Copyright (c) 2001-2020, Intel Corporation
7   All rights reserved.
8 
9   Redistribution and use in source and binary forms, with or without
10   modification, are permitted provided that the following conditions are met:
11 
12    1. Redistributions of source code must retain the above copyright notice,
13       this list of conditions and the following disclaimer.
14 
15    2. Redistributions in binary form must reproduce the above copyright
16       notice, this list of conditions and the following disclaimer in the
17       documentation and/or other materials provided with the distribution.
18 
19    3. Neither the name of the Intel Corporation nor the names of its
20       contributors may be used to endorse or promote products derived from
21       this software without specific prior written permission.
22 
23   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33   POSSIBILITY OF SUCH DAMAGE.
34 
35 ******************************************************************************/
36 /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ixgbe_common.c,v 1.47 2023/10/06 14:48:08 msaitoh Exp $");
40 
41 #include "ixgbe_common.h"
42 #include "ixgbe_phy.h"
43 #include "ixgbe_dcb.h"
44 #include "ixgbe_dcb_82599.h"
45 #include "ixgbe_api.h"
46 
47 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
48 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
49 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
50 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
51 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
52 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
53 					u16 count);
54 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
55 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
56 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
57 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
58 
59 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
60 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
61 					 u16 *san_mac_offset);
62 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
63 					     u16 words, u16 *data);
64 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
65 					      u16 words, u16 *data);
66 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
67 						 u16 offset);
68 
69 /**
70  * ixgbe_init_ops_generic - Inits function ptrs
71  * @hw: pointer to the hardware structure
72  *
73  * Initialize the function pointers.
74  **/
ixgbe_init_ops_generic(struct ixgbe_hw * hw)75 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
76 {
77 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
78 	struct ixgbe_mac_info *mac = &hw->mac;
79 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
80 
81 	DEBUGFUNC("ixgbe_init_ops_generic");
82 
83 	/* EEPROM */
84 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
85 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
86 	if (eec & IXGBE_EEC_PRES) {
87 		eeprom->ops.read = ixgbe_read_eerd_generic;
88 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
89 	} else {
90 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
91 		eeprom->ops.read_buffer =
92 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
93 	}
94 	eeprom->ops.write = ixgbe_write_eeprom_generic;
95 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
96 	eeprom->ops.validate_checksum =
97 				      ixgbe_validate_eeprom_checksum_generic;
98 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
99 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
100 
101 	/* MAC */
102 	mac->ops.init_hw = ixgbe_init_hw_generic;
103 	mac->ops.reset_hw = NULL;
104 	mac->ops.start_hw = ixgbe_start_hw_generic;
105 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
106 	mac->ops.get_media_type = NULL;
107 	mac->ops.get_supported_physical_layer = NULL;
108 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
109 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
110 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
111 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
112 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
113 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
114 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
115 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
116 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
117 
118 	/* LEDs */
119 	mac->ops.led_on = ixgbe_led_on_generic;
120 	mac->ops.led_off = ixgbe_led_off_generic;
121 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
122 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
123 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
124 
125 	/* RAR, Multicast, VLAN */
126 	mac->ops.set_rar = ixgbe_set_rar_generic;
127 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
128 	mac->ops.insert_mac_addr = NULL;
129 	mac->ops.set_vmdq = NULL;
130 	mac->ops.clear_vmdq = NULL;
131 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
132 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
133 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
134 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
135 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
136 	mac->ops.clear_vfta = NULL;
137 	mac->ops.set_vfta = NULL;
138 	mac->ops.set_vlvf = NULL;
139 	mac->ops.init_uta_tables = NULL;
140 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
141 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
142 	mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
143 
144 	/* Flow Control */
145 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
146 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
147 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
148 
149 	/* Link */
150 	mac->ops.get_link_capabilities = NULL;
151 	mac->ops.setup_link = NULL;
152 	mac->ops.check_link = NULL;
153 	mac->ops.dmac_config = NULL;
154 	mac->ops.dmac_update_tcs = NULL;
155 	mac->ops.dmac_config_tcs = NULL;
156 
157 	return IXGBE_SUCCESS;
158 }
159 
160 /**
161  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
162  * of flow control
163  * @hw: pointer to hardware structure
164  *
165  * This function returns TRUE if the device supports flow control
166  * autonegotiation, and FALSE if it does not.
167  *
168  **/
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw * hw)169 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
170 {
171 	bool supported = FALSE;
172 	ixgbe_link_speed speed;
173 	bool link_up;
174 
175 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
176 
177 	switch (hw->phy.media_type) {
178 	case ixgbe_media_type_fiber_fixed:
179 	case ixgbe_media_type_fiber_qsfp:
180 	case ixgbe_media_type_fiber:
181 		/* flow control autoneg block list */
182 		switch (hw->device_id) {
183 		case IXGBE_DEV_ID_X550EM_A_SFP:
184 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
185 		case IXGBE_DEV_ID_X550EM_A_QSFP:
186 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
187 			supported = FALSE;
188 			break;
189 		default:
190 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
191 			/* if link is down, assume supported */
192 			if (link_up)
193 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
194 				    TRUE : FALSE;
195 			else
196 				supported = TRUE;
197 		}
198 
199 		break;
200 	case ixgbe_media_type_backplane:
201 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
202 			supported = FALSE;
203 		else
204 			supported = TRUE;
205 		break;
206 	case ixgbe_media_type_copper:
207 		/* only some copper devices support flow control autoneg */
208 		switch (hw->device_id) {
209 		case IXGBE_DEV_ID_82599_T3_LOM:
210 		case IXGBE_DEV_ID_X540T:
211 		case IXGBE_DEV_ID_X540T1:
212 		case IXGBE_DEV_ID_X540_BYPASS:
213 		case IXGBE_DEV_ID_X550T:
214 		case IXGBE_DEV_ID_X550T1:
215 		case IXGBE_DEV_ID_X550EM_X_10G_T:
216 		case IXGBE_DEV_ID_X550EM_A_10G_T:
217 		case IXGBE_DEV_ID_X550EM_A_1G_T:
218 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
219 			supported = TRUE;
220 			break;
221 		default:
222 			supported = FALSE;
223 		}
224 	default:
225 		break;
226 	}
227 
228 	return supported;
229 }
230 
231 /**
232  * ixgbe_setup_fc_generic - Set up flow control
233  * @hw: pointer to hardware structure
234  *
235  * Called at init time to set up flow control.
236  **/
ixgbe_setup_fc_generic(struct ixgbe_hw * hw)237 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
238 {
239 	s32 ret_val = IXGBE_SUCCESS;
240 	u32 reg = 0, reg_bp = 0;
241 	u16 reg_cu = 0;
242 	bool locked = FALSE;
243 
244 	DEBUGFUNC("ixgbe_setup_fc_generic");
245 
246 	/* Validate the requested mode */
247 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
248 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
249 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
250 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
251 		goto out;
252 	}
253 
254 	/*
255 	 * 10gig parts do not have a word in the EEPROM to determine the
256 	 * default flow control setting, so we explicitly set it to full.
257 	 */
258 	if (hw->fc.requested_mode == ixgbe_fc_default)
259 		hw->fc.requested_mode = ixgbe_fc_full;
260 
261 	/*
262 	 * Set up the 1G and 10G flow control advertisement registers so the
263 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
264 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
265 	 */
266 	switch (hw->phy.media_type) {
267 	case ixgbe_media_type_backplane:
268 		/* some MAC's need RMW protection on AUTOC */
269 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
270 		if (ret_val != IXGBE_SUCCESS)
271 			goto out;
272 
273 		/* fall through - only backplane uses autoc */
274 	case ixgbe_media_type_fiber_fixed:
275 	case ixgbe_media_type_fiber_qsfp:
276 	case ixgbe_media_type_fiber:
277 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
278 
279 		break;
280 	case ixgbe_media_type_copper:
281 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
282 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
283 		break;
284 	default:
285 		break;
286 	}
287 
288 	/*
289 	 * The possible values of fc.requested_mode are:
290 	 * 0: Flow control is completely disabled
291 	 * 1: Rx flow control is enabled (we can receive pause frames,
292 	 *    but not send pause frames).
293 	 * 2: Tx flow control is enabled (we can send pause frames but
294 	 *    we do not support receiving pause frames).
295 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
296 	 * other: Invalid.
297 	 */
298 	switch (hw->fc.requested_mode) {
299 	case ixgbe_fc_none:
300 		/* Flow control completely disabled by software override. */
301 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
302 		if (hw->phy.media_type == ixgbe_media_type_backplane)
303 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
304 				    IXGBE_AUTOC_ASM_PAUSE);
305 		else if (hw->phy.media_type == ixgbe_media_type_copper)
306 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
307 		break;
308 	case ixgbe_fc_tx_pause:
309 		/*
310 		 * Tx Flow control is enabled, and Rx Flow control is
311 		 * disabled by software override.
312 		 */
313 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
314 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
315 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
316 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
317 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
318 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
319 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
320 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
321 		}
322 		break;
323 	case ixgbe_fc_rx_pause:
324 		/*
325 		 * Rx Flow control is enabled and Tx Flow control is
326 		 * disabled by software override. Since there really
327 		 * isn't a way to advertise that we are capable of RX
328 		 * Pause ONLY, we will advertise that we support both
329 		 * symmetric and asymmetric Rx PAUSE, as such we fall
330 		 * through to the fc_full statement.  Later, we will
331 		 * disable the adapter's ability to send PAUSE frames.
332 		 */
333 	case ixgbe_fc_full:
334 		/* Flow control (both Rx and Tx) is enabled by SW override. */
335 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
336 		if (hw->phy.media_type == ixgbe_media_type_backplane)
337 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
338 				  IXGBE_AUTOC_ASM_PAUSE;
339 		else if (hw->phy.media_type == ixgbe_media_type_copper)
340 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
341 		break;
342 	default:
343 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
344 			     "Flow control param set incorrectly\n");
345 		ret_val = IXGBE_ERR_CONFIG;
346 		goto out;
347 		break;
348 	}
349 
350 	if (hw->mac.type < ixgbe_mac_X540) {
351 		/*
352 		 * Enable auto-negotiation between the MAC & PHY;
353 		 * the MAC will advertise clause 37 flow control.
354 		 */
355 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
356 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
357 
358 		/* Disable AN timeout */
359 		if (hw->fc.strict_ieee)
360 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
361 
362 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
363 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
364 	}
365 
366 	/*
367 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
368 	 * and copper. There is no need to set the PCS1GCTL register.
369 	 *
370 	 */
371 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
372 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
373 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
374 		if (ret_val)
375 			goto out;
376 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
377 		    (ixgbe_device_supports_autoneg_fc(hw))) {
378 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
379 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
380 	}
381 
382 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
383 out:
384 	return ret_val;
385 }
386 
387 /**
388  * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
389  * @hw: pointer to hardware structure
390  *
391  * Starts the hardware by filling the bus info structure and media type, clears
392  * all on chip counters, initializes receive address registers, multicast
393  * table, VLAN filter table, calls routine to set up link and flow control
394  * settings, and leaves transmit and receive units disabled and uninitialized
395  **/
ixgbe_start_hw_generic(struct ixgbe_hw * hw)396 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
397 {
398 	s32 ret_val;
399 	u32 ctrl_ext;
400 	u16 device_caps;
401 
402 	DEBUGFUNC("ixgbe_start_hw_generic");
403 
404 	/* Set the media type */
405 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
406 
407 	/* PHY ops initialization must be done in reset_hw() */
408 
409 	/* Clear the VLAN filter table */
410 	hw->mac.ops.clear_vfta(hw);
411 
412 	/* Clear statistics registers */
413 	hw->mac.ops.clear_hw_cntrs(hw);
414 
415 	/* Set No Snoop Disable */
416 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
417 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
418 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
419 	IXGBE_WRITE_FLUSH(hw);
420 
421 	/* Setup flow control */
422 	ret_val = ixgbe_setup_fc(hw);
423 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
424 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
425 		return ret_val;
426 	}
427 
428 	/* Cache bit indicating need for crosstalk fix */
429 	switch (hw->mac.type) {
430 	case ixgbe_mac_82599EB:
431 	case ixgbe_mac_X550EM_x:
432 	case ixgbe_mac_X550EM_a:
433 		hw->mac.ops.get_device_caps(hw, &device_caps);
434 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
435 			hw->need_crosstalk_fix = FALSE;
436 		else
437 			hw->need_crosstalk_fix = TRUE;
438 		break;
439 	default:
440 		hw->need_crosstalk_fix = FALSE;
441 		break;
442 	}
443 
444 	/* Clear adapter stopped flag */
445 	hw->adapter_stopped = FALSE;
446 
447 	return IXGBE_SUCCESS;
448 }
449 
450 /**
451  * ixgbe_start_hw_gen2 - Init sequence for common device family
452  * @hw: pointer to hw structure
453  *
454  * Performs the init sequence common to the second generation
455  * of 10 GbE devices.
456  * Devices in the second generation:
457  *    82599
458  *    X540
459  **/
ixgbe_start_hw_gen2(struct ixgbe_hw * hw)460 void ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
461 {
462 	u32 i;
463 	u32 regval;
464 
465 	DEBUGFUNC("ixgbe_start_hw_gen2");
466 
467 	/* Clear the rate limiters */
468 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
469 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
470 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
471 	}
472 	IXGBE_WRITE_FLUSH(hw);
473 
474 	/* Disable relaxed ordering */
475 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
476 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
477 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
478 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
479 	}
480 
481 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
482 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
483 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
484 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
485 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
486 	}
487 }
488 
489 /**
490  * ixgbe_init_hw_generic - Generic hardware initialization
491  * @hw: pointer to hardware structure
492  *
493  * Initialize the hardware by resetting the hardware, filling the bus info
494  * structure and media type, clears all on chip counters, initializes receive
495  * address registers, multicast table, VLAN filter table, calls routine to set
496  * up link and flow control settings, and leaves transmit and receive units
497  * disabled and uninitialized
498  **/
ixgbe_init_hw_generic(struct ixgbe_hw * hw)499 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
500 {
501 	s32 status;
502 
503 	DEBUGFUNC("ixgbe_init_hw_generic");
504 
505 	/* Reset the hardware */
506 	status = hw->mac.ops.reset_hw(hw);
507 
508 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
509 		/* Start the HW */
510 		status = hw->mac.ops.start_hw(hw);
511 	}
512 
513 	/* Initialize the LED link active for LED blink support */
514 	if (hw->mac.ops.init_led_link_act)
515 		hw->mac.ops.init_led_link_act(hw);
516 
517 	if (status != IXGBE_SUCCESS)
518 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
519 
520 	return status;
521 }
522 
523 /**
524  * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
525  * @hw: pointer to hardware structure
526  *
527  * Clears all hardware statistics counters by reading them from the hardware
528  * Statistics counters are clear on read.
529  **/
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw * hw)530 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
531 {
532 	u16 i = 0;
533 
534 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
535 
536 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
537 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
538 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
539 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
540 	if (hw->mac.type >= ixgbe_mac_X550)
541 		IXGBE_READ_REG(hw, IXGBE_MBSDC);
542 	for (i = 0; i < 8; i++)
543 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
544 
545 	IXGBE_READ_REG(hw, IXGBE_MLFC);
546 	IXGBE_READ_REG(hw, IXGBE_MRFC);
547 	if (hw->mac.type == ixgbe_mac_X550EM_a)
548 		IXGBE_READ_REG(hw, IXGBE_LINK_DN_CNT);
549 	IXGBE_READ_REG(hw, IXGBE_RLEC);
550 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
551 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
552 	if (hw->mac.type >= ixgbe_mac_82599EB) {
553 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
554 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
555 	} else {
556 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
557 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
558 	}
559 
560 	for (i = 0; i < 8; i++) {
561 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
562 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
563 		if (hw->mac.type >= ixgbe_mac_82599EB) {
564 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
565 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
566 		} else {
567 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
568 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
569 		}
570 	}
571 	if (hw->mac.type >= ixgbe_mac_82599EB)
572 		for (i = 0; i < 8; i++)
573 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
574 	IXGBE_READ_REG(hw, IXGBE_PRC64);
575 	IXGBE_READ_REG(hw, IXGBE_PRC127);
576 	IXGBE_READ_REG(hw, IXGBE_PRC255);
577 	IXGBE_READ_REG(hw, IXGBE_PRC511);
578 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
579 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
580 	IXGBE_READ_REG(hw, IXGBE_GPRC);
581 	IXGBE_READ_REG(hw, IXGBE_BPRC);
582 	IXGBE_READ_REG(hw, IXGBE_MPRC);
583 	IXGBE_READ_REG(hw, IXGBE_GPTC);
584 	IXGBE_READ_REG(hw, IXGBE_GORCL);
585 	IXGBE_READ_REG(hw, IXGBE_GORCH);
586 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
587 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
588 	if (hw->mac.type == ixgbe_mac_82598EB)
589 		for (i = 0; i < 8; i++)
590 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
591 	IXGBE_READ_REG(hw, IXGBE_RUC);
592 	IXGBE_READ_REG(hw, IXGBE_RFC);
593 	IXGBE_READ_REG(hw, IXGBE_ROC);
594 	IXGBE_READ_REG(hw, IXGBE_RJC);
595 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
596 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
597 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
598 	IXGBE_READ_REG(hw, IXGBE_TORL);
599 	IXGBE_READ_REG(hw, IXGBE_TORH);
600 	IXGBE_READ_REG(hw, IXGBE_TPR);
601 	IXGBE_READ_REG(hw, IXGBE_TPT);
602 	IXGBE_READ_REG(hw, IXGBE_PTC64);
603 	IXGBE_READ_REG(hw, IXGBE_PTC127);
604 	IXGBE_READ_REG(hw, IXGBE_PTC255);
605 	IXGBE_READ_REG(hw, IXGBE_PTC511);
606 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
607 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
608 	IXGBE_READ_REG(hw, IXGBE_MPTC);
609 	IXGBE_READ_REG(hw, IXGBE_BPTC);
610 	for (i = 0; i < 16; i++) {
611 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
612 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
613 		if (hw->mac.type >= ixgbe_mac_82599EB) {
614 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
615 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
616 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
617 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
618 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
619 		} else {
620 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
621 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
622 		}
623 	}
624 
625 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
626 		if (hw->phy.id == 0)
627 			ixgbe_identify_phy(hw);
628 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
629 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
630 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
631 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
632 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
633 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
634 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
635 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
636 	}
637 
638 	return IXGBE_SUCCESS;
639 }
640 
641 /**
642  * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
643  * @hw: pointer to hardware structure
644  * @pba_num: stores the part number string from the EEPROM
645  * @pba_num_size: part number string buffer length
646  *
647  * Reads the part number string from the EEPROM.
648  **/
ixgbe_read_pba_string_generic(struct ixgbe_hw * hw,u8 * pba_num,u32 pba_num_size)649 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
650 				  u32 pba_num_size)
651 {
652 	s32 ret_val;
653 	u16 data;
654 	u16 pba_ptr;
655 	u16 offset;
656 	u16 length;
657 
658 	DEBUGFUNC("ixgbe_read_pba_string_generic");
659 
660 	if (pba_num == NULL) {
661 		DEBUGOUT("PBA string buffer was null\n");
662 		return IXGBE_ERR_INVALID_ARGUMENT;
663 	}
664 
665 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
666 	if (ret_val) {
667 		DEBUGOUT("NVM Read Error\n");
668 		return ret_val;
669 	}
670 
671 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
672 	if (ret_val) {
673 		DEBUGOUT("NVM Read Error\n");
674 		return ret_val;
675 	}
676 
677 	/*
678 	 * if data is not ptr guard the PBA must be in legacy format which
679 	 * means pba_ptr is actually our second data word for the PBA number
680 	 * and we can decode it into an ascii string
681 	 */
682 	if (data != IXGBE_PBANUM_PTR_GUARD) {
683 		DEBUGOUT("NVM PBA number is not stored as string\n");
684 
685 		/* we will need 11 characters to store the PBA */
686 		if (pba_num_size < 11) {
687 			DEBUGOUT("PBA string buffer too small\n");
688 			return IXGBE_ERR_NO_SPACE;
689 		}
690 
691 		/* extract hex string from data and pba_ptr */
692 		pba_num[0] = (data >> 12) & 0xF;
693 		pba_num[1] = (data >> 8) & 0xF;
694 		pba_num[2] = (data >> 4) & 0xF;
695 		pba_num[3] = data & 0xF;
696 		pba_num[4] = (pba_ptr >> 12) & 0xF;
697 		pba_num[5] = (pba_ptr >> 8) & 0xF;
698 		pba_num[6] = '-';
699 		pba_num[7] = 0;
700 		pba_num[8] = (pba_ptr >> 4) & 0xF;
701 		pba_num[9] = pba_ptr & 0xF;
702 
703 		/* put a null character on the end of our string */
704 		pba_num[10] = '\0';
705 
706 		/* switch all the data but the '-' to hex char */
707 		for (offset = 0; offset < 10; offset++) {
708 			if (pba_num[offset] < 0xA)
709 				pba_num[offset] += '0';
710 			else if (pba_num[offset] < 0x10)
711 				pba_num[offset] += 'A' - 0xA;
712 		}
713 
714 		return IXGBE_SUCCESS;
715 	}
716 
717 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
718 	if (ret_val) {
719 		DEBUGOUT("NVM Read Error\n");
720 		return ret_val;
721 	}
722 
723 	if (length == 0xFFFF || length == 0) {
724 		DEBUGOUT("NVM PBA number section invalid length\n");
725 		return IXGBE_ERR_PBA_SECTION;
726 	}
727 
728 	/* check if pba_num buffer is big enough */
729 	if (pba_num_size  < (((u32)length * 2) - 1)) {
730 		DEBUGOUT("PBA string buffer too small\n");
731 		return IXGBE_ERR_NO_SPACE;
732 	}
733 
734 	/* trim pba length from start of string */
735 	pba_ptr++;
736 	length--;
737 
738 	for (offset = 0; offset < length; offset++) {
739 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
740 		if (ret_val) {
741 			DEBUGOUT("NVM Read Error\n");
742 			return ret_val;
743 		}
744 		pba_num[offset * 2] = (u8)(data >> 8);
745 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
746 	}
747 	pba_num[offset * 2] = '\0';
748 
749 	return IXGBE_SUCCESS;
750 }
751 
752 /**
753  * ixgbe_read_pba_num_generic - Reads part number from EEPROM
754  * @hw: pointer to hardware structure
755  * @pba_num: stores the part number from the EEPROM
756  *
757  * Reads the part number from the EEPROM.
758  **/
ixgbe_read_pba_num_generic(struct ixgbe_hw * hw,u32 * pba_num)759 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
760 {
761 	s32 ret_val;
762 	u16 data;
763 
764 	DEBUGFUNC("ixgbe_read_pba_num_generic");
765 
766 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
767 	if (ret_val) {
768 		DEBUGOUT("NVM Read Error\n");
769 		return ret_val;
770 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
771 		DEBUGOUT("NVM Not supported\n");
772 		return IXGBE_NOT_IMPLEMENTED;
773 	}
774 	*pba_num = (u32)(data << 16);
775 
776 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
777 	if (ret_val) {
778 		DEBUGOUT("NVM Read Error\n");
779 		return ret_val;
780 	}
781 	*pba_num |= (u32)data;
782 
783 	return IXGBE_SUCCESS;
784 }
785 
786 /**
787  * ixgbe_read_pba_raw
788  * @hw: pointer to the HW structure
789  * @eeprom_buf: optional pointer to EEPROM image
790  * @eeprom_buf_size: size of EEPROM image in words
791  * @max_pba_block_size: PBA block size limit
792  * @pba: pointer to output PBA structure
793  *
794  * Reads PBA from EEPROM image when eeprom_buf is not NULL.
795  * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
796  *
797  **/
ixgbe_read_pba_raw(struct ixgbe_hw * hw,u16 * eeprom_buf,u32 eeprom_buf_size,u16 max_pba_block_size,struct ixgbe_pba * pba)798 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
799 		       u32 eeprom_buf_size, u16 max_pba_block_size,
800 		       struct ixgbe_pba *pba)
801 {
802 	s32 ret_val;
803 	u16 pba_block_size;
804 
805 	if (pba == NULL)
806 		return IXGBE_ERR_PARAM;
807 
808 	if (eeprom_buf == NULL) {
809 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
810 						     &pba->word[0]);
811 		if (ret_val)
812 			return ret_val;
813 	} else {
814 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
815 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
816 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
817 		} else {
818 			return IXGBE_ERR_PARAM;
819 		}
820 	}
821 
822 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
823 		if (pba->pba_block == NULL)
824 			return IXGBE_ERR_PARAM;
825 
826 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
827 						   eeprom_buf_size,
828 						   &pba_block_size);
829 		if (ret_val)
830 			return ret_val;
831 
832 		if (pba_block_size > max_pba_block_size)
833 			return IXGBE_ERR_PARAM;
834 
835 		if (eeprom_buf == NULL) {
836 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
837 							     pba_block_size,
838 							     pba->pba_block);
839 			if (ret_val)
840 				return ret_val;
841 		} else {
842 			if (eeprom_buf_size > (u32)(pba->word[1] +
843 					      pba_block_size)) {
844 				memcpy(pba->pba_block,
845 				       &eeprom_buf[pba->word[1]],
846 				       pba_block_size * sizeof(u16));
847 			} else {
848 				return IXGBE_ERR_PARAM;
849 			}
850 		}
851 	}
852 
853 	return IXGBE_SUCCESS;
854 }
855 
856 /**
857  * ixgbe_write_pba_raw
858  * @hw: pointer to the HW structure
859  * @eeprom_buf: optional pointer to EEPROM image
860  * @eeprom_buf_size: size of EEPROM image in words
861  * @pba: pointer to PBA structure
862  *
863  * Writes PBA to EEPROM image when eeprom_buf is not NULL.
864  * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
865  *
866  **/
ixgbe_write_pba_raw(struct ixgbe_hw * hw,u16 * eeprom_buf,u32 eeprom_buf_size,struct ixgbe_pba * pba)867 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
868 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
869 {
870 	s32 ret_val;
871 
872 	if (pba == NULL)
873 		return IXGBE_ERR_PARAM;
874 
875 	if (eeprom_buf == NULL) {
876 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
877 						      &pba->word[0]);
878 		if (ret_val)
879 			return ret_val;
880 	} else {
881 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
882 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
883 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
884 		} else {
885 			return IXGBE_ERR_PARAM;
886 		}
887 	}
888 
889 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
890 		if (pba->pba_block == NULL)
891 			return IXGBE_ERR_PARAM;
892 
893 		if (eeprom_buf == NULL) {
894 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
895 							      pba->pba_block[0],
896 							      pba->pba_block);
897 			if (ret_val)
898 				return ret_val;
899 		} else {
900 			if (eeprom_buf_size > (u32)(pba->word[1] +
901 					      pba->pba_block[0])) {
902 				memcpy(&eeprom_buf[pba->word[1]],
903 				       pba->pba_block,
904 				       pba->pba_block[0] * sizeof(u16));
905 			} else {
906 				return IXGBE_ERR_PARAM;
907 			}
908 		}
909 	}
910 
911 	return IXGBE_SUCCESS;
912 }
913 
914 /**
915  * ixgbe_get_pba_block_size
916  * @hw: pointer to the HW structure
917  * @eeprom_buf: optional pointer to EEPROM image
918  * @eeprom_buf_size: size of EEPROM image in words
919  * @pba_data_size: pointer to output variable
920  *
921  * Returns the size of the PBA block in words. Function operates on EEPROM
922  * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
923  * EEPROM device.
924  *
925  **/
ixgbe_get_pba_block_size(struct ixgbe_hw * hw,u16 * eeprom_buf,u32 eeprom_buf_size,u16 * pba_block_size)926 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
927 			     u32 eeprom_buf_size, u16 *pba_block_size)
928 {
929 	s32 ret_val;
930 	u16 pba_word[2];
931 	u16 length;
932 
933 	DEBUGFUNC("ixgbe_get_pba_block_size");
934 
935 	if (eeprom_buf == NULL) {
936 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
937 						     &pba_word[0]);
938 		if (ret_val)
939 			return ret_val;
940 	} else {
941 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
942 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
943 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
944 		} else {
945 			return IXGBE_ERR_PARAM;
946 		}
947 	}
948 
949 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
950 		if (eeprom_buf == NULL) {
951 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
952 						      &length);
953 			if (ret_val)
954 				return ret_val;
955 		} else {
956 			if (eeprom_buf_size > pba_word[1])
957 				length = eeprom_buf[pba_word[1] + 0];
958 			else
959 				return IXGBE_ERR_PARAM;
960 		}
961 
962 		if (length == 0xFFFF || length == 0)
963 			return IXGBE_ERR_PBA_SECTION;
964 	} else {
965 		/* PBA number in legacy format, there is no PBA Block. */
966 		length = 0;
967 	}
968 
969 	if (pba_block_size != NULL)
970 		*pba_block_size = length;
971 
972 	return IXGBE_SUCCESS;
973 }
974 
975 /**
976  * ixgbe_get_mac_addr_generic - Generic get MAC address
977  * @hw: pointer to hardware structure
978  * @mac_addr: Adapter MAC address
979  *
980  * Reads the adapter's MAC address from first Receive Address Register (RAR0)
981  * A reset of the adapter must be performed prior to calling this function
982  * in order for the MAC address to have been loaded from the EEPROM into RAR0
983  **/
ixgbe_get_mac_addr_generic(struct ixgbe_hw * hw,u8 * mac_addr)984 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
985 {
986 	u32 rar_high;
987 	u32 rar_low;
988 	u16 i;
989 
990 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
991 
992 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
993 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
994 
995 	for (i = 0; i < 4; i++)
996 		mac_addr[i] = (u8)(rar_low >> (i*8));
997 
998 	for (i = 0; i < 2; i++)
999 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
1000 
1001 	return IXGBE_SUCCESS;
1002 }
1003 
1004 /**
1005  * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1006  * @hw: pointer to hardware structure
1007  * @link_status: the link status returned by the PCI config space
1008  *
1009  * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1010  **/
ixgbe_set_pci_config_data_generic(struct ixgbe_hw * hw,u16 link_status)1011 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1012 {
1013 	struct ixgbe_mac_info *mac = &hw->mac;
1014 
1015 	if (hw->bus.type == ixgbe_bus_type_unknown)
1016 		hw->bus.type = ixgbe_bus_type_pci_express;
1017 
1018 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1019 	case IXGBE_PCI_LINK_WIDTH_1:
1020 		hw->bus.width = ixgbe_bus_width_pcie_x1;
1021 		break;
1022 	case IXGBE_PCI_LINK_WIDTH_2:
1023 		hw->bus.width = ixgbe_bus_width_pcie_x2;
1024 		break;
1025 	case IXGBE_PCI_LINK_WIDTH_4:
1026 		hw->bus.width = ixgbe_bus_width_pcie_x4;
1027 		break;
1028 	case IXGBE_PCI_LINK_WIDTH_8:
1029 		hw->bus.width = ixgbe_bus_width_pcie_x8;
1030 		break;
1031 	default:
1032 		hw->bus.width = ixgbe_bus_width_unknown;
1033 		break;
1034 	}
1035 
1036 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
1037 	case IXGBE_PCI_LINK_SPEED_2500:
1038 		hw->bus.speed = ixgbe_bus_speed_2500;
1039 		break;
1040 	case IXGBE_PCI_LINK_SPEED_5000:
1041 		hw->bus.speed = ixgbe_bus_speed_5000;
1042 		break;
1043 	case IXGBE_PCI_LINK_SPEED_8000:
1044 		hw->bus.speed = ixgbe_bus_speed_8000;
1045 		break;
1046 	default:
1047 		hw->bus.speed = ixgbe_bus_speed_unknown;
1048 		break;
1049 	}
1050 
1051 	mac->ops.set_lan_id(hw);
1052 }
1053 
1054 /**
1055  * ixgbe_get_bus_info_generic - Generic set PCI bus info
1056  * @hw: pointer to hardware structure
1057  *
1058  * Gets the PCI bus info (speed, width, type) then calls helper function to
1059  * store this data within the ixgbe_hw structure.
1060  **/
ixgbe_get_bus_info_generic(struct ixgbe_hw * hw)1061 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1062 {
1063 	u16 link_status;
1064 
1065 	DEBUGFUNC("ixgbe_get_bus_info_generic");
1066 
1067 	/* Get the negotiated link width and speed from PCI config space */
1068 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1069 
1070 	ixgbe_set_pci_config_data_generic(hw, link_status);
1071 
1072 	return IXGBE_SUCCESS;
1073 }
1074 
1075 /**
1076  * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1077  * @hw: pointer to the HW structure
1078  *
1079  * Determines the LAN function id by reading memory-mapped registers and swaps
1080  * the port value if requested, and set MAC instance for devices that share
1081  * CS4227.
1082  **/
ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw * hw)1083 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1084 {
1085 	struct ixgbe_bus_info *bus = &hw->bus;
1086 	u32 reg;
1087 	u16 ee_ctrl_4;
1088 
1089 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1090 
1091 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1092 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1093 	bus->lan_id = (u8)bus->func;
1094 
1095 	/* check for a port swap */
1096 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1097 	if (reg & IXGBE_FACTPS_LFS)
1098 		bus->func ^= 0x1;
1099 
1100 	/* Get MAC instance from EEPROM for configuring CS4227 */
1101 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1102 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1103 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1104 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1105 	}
1106 }
1107 
1108 /**
1109  * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1110  * @hw: pointer to hardware structure
1111  *
1112  * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1113  * disables transmit and receive units. The adapter_stopped flag is used by
1114  * the shared code and drivers to determine if the adapter is in a stopped
1115  * state and should not touch the hardware.
1116  **/
ixgbe_stop_adapter_generic(struct ixgbe_hw * hw)1117 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1118 {
1119 	u32 reg_val;
1120 	u16 i;
1121 
1122 	DEBUGFUNC("ixgbe_stop_adapter_generic");
1123 
1124 	/*
1125 	 * Set the adapter_stopped flag so other driver functions stop touching
1126 	 * the hardware
1127 	 */
1128 	hw->adapter_stopped = TRUE;
1129 
1130 	/* Disable the receive unit */
1131 	ixgbe_disable_rx(hw);
1132 
1133 	/* Clear interrupt mask to stop interrupts from being generated */
1134 	/*
1135 	 * XXX
1136 	 * This function is called in the state of both interrupt disabled
1137 	 * and interrupt enabled, e.g.
1138 	 * + interrupt disabled case:
1139 	 *   - ixgbe_stop_locked()
1140 	 *     - ixgbe_disable_intr() // interrupt disabled here
1141 	 *     - ixgbe_stop_adapter()
1142 	 *       - hw->mac.ops.stop_adapter()
1143 	 *         == this function
1144 	 * + interrupt enabled case:
1145 	 *   - ixgbe_local_timer1()
1146 	 *     - ixgbe_init_locked()
1147 	 *       - ixgbe_stop_adapter()
1148 	 *         - hw->mac.ops.stop_adapter()
1149 	 *           == this function
1150 	 * Therefore, it causes nest status breaking to nest the status
1151 	 * (that is, que->im_nest++) at all times. So, this function must
1152 	 * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
1153 	 */
1154 	ixgbe_ensure_disabled_intr(hw->back);
1155 
1156 	/* Clear any pending interrupts, flush previous writes */
1157 	IXGBE_READ_REG(hw, IXGBE_EICR);
1158 
1159 	/* Disable the transmit unit.  Each queue must be disabled. */
1160 	for (i = 0; i < hw->mac.max_tx_queues; i++)
1161 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1162 
1163 	/* Disable the receive unit by stopping each queue */
1164 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1165 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1166 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1167 		reg_val |= IXGBE_RXDCTL_SWFLSH;
1168 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1169 	}
1170 
1171 	/* flush all queues disables */
1172 	IXGBE_WRITE_FLUSH(hw);
1173 	msec_delay(2);
1174 
1175 	/*
1176 	 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
1177 	 * access and verify no pending requests
1178 	 */
1179 	return ixgbe_disable_pcie_primary(hw);
1180 }
1181 
1182 /**
1183  * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1184  * @hw: pointer to hardware structure
1185  *
1186  * Store the index for the link active LED. This will be used to support
1187  * blinking the LED.
1188  **/
ixgbe_init_led_link_act_generic(struct ixgbe_hw * hw)1189 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1190 {
1191 	struct ixgbe_mac_info *mac = &hw->mac;
1192 	u32 led_reg, led_mode;
1193 	u8 i;
1194 
1195 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1196 
1197 	/* Get LED link active from the LEDCTL register */
1198 	for (i = 0; i < 4; i++) {
1199 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1200 
1201 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1202 		     IXGBE_LED_LINK_ACTIVE) {
1203 			mac->led_link_act = i;
1204 			return IXGBE_SUCCESS;
1205 		}
1206 	}
1207 
1208 	/*
1209 	 * If LEDCTL register does not have the LED link active set, then use
1210 	 * known MAC defaults.
1211 	 */
1212 	switch (hw->mac.type) {
1213 	case ixgbe_mac_X550EM_a:
1214 	case ixgbe_mac_X550EM_x:
1215 		mac->led_link_act = 1;
1216 		break;
1217 	default:
1218 		mac->led_link_act = 2;
1219 	}
1220 	return IXGBE_SUCCESS;
1221 }
1222 
1223 /**
1224  * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1225  * @hw: pointer to hardware structure
1226  * @index: led number to turn on
1227  **/
ixgbe_led_on_generic(struct ixgbe_hw * hw,u32 index)1228 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1229 {
1230 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1231 
1232 	DEBUGFUNC("ixgbe_led_on_generic");
1233 
1234 	if (index > 3)
1235 		return IXGBE_ERR_PARAM;
1236 
1237 	/* To turn on the LED, set mode to ON. */
1238 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1239 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1240 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1241 	IXGBE_WRITE_FLUSH(hw);
1242 
1243 	return IXGBE_SUCCESS;
1244 }
1245 
1246 /**
1247  * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1248  * @hw: pointer to hardware structure
1249  * @index: led number to turn off
1250  **/
ixgbe_led_off_generic(struct ixgbe_hw * hw,u32 index)1251 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1252 {
1253 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1254 
1255 	DEBUGFUNC("ixgbe_led_off_generic");
1256 
1257 	if (index > 3)
1258 		return IXGBE_ERR_PARAM;
1259 
1260 	/* To turn off the LED, set mode to OFF. */
1261 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1262 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1263 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1264 	IXGBE_WRITE_FLUSH(hw);
1265 
1266 	return IXGBE_SUCCESS;
1267 }
1268 
1269 /**
1270  * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1271  * @hw: pointer to hardware structure
1272  *
1273  * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1274  * ixgbe_hw struct in order to set up EEPROM access.
1275  **/
ixgbe_init_eeprom_params_generic(struct ixgbe_hw * hw)1276 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1277 {
1278 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1279 	u32 eec;
1280 	u16 eeprom_size;
1281 
1282 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1283 
1284 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1285 		eeprom->type = ixgbe_eeprom_none;
1286 		/* Set default semaphore delay to 10ms which is a well
1287 		 * tested value */
1288 		eeprom->semaphore_delay = 10;
1289 		/* Clear EEPROM page size, it will be initialized as needed */
1290 		eeprom->word_page_size = 0;
1291 
1292 		/*
1293 		 * Check for EEPROM present first.
1294 		 * If not present leave as none
1295 		 */
1296 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1297 		if (eec & IXGBE_EEC_PRES) {
1298 			eeprom->type = ixgbe_eeprom_spi;
1299 
1300 			/*
1301 			 * SPI EEPROM is assumed here.  This code would need to
1302 			 * change if a future EEPROM is not SPI.
1303 			 */
1304 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1305 					    IXGBE_EEC_SIZE_SHIFT);
1306 			eeprom->word_size = 1 << (eeprom_size +
1307 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1308 		}
1309 
1310 		if (eec & IXGBE_EEC_ADDR_SIZE)
1311 			eeprom->address_bits = 16;
1312 		else
1313 			eeprom->address_bits = 8;
1314 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1315 			  "%d\n", eeprom->type, eeprom->word_size,
1316 			  eeprom->address_bits);
1317 	}
1318 
1319 	return IXGBE_SUCCESS;
1320 }
1321 
1322 /**
1323  * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1324  * @hw: pointer to hardware structure
1325  * @offset: offset within the EEPROM to write
1326  * @words: number of word(s)
1327  * @data: 16 bit word(s) to write to EEPROM
1328  *
1329  * Reads 16 bit word(s) from EEPROM through bit-bang method
1330  **/
ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1331 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1332 					       u16 words, u16 *data)
1333 {
1334 	s32 status = IXGBE_SUCCESS;
1335 	u16 i, count;
1336 
1337 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1338 
1339 	hw->eeprom.ops.init_params(hw);
1340 
1341 	if (words == 0) {
1342 		status = IXGBE_ERR_INVALID_ARGUMENT;
1343 		goto out;
1344 	}
1345 
1346 	if (offset + words > hw->eeprom.word_size) {
1347 		status = IXGBE_ERR_EEPROM;
1348 		goto out;
1349 	}
1350 
1351 	/*
1352 	 * The EEPROM page size cannot be queried from the chip. We do lazy
1353 	 * initialization. It is worth to do that when we write large buffer.
1354 	 */
1355 	if ((hw->eeprom.word_page_size == 0) &&
1356 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1357 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1358 
1359 	/*
1360 	 * We cannot hold synchronization semaphores for too long
1361 	 * to avoid other entity starvation. However it is more efficient
1362 	 * to read in bursts than synchronizing access for each word.
1363 	 */
1364 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1365 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1366 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1367 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1368 							    count, &data[i]);
1369 
1370 		if (status != IXGBE_SUCCESS)
1371 			break;
1372 	}
1373 
1374 out:
1375 	return status;
1376 }
1377 
1378 /**
1379  * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1380  * @hw: pointer to hardware structure
1381  * @offset: offset within the EEPROM to be written to
1382  * @words: number of word(s)
1383  * @data: 16 bit word(s) to be written to the EEPROM
1384  *
1385  * If ixgbe_eeprom_update_checksum is not called after this function, the
1386  * EEPROM will most likely contain an invalid checksum.
1387  **/
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1388 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1389 					      u16 words, u16 *data)
1390 {
1391 	s32 status;
1392 	u16 word;
1393 	u16 page_size;
1394 	u16 i;
1395 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1396 
1397 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1398 
1399 	/* Prepare the EEPROM for writing  */
1400 	status = ixgbe_acquire_eeprom(hw);
1401 
1402 	if (status == IXGBE_SUCCESS) {
1403 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1404 			ixgbe_release_eeprom(hw);
1405 			status = IXGBE_ERR_EEPROM;
1406 		}
1407 	}
1408 
1409 	if (status == IXGBE_SUCCESS) {
1410 		for (i = 0; i < words; i++) {
1411 			ixgbe_standby_eeprom(hw);
1412 
1413 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1414 			ixgbe_shift_out_eeprom_bits(hw,
1415 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1416 						   IXGBE_EEPROM_OPCODE_BITS);
1417 
1418 			ixgbe_standby_eeprom(hw);
1419 
1420 			/*
1421 			 * Some SPI eeproms use the 8th address bit embedded
1422 			 * in the opcode
1423 			 */
1424 			if ((hw->eeprom.address_bits == 8) &&
1425 			    ((offset + i) >= 128))
1426 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1427 
1428 			/* Send the Write command (8-bit opcode + addr) */
1429 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1430 						    IXGBE_EEPROM_OPCODE_BITS);
1431 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1432 						    hw->eeprom.address_bits);
1433 
1434 			page_size = hw->eeprom.word_page_size;
1435 
1436 			/* Send the data in burst via SPI*/
1437 			do {
1438 				word = data[i];
1439 				word = (word >> 8) | (word << 8);
1440 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1441 
1442 				if (page_size == 0)
1443 					break;
1444 
1445 				/* do not wrap around page */
1446 				if (((offset + i) & (page_size - 1)) ==
1447 				    (page_size - 1))
1448 					break;
1449 			} while (++i < words);
1450 
1451 			ixgbe_standby_eeprom(hw);
1452 			msec_delay(10);
1453 		}
1454 		/* Done with writing - release the EEPROM */
1455 		ixgbe_release_eeprom(hw);
1456 	}
1457 
1458 	return status;
1459 }
1460 
1461 /**
1462  * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1463  * @hw: pointer to hardware structure
1464  * @offset: offset within the EEPROM to be written to
1465  * @data: 16 bit word to be written to the EEPROM
1466  *
1467  * If ixgbe_eeprom_update_checksum is not called after this function, the
1468  * EEPROM will most likely contain an invalid checksum.
1469  **/
ixgbe_write_eeprom_generic(struct ixgbe_hw * hw,u16 offset,u16 data)1470 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1471 {
1472 	s32 status;
1473 
1474 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1475 
1476 	hw->eeprom.ops.init_params(hw);
1477 
1478 	if (offset >= hw->eeprom.word_size) {
1479 		status = IXGBE_ERR_EEPROM;
1480 		goto out;
1481 	}
1482 
1483 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1484 
1485 out:
1486 	return status;
1487 }
1488 
1489 /**
1490  * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1491  * @hw: pointer to hardware structure
1492  * @offset: offset within the EEPROM to be read
1493  * @data: read 16 bit words(s) from EEPROM
1494  * @words: number of word(s)
1495  *
1496  * Reads 16 bit word(s) from EEPROM through bit-bang method
1497  **/
ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1498 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1499 					      u16 words, u16 *data)
1500 {
1501 	s32 status = IXGBE_SUCCESS;
1502 	u16 i, count;
1503 
1504 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1505 
1506 	hw->eeprom.ops.init_params(hw);
1507 
1508 	if (words == 0) {
1509 		status = IXGBE_ERR_INVALID_ARGUMENT;
1510 		goto out;
1511 	}
1512 
1513 	if (offset + words > hw->eeprom.word_size) {
1514 		status = IXGBE_ERR_EEPROM;
1515 		goto out;
1516 	}
1517 
1518 	/*
1519 	 * We cannot hold synchronization semaphores for too long
1520 	 * to avoid other entity starvation. However it is more efficient
1521 	 * to read in bursts than synchronizing access for each word.
1522 	 */
1523 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1524 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1525 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1526 
1527 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1528 							   count, &data[i]);
1529 
1530 		if (status != IXGBE_SUCCESS)
1531 			break;
1532 	}
1533 
1534 out:
1535 	return status;
1536 }
1537 
1538 /**
1539  * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1540  * @hw: pointer to hardware structure
1541  * @offset: offset within the EEPROM to be read
1542  * @words: number of word(s)
1543  * @data: read 16 bit word(s) from EEPROM
1544  *
1545  * Reads 16 bit word(s) from EEPROM through bit-bang method
1546  **/
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1547 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1548 					     u16 words, u16 *data)
1549 {
1550 	s32 status;
1551 	u16 word_in;
1552 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1553 	u16 i;
1554 
1555 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1556 
1557 	/* Prepare the EEPROM for reading  */
1558 	status = ixgbe_acquire_eeprom(hw);
1559 
1560 	if (status == IXGBE_SUCCESS) {
1561 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1562 			ixgbe_release_eeprom(hw);
1563 			status = IXGBE_ERR_EEPROM;
1564 		}
1565 	}
1566 
1567 	if (status == IXGBE_SUCCESS) {
1568 		for (i = 0; i < words; i++) {
1569 			ixgbe_standby_eeprom(hw);
1570 			/*
1571 			 * Some SPI eeproms use the 8th address bit embedded
1572 			 * in the opcode
1573 			 */
1574 			if ((hw->eeprom.address_bits == 8) &&
1575 			    ((offset + i) >= 128))
1576 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1577 
1578 			/* Send the READ command (opcode + addr) */
1579 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1580 						    IXGBE_EEPROM_OPCODE_BITS);
1581 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1582 						    hw->eeprom.address_bits);
1583 
1584 			/* Read the data. */
1585 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1586 			data[i] = (word_in >> 8) | (word_in << 8);
1587 		}
1588 
1589 		/* End this read operation */
1590 		ixgbe_release_eeprom(hw);
1591 	}
1592 
1593 	return status;
1594 }
1595 
1596 /**
1597  * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1598  * @hw: pointer to hardware structure
1599  * @offset: offset within the EEPROM to be read
1600  * @data: read 16 bit value from EEPROM
1601  *
1602  * Reads 16 bit value from EEPROM through bit-bang method
1603  **/
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)1604 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1605 				       u16 *data)
1606 {
1607 	s32 status;
1608 
1609 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1610 
1611 	hw->eeprom.ops.init_params(hw);
1612 
1613 	if (offset >= hw->eeprom.word_size) {
1614 		status = IXGBE_ERR_EEPROM;
1615 		goto out;
1616 	}
1617 
1618 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1619 
1620 out:
1621 	return status;
1622 }
1623 
1624 /**
1625  * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1626  * @hw: pointer to hardware structure
1627  * @offset: offset of word in the EEPROM to read
1628  * @words: number of word(s)
1629  * @data: 16 bit word(s) from the EEPROM
1630  *
1631  * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1632  **/
ixgbe_read_eerd_buffer_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1633 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1634 				   u16 words, u16 *data)
1635 {
1636 	u32 eerd;
1637 	s32 status = IXGBE_SUCCESS;
1638 	u32 i;
1639 
1640 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1641 
1642 	hw->eeprom.ops.init_params(hw);
1643 
1644 	if (words == 0) {
1645 		status = IXGBE_ERR_INVALID_ARGUMENT;
1646 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1647 		goto out;
1648 	}
1649 
1650 	if (offset >= hw->eeprom.word_size) {
1651 		status = IXGBE_ERR_EEPROM;
1652 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1653 		goto out;
1654 	}
1655 
1656 	for (i = 0; i < words; i++) {
1657 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1658 		       IXGBE_EEPROM_RW_REG_START;
1659 
1660 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1661 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1662 
1663 		if (status == IXGBE_SUCCESS) {
1664 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1665 				   IXGBE_EEPROM_RW_REG_DATA);
1666 		} else {
1667 			DEBUGOUT("Eeprom read timed out\n");
1668 			goto out;
1669 		}
1670 	}
1671 out:
1672 	return status;
1673 }
1674 
1675 /**
1676  * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1677  * @hw: pointer to hardware structure
1678  * @offset: offset within the EEPROM to be used as a scratch pad
1679  *
1680  * Discover EEPROM page size by writing marching data at given offset.
1681  * This function is called only when we are writing a new large buffer
1682  * at given offset so the data would be overwritten anyway.
1683  **/
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw * hw,u16 offset)1684 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1685 						 u16 offset)
1686 {
1687 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1688 	s32 status = IXGBE_SUCCESS;
1689 	u16 i;
1690 
1691 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1692 
1693 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1694 		data[i] = i;
1695 
1696 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1697 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1698 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1699 	hw->eeprom.word_page_size = 0;
1700 	if (status != IXGBE_SUCCESS)
1701 		goto out;
1702 
1703 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1704 	if (status != IXGBE_SUCCESS)
1705 		goto out;
1706 
1707 	/*
1708 	 * When writing in burst more than the actual page size
1709 	 * EEPROM address wraps around current page.
1710 	 */
1711 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1712 
1713 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1714 		  hw->eeprom.word_page_size);
1715 out:
1716 	return status;
1717 }
1718 
1719 /**
1720  * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1721  * @hw: pointer to hardware structure
1722  * @offset: offset of  word in the EEPROM to read
1723  * @data: word read from the EEPROM
1724  *
1725  * Reads a 16 bit word from the EEPROM using the EERD register.
1726  **/
ixgbe_read_eerd_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)1727 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1728 {
1729 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1730 }
1731 
1732 /**
1733  * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1734  * @hw: pointer to hardware structure
1735  * @offset: offset of  word in the EEPROM to write
1736  * @words: number of word(s)
1737  * @data: word(s) write to the EEPROM
1738  *
1739  * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1740  **/
ixgbe_write_eewr_buffer_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1741 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1742 				    u16 words, u16 *data)
1743 {
1744 	u32 eewr;
1745 	s32 status = IXGBE_SUCCESS;
1746 	u16 i;
1747 
1748 	DEBUGFUNC("ixgbe_write_eewr_generic");
1749 
1750 	hw->eeprom.ops.init_params(hw);
1751 
1752 	if (words == 0) {
1753 		status = IXGBE_ERR_INVALID_ARGUMENT;
1754 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1755 		goto out;
1756 	}
1757 
1758 	if (offset >= hw->eeprom.word_size) {
1759 		status = IXGBE_ERR_EEPROM;
1760 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1761 		goto out;
1762 	}
1763 
1764 	for (i = 0; i < words; i++) {
1765 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1766 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1767 			IXGBE_EEPROM_RW_REG_START;
1768 
1769 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1770 		if (status != IXGBE_SUCCESS) {
1771 			DEBUGOUT("Eeprom write EEWR timed out\n");
1772 			goto out;
1773 		}
1774 
1775 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1776 
1777 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1778 		if (status != IXGBE_SUCCESS) {
1779 			DEBUGOUT("Eeprom write EEWR timed out\n");
1780 			goto out;
1781 		}
1782 	}
1783 
1784 out:
1785 	return status;
1786 }
1787 
1788 /**
1789  * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1790  * @hw: pointer to hardware structure
1791  * @offset: offset of  word in the EEPROM to write
1792  * @data: word write to the EEPROM
1793  *
1794  * Write a 16 bit word to the EEPROM using the EEWR register.
1795  **/
ixgbe_write_eewr_generic(struct ixgbe_hw * hw,u16 offset,u16 data)1796 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1797 {
1798 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1799 }
1800 
1801 /**
1802  * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1803  * @hw: pointer to hardware structure
1804  * @ee_reg: EEPROM flag for polling
1805  *
1806  * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1807  * read or write is done respectively.
1808  **/
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw * hw,u32 ee_reg)1809 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1810 {
1811 	u32 i;
1812 	u32 reg;
1813 	s32 status = IXGBE_ERR_EEPROM;
1814 
1815 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1816 
1817 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1818 		if (ee_reg == IXGBE_NVM_POLL_READ)
1819 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1820 		else
1821 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1822 
1823 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1824 			status = IXGBE_SUCCESS;
1825 			break;
1826 		}
1827 		usec_delay(5);
1828 	}
1829 
1830 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1831 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1832 			     "EEPROM read/write done polling timed out");
1833 
1834 	return status;
1835 }
1836 
1837 /**
1838  * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1839  * @hw: pointer to hardware structure
1840  *
1841  * Prepares EEPROM for access using bit-bang method. This function should
1842  * be called before issuing a command to the EEPROM.
1843  **/
ixgbe_acquire_eeprom(struct ixgbe_hw * hw)1844 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1845 {
1846 	s32 status = IXGBE_SUCCESS;
1847 	u32 eec;
1848 	u32 i;
1849 
1850 	DEBUGFUNC("ixgbe_acquire_eeprom");
1851 
1852 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1853 	    != IXGBE_SUCCESS)
1854 		status = IXGBE_ERR_SWFW_SYNC;
1855 
1856 	if (status == IXGBE_SUCCESS) {
1857 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1858 
1859 		/* Request EEPROM Access */
1860 		eec |= IXGBE_EEC_REQ;
1861 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1862 
1863 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1864 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1865 			if (eec & IXGBE_EEC_GNT)
1866 				break;
1867 			usec_delay(5);
1868 		}
1869 
1870 		/* Release if grant not acquired */
1871 		if (!(eec & IXGBE_EEC_GNT)) {
1872 			eec &= ~IXGBE_EEC_REQ;
1873 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1874 			DEBUGOUT("Could not acquire EEPROM grant\n");
1875 
1876 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1877 			status = IXGBE_ERR_EEPROM;
1878 		}
1879 
1880 		/* Setup EEPROM for Read/Write */
1881 		if (status == IXGBE_SUCCESS) {
1882 			/* Clear CS and SK */
1883 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1884 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1885 			IXGBE_WRITE_FLUSH(hw);
1886 			usec_delay(1);
1887 		}
1888 	}
1889 	return status;
1890 }
1891 
1892 /**
1893  * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1894  * @hw: pointer to hardware structure
1895  *
1896  * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1897  **/
ixgbe_get_eeprom_semaphore(struct ixgbe_hw * hw)1898 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1899 {
1900 	s32 status = IXGBE_ERR_EEPROM;
1901 	u32 timeout = 2000;
1902 	u32 i;
1903 	u32 swsm;
1904 
1905 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1906 
1907 	/* Get SMBI software semaphore between device drivers first */
1908 	for (i = 0; i < timeout; i++) {
1909 		/*
1910 		 * If the SMBI bit is 0 when we read it, then the bit will be
1911 		 * set and we have the semaphore
1912 		 */
1913 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1914 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1915 			status = IXGBE_SUCCESS;
1916 			break;
1917 		}
1918 		usec_delay(50);
1919 	}
1920 
1921 	if (i == timeout) {
1922 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1923 			 "not granted.\n");
1924 		/*
1925 		 * this release is particularly important because our attempts
1926 		 * above to get the semaphore may have succeeded, and if there
1927 		 * was a timeout, we should unconditionally clear the semaphore
1928 		 * bits to free the driver to make progress
1929 		 */
1930 		ixgbe_release_eeprom_semaphore(hw);
1931 
1932 		usec_delay(50);
1933 		/*
1934 		 * one last try
1935 		 * If the SMBI bit is 0 when we read it, then the bit will be
1936 		 * set and we have the semaphore
1937 		 */
1938 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1939 		if (!(swsm & IXGBE_SWSM_SMBI))
1940 			status = IXGBE_SUCCESS;
1941 	}
1942 
1943 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1944 	if (status == IXGBE_SUCCESS) {
1945 		for (i = 0; i < timeout; i++) {
1946 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1947 
1948 			/* Set the SW EEPROM semaphore bit to request access */
1949 			swsm |= IXGBE_SWSM_SWESMBI;
1950 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1951 
1952 			/*
1953 			 * If we set the bit successfully then we got the
1954 			 * semaphore.
1955 			 */
1956 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1957 			if (swsm & IXGBE_SWSM_SWESMBI)
1958 				break;
1959 
1960 			usec_delay(50);
1961 		}
1962 
1963 		/*
1964 		 * Release semaphores and return error if SW EEPROM semaphore
1965 		 * was not granted because we don't have access to the EEPROM
1966 		 */
1967 		if (i >= timeout) {
1968 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1969 			    "SWESMBI Software EEPROM semaphore not granted.\n");
1970 			ixgbe_release_eeprom_semaphore(hw);
1971 			status = IXGBE_ERR_EEPROM;
1972 		}
1973 	} else {
1974 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1975 			     "Software semaphore SMBI between device drivers "
1976 			     "not granted.\n");
1977 	}
1978 
1979 	return status;
1980 }
1981 
1982 /**
1983  * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1984  * @hw: pointer to hardware structure
1985  *
1986  * This function clears hardware semaphore bits.
1987  **/
ixgbe_release_eeprom_semaphore(struct ixgbe_hw * hw)1988 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1989 {
1990 	u32 swsm;
1991 
1992 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1993 
1994 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1995 
1996 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1997 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1998 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1999 	IXGBE_WRITE_FLUSH(hw);
2000 }
2001 
2002 /**
2003  * ixgbe_ready_eeprom - Polls for EEPROM ready
2004  * @hw: pointer to hardware structure
2005  **/
ixgbe_ready_eeprom(struct ixgbe_hw * hw)2006 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
2007 {
2008 	s32 status = IXGBE_SUCCESS;
2009 	u16 i;
2010 	u8 spi_stat_reg;
2011 
2012 	DEBUGFUNC("ixgbe_ready_eeprom");
2013 
2014 	/*
2015 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
2016 	 * EEPROM will signal that the command has been completed by clearing
2017 	 * bit 0 of the internal status register.  If it's not cleared within
2018 	 * 5 milliseconds, then error out.
2019 	 */
2020 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
2021 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2022 					    IXGBE_EEPROM_OPCODE_BITS);
2023 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2024 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2025 			break;
2026 
2027 		usec_delay(5);
2028 		ixgbe_standby_eeprom(hw);
2029 	}
2030 
2031 	/*
2032 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2033 	 * devices (and only 0-5mSec on 5V devices)
2034 	 */
2035 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2036 		DEBUGOUT("SPI EEPROM Status error\n");
2037 		status = IXGBE_ERR_EEPROM;
2038 	}
2039 
2040 	return status;
2041 }
2042 
2043 /**
2044  * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2045  * @hw: pointer to hardware structure
2046  **/
ixgbe_standby_eeprom(struct ixgbe_hw * hw)2047 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2048 {
2049 	u32 eec;
2050 
2051 	DEBUGFUNC("ixgbe_standby_eeprom");
2052 
2053 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2054 
2055 	/* Toggle CS to flush commands */
2056 	eec |= IXGBE_EEC_CS;
2057 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2058 	IXGBE_WRITE_FLUSH(hw);
2059 	usec_delay(1);
2060 	eec &= ~IXGBE_EEC_CS;
2061 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2062 	IXGBE_WRITE_FLUSH(hw);
2063 	usec_delay(1);
2064 }
2065 
2066 /**
2067  * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2068  * @hw: pointer to hardware structure
2069  * @data: data to send to the EEPROM
2070  * @count: number of bits to shift out
2071  **/
ixgbe_shift_out_eeprom_bits(struct ixgbe_hw * hw,u16 data,u16 count)2072 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2073 					u16 count)
2074 {
2075 	u32 eec;
2076 	u32 mask;
2077 	u32 i;
2078 
2079 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2080 
2081 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2082 
2083 	/*
2084 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
2085 	 * one bit at a time.  Determine the starting bit based on count
2086 	 */
2087 	mask = 0x01 << (count - 1);
2088 
2089 	for (i = 0; i < count; i++) {
2090 		/*
2091 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2092 		 * "1", and then raising and then lowering the clock (the SK
2093 		 * bit controls the clock input to the EEPROM).  A "0" is
2094 		 * shifted out to the EEPROM by setting "DI" to "0" and then
2095 		 * raising and then lowering the clock.
2096 		 */
2097 		if (data & mask)
2098 			eec |= IXGBE_EEC_DI;
2099 		else
2100 			eec &= ~IXGBE_EEC_DI;
2101 
2102 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2103 		IXGBE_WRITE_FLUSH(hw);
2104 
2105 		usec_delay(1);
2106 
2107 		ixgbe_raise_eeprom_clk(hw, &eec);
2108 		ixgbe_lower_eeprom_clk(hw, &eec);
2109 
2110 		/*
2111 		 * Shift mask to signify next bit of data to shift in to the
2112 		 * EEPROM
2113 		 */
2114 		mask = mask >> 1;
2115 	}
2116 
2117 	/* We leave the "DI" bit set to "0" when we leave this routine. */
2118 	eec &= ~IXGBE_EEC_DI;
2119 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2120 	IXGBE_WRITE_FLUSH(hw);
2121 }
2122 
2123 /**
2124  * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2125  * @hw: pointer to hardware structure
2126  * @count: number of bits to shift
2127  **/
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw * hw,u16 count)2128 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2129 {
2130 	u32 eec;
2131 	u32 i;
2132 	u16 data = 0;
2133 
2134 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2135 
2136 	/*
2137 	 * In order to read a register from the EEPROM, we need to shift
2138 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2139 	 * the clock input to the EEPROM (setting the SK bit), and then reading
2140 	 * the value of the "DO" bit.  During this "shifting in" process the
2141 	 * "DI" bit should always be clear.
2142 	 */
2143 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2144 
2145 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2146 
2147 	for (i = 0; i < count; i++) {
2148 		data = data << 1;
2149 		ixgbe_raise_eeprom_clk(hw, &eec);
2150 
2151 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2152 
2153 		eec &= ~(IXGBE_EEC_DI);
2154 		if (eec & IXGBE_EEC_DO)
2155 			data |= 1;
2156 
2157 		ixgbe_lower_eeprom_clk(hw, &eec);
2158 	}
2159 
2160 	return data;
2161 }
2162 
2163 /**
2164  * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2165  * @hw: pointer to hardware structure
2166  * @eec: EEC register's current value
2167  **/
ixgbe_raise_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)2168 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2169 {
2170 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2171 
2172 	/*
2173 	 * Raise the clock input to the EEPROM
2174 	 * (setting the SK bit), then delay
2175 	 */
2176 	*eec = *eec | IXGBE_EEC_SK;
2177 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2178 	IXGBE_WRITE_FLUSH(hw);
2179 	usec_delay(1);
2180 }
2181 
2182 /**
2183  * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2184  * @hw: pointer to hardware structure
2185  * @eec: EEC's current value
2186  **/
ixgbe_lower_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)2187 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2188 {
2189 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2190 
2191 	/*
2192 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2193 	 * delay
2194 	 */
2195 	*eec = *eec & ~IXGBE_EEC_SK;
2196 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2197 	IXGBE_WRITE_FLUSH(hw);
2198 	usec_delay(1);
2199 }
2200 
2201 /**
2202  * ixgbe_release_eeprom - Release EEPROM, release semaphores
2203  * @hw: pointer to hardware structure
2204  **/
ixgbe_release_eeprom(struct ixgbe_hw * hw)2205 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2206 {
2207 	u32 eec;
2208 
2209 	DEBUGFUNC("ixgbe_release_eeprom");
2210 
2211 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2212 
2213 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2214 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2215 
2216 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2217 	IXGBE_WRITE_FLUSH(hw);
2218 
2219 	usec_delay(1);
2220 
2221 	/* Stop requesting EEPROM access */
2222 	eec &= ~IXGBE_EEC_REQ;
2223 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2224 
2225 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2226 
2227 	/* Delay before attempt to obtain semaphore again to allow FW access */
2228 	msec_delay(hw->eeprom.semaphore_delay);
2229 }
2230 
2231 /**
2232  * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2233  * @hw: pointer to hardware structure
2234  *
2235  * Returns a negative error code on error, or the 16-bit checksum
2236  **/
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw * hw)2237 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2238 {
2239 	u16 i;
2240 	u16 j;
2241 	u16 checksum = 0;
2242 	u16 length = 0;
2243 	u16 pointer = 0;
2244 	u16 word = 0;
2245 
2246 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2247 
2248 	/* Include 0x0-0x3F in the checksum */
2249 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2250 		if (hw->eeprom.ops.read(hw, i, &word)) {
2251 			DEBUGOUT("EEPROM read failed\n");
2252 			return IXGBE_ERR_EEPROM;
2253 		}
2254 		checksum += word;
2255 	}
2256 
2257 	/* Include all data from pointers except for the fw pointer */
2258 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2259 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2260 			DEBUGOUT("EEPROM read failed\n");
2261 			return IXGBE_ERR_EEPROM;
2262 		}
2263 
2264 		/* If the pointer seems invalid */
2265 		if (pointer == 0xFFFF || pointer == 0)
2266 			continue;
2267 
2268 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2269 			DEBUGOUT("EEPROM read failed\n");
2270 			return IXGBE_ERR_EEPROM;
2271 		}
2272 
2273 		if (length == 0xFFFF || length == 0)
2274 			continue;
2275 
2276 		for (j = pointer + 1; j <= pointer + length; j++) {
2277 			if (hw->eeprom.ops.read(hw, j, &word)) {
2278 				DEBUGOUT("EEPROM read failed\n");
2279 				return IXGBE_ERR_EEPROM;
2280 			}
2281 			checksum += word;
2282 		}
2283 	}
2284 
2285 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2286 
2287 	return (s32)checksum;
2288 }
2289 
2290 /**
2291  * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2292  * @hw: pointer to hardware structure
2293  * @checksum_val: calculated checksum
2294  *
2295  * Performs checksum calculation and validates the EEPROM checksum.  If the
2296  * caller does not need checksum_val, the value can be NULL.
2297  **/
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw * hw,u16 * checksum_val)2298 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2299 					   u16 *checksum_val)
2300 {
2301 	s32 status;
2302 	u16 checksum;
2303 	u16 read_checksum = 0;
2304 
2305 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2306 
2307 	/* Read the first word from the EEPROM. If this times out or fails, do
2308 	 * not continue or we could be in for a very long wait while every
2309 	 * EEPROM read fails
2310 	 */
2311 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2312 	if (status) {
2313 		DEBUGOUT("EEPROM read failed\n");
2314 		return status;
2315 	}
2316 
2317 	status = hw->eeprom.ops.calc_checksum(hw);
2318 	if (status < 0)
2319 		return status;
2320 
2321 	checksum = (u16)(status & 0xffff);
2322 
2323 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2324 	if (status) {
2325 		DEBUGOUT("EEPROM read failed\n");
2326 		return status;
2327 	}
2328 
2329 	/* Verify read checksum from EEPROM is the same as
2330 	 * calculated checksum
2331 	 */
2332 	if (read_checksum != checksum)
2333 		status = IXGBE_ERR_EEPROM_CHECKSUM;
2334 
2335 	/* If the user cares, return the calculated checksum */
2336 	if (checksum_val)
2337 		*checksum_val = checksum;
2338 
2339 	return status;
2340 }
2341 
2342 /**
2343  * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2344  * @hw: pointer to hardware structure
2345  **/
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw * hw)2346 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2347 {
2348 	s32 status;
2349 	u16 checksum;
2350 
2351 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2352 
2353 	/* Read the first word from the EEPROM. If this times out or fails, do
2354 	 * not continue or we could be in for a very long wait while every
2355 	 * EEPROM read fails
2356 	 */
2357 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2358 	if (status) {
2359 		DEBUGOUT("EEPROM read failed\n");
2360 		return status;
2361 	}
2362 
2363 	status = hw->eeprom.ops.calc_checksum(hw);
2364 	if (status < 0)
2365 		return status;
2366 
2367 	checksum = (u16)(status & 0xffff);
2368 
2369 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2370 
2371 	return status;
2372 }
2373 
2374 /**
2375  * ixgbe_validate_mac_addr - Validate MAC address
2376  * @mac_addr: pointer to MAC address.
2377  *
2378  * Tests a MAC address to ensure it is a valid Individual Address.
2379  **/
ixgbe_validate_mac_addr(u8 * mac_addr)2380 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2381 {
2382 	s32 status = IXGBE_SUCCESS;
2383 
2384 	DEBUGFUNC("ixgbe_validate_mac_addr");
2385 
2386 	/* Make sure it is not a multicast address */
2387 	if (IXGBE_IS_MULTICAST(mac_addr)) {
2388 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2389 	/* Not a broadcast address */
2390 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2391 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2392 	/* Reject the zero address */
2393 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2394 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2395 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2396 	}
2397 	return status;
2398 }
2399 
2400 /**
2401  * ixgbe_set_rar_generic - Set Rx address register
2402  * @hw: pointer to hardware structure
2403  * @index: Receive address register to write
2404  * @addr: Address to put into receive address register
2405  * @vmdq: VMDq "set" or "pool" index
2406  * @enable_addr: set flag that address is active
2407  *
2408  * Puts an ethernet address into a receive address register.
2409  **/
ixgbe_set_rar_generic(struct ixgbe_hw * hw,u32 index,u8 * addr,u32 vmdq,u32 enable_addr)2410 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2411 			  u32 enable_addr)
2412 {
2413 	u32 rar_low, rar_high;
2414 	u32 rar_entries = hw->mac.num_rar_entries;
2415 
2416 	DEBUGFUNC("ixgbe_set_rar_generic");
2417 
2418 	/* Make sure we are using a valid rar index range */
2419 	if (index >= rar_entries) {
2420 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2421 			     "RAR index %d is out of range.\n", index);
2422 		return IXGBE_ERR_INVALID_ARGUMENT;
2423 	}
2424 
2425 	/* setup VMDq pool selection before this RAR gets enabled */
2426 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2427 
2428 	/*
2429 	 * HW expects these in little endian so we reverse the byte
2430 	 * order from network order (big endian) to little endian
2431 	 */
2432 	rar_low = ((u32)addr[0] |
2433 		   ((u32)addr[1] << 8) |
2434 		   ((u32)addr[2] << 16) |
2435 		   ((u32)addr[3] << 24));
2436 	/*
2437 	 * Some parts put the VMDq setting in the extra RAH bits,
2438 	 * so save everything except the lower 16 bits that hold part
2439 	 * of the address and the address valid bit.
2440 	 */
2441 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2442 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2443 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2444 
2445 	if (enable_addr != 0)
2446 		rar_high |= IXGBE_RAH_AV;
2447 
2448 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2449 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2450 
2451 	return IXGBE_SUCCESS;
2452 }
2453 
2454 /**
2455  * ixgbe_clear_rar_generic - Remove Rx address register
2456  * @hw: pointer to hardware structure
2457  * @index: Receive address register to write
2458  *
2459  * Clears an ethernet address from a receive address register.
2460  **/
ixgbe_clear_rar_generic(struct ixgbe_hw * hw,u32 index)2461 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2462 {
2463 	u32 rar_high;
2464 	u32 rar_entries = hw->mac.num_rar_entries;
2465 
2466 	DEBUGFUNC("ixgbe_clear_rar_generic");
2467 
2468 	/* Make sure we are using a valid rar index range */
2469 	if (index >= rar_entries) {
2470 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2471 			     "RAR index %d is out of range.\n", index);
2472 		return IXGBE_ERR_INVALID_ARGUMENT;
2473 	}
2474 
2475 	/*
2476 	 * Some parts put the VMDq setting in the extra RAH bits,
2477 	 * so save everything except the lower 16 bits that hold part
2478 	 * of the address and the address valid bit.
2479 	 */
2480 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2481 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2482 
2483 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2484 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2485 
2486 	/* clear VMDq pool/queue selection for this RAR */
2487 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2488 
2489 	return IXGBE_SUCCESS;
2490 }
2491 
2492 /**
2493  * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2494  * @hw: pointer to hardware structure
2495  *
2496  * Places the MAC address in receive address register 0 and clears the rest
2497  * of the receive address registers. Clears the multicast table. Assumes
2498  * the receiver is in reset when the routine is called.
2499  **/
ixgbe_init_rx_addrs_generic(struct ixgbe_hw * hw)2500 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2501 {
2502 	u32 i;
2503 	u32 rar_entries = hw->mac.num_rar_entries;
2504 
2505 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2506 
2507 	/*
2508 	 * If the current mac address is valid, assume it is a software override
2509 	 * to the permanent address.
2510 	 * Otherwise, use the permanent address from the eeprom.
2511 	 */
2512 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2513 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2514 		/* Get the MAC address from the RAR0 for later reference */
2515 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2516 
2517 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2518 			  hw->mac.addr[0], hw->mac.addr[1],
2519 			  hw->mac.addr[2]);
2520 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2521 			  hw->mac.addr[4], hw->mac.addr[5]);
2522 	} else {
2523 		/* Setup the receive address. */
2524 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2525 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2526 			  hw->mac.addr[0], hw->mac.addr[1],
2527 			  hw->mac.addr[2]);
2528 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2529 			  hw->mac.addr[4], hw->mac.addr[5]);
2530 
2531 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2532 	}
2533 
2534 	/* clear VMDq pool/queue selection for RAR 0 */
2535 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2536 
2537 	hw->addr_ctrl.overflow_promisc = 0;
2538 
2539 	hw->addr_ctrl.rar_used_count = 1;
2540 
2541 	/* Zero out the other receive addresses. */
2542 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2543 	for (i = 1; i < rar_entries; i++) {
2544 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2545 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2546 	}
2547 
2548 	/* Clear the MTA */
2549 	hw->addr_ctrl.mta_in_use = 0;
2550 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2551 
2552 	DEBUGOUT(" Clearing MTA\n");
2553 	for (i = 0; i < hw->mac.mcft_size; i++)
2554 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2555 
2556 	ixgbe_init_uta_tables(hw);
2557 
2558 	return IXGBE_SUCCESS;
2559 }
2560 
2561 /**
2562  * ixgbe_add_uc_addr - Adds a secondary unicast address.
2563  * @hw: pointer to hardware structure
2564  * @addr: new address
2565  * @vmdq: VMDq "set" or "pool" index
2566  *
2567  * Adds it to unused receive address register or goes into promiscuous mode.
2568  **/
ixgbe_add_uc_addr(struct ixgbe_hw * hw,u8 * addr,u32 vmdq)2569 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2570 {
2571 	u32 rar_entries = hw->mac.num_rar_entries;
2572 	u32 rar;
2573 
2574 	DEBUGFUNC("ixgbe_add_uc_addr");
2575 
2576 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2577 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2578 
2579 	/*
2580 	 * Place this address in the RAR if there is room,
2581 	 * else put the controller into promiscuous mode
2582 	 */
2583 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2584 		rar = hw->addr_ctrl.rar_used_count;
2585 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2586 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2587 		hw->addr_ctrl.rar_used_count++;
2588 	} else {
2589 		hw->addr_ctrl.overflow_promisc++;
2590 	}
2591 
2592 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2593 }
2594 
2595 /**
2596  * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2597  * @hw: pointer to hardware structure
2598  * @addr_list: the list of new addresses
2599  * @addr_count: number of addresses
2600  * @next: iterator function to walk the address list
2601  *
2602  * The given list replaces any existing list.  Clears the secondary addrs from
2603  * receive address registers.  Uses unused receive address registers for the
2604  * first secondary addresses, and falls back to promiscuous mode as needed.
2605  *
2606  * Drivers using secondary unicast addresses must set user_set_promisc when
2607  * manually putting the device into promiscuous mode.
2608  **/
ixgbe_update_uc_addr_list_generic(struct ixgbe_hw * hw,u8 * addr_list,u32 addr_count,ixgbe_mc_addr_itr next)2609 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2610 				      u32 addr_count, ixgbe_mc_addr_itr next)
2611 {
2612 	u8 *addr;
2613 	u32 i;
2614 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2615 	u32 uc_addr_in_use;
2616 	u32 fctrl;
2617 	u32 vmdq;
2618 
2619 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2620 
2621 	/*
2622 	 * Clear accounting of old secondary address list,
2623 	 * don't count RAR[0]
2624 	 */
2625 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2626 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2627 	hw->addr_ctrl.overflow_promisc = 0;
2628 
2629 	/* Zero out the other receive addresses */
2630 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2631 	for (i = 0; i < uc_addr_in_use; i++) {
2632 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2633 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2634 	}
2635 
2636 	/* Add the new addresses */
2637 	for (i = 0; i < addr_count; i++) {
2638 		DEBUGOUT(" Adding the secondary addresses:\n");
2639 		addr = next(hw, &addr_list, &vmdq);
2640 		ixgbe_add_uc_addr(hw, addr, vmdq);
2641 	}
2642 
2643 	if (hw->addr_ctrl.overflow_promisc) {
2644 		/* enable promisc if not already in overflow or set by user */
2645 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2646 			DEBUGOUT(" Entering address overflow promisc mode\n");
2647 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2648 			fctrl |= IXGBE_FCTRL_UPE;
2649 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2650 		}
2651 	} else {
2652 		/* only disable if set by overflow, not by user */
2653 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2654 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2655 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2656 			fctrl &= ~IXGBE_FCTRL_UPE;
2657 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2658 		}
2659 	}
2660 
2661 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2662 	return IXGBE_SUCCESS;
2663 }
2664 
2665 /**
2666  * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2667  * @hw: pointer to hardware structure
2668  * @mc_addr: the multicast address
2669  *
2670  * Extracts the 12 bits, from a multicast address, to determine which
2671  * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2672  * incoming rx multicast addresses, to determine the bit-vector to check in
2673  * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2674  * by the MO field of the MCSTCTRL. The MO field is set during initialization
2675  * to mc_filter_type.
2676  **/
ixgbe_mta_vector(struct ixgbe_hw * hw,u8 * mc_addr)2677 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2678 {
2679 	u32 vector = 0;
2680 
2681 	DEBUGFUNC("ixgbe_mta_vector");
2682 
2683 	switch (hw->mac.mc_filter_type) {
2684 	case 0:   /* use bits [47:36] of the address */
2685 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2686 		break;
2687 	case 1:   /* use bits [46:35] of the address */
2688 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2689 		break;
2690 	case 2:   /* use bits [45:34] of the address */
2691 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2692 		break;
2693 	case 3:   /* use bits [43:32] of the address */
2694 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2695 		break;
2696 	default:  /* Invalid mc_filter_type */
2697 		DEBUGOUT("MC filter type param set incorrectly\n");
2698 		ASSERT(0);
2699 		break;
2700 	}
2701 
2702 	/* vector can only be 12-bits or boundary will be exceeded */
2703 	vector &= 0xFFF;
2704 	return vector;
2705 }
2706 
2707 /**
2708  * ixgbe_set_mta - Set bit-vector in multicast table
2709  * @hw: pointer to hardware structure
2710  * @mc_addr: Multicast address
2711  *
2712  * Sets the bit-vector in the multicast table.
2713  **/
ixgbe_set_mta(struct ixgbe_hw * hw,u8 * mc_addr)2714 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2715 {
2716 	u32 vector;
2717 	u32 vector_bit;
2718 	u32 vector_reg;
2719 
2720 	DEBUGFUNC("ixgbe_set_mta");
2721 
2722 	hw->addr_ctrl.mta_in_use++;
2723 
2724 	vector = ixgbe_mta_vector(hw, mc_addr);
2725 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2726 
2727 	/*
2728 	 * The MTA is a register array of 128 32-bit registers. It is treated
2729 	 * like an array of 4096 bits.  We want to set bit
2730 	 * BitArray[vector_value]. So we figure out what register the bit is
2731 	 * in, read it, OR in the new bit, then write back the new value.  The
2732 	 * register is determined by the upper 7 bits of the vector value and
2733 	 * the bit within that register are determined by the lower 5 bits of
2734 	 * the value.
2735 	 */
2736 	vector_reg = (vector >> 5) & 0x7F;
2737 	vector_bit = vector & 0x1F;
2738 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2739 }
2740 
2741 /**
2742  * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2743  * @hw: pointer to hardware structure
2744  * @mc_addr_list: the list of new multicast addresses
2745  * @mc_addr_count: number of addresses
2746  * @next: iterator function to walk the multicast address list
2747  * @clear: flag, when set clears the table beforehand
2748  *
2749  * When the clear flag is set, the given list replaces any existing list.
2750  * Hashes the given addresses into the multicast table.
2751  **/
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw * hw,u8 * mc_addr_list,u32 mc_addr_count,ixgbe_mc_addr_itr next,bool clear)2752 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2753 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2754 				      bool clear)
2755 {
2756 	u32 i;
2757 	u32 vmdq;
2758 
2759 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2760 
2761 	/*
2762 	 * Set the new number of MC addresses that we are being requested to
2763 	 * use.
2764 	 */
2765 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2766 	hw->addr_ctrl.mta_in_use = 0;
2767 
2768 	/* Clear mta_shadow */
2769 	if (clear) {
2770 		DEBUGOUT(" Clearing MTA\n");
2771 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2772 	}
2773 
2774 	/* Update mta_shadow */
2775 	for (i = 0; i < mc_addr_count; i++) {
2776 		DEBUGOUT(" Adding the multicast addresses:\n");
2777 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2778 	}
2779 
2780 	/* Enable mta */
2781 	for (i = 0; i < hw->mac.mcft_size; i++)
2782 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2783 				      hw->mac.mta_shadow[i]);
2784 
2785 	if (hw->addr_ctrl.mta_in_use > 0)
2786 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2787 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2788 
2789 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2790 	return IXGBE_SUCCESS;
2791 }
2792 
2793 /**
2794  * ixgbe_enable_mc_generic - Enable multicast address in RAR
2795  * @hw: pointer to hardware structure
2796  *
2797  * Enables multicast address in RAR and the use of the multicast hash table.
2798  **/
ixgbe_enable_mc_generic(struct ixgbe_hw * hw)2799 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2800 {
2801 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2802 
2803 	DEBUGFUNC("ixgbe_enable_mc_generic");
2804 
2805 	if (a->mta_in_use > 0)
2806 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2807 				hw->mac.mc_filter_type);
2808 
2809 	return IXGBE_SUCCESS;
2810 }
2811 
2812 /**
2813  * ixgbe_disable_mc_generic - Disable multicast address in RAR
2814  * @hw: pointer to hardware structure
2815  *
2816  * Disables multicast address in RAR and the use of the multicast hash table.
2817  **/
ixgbe_disable_mc_generic(struct ixgbe_hw * hw)2818 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2819 {
2820 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2821 
2822 	DEBUGFUNC("ixgbe_disable_mc_generic");
2823 
2824 	if (a->mta_in_use > 0)
2825 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2826 
2827 	return IXGBE_SUCCESS;
2828 }
2829 
2830 /**
2831  * ixgbe_fc_enable_generic - Enable flow control
2832  * @hw: pointer to hardware structure
2833  *
2834  * Enable flow control according to the current settings.
2835  **/
ixgbe_fc_enable_generic(struct ixgbe_hw * hw)2836 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2837 {
2838 	s32 ret_val = IXGBE_SUCCESS;
2839 	u32 mflcn_reg, fccfg_reg;
2840 	u32 reg;
2841 	u32 fcrtl, fcrth;
2842 	int i;
2843 
2844 	DEBUGFUNC("ixgbe_fc_enable_generic");
2845 
2846 	/* Validate the water mark configuration */
2847 	if (!hw->fc.pause_time) {
2848 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2849 		goto out;
2850 	}
2851 
2852 	/* Low water mark of zero causes XOFF floods */
2853 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2854 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2855 		    hw->fc.high_water[i]) {
2856 			if (!hw->fc.low_water[i] ||
2857 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2858 				DEBUGOUT("Invalid water mark configuration\n");
2859 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2860 				goto out;
2861 			}
2862 		}
2863 	}
2864 
2865 	/* Negotiate the fc mode to use */
2866 	hw->mac.ops.fc_autoneg(hw);
2867 
2868 	/* Disable any previous flow control settings */
2869 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2870 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2871 
2872 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2873 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2874 
2875 	/*
2876 	 * The possible values of fc.current_mode are:
2877 	 * 0: Flow control is completely disabled
2878 	 * 1: Rx flow control is enabled (we can receive pause frames,
2879 	 *    but not send pause frames).
2880 	 * 2: Tx flow control is enabled (we can send pause frames but
2881 	 *    we do not support receiving pause frames).
2882 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2883 	 * other: Invalid.
2884 	 */
2885 	switch (hw->fc.current_mode) {
2886 	case ixgbe_fc_none:
2887 		/*
2888 		 * Flow control is disabled by software override or autoneg.
2889 		 * The code below will actually disable it in the HW.
2890 		 */
2891 		break;
2892 	case ixgbe_fc_rx_pause:
2893 		/*
2894 		 * Rx Flow control is enabled and Tx Flow control is
2895 		 * disabled by software override. Since there really
2896 		 * isn't a way to advertise that we are capable of RX
2897 		 * Pause ONLY, we will advertise that we support both
2898 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2899 		 * disable the adapter's ability to send PAUSE frames.
2900 		 */
2901 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2902 		break;
2903 	case ixgbe_fc_tx_pause:
2904 		/*
2905 		 * Tx Flow control is enabled, and Rx Flow control is
2906 		 * disabled by software override.
2907 		 */
2908 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2909 		break;
2910 	case ixgbe_fc_full:
2911 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2912 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2913 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2914 		break;
2915 	default:
2916 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2917 			     "Flow control param set incorrectly\n");
2918 		ret_val = IXGBE_ERR_CONFIG;
2919 		goto out;
2920 		break;
2921 	}
2922 
2923 	/* Set 802.3x based flow control settings. */
2924 	mflcn_reg |= IXGBE_MFLCN_DPF;
2925 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2926 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2927 
2928 
2929 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2930 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2931 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2932 		    hw->fc.high_water[i]) {
2933 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2934 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2935 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2936 		} else {
2937 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2938 			/*
2939 			 * In order to prevent Tx hangs when the internal Tx
2940 			 * switch is enabled we must set the high water mark
2941 			 * to the Rx packet buffer size - 24KB.  This allows
2942 			 * the Tx switch to function even under heavy Rx
2943 			 * workloads.
2944 			 */
2945 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2946 		}
2947 
2948 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2949 	}
2950 
2951 	/* Configure pause time (2 TCs per register) */
2952 	reg = (u32)hw->fc.pause_time * 0x00010001;
2953 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2954 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2955 
2956 	/* Configure flow control refresh threshold value */
2957 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2958 
2959 out:
2960 	return ret_val;
2961 }
2962 
2963 /**
2964  * ixgbe_negotiate_fc - Negotiate flow control
2965  * @hw: pointer to hardware structure
2966  * @adv_reg: flow control advertised settings
2967  * @lp_reg: link partner's flow control settings
2968  * @adv_sym: symmetric pause bit in advertisement
2969  * @adv_asm: asymmetric pause bit in advertisement
2970  * @lp_sym: symmetric pause bit in link partner advertisement
2971  * @lp_asm: asymmetric pause bit in link partner advertisement
2972  *
2973  * Find the intersection between advertised settings and link partner's
2974  * advertised settings
2975  **/
ixgbe_negotiate_fc(struct ixgbe_hw * hw,u32 adv_reg,u32 lp_reg,u32 adv_sym,u32 adv_asm,u32 lp_sym,u32 lp_asm)2976 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2977 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2978 {
2979 	if ((!(adv_reg)) ||  (!(lp_reg))) {
2980 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2981 			     "Local or link partner's advertised flow control "
2982 			     "settings are NULL. Local: %x, link partner: %x\n",
2983 			     adv_reg, lp_reg);
2984 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2985 	}
2986 
2987 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2988 		/*
2989 		 * Now we need to check if the user selected Rx ONLY
2990 		 * of pause frames.  In this case, we had to advertise
2991 		 * FULL flow control because we could not advertise RX
2992 		 * ONLY. Hence, we must now check to see if we need to
2993 		 * turn OFF the TRANSMISSION of PAUSE frames.
2994 		 */
2995 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2996 			hw->fc.current_mode = ixgbe_fc_full;
2997 			DEBUGOUT("Flow Control = FULL.\n");
2998 		} else {
2999 			hw->fc.current_mode = ixgbe_fc_rx_pause;
3000 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
3001 		}
3002 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3003 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3004 		hw->fc.current_mode = ixgbe_fc_tx_pause;
3005 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
3006 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3007 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3008 		hw->fc.current_mode = ixgbe_fc_rx_pause;
3009 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
3010 	} else {
3011 		hw->fc.current_mode = ixgbe_fc_none;
3012 		DEBUGOUT("Flow Control = NONE.\n");
3013 	}
3014 	return IXGBE_SUCCESS;
3015 }
3016 
3017 /**
3018  * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
3019  * @hw: pointer to hardware structure
3020  *
3021  * Enable flow control according on 1 gig fiber.
3022  **/
ixgbe_fc_autoneg_fiber(struct ixgbe_hw * hw)3023 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3024 {
3025 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3026 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3027 
3028 	/*
3029 	 * On multispeed fiber at 1g, bail out if
3030 	 * - link is up but AN did not complete, or if
3031 	 * - link is up and AN completed but timed out
3032 	 */
3033 
3034 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3035 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3036 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3037 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3038 		goto out;
3039 	}
3040 
3041 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3042 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3043 
3044 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3045 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3046 				      IXGBE_PCS1GANA_ASM_PAUSE,
3047 				      IXGBE_PCS1GANA_SYM_PAUSE,
3048 				      IXGBE_PCS1GANA_ASM_PAUSE);
3049 
3050 out:
3051 	return ret_val;
3052 }
3053 
3054 /**
3055  * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3056  * @hw: pointer to hardware structure
3057  *
3058  * Enable flow control according to IEEE clause 37.
3059  **/
ixgbe_fc_autoneg_backplane(struct ixgbe_hw * hw)3060 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3061 {
3062 	u32 links2, anlp1_reg, autoc_reg, links;
3063 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3064 
3065 	/*
3066 	 * On backplane, bail out if
3067 	 * - backplane autoneg was not completed, or if
3068 	 * - we are 82599 and link partner is not AN enabled
3069 	 */
3070 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3071 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3072 		DEBUGOUT("Auto-Negotiation did not complete\n");
3073 		goto out;
3074 	}
3075 
3076 	if (hw->mac.type == ixgbe_mac_82599EB) {
3077 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3078 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3079 			DEBUGOUT("Link partner is not AN enabled\n");
3080 			goto out;
3081 		}
3082 	}
3083 	/*
3084 	 * Read the 10g AN autoc and LP ability registers and resolve
3085 	 * local flow control settings accordingly
3086 	 */
3087 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3088 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3089 
3090 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3091 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3092 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3093 
3094 out:
3095 	return ret_val;
3096 }
3097 
3098 /**
3099  * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3100  * @hw: pointer to hardware structure
3101  *
3102  * Enable flow control according to IEEE clause 37.
3103  **/
ixgbe_fc_autoneg_copper(struct ixgbe_hw * hw)3104 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3105 {
3106 	u16 technology_ability_reg = 0;
3107 	u16 lp_technology_ability_reg = 0;
3108 
3109 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3110 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3111 			     &technology_ability_reg);
3112 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3113 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3114 			     &lp_technology_ability_reg);
3115 
3116 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3117 				  (u32)lp_technology_ability_reg,
3118 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3119 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3120 }
3121 
3122 /**
3123  * ixgbe_fc_autoneg - Configure flow control
3124  * @hw: pointer to hardware structure
3125  *
3126  * Compares our advertised flow control capabilities to those advertised by
3127  * our link partner, and determines the proper flow control mode to use.
3128  **/
ixgbe_fc_autoneg(struct ixgbe_hw * hw)3129 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3130 {
3131 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3132 	ixgbe_link_speed speed;
3133 	bool link_up;
3134 
3135 	DEBUGFUNC("ixgbe_fc_autoneg");
3136 
3137 	/*
3138 	 * AN should have completed when the cable was plugged in.
3139 	 * Look for reasons to bail out.  Bail out if:
3140 	 * - FC autoneg is disabled, or if
3141 	 * - link is not up.
3142 	 */
3143 	if (hw->fc.disable_fc_autoneg) {
3144 		/* TODO: This should be just an informative log */
3145 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
3146 			      "Flow control autoneg is disabled");
3147 		goto out;
3148 	}
3149 
3150 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3151 	if (!link_up) {
3152 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3153 		goto out;
3154 	}
3155 
3156 	switch (hw->phy.media_type) {
3157 	/* Autoneg flow control on fiber adapters */
3158 	case ixgbe_media_type_fiber_fixed:
3159 	case ixgbe_media_type_fiber_qsfp:
3160 	case ixgbe_media_type_fiber:
3161 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3162 			ret_val = ixgbe_fc_autoneg_fiber(hw);
3163 		break;
3164 
3165 	/* Autoneg flow control on backplane adapters */
3166 	case ixgbe_media_type_backplane:
3167 		ret_val = ixgbe_fc_autoneg_backplane(hw);
3168 		break;
3169 
3170 	/* Autoneg flow control on copper adapters */
3171 	case ixgbe_media_type_copper:
3172 		if (ixgbe_device_supports_autoneg_fc(hw))
3173 			ret_val = ixgbe_fc_autoneg_copper(hw);
3174 		break;
3175 
3176 	default:
3177 		break;
3178 	}
3179 
3180 out:
3181 	if (ret_val == IXGBE_SUCCESS) {
3182 		hw->fc.fc_was_autonegged = TRUE;
3183 	} else {
3184 		hw->fc.fc_was_autonegged = FALSE;
3185 		hw->fc.current_mode = hw->fc.requested_mode;
3186 	}
3187 }
3188 
3189 /*
3190  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3191  * @hw: pointer to hardware structure
3192  *
3193  * System-wide timeout range is encoded in PCIe Device Control2 register.
3194  *
3195  * Add 10% to specified maximum and return the number of times to poll for
3196  * completion timeout, in units of 100 microsec.  Never return less than
3197  * 800 = 80 millisec.
3198  */
ixgbe_pcie_timeout_poll(struct ixgbe_hw * hw)3199 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3200 {
3201 	s16 devctl2;
3202 	u32 pollcnt;
3203 
3204 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3205 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3206 
3207 	switch (devctl2) {
3208 	case IXGBE_PCIDEVCTRL2_65_130ms:
3209 		pollcnt = 1300;		/* 130 millisec */
3210 		break;
3211 	case IXGBE_PCIDEVCTRL2_260_520ms:
3212 		pollcnt = 5200;		/* 520 millisec */
3213 		break;
3214 	case IXGBE_PCIDEVCTRL2_1_2s:
3215 		pollcnt = 20000;	/* 2 sec */
3216 		break;
3217 	case IXGBE_PCIDEVCTRL2_4_8s:
3218 		pollcnt = 80000;	/* 8 sec */
3219 		break;
3220 	case IXGBE_PCIDEVCTRL2_17_34s:
3221 		pollcnt = 34000;	/* 34 sec */
3222 		break;
3223 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3224 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3225 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3226 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3227 	default:
3228 		pollcnt = 800;		/* 80 millisec minimum */
3229 		break;
3230 	}
3231 
3232 	/* add 10% to spec maximum */
3233 	return (pollcnt * 11) / 10;
3234 }
3235 
3236 /**
3237  * ixgbe_disable_pcie_primary - Disable PCI-express primary access
3238  * @hw: pointer to hardware structure
3239  *
3240  * Disables PCI-Express primary access and verifies there are no pending
3241  * requests. IXGBE_ERR_PRIMARY_REQUESTS_PENDING is returned if primary disable
3242  * bit hasn't caused the primary requests to be disabled, else IXGBE_SUCCESS
3243  * is returned signifying primary requests disabled.
3244  **/
ixgbe_disable_pcie_primary(struct ixgbe_hw * hw)3245 s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
3246 {
3247 	s32 status = IXGBE_SUCCESS;
3248 	u32 i, poll;
3249 	u16 value;
3250 
3251 	DEBUGFUNC("ixgbe_disable_pcie_primary");
3252 
3253 	/* Always set this bit to ensure any future transactions are blocked */
3254 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3255 
3256 	/* Exit if primary requests are blocked */
3257 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3258 	    IXGBE_REMOVED(hw->hw_addr))
3259 		goto out;
3260 
3261 	/* Poll for primary request bit to clear */
3262 	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
3263 		usec_delay(100);
3264 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3265 			goto out;
3266 	}
3267 
3268 	/*
3269 	 * Two consecutive resets are required via CTRL.RST per datasheet
3270 	 * 5.2.5.3.2 Primary Disable.  We set a flag to inform the reset routine
3271 	 * of this need. The first reset prevents new primary requests from
3272 	 * being issued by our device.  We then must wait 1usec or more for any
3273 	 * remaining completions from the PCIe bus to trickle in, and then reset
3274 	 * again to clear out any effects they may have had on our device.
3275 	 */
3276 	DEBUGOUT("GIO Primary Disable bit didn't clear - requesting resets\n");
3277 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3278 
3279 	if (hw->mac.type >= ixgbe_mac_X550)
3280 		goto out;
3281 
3282 	/*
3283 	 * Before proceeding, make sure that the PCIe block does not have
3284 	 * transactions pending.
3285 	 */
3286 	poll = ixgbe_pcie_timeout_poll(hw);
3287 	for (i = 0; i < poll; i++) {
3288 		usec_delay(100);
3289 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3290 		if (IXGBE_REMOVED(hw->hw_addr))
3291 			goto out;
3292 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3293 			goto out;
3294 	}
3295 
3296 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3297 		     "PCIe transaction pending bit also did not clear.\n");
3298 	status = IXGBE_ERR_PRIMARY_REQUESTS_PENDING;
3299 
3300 out:
3301 	return status;
3302 }
3303 
3304 /**
3305  * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3306  * @hw: pointer to hardware structure
3307  * @mask: Mask to specify which semaphore to acquire
3308  *
3309  * Acquires the SWFW semaphore through the GSSR register for the specified
3310  * function (CSR, PHY0, PHY1, EEPROM, Flash)
3311  **/
ixgbe_acquire_swfw_sync(struct ixgbe_hw * hw,u32 mask)3312 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3313 {
3314 	u32 gssr = 0;
3315 	u32 swmask = mask;
3316 	u32 fwmask = mask << 5;
3317 	u32 timeout = 200;
3318 	u32 i;
3319 
3320 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3321 
3322 	for (i = 0; i < timeout; i++) {
3323 		/*
3324 		 * SW NVM semaphore bit is used for access to all
3325 		 * SW_FW_SYNC bits (not just NVM)
3326 		 */
3327 		if (ixgbe_get_eeprom_semaphore(hw))
3328 			return IXGBE_ERR_SWFW_SYNC;
3329 
3330 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3331 		if (!(gssr & (fwmask | swmask))) {
3332 			gssr |= swmask;
3333 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3334 			ixgbe_release_eeprom_semaphore(hw);
3335 			return IXGBE_SUCCESS;
3336 		} else {
3337 			/* Resource is currently in use by FW or SW */
3338 			ixgbe_release_eeprom_semaphore(hw);
3339 			msec_delay(5);
3340 		}
3341 	}
3342 
3343 	/* If time expired clear the bits holding the lock and retry */
3344 	if (gssr & (fwmask | swmask))
3345 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3346 
3347 	msec_delay(5);
3348 	return IXGBE_ERR_SWFW_SYNC;
3349 }
3350 
3351 /**
3352  * ixgbe_release_swfw_sync - Release SWFW semaphore
3353  * @hw: pointer to hardware structure
3354  * @mask: Mask to specify which semaphore to release
3355  *
3356  * Releases the SWFW semaphore through the GSSR register for the specified
3357  * function (CSR, PHY0, PHY1, EEPROM, Flash)
3358  **/
ixgbe_release_swfw_sync(struct ixgbe_hw * hw,u32 mask)3359 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3360 {
3361 	u32 gssr;
3362 	u32 swmask = mask;
3363 
3364 	DEBUGFUNC("ixgbe_release_swfw_sync");
3365 
3366 	ixgbe_get_eeprom_semaphore(hw);
3367 
3368 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3369 	gssr &= ~swmask;
3370 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3371 
3372 	ixgbe_release_eeprom_semaphore(hw);
3373 }
3374 
3375 /**
3376  * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3377  * @hw: pointer to hardware structure
3378  *
3379  * Stops the receive data path and waits for the HW to internally empty
3380  * the Rx security block
3381  **/
ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw * hw)3382 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3383 {
3384 #define IXGBE_MAX_SECRX_POLL 4000
3385 
3386 	int i;
3387 	int secrxreg;
3388 
3389 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3390 
3391 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3392 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3393 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3394 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3395 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3396 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3397 			break;
3398 		else
3399 			/* Use interrupt-safe sleep just in case */
3400 			usec_delay(10);
3401 	}
3402 
3403 	/* For informational purposes only */
3404 	if (i >= IXGBE_MAX_SECRX_POLL)
3405 		DEBUGOUT("Rx unit being enabled before security "
3406 			 "path fully disabled.  Continuing with init.\n");
3407 
3408 	return IXGBE_SUCCESS;
3409 }
3410 
3411 /**
3412  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3413  * @hw: pointer to hardware structure
3414  * @locked: bool to indicate whether the SW/FW lock was taken
3415  * @reg_val: Value we read from AUTOC
3416  *
3417  * The default case requires no protection so just to the register read.
3418  */
prot_autoc_read_generic(struct ixgbe_hw * hw,bool * locked,u32 * reg_val)3419 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3420 {
3421 	*locked = FALSE;
3422 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3423 	return IXGBE_SUCCESS;
3424 }
3425 
3426 /**
3427  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3428  * @hw: pointer to hardware structure
3429  * @reg_val: value to write to AUTOC
3430  * @locked: bool to indicate whether the SW/FW lock was already taken by
3431  *          previous read.
3432  *
3433  * The default case requires no protection so just to the register write.
3434  */
prot_autoc_write_generic(struct ixgbe_hw * hw,u32 reg_val,bool locked)3435 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3436 {
3437 	UNREFERENCED_1PARAMETER(locked);
3438 
3439 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3440 	return IXGBE_SUCCESS;
3441 }
3442 
3443 /**
3444  * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3445  * @hw: pointer to hardware structure
3446  *
3447  * Enables the receive data path.
3448  **/
ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw * hw)3449 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3450 {
3451 	u32 secrxreg;
3452 
3453 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3454 
3455 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3456 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3457 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3458 	IXGBE_WRITE_FLUSH(hw);
3459 
3460 	return IXGBE_SUCCESS;
3461 }
3462 
3463 /**
3464  * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3465  * @hw: pointer to hardware structure
3466  * @regval: register value to write to RXCTRL
3467  *
3468  * Enables the Rx DMA unit
3469  **/
ixgbe_enable_rx_dma_generic(struct ixgbe_hw * hw,u32 regval)3470 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3471 {
3472 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3473 
3474 	if (regval & IXGBE_RXCTRL_RXEN)
3475 		ixgbe_enable_rx(hw);
3476 	else
3477 		ixgbe_disable_rx(hw);
3478 
3479 	return IXGBE_SUCCESS;
3480 }
3481 
3482 /**
3483  * ixgbe_blink_led_start_generic - Blink LED based on index.
3484  * @hw: pointer to hardware structure
3485  * @index: led number to blink
3486  **/
ixgbe_blink_led_start_generic(struct ixgbe_hw * hw,u32 index)3487 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3488 {
3489 	ixgbe_link_speed speed = 0;
3490 	bool link_up = 0;
3491 	u32 autoc_reg = 0;
3492 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3493 	s32 ret_val = IXGBE_SUCCESS;
3494 	bool locked = FALSE;
3495 
3496 	DEBUGFUNC("ixgbe_blink_led_start_generic");
3497 
3498 	if (index > 3)
3499 		return IXGBE_ERR_PARAM;
3500 
3501 	/*
3502 	 * Link must be up to auto-blink the LEDs;
3503 	 * Force it if link is down.
3504 	 */
3505 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3506 
3507 	if (!link_up) {
3508 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3509 		if (ret_val != IXGBE_SUCCESS)
3510 			goto out;
3511 
3512 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3513 		autoc_reg |= IXGBE_AUTOC_FLU;
3514 
3515 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3516 		if (ret_val != IXGBE_SUCCESS)
3517 			goto out;
3518 
3519 		IXGBE_WRITE_FLUSH(hw);
3520 		msec_delay(10);
3521 	}
3522 
3523 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3524 	led_reg |= IXGBE_LED_BLINK(index);
3525 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3526 	IXGBE_WRITE_FLUSH(hw);
3527 
3528 out:
3529 	return ret_val;
3530 }
3531 
3532 /**
3533  * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3534  * @hw: pointer to hardware structure
3535  * @index: led number to stop blinking
3536  **/
ixgbe_blink_led_stop_generic(struct ixgbe_hw * hw,u32 index)3537 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3538 {
3539 	u32 autoc_reg = 0;
3540 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3541 	s32 ret_val = IXGBE_SUCCESS;
3542 	bool locked = FALSE;
3543 
3544 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3545 
3546 	if (index > 3)
3547 		return IXGBE_ERR_PARAM;
3548 
3549 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3550 	if (ret_val != IXGBE_SUCCESS)
3551 		goto out;
3552 
3553 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3554 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3555 
3556 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3557 	if (ret_val != IXGBE_SUCCESS)
3558 		goto out;
3559 
3560 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3561 	led_reg &= ~IXGBE_LED_BLINK(index);
3562 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3563 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3564 	IXGBE_WRITE_FLUSH(hw);
3565 
3566 out:
3567 	return ret_val;
3568 }
3569 
3570 /**
3571  * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3572  * @hw: pointer to hardware structure
3573  * @san_mac_offset: SAN MAC address offset
3574  *
3575  * This function will read the EEPROM location for the SAN MAC address
3576  * pointer, and returns the value at that location.  This is used in both
3577  * get and set mac_addr routines.
3578  **/
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw * hw,u16 * san_mac_offset)3579 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3580 					 u16 *san_mac_offset)
3581 {
3582 	s32 ret_val;
3583 
3584 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3585 
3586 	/*
3587 	 * First read the EEPROM pointer to see if the MAC addresses are
3588 	 * available.
3589 	 */
3590 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3591 				      san_mac_offset);
3592 	if (ret_val) {
3593 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3594 			      "eeprom at offset %d failed",
3595 			      IXGBE_SAN_MAC_ADDR_PTR);
3596 	}
3597 
3598 	return ret_val;
3599 }
3600 
3601 /**
3602  * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3603  * @hw: pointer to hardware structure
3604  * @san_mac_addr: SAN MAC address
3605  *
3606  * Reads the SAN MAC address from the EEPROM, if it's available.  This is
3607  * per-port, so set_lan_id() must be called before reading the addresses.
3608  * set_lan_id() is called by identify_sfp(), but this cannot be relied
3609  * upon for non-SFP connections, so we must call it here.
3610  **/
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw * hw,u8 * san_mac_addr)3611 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3612 {
3613 	u16 san_mac_data, san_mac_offset;
3614 	u8 i;
3615 	s32 ret_val;
3616 
3617 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3618 
3619 	/*
3620 	 * First read the EEPROM pointer to see if the MAC addresses are
3621 	 * available.  If they're not, no point in calling set_lan_id() here.
3622 	 */
3623 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3624 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3625 		goto san_mac_addr_out;
3626 
3627 	/* make sure we know which port we need to program */
3628 	hw->mac.ops.set_lan_id(hw);
3629 	/* apply the port offset to the address offset */
3630 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3631 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3632 	for (i = 0; i < 3; i++) {
3633 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3634 					      &san_mac_data);
3635 		if (ret_val) {
3636 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3637 				      "eeprom read at offset %d failed",
3638 				      san_mac_offset);
3639 			goto san_mac_addr_out;
3640 		}
3641 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3642 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3643 		san_mac_offset++;
3644 	}
3645 	return IXGBE_SUCCESS;
3646 
3647 san_mac_addr_out:
3648 	/*
3649 	 * No addresses available in this EEPROM.  It's not an
3650 	 * error though, so just wipe the local address and return.
3651 	 */
3652 	for (i = 0; i < 6; i++)
3653 		san_mac_addr[i] = 0xFF;
3654 	return IXGBE_SUCCESS;
3655 }
3656 
3657 /**
3658  * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3659  * @hw: pointer to hardware structure
3660  * @san_mac_addr: SAN MAC address
3661  *
3662  * Write a SAN MAC address to the EEPROM.
3663  **/
ixgbe_set_san_mac_addr_generic(struct ixgbe_hw * hw,u8 * san_mac_addr)3664 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3665 {
3666 	s32 ret_val;
3667 	u16 san_mac_data, san_mac_offset;
3668 	u8 i;
3669 
3670 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3671 
3672 	/* Look for SAN mac address pointer.  If not defined, return */
3673 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3674 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3675 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3676 
3677 	/* Make sure we know which port we need to write */
3678 	hw->mac.ops.set_lan_id(hw);
3679 	/* Apply the port offset to the address offset */
3680 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3681 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3682 
3683 	for (i = 0; i < 3; i++) {
3684 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3685 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3686 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3687 		san_mac_offset++;
3688 	}
3689 
3690 	return IXGBE_SUCCESS;
3691 }
3692 
3693 /**
3694  * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3695  * @hw: pointer to hardware structure
3696  *
3697  * Read PCIe configuration space, and get the MSI-X vector count from
3698  * the capabilities table.
3699  **/
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw * hw)3700 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3701 {
3702 	u16 msix_count = 1;
3703 	u16 max_msix_count;
3704 	u16 pcie_offset;
3705 
3706 	switch (hw->mac.type) {
3707 	case ixgbe_mac_82598EB:
3708 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3709 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3710 		break;
3711 	case ixgbe_mac_82599EB:
3712 	case ixgbe_mac_X540:
3713 	case ixgbe_mac_X550:
3714 	case ixgbe_mac_X550EM_x:
3715 	case ixgbe_mac_X550EM_a:
3716 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3717 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3718 		break;
3719 	default:
3720 		return msix_count;
3721 	}
3722 
3723 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3724 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3725 	if (IXGBE_REMOVED(hw->hw_addr))
3726 		msix_count = 0;
3727 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3728 
3729 	/* MSI-X count is zero-based in HW */
3730 	msix_count++;
3731 
3732 	if (msix_count > max_msix_count)
3733 		msix_count = max_msix_count;
3734 
3735 	return msix_count;
3736 }
3737 
3738 /**
3739  * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3740  * @hw: pointer to hardware structure
3741  * @addr: Address to put into receive address register
3742  * @vmdq: VMDq pool to assign
3743  *
3744  * Puts an ethernet address into a receive address register, or
3745  * finds the rar that it is already in; adds to the pool list
3746  **/
ixgbe_insert_mac_addr_generic(struct ixgbe_hw * hw,u8 * addr,u32 vmdq)3747 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3748 {
3749 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3750 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3751 	u32 rar;
3752 	u32 rar_low, rar_high;
3753 	u32 addr_low, addr_high;
3754 
3755 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3756 
3757 	/* swap bytes for HW little endian */
3758 	addr_low  = addr[0] | (addr[1] << 8)
3759 			    | (addr[2] << 16)
3760 			    | (addr[3] << 24);
3761 	addr_high = addr[4] | (addr[5] << 8);
3762 
3763 	/*
3764 	 * Either find the mac_id in rar or find the first empty space.
3765 	 * rar_highwater points to just after the highest currently used
3766 	 * rar in order to shorten the search.  It grows when we add a new
3767 	 * rar to the top.
3768 	 */
3769 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3770 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3771 
3772 		if (((IXGBE_RAH_AV & rar_high) == 0)
3773 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3774 			first_empty_rar = rar;
3775 		} else if ((rar_high & 0xFFFF) == addr_high) {
3776 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3777 			if (rar_low == addr_low)
3778 				break;    /* found it already in the rars */
3779 		}
3780 	}
3781 
3782 	if (rar < hw->mac.rar_highwater) {
3783 		/* already there so just add to the pool bits */
3784 		ixgbe_set_vmdq(hw, rar, vmdq);
3785 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3786 		/* stick it into first empty RAR slot we found */
3787 		rar = first_empty_rar;
3788 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3789 	} else if (rar == hw->mac.rar_highwater) {
3790 		/* add it to the top of the list and inc the highwater mark */
3791 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3792 		hw->mac.rar_highwater++;
3793 	} else if (rar >= hw->mac.num_rar_entries) {
3794 		return IXGBE_ERR_INVALID_MAC_ADDR;
3795 	}
3796 
3797 	/*
3798 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3799 	 * remains cleared to be sure default pool packets will get delivered
3800 	 */
3801 	if (rar == 0)
3802 		ixgbe_clear_vmdq(hw, rar, 0);
3803 
3804 	return rar;
3805 }
3806 
3807 /**
3808  * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3809  * @hw: pointer to hardware struct
3810  * @rar: receive address register index to disassociate
3811  * @vmdq: VMDq pool index to remove from the rar
3812  **/
ixgbe_clear_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)3813 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3814 {
3815 	u32 mpsar_lo, mpsar_hi;
3816 	u32 rar_entries = hw->mac.num_rar_entries;
3817 
3818 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3819 
3820 	/* Make sure we are using a valid rar index range */
3821 	if (rar >= rar_entries) {
3822 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3823 			     "RAR index %d is out of range.\n", rar);
3824 		return IXGBE_ERR_INVALID_ARGUMENT;
3825 	}
3826 
3827 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3828 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3829 
3830 	if (IXGBE_REMOVED(hw->hw_addr))
3831 		goto done;
3832 
3833 	if (!mpsar_lo && !mpsar_hi)
3834 		goto done;
3835 
3836 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3837 		if (mpsar_lo) {
3838 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3839 			mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3840 		}
3841 		if (mpsar_hi) {
3842 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3843 			mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3844 		}
3845 	} else if (vmdq < 32) {
3846 		mpsar_lo &= ~(1 << vmdq);
3847 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3848 	} else {
3849 		mpsar_hi &= ~(1 << (vmdq - 32));
3850 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3851 	}
3852 
3853 	/* was that the last pool using this rar? */
3854 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3855 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3856 		hw->mac.ops.clear_rar(hw, rar);
3857 done:
3858 	return IXGBE_SUCCESS;
3859 }
3860 
3861 /**
3862  * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3863  * @hw: pointer to hardware struct
3864  * @rar: receive address register index to associate with a VMDq index
3865  * @vmdq: VMDq pool index
3866  **/
ixgbe_set_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)3867 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3868 {
3869 	u32 mpsar;
3870 	u32 rar_entries = hw->mac.num_rar_entries;
3871 
3872 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3873 
3874 	/* Make sure we are using a valid rar index range */
3875 	if (rar >= rar_entries) {
3876 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3877 			     "RAR index %d is out of range.\n", rar);
3878 		return IXGBE_ERR_INVALID_ARGUMENT;
3879 	}
3880 
3881 	if (vmdq < 32) {
3882 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3883 		mpsar |= 1 << vmdq;
3884 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3885 	} else {
3886 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3887 		mpsar |= 1 << (vmdq - 32);
3888 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3889 	}
3890 	return IXGBE_SUCCESS;
3891 }
3892 
3893 /**
3894  * This function should only be involved in the IOV mode.
3895  * In IOV mode, Default pool is next pool after the number of
3896  * VFs advertized and not 0.
3897  * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3898  *
3899  * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3900  * @hw: pointer to hardware struct
3901  * @vmdq: VMDq pool index
3902  **/
ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw * hw,u32 vmdq)3903 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3904 {
3905 	u32 rar = hw->mac.san_mac_rar_index;
3906 
3907 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3908 
3909 	if (vmdq < 32) {
3910 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3911 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3912 	} else {
3913 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3914 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3915 	}
3916 
3917 	return IXGBE_SUCCESS;
3918 }
3919 
3920 /**
3921  * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3922  * @hw: pointer to hardware structure
3923  **/
ixgbe_init_uta_tables_generic(struct ixgbe_hw * hw)3924 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3925 {
3926 	int i;
3927 
3928 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3929 	DEBUGOUT(" Clearing UTA\n");
3930 
3931 	for (i = 0; i < 128; i++)
3932 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3933 
3934 	return IXGBE_SUCCESS;
3935 }
3936 
3937 /**
3938  * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3939  * @hw: pointer to hardware structure
3940  * @vlan: VLAN id to write to VLAN filter
3941  * @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
3942  *		  vlanid not found
3943  *
3944  *
3945  * return the VLVF index where this VLAN id should be placed
3946  *
3947  **/
ixgbe_find_vlvf_slot(struct ixgbe_hw * hw,u32 vlan,bool vlvf_bypass)3948 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3949 {
3950 	s32 regindex, first_empty_slot;
3951 	u32 bits;
3952 
3953 	/* short cut the special case */
3954 	if (vlan == 0)
3955 		return 0;
3956 
3957 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3958 	 * will simply bypass the VLVF if there are no entries present in the
3959 	 * VLVF that contain our VLAN
3960 	 */
3961 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3962 
3963 	/* add VLAN enable bit for comparison */
3964 	vlan |= IXGBE_VLVF_VIEN;
3965 
3966 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3967 	 * slot found along the way.
3968 	 *
3969 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3970 	 */
3971 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3972 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3973 		if (bits == vlan)
3974 			return regindex;
3975 		if (!first_empty_slot && !bits)
3976 			first_empty_slot = regindex;
3977 	}
3978 
3979 	/* If we are here then we didn't find the VLAN.  Return first empty
3980 	 * slot we found during our search, else error.
3981 	 */
3982 	if (!first_empty_slot)
3983 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3984 
3985 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3986 }
3987 
3988 /**
3989  * ixgbe_set_vfta_generic - Set VLAN filter table
3990  * @hw: pointer to hardware structure
3991  * @vlan: VLAN id to write to VLAN filter
3992  * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3993  * @vlan_on: boolean flag to turn on/off VLAN
3994  * @vlvf_bypass: boolean flag indicating updating default pool is okay
3995  *
3996  * Turn on/off specified VLAN in the VLAN filter table.
3997  **/
ixgbe_set_vfta_generic(struct ixgbe_hw * hw,u32 vlan,u32 vind,bool vlan_on,bool vlvf_bypass)3998 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3999 			   bool vlan_on, bool vlvf_bypass)
4000 {
4001 	u32 regidx, vfta_delta, vfta;
4002 	s32 ret_val;
4003 
4004 	DEBUGFUNC("ixgbe_set_vfta_generic");
4005 
4006 	if (vlan > 4095 || vind > 63)
4007 		return IXGBE_ERR_PARAM;
4008 
4009 	/*
4010 	 * this is a 2 part operation - first the VFTA, then the
4011 	 * VLVF and VLVFB if VT Mode is set
4012 	 * We don't write the VFTA until we know the VLVF part succeeded.
4013 	 */
4014 
4015 	/* Part 1
4016 	 * The VFTA is a bitstring made up of 128 32-bit registers
4017 	 * that enable the particular VLAN id, much like the MTA:
4018 	 *    bits[11-5]: which register
4019 	 *    bits[4-0]:  which bit in the register
4020 	 */
4021 	regidx = vlan / 32;
4022 	vfta_delta = (u32)1 << (vlan % 32);
4023 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4024 
4025 	/*
4026 	 * vfta_delta represents the difference between the current value
4027 	 * of vfta and the value we want in the register.  Since the diff
4028 	 * is an XOR mask we can just update the vfta using an XOR
4029 	 */
4030 	vfta_delta &= vlan_on ? ~vfta : vfta;
4031 	vfta ^= vfta_delta;
4032 
4033 	/* Part 2
4034 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4035 	 */
4036 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4037 					 vfta, vlvf_bypass);
4038 	if (ret_val != IXGBE_SUCCESS) {
4039 		if (vlvf_bypass)
4040 			goto vfta_update;
4041 		return ret_val;
4042 	}
4043 
4044 vfta_update:
4045 	/* Update VFTA now that we are ready for traffic */
4046 	if (vfta_delta)
4047 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4048 
4049 	return IXGBE_SUCCESS;
4050 }
4051 
4052 /**
4053  * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4054  * @hw: pointer to hardware structure
4055  * @vlan: VLAN id to write to VLAN filter
4056  * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4057  * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4058  * @vfta_delta: pointer to the difference between the current value of VFTA
4059  *		 and the desired value
4060  * @vfta: the desired value of the VFTA
4061  * @vlvf_bypass: boolean flag indicating updating default pool is okay
4062  *
4063  * Turn on/off specified bit in VLVF table.
4064  **/
ixgbe_set_vlvf_generic(struct ixgbe_hw * hw,u32 vlan,u32 vind,bool vlan_on,u32 * vfta_delta,u32 vfta,bool vlvf_bypass)4065 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4066 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
4067 			   bool vlvf_bypass)
4068 {
4069 	u32 bits;
4070 	s32 vlvf_index;
4071 
4072 	DEBUGFUNC("ixgbe_set_vlvf_generic");
4073 
4074 	if (vlan > 4095 || vind > 63)
4075 		return IXGBE_ERR_PARAM;
4076 
4077 	/* If VT Mode is set
4078 	 *   Either vlan_on
4079 	 *     make sure the vlan is in VLVF
4080 	 *     set the vind bit in the matching VLVFB
4081 	 *   Or !vlan_on
4082 	 *     clear the pool bit and possibly the vind
4083 	 */
4084 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4085 		return IXGBE_SUCCESS;
4086 
4087 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4088 	if (vlvf_index < 0)
4089 		return vlvf_index;
4090 
4091 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4092 
4093 	/* set the pool bit */
4094 	bits |= 1 << (vind % 32);
4095 	if (vlan_on)
4096 		goto vlvf_update;
4097 
4098 	/* clear the pool bit */
4099 	bits ^= 1 << (vind % 32);
4100 
4101 	if (!bits &&
4102 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4103 		/* Clear VFTA first, then disable VLVF.  Otherwise
4104 		 * we run the risk of stray packets leaking into
4105 		 * the PF via the default pool
4106 		 */
4107 		if (*vfta_delta)
4108 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4109 
4110 		/* disable VLVF and clear remaining bit from pool */
4111 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4112 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4113 
4114 		return IXGBE_SUCCESS;
4115 	}
4116 
4117 	/* If there are still bits set in the VLVFB registers
4118 	 * for the VLAN ID indicated we need to see if the
4119 	 * caller is requesting that we clear the VFTA entry bit.
4120 	 * If the caller has requested that we clear the VFTA
4121 	 * entry bit but there are still pools/VFs using this VLAN
4122 	 * ID entry then ignore the request.  We're not worried
4123 	 * about the case where we're turning the VFTA VLAN ID
4124 	 * entry bit on, only when requested to turn it off as
4125 	 * there may be multiple pools and/or VFs using the
4126 	 * VLAN ID entry.  In that case we cannot clear the
4127 	 * VFTA bit until all pools/VFs using that VLAN ID have also
4128 	 * been cleared.  This will be indicated by "bits" being
4129 	 * zero.
4130 	 */
4131 	*vfta_delta = 0;
4132 
4133 vlvf_update:
4134 	/* record pool change and enable VLAN ID if not already enabled */
4135 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4136 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4137 
4138 	return IXGBE_SUCCESS;
4139 }
4140 
4141 /**
4142  * ixgbe_clear_vfta_generic - Clear VLAN filter table
4143  * @hw: pointer to hardware structure
4144  *
4145  * Clears the VLAN filter table, and the VMDq index associated with the filter
4146  **/
ixgbe_clear_vfta_generic(struct ixgbe_hw * hw)4147 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4148 {
4149 	u32 offset;
4150 
4151 	DEBUGFUNC("ixgbe_clear_vfta_generic");
4152 
4153 	for (offset = 0; offset < hw->mac.vft_size; offset++)
4154 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4155 
4156 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4157 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4158 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4159 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4160 	}
4161 
4162 	return IXGBE_SUCCESS;
4163 }
4164 
4165 /**
4166  * ixgbe_toggle_txdctl_generic - Toggle VF's queues
4167  * @hw: pointer to hardware structure
4168  * @vf_number: VF index
4169  *
4170  * Enable and disable each queue in VF.
4171  */
ixgbe_toggle_txdctl_generic(struct ixgbe_hw * hw,u32 vf_number)4172 s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
4173 {
4174 	u8  queue_count, i;
4175 	u32 offset, reg;
4176 
4177 	if (vf_number > 63)
4178 		return IXGBE_ERR_PARAM;
4179 
4180 	/*
4181 	 * Determine number of queues by checking
4182 	 * number of virtual functions
4183 	 */
4184 	reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4185 	switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
4186 	case IXGBE_GCR_EXT_VT_MODE_64:
4187 		queue_count = 2;
4188 		break;
4189 	case IXGBE_GCR_EXT_VT_MODE_32:
4190 		queue_count = 4;
4191 		break;
4192 	case IXGBE_GCR_EXT_VT_MODE_16:
4193 		queue_count = 8;
4194 		break;
4195 	default:
4196 		return IXGBE_ERR_CONFIG;
4197 	}
4198 
4199 	/* Toggle queues */
4200 	for (i = 0; i < queue_count; ++i) {
4201 		/* Calculate offset of current queue */
4202 		offset = queue_count * vf_number + i;
4203 
4204 		/* Enable queue */
4205 		reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4206 		reg |= IXGBE_TXDCTL_ENABLE;
4207 		IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4208 		IXGBE_WRITE_FLUSH(hw);
4209 
4210 		/* Disable queue */
4211 		reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4212 		reg &= ~IXGBE_TXDCTL_ENABLE;
4213 		IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4214 		IXGBE_WRITE_FLUSH(hw);
4215 	}
4216 
4217 	return IXGBE_SUCCESS;
4218 }
4219 
4220 /**
4221  * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4222  * @hw: pointer to hardware structure
4223  *
4224  * Contains the logic to identify if we need to verify link for the
4225  * crosstalk fix
4226  **/
ixgbe_need_crosstalk_fix(struct ixgbe_hw * hw)4227 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4228 {
4229 
4230 	/* Does FW say we need the fix */
4231 	if (!hw->need_crosstalk_fix)
4232 		return FALSE;
4233 
4234 	/* Only consider SFP+ PHYs i.e. media type fiber */
4235 	switch (hw->mac.ops.get_media_type(hw)) {
4236 	case ixgbe_media_type_fiber:
4237 	case ixgbe_media_type_fiber_qsfp:
4238 		break;
4239 	default:
4240 		return FALSE;
4241 	}
4242 
4243 	return TRUE;
4244 }
4245 
4246 /**
4247  * ixgbe_check_mac_link_generic - Determine link and speed status
4248  * @hw: pointer to hardware structure
4249  * @speed: pointer to link speed
4250  * @link_up: TRUE when link is up
4251  * @link_up_wait_to_complete: bool used to wait for link up or not
4252  *
4253  * Reads the links register to determine if link is up and the current speed
4254  **/
ixgbe_check_mac_link_generic(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * link_up,bool link_up_wait_to_complete)4255 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4256 				 bool *link_up, bool link_up_wait_to_complete)
4257 {
4258 	u32 links_reg, links_orig;
4259 	u32 i;
4260 
4261 	DEBUGFUNC("ixgbe_check_mac_link_generic");
4262 
4263 	/* If Crosstalk fix enabled do the sanity check of making sure
4264 	 * the SFP+ cage is full.
4265 	 */
4266 	if (ixgbe_need_crosstalk_fix(hw)) {
4267 		if ((hw->mac.type != ixgbe_mac_82598EB) &&
4268 		    !ixgbe_sfp_cage_full(hw)) {
4269 			*link_up = FALSE;
4270 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
4271 			return IXGBE_SUCCESS;
4272 		}
4273 	}
4274 
4275 	/* clear the old state */
4276 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4277 
4278 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4279 
4280 	if (links_orig != links_reg) {
4281 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4282 			  links_orig, links_reg);
4283 	}
4284 
4285 	if (link_up_wait_to_complete) {
4286 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4287 			if (links_reg & IXGBE_LINKS_UP) {
4288 				*link_up = TRUE;
4289 				break;
4290 			} else {
4291 				*link_up = FALSE;
4292 			}
4293 			msec_delay(100);
4294 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4295 		}
4296 	} else {
4297 		if (links_reg & IXGBE_LINKS_UP) {
4298 			if (ixgbe_need_crosstalk_fix(hw)) {
4299 				/* Check the link state again after a delay
4300 				 * to filter out spurious link up
4301 				 * notifications.
4302 				 */
4303 				msec_delay(5);
4304 				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4305 				if (!(links_reg & IXGBE_LINKS_UP)) {
4306 					*link_up = false;
4307 					*speed = IXGBE_LINK_SPEED_UNKNOWN;
4308 					return IXGBE_SUCCESS;
4309 				}
4310 
4311 			}
4312 			*link_up = TRUE;
4313 		} else {
4314 			*link_up = FALSE;
4315 		}
4316 	}
4317 
4318 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4319 	case IXGBE_LINKS_SPEED_10G_82599:
4320 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4321 		if (hw->mac.type >= ixgbe_mac_X550) {
4322 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4323 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4324 		}
4325 		break;
4326 	case IXGBE_LINKS_SPEED_1G_82599:
4327 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4328 		break;
4329 	case IXGBE_LINKS_SPEED_100_82599:
4330 		*speed = IXGBE_LINK_SPEED_100_FULL;
4331 		if (hw->mac.type >= ixgbe_mac_X550) {
4332 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4333 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4334 		}
4335 		break;
4336 	case IXGBE_LINKS_SPEED_10_X550EM_A:
4337 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4338 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4339 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4340 			*speed = IXGBE_LINK_SPEED_10_FULL;
4341 		break;
4342 	default:
4343 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4344 	}
4345 
4346 	return IXGBE_SUCCESS;
4347 }
4348 
4349 /**
4350  * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4351  * the EEPROM
4352  * @hw: pointer to hardware structure
4353  * @wwnn_prefix: the alternative WWNN prefix
4354  * @wwpn_prefix: the alternative WWPN prefix
4355  *
4356  * This function will read the EEPROM from the alternative SAN MAC address
4357  * block to check the support for the alternative WWNN/WWPN prefix support.
4358  **/
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw * hw,u16 * wwnn_prefix,u16 * wwpn_prefix)4359 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4360 				 u16 *wwpn_prefix)
4361 {
4362 	u16 offset, caps;
4363 	u16 alt_san_mac_blk_offset;
4364 
4365 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4366 
4367 	/* clear output first */
4368 	*wwnn_prefix = 0xFFFF;
4369 	*wwpn_prefix = 0xFFFF;
4370 
4371 	/* check if alternative SAN MAC is supported */
4372 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4373 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4374 		goto wwn_prefix_err;
4375 
4376 	if ((alt_san_mac_blk_offset == 0) ||
4377 	    (alt_san_mac_blk_offset == 0xFFFF))
4378 		goto wwn_prefix_out;
4379 
4380 	/* check capability in alternative san mac address block */
4381 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4382 	if (hw->eeprom.ops.read(hw, offset, &caps))
4383 		goto wwn_prefix_err;
4384 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4385 		goto wwn_prefix_out;
4386 
4387 	/* get the corresponding prefix for WWNN/WWPN */
4388 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4389 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4390 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4391 			      "eeprom read at offset %d failed", offset);
4392 	}
4393 
4394 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4395 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4396 		goto wwn_prefix_err;
4397 
4398 wwn_prefix_out:
4399 	return IXGBE_SUCCESS;
4400 
4401 wwn_prefix_err:
4402 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4403 		      "eeprom read at offset %d failed", offset);
4404 	return IXGBE_SUCCESS;
4405 }
4406 
4407 /**
4408  * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4409  * @hw: pointer to hardware structure
4410  * @bs: the fcoe boot status
4411  *
4412  * This function will read the FCOE boot status from the iSCSI FCOE block
4413  **/
ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw * hw,u16 * bs)4414 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4415 {
4416 	u16 offset, caps, flags;
4417 	s32 status;
4418 
4419 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4420 
4421 	/* clear output first */
4422 	*bs = ixgbe_fcoe_bootstatus_unavailable;
4423 
4424 	/* check if FCOE IBA block is present */
4425 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4426 	status = hw->eeprom.ops.read(hw, offset, &caps);
4427 	if (status != IXGBE_SUCCESS)
4428 		goto out;
4429 
4430 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4431 		goto out;
4432 
4433 	/* check if iSCSI FCOE block is populated */
4434 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4435 	if (status != IXGBE_SUCCESS)
4436 		goto out;
4437 
4438 	if ((offset == 0) || (offset == 0xFFFF))
4439 		goto out;
4440 
4441 	/* read fcoe flags in iSCSI FCOE block */
4442 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4443 	status = hw->eeprom.ops.read(hw, offset, &flags);
4444 	if (status != IXGBE_SUCCESS)
4445 		goto out;
4446 
4447 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4448 		*bs = ixgbe_fcoe_bootstatus_enabled;
4449 	else
4450 		*bs = ixgbe_fcoe_bootstatus_disabled;
4451 
4452 out:
4453 	return status;
4454 }
4455 
4456 /**
4457  * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4458  * @hw: pointer to hardware structure
4459  * @enable: enable or disable switch for MAC anti-spoofing
4460  * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4461  *
4462  **/
ixgbe_set_mac_anti_spoofing(struct ixgbe_hw * hw,bool enable,int vf)4463 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4464 {
4465 	int vf_target_reg = vf >> 3;
4466 	int vf_target_shift = vf % 8;
4467 	u32 pfvfspoof;
4468 
4469 	if (hw->mac.type == ixgbe_mac_82598EB)
4470 		return;
4471 
4472 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4473 	if (enable)
4474 		pfvfspoof |= (1 << vf_target_shift);
4475 	else
4476 		pfvfspoof &= ~(1 << vf_target_shift);
4477 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4478 }
4479 
4480 /**
4481  * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4482  * @hw: pointer to hardware structure
4483  * @enable: enable or disable switch for VLAN anti-spoofing
4484  * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4485  *
4486  **/
ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw * hw,bool enable,int vf)4487 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4488 {
4489 	int vf_target_reg = vf >> 3;
4490 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4491 	u32 pfvfspoof;
4492 
4493 	if (hw->mac.type == ixgbe_mac_82598EB)
4494 		return;
4495 
4496 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4497 	if (enable)
4498 		pfvfspoof |= (1 << vf_target_shift);
4499 	else
4500 		pfvfspoof &= ~(1 << vf_target_shift);
4501 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4502 }
4503 
4504 /**
4505  * ixgbe_get_device_caps_generic - Get additional device capabilities
4506  * @hw: pointer to hardware structure
4507  * @device_caps: the EEPROM word with the extra device capabilities
4508  *
4509  * This function will read the EEPROM location for the device capabilities,
4510  * and return the word through device_caps.
4511  **/
ixgbe_get_device_caps_generic(struct ixgbe_hw * hw,u16 * device_caps)4512 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4513 {
4514 	DEBUGFUNC("ixgbe_get_device_caps_generic");
4515 
4516 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4517 
4518 	return IXGBE_SUCCESS;
4519 }
4520 
4521 /**
4522  * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4523  * @hw: pointer to hardware structure
4524  *
4525  **/
ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw * hw)4526 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4527 {
4528 	u32 regval;
4529 	u32 i;
4530 
4531 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4532 
4533 	/* Enable relaxed ordering */
4534 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4535 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4536 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4537 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4538 	}
4539 
4540 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4541 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4542 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4543 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4544 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4545 	}
4546 
4547 }
4548 
4549 /**
4550  * ixgbe_calculate_checksum - Calculate checksum for buffer
4551  * @buffer: pointer to EEPROM
4552  * @length: size of EEPROM to calculate a checksum for
4553  * Calculates the checksum for some buffer on a specified length.  The
4554  * checksum calculated is returned.
4555  **/
ixgbe_calculate_checksum(u8 * buffer,u32 length)4556 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4557 {
4558 	u32 i;
4559 	u8 sum = 0;
4560 
4561 	DEBUGFUNC("ixgbe_calculate_checksum");
4562 
4563 	if (!buffer)
4564 		return 0;
4565 
4566 	for (i = 0; i < length; i++)
4567 		sum += buffer[i];
4568 
4569 	return (u8) (0 - sum);
4570 }
4571 
4572 /**
4573  * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4574  * @hw: pointer to the HW structure
4575  * @buffer: command to write and where the return status will be placed
4576  * @length: length of buffer, must be multiple of 4 bytes
4577  * @timeout: time in ms to wait for command completion
4578  *
4579  * Communicates with the manageability block. On success return IXGBE_SUCCESS
4580  * else returns semaphore error when encountering an error acquiring
4581  * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4582  *
4583  * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4584  * by the caller.
4585  **/
ixgbe_hic_unlocked(struct ixgbe_hw * hw,u32 * buffer,u32 length,u32 timeout)4586 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4587 		       u32 timeout)
4588 {
4589 	u32 hicr, i, fwsts;
4590 	u16 dword_len;
4591 
4592 	DEBUGFUNC("ixgbe_hic_unlocked");
4593 
4594 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4595 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4596 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4597 	}
4598 
4599 	/* Set bit 9 of FWSTS clearing FW reset indication */
4600 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4601 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4602 
4603 	/* Check that the host interface is enabled. */
4604 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4605 	if (!(hicr & IXGBE_HICR_EN)) {
4606 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4607 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4608 	}
4609 
4610 	/* Calculate length in DWORDs. We must be DWORD aligned */
4611 	if (length % sizeof(u32)) {
4612 		DEBUGOUT("Buffer length failure, not aligned to dword");
4613 		return IXGBE_ERR_INVALID_ARGUMENT;
4614 	}
4615 
4616 	dword_len = length >> 2;
4617 
4618 	/* The device driver writes the relevant command block
4619 	 * into the ram area.
4620 	 */
4621 	for (i = 0; i < dword_len; i++)
4622 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4623 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4624 
4625 	/* Setting this bit tells the ARC that a new command is pending. */
4626 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4627 
4628 	for (i = 0; i < timeout; i++) {
4629 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4630 		if (!(hicr & IXGBE_HICR_C))
4631 			break;
4632 		msec_delay(1);
4633 	}
4634 
4635 	/* For each command except "Apply Update" perform
4636 	 * status checks in the HICR registry.
4637 	 */
4638 	if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4639 	    IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4640 		return IXGBE_SUCCESS;
4641 
4642 	/* Check command completion */
4643 	if ((timeout && i == timeout) ||
4644 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4645 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4646 			      "Command has failed with no status valid.\n");
4647 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4648 	}
4649 
4650 	return IXGBE_SUCCESS;
4651 }
4652 
4653 /**
4654  * ixgbe_host_interface_command - Issue command to manageability block
4655  * @hw: pointer to the HW structure
4656  * @buffer: contains the command to write and where the return status will
4657  *  be placed
4658  * @length: length of buffer, must be multiple of 4 bytes
4659  * @timeout: time in ms to wait for command completion
4660  * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4661  *  Needed because FW structures are big endian and decoding of
4662  *  these fields can be 8 bit or 16 bit based on command. Decoding
4663  *  is not easily understood without making a table of commands.
4664  *  So we will leave this up to the caller to read back the data
4665  *  in these cases.
4666  *
4667  * Communicates with the manageability block. On success return IXGBE_SUCCESS
4668  * else returns semaphore error when encountering an error acquiring
4669  * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4670  **/
ixgbe_host_interface_command(struct ixgbe_hw * hw,u32 * buffer,u32 length,u32 timeout,bool return_data)4671 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4672 				 u32 length, u32 timeout, bool return_data)
4673 {
4674 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4675 	struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4676 	u16 buf_len;
4677 	s32 status;
4678 	u32 bi;
4679 	u32 dword_len;
4680 
4681 	DEBUGFUNC("ixgbe_host_interface_command");
4682 
4683 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4684 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4685 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4686 	}
4687 
4688 	/* Take management host interface semaphore */
4689 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4690 	if (status)
4691 		return status;
4692 
4693 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4694 	if (status)
4695 		goto rel_out;
4696 
4697 	if (!return_data)
4698 		goto rel_out;
4699 
4700 	/* Calculate length in DWORDs */
4701 	dword_len = hdr_size >> 2;
4702 
4703 	/* first pull in the header so we know the buffer length */
4704 	for (bi = 0; bi < dword_len; bi++) {
4705 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4706 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4707 	}
4708 
4709 	/*
4710 	 * If there is any thing in data position pull it in
4711 	 * Read Flash command requires reading buffer length from
4712 	 * two byes instead of one byte
4713 	 */
4714 	if (resp->cmd == IXGBE_HOST_INTERFACE_FLASH_READ_CMD ||
4715 	    resp->cmd == IXGBE_HOST_INTERFACE_SHADOW_RAM_READ_CMD) {
4716 		for (; bi < dword_len + 2; bi++) {
4717 			buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4718 							  bi);
4719 			IXGBE_LE32_TO_CPUS(&buffer[bi]);
4720 		}
4721 		buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4722 				  & 0xF00) | resp->buf_len;
4723 		hdr_size += (2 << 2);
4724 	} else {
4725 		buf_len = resp->buf_len;
4726 	}
4727 	if (!buf_len)
4728 		goto rel_out;
4729 
4730 	if (length < buf_len + hdr_size) {
4731 		DEBUGOUT("Buffer not large enough for reply message.\n");
4732 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4733 		goto rel_out;
4734 	}
4735 
4736 	/* Calculate length in DWORDs, add 3 for odd lengths */
4737 	dword_len = (buf_len + 3) >> 2;
4738 
4739 	/* Pull in the rest of the buffer (bi is where we left off) */
4740 	for (; bi <= dword_len; bi++) {
4741 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4742 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4743 	}
4744 
4745 rel_out:
4746 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4747 
4748 	return status;
4749 }
4750 
4751 /**
4752  * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4753  * @hw: pointer to the HW structure
4754  * @maj: driver version major number
4755  * @minr: driver version minor number
4756  * @build: driver version build number
4757  * @sub: driver version sub build number
4758  * @len: unused
4759  * @driver_ver: unused
4760  *
4761  * Sends driver version number to firmware through the manageability
4762  * block.  On success return IXGBE_SUCCESS
4763  * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4764  * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4765  **/
ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw * hw,u8 maj,u8 minr,u8 build,u8 sub,u16 len,const char * driver_ver)4766 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4767 				 u8 build, u8 sub, u16 len,
4768 				 const char *driver_ver)
4769 {
4770 	struct ixgbe_hic_drv_info fw_cmd;
4771 	int i;
4772 	s32 ret_val = IXGBE_SUCCESS;
4773 
4774 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4775 	UNREFERENCED_2PARAMETER(len, driver_ver);
4776 
4777 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4778 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4779 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4780 	fw_cmd.port_num = (u8)hw->bus.func;
4781 	fw_cmd.ver_maj = maj;
4782 	fw_cmd.ver_min = minr;
4783 	fw_cmd.ver_build = build;
4784 	fw_cmd.ver_sub = sub;
4785 	fw_cmd.hdr.checksum = 0;
4786 	fw_cmd.pad = 0;
4787 	fw_cmd.pad2 = 0;
4788 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4789 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4790 
4791 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4792 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4793 						       sizeof(fw_cmd),
4794 						       IXGBE_HI_COMMAND_TIMEOUT,
4795 						       TRUE);
4796 		if (ret_val != IXGBE_SUCCESS)
4797 			continue;
4798 
4799 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4800 		    FW_CEM_RESP_STATUS_SUCCESS)
4801 			ret_val = IXGBE_SUCCESS;
4802 		else
4803 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4804 
4805 		break;
4806 	}
4807 
4808 	return ret_val;
4809 }
4810 
4811 /**
4812  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4813  * @hw: pointer to hardware structure
4814  * @num_pb: number of packet buffers to allocate
4815  * @headroom: reserve n KB of headroom
4816  * @strategy: packet buffer allocation strategy
4817  **/
ixgbe_set_rxpba_generic(struct ixgbe_hw * hw,int num_pb,u32 headroom,int strategy)4818 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4819 			     int strategy)
4820 {
4821 	u32 pbsize = hw->mac.rx_pb_size;
4822 	int i = 0;
4823 	u32 rxpktsize, txpktsize, txpbthresh;
4824 
4825 	/* Reserve headroom */
4826 	pbsize -= headroom;
4827 
4828 	if (!num_pb)
4829 		num_pb = 1;
4830 
4831 	/* Divide remaining packet buffer space amongst the number of packet
4832 	 * buffers requested using supplied strategy.
4833 	 */
4834 	switch (strategy) {
4835 	case PBA_STRATEGY_WEIGHTED:
4836 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4837 		 * buffer with 5/8 of the packet buffer space.
4838 		 */
4839 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4840 		pbsize -= rxpktsize * (num_pb / 2);
4841 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4842 		for (; i < (num_pb / 2); i++)
4843 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4844 		/* fall through - configure remaining packet buffers */
4845 	case PBA_STRATEGY_EQUAL:
4846 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4847 		for (; i < num_pb; i++)
4848 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4849 		break;
4850 	default:
4851 		break;
4852 	}
4853 
4854 	/* Only support an equally distributed Tx packet buffer strategy. */
4855 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4856 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4857 	for (i = 0; i < num_pb; i++) {
4858 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4859 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4860 	}
4861 
4862 	/* Clear unused TCs, if any, to zero buffer size*/
4863 	for (; i < IXGBE_MAX_PB; i++) {
4864 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4865 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4866 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4867 	}
4868 }
4869 
4870 /**
4871  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4872  * @hw: pointer to the hardware structure
4873  *
4874  * The 82599 and x540 MACs can experience issues if TX work is still pending
4875  * when a reset occurs.  This function prevents this by flushing the PCIe
4876  * buffers on the system.
4877  **/
ixgbe_clear_tx_pending(struct ixgbe_hw * hw)4878 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4879 {
4880 	u32 gcr_ext, hlreg0, i, poll;
4881 	u16 value;
4882 
4883 	/*
4884 	 * If double reset is not requested then all transactions should
4885 	 * already be clear and as such there is no work to do
4886 	 */
4887 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4888 		return;
4889 
4890 	/*
4891 	 * Set loopback enable to prevent any transmits from being sent
4892 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4893 	 * has already been cleared.
4894 	 */
4895 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4896 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4897 
4898 	/* Wait for a last completion before clearing buffers */
4899 	IXGBE_WRITE_FLUSH(hw);
4900 	msec_delay(3);
4901 
4902 	/*
4903 	 * Before proceeding, make sure that the PCIe block does not have
4904 	 * transactions pending.
4905 	 */
4906 	poll = ixgbe_pcie_timeout_poll(hw);
4907 	for (i = 0; i < poll; i++) {
4908 		usec_delay(100);
4909 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4910 		if (IXGBE_REMOVED(hw->hw_addr))
4911 			goto out;
4912 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4913 			goto out;
4914 	}
4915 
4916 out:
4917 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4918 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4919 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4920 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4921 
4922 	/* Flush all writes and allow 20usec for all transactions to clear */
4923 	IXGBE_WRITE_FLUSH(hw);
4924 	usec_delay(20);
4925 
4926 	/* restore previous register values */
4927 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4928 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4929 }
4930 
4931 #define IXGBE_BYPASS_BB_WAIT 1
4932 
4933 /**
4934  * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4935  * @hw: pointer to hardware structure
4936  * @cmd: Command we send to the FW
4937  * @status: The reply from the FW
4938  *
4939  * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4940  **/
ixgbe_bypass_rw_generic(struct ixgbe_hw * hw,u32 cmd,u32 * status)4941 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4942 {
4943 	int i;
4944 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4945 	u32 esdp;
4946 
4947 	if (!status)
4948 		return IXGBE_ERR_PARAM;
4949 
4950 	*status = 0;
4951 
4952 	/* SDP vary by MAC type */
4953 	switch (hw->mac.type) {
4954 	case ixgbe_mac_82599EB:
4955 		sck = IXGBE_ESDP_SDP7;
4956 		sdi = IXGBE_ESDP_SDP0;
4957 		sdo = IXGBE_ESDP_SDP6;
4958 		dir_sck = IXGBE_ESDP_SDP7_DIR;
4959 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4960 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
4961 		break;
4962 	case ixgbe_mac_X540:
4963 		sck = IXGBE_ESDP_SDP2;
4964 		sdi = IXGBE_ESDP_SDP0;
4965 		sdo = IXGBE_ESDP_SDP1;
4966 		dir_sck = IXGBE_ESDP_SDP2_DIR;
4967 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4968 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
4969 		break;
4970 	default:
4971 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4972 	}
4973 
4974 	/* Set SDP pins direction */
4975 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4976 	esdp |= dir_sck;	/* SCK as output */
4977 	esdp |= dir_sdi;	/* SDI as output */
4978 	esdp &= ~dir_sdo;	/* SDO as input */
4979 	esdp |= sck;
4980 	esdp |= sdi;
4981 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4982 	IXGBE_WRITE_FLUSH(hw);
4983 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4984 
4985 	/* Generate start condition */
4986 	esdp &= ~sdi;
4987 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4988 	IXGBE_WRITE_FLUSH(hw);
4989 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4990 
4991 	esdp &= ~sck;
4992 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4993 	IXGBE_WRITE_FLUSH(hw);
4994 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4995 
4996 	/* Clock out the new control word and clock in the status */
4997 	for (i = 0; i < 32; i++) {
4998 		if ((cmd >> (31 - i)) & 0x01) {
4999 			esdp |= sdi;
5000 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5001 		} else {
5002 			esdp &= ~sdi;
5003 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5004 		}
5005 		IXGBE_WRITE_FLUSH(hw);
5006 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5007 
5008 		esdp |= sck;
5009 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5010 		IXGBE_WRITE_FLUSH(hw);
5011 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5012 
5013 		esdp &= ~sck;
5014 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5015 		IXGBE_WRITE_FLUSH(hw);
5016 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5017 
5018 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5019 		if (esdp & sdo)
5020 			*status = (*status << 1) | 0x01;
5021 		else
5022 			*status = (*status << 1) | 0x00;
5023 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5024 	}
5025 
5026 	/* stop condition */
5027 	esdp |= sck;
5028 	esdp &= ~sdi;
5029 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5030 	IXGBE_WRITE_FLUSH(hw);
5031 	msec_delay(IXGBE_BYPASS_BB_WAIT);
5032 
5033 	esdp |= sdi;
5034 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5035 	IXGBE_WRITE_FLUSH(hw);
5036 
5037 	/* set the page bits to match the cmd that the status it belongs to */
5038 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
5039 
5040 	return IXGBE_SUCCESS;
5041 }
5042 
5043 /**
5044  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
5045  * @in_reg: The register cmd for the bit-bang read.
5046  * @out_reg: The register returned from a bit-bang read.
5047  *
5048  * If we send a write we can't be sure it took until we can read back
5049  * that same register.  It can be a problem as some of the fields may
5050  * for valid reasons change in-between the time wrote the register and
5051  * we read it again to verify.  So this function check everything we
5052  * can check and then assumes it worked.
5053  **/
ixgbe_bypass_valid_rd_generic(u32 in_reg,u32 out_reg)5054 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
5055 {
5056 	u32 mask;
5057 
5058 	/* Page must match for all control pages */
5059 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5060 		return FALSE;
5061 
5062 	switch (in_reg & BYPASS_PAGE_M) {
5063 	case BYPASS_PAGE_CTL0:
5064 		/* All the following can't change since the last write
5065 		 *  - All the event actions
5066 		 *  - The timeout value
5067 		 */
5068 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5069 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5070 		       BYPASS_WDTIMEOUT_M |
5071 		       BYPASS_WDT_VALUE_M;
5072 		if ((out_reg & mask) != (in_reg & mask))
5073 			return FALSE;
5074 
5075 		/* 0x0 is never a valid value for bypass status */
5076 		if (!(out_reg & BYPASS_STATUS_OFF_M))
5077 			return FALSE;
5078 		break;
5079 	case BYPASS_PAGE_CTL1:
5080 		/* All the following can't change since the last write
5081 		 *  - time valid bit
5082 		 *  - time we last sent
5083 		 */
5084 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5085 		if ((out_reg & mask) != (in_reg & mask))
5086 			return FALSE;
5087 		break;
5088 	case BYPASS_PAGE_CTL2:
5089 		/* All we can check in this page is control number
5090 		 * which is already done above.
5091 		 */
5092 		break;
5093 	}
5094 
5095 	/* We are as sure as we can be return TRUE */
5096 	return TRUE;
5097 }
5098 
5099 /**
5100  * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Register.
5101  * @hw: pointer to hardware structure
5102  * @ctrl: The control word we are setting.
5103  * @event: The event we are setting in the FW.  This also happens to
5104  *	    be the mask for the event we are setting (handy)
5105  * @action: The action we set the event to in the FW. This is in a
5106  *	     bit field that happens to be what we want to put in
5107  *	     the event spot (also handy)
5108  **/
ixgbe_bypass_set_generic(struct ixgbe_hw * hw,u32 ctrl,u32 event,u32 action)5109 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5110 			     u32 action)
5111 {
5112 	u32 by_ctl = 0;
5113 	u32 cmd, verify;
5114 	u32 count = 0;
5115 
5116 	/* Get current values */
5117 	cmd = ctrl;	/* just reading only need control number */
5118 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5119 		return IXGBE_ERR_INVALID_ARGUMENT;
5120 
5121 	/* Set to new action */
5122 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
5123 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5124 		return IXGBE_ERR_INVALID_ARGUMENT;
5125 
5126 	/* Page 0 force a FW eeprom write which is slow so verify */
5127 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5128 		verify = BYPASS_PAGE_CTL0;
5129 		do {
5130 			if (count++ > 5)
5131 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
5132 
5133 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5134 				return IXGBE_ERR_INVALID_ARGUMENT;
5135 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5136 	} else {
5137 		/* We have give the FW time for the write to stick */
5138 		msec_delay(100);
5139 	}
5140 
5141 	return IXGBE_SUCCESS;
5142 }
5143 
5144 /**
5145  * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom address.
5146  *
5147  * @hw: pointer to hardware structure
5148  * @addr: The bypass eeprom address to read.
5149  * @value: The 8b of data at the address above.
5150  **/
ixgbe_bypass_rd_eep_generic(struct ixgbe_hw * hw,u32 addr,u8 * value)5151 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5152 {
5153 	u32 cmd;
5154 	u32 status;
5155 
5156 
5157 	/* send the request */
5158 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5159 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5160 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5161 		return IXGBE_ERR_INVALID_ARGUMENT;
5162 
5163 	/* We have give the FW time for the write to stick */
5164 	msec_delay(100);
5165 
5166 	/* now read the results */
5167 	cmd &= ~BYPASS_WE;
5168 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5169 		return IXGBE_ERR_INVALID_ARGUMENT;
5170 
5171 	*value = status & BYPASS_CTL2_DATA_M;
5172 
5173 	return IXGBE_SUCCESS;
5174 }
5175 
5176 /**
5177  * ixgbe_get_orom_version - Return option ROM from EEPROM
5178  *
5179  * @hw: pointer to hardware structure
5180  * @nvm_ver: pointer to output structure
5181  *
5182  * if valid option ROM version, nvm_ver->or_valid set to TRUE
5183  * else nvm_ver->or_valid is FALSE.
5184  **/
ixgbe_get_orom_version(struct ixgbe_hw * hw,struct ixgbe_nvm_version * nvm_ver)5185 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5186 			    struct ixgbe_nvm_version *nvm_ver)
5187 {
5188 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5189 
5190 	nvm_ver->or_valid = FALSE;
5191 	/* Option Rom may or may not be present.  Start with pointer */
5192 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5193 
5194 	/* make sure offset is valid */
5195 	if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5196 		return;
5197 
5198 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5199 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5200 
5201 	/* option rom exists and is valid */
5202 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5203 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
5204 	    eeprom_cfg_blkh == NVM_VER_INVALID)
5205 		return;
5206 
5207 	nvm_ver->or_valid = TRUE;
5208 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5209 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5210 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5211 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5212 }
5213 
5214 /**
5215  * ixgbe_get_oem_prod_version - Return OEM Product version
5216  *
5217  * @hw: pointer to hardware structure
5218  * @nvm_ver: pointer to output structure
5219  *
5220  * if valid OEM product version, nvm_ver->oem_valid set to TRUE
5221  * else nvm_ver->oem_valid is FALSE.
5222  **/
ixgbe_get_oem_prod_version(struct ixgbe_hw * hw,struct ixgbe_nvm_version * nvm_ver)5223 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5224 				struct ixgbe_nvm_version *nvm_ver)
5225 {
5226 	u16 rel_num, prod_ver, mod_len, cap, offset;
5227 
5228 	nvm_ver->oem_valid = FALSE;
5229 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5230 
5231 	/* Return if offset to OEM Product Version block is invalid */
5232 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
5233 		return;
5234 
5235 	/* Read product version block */
5236 	hw->eeprom.ops.read(hw, offset, &mod_len);
5237 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5238 
5239 	/* Return if OEM product version block is invalid */
5240 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5241 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5242 		return;
5243 
5244 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5245 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5246 
5247 	/* Return if version is invalid */
5248 	if ((rel_num | prod_ver) == 0x0 ||
5249 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5250 		return;
5251 
5252 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5253 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5254 	nvm_ver->oem_release = rel_num;
5255 	nvm_ver->oem_valid = TRUE;
5256 }
5257 
5258 /**
5259  * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5260  *
5261  * @hw: pointer to hardware structure
5262  * @nvm_ver: pointer to output structure
5263  *
5264  * word read errors will return 0xFFFF
5265  **/
ixgbe_get_etk_id(struct ixgbe_hw * hw,struct ixgbe_nvm_version * nvm_ver)5266 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5267 {
5268 	u16 etk_id_l, etk_id_h;
5269 
5270 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5271 		etk_id_l = NVM_VER_INVALID;
5272 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5273 		etk_id_h = NVM_VER_INVALID;
5274 
5275 	/* The word order for the version format is determined by high order
5276 	 * word bit 15.
5277 	 */
5278 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
5279 		nvm_ver->etk_id = etk_id_h;
5280 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5281 	} else {
5282 		nvm_ver->etk_id = etk_id_l;
5283 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5284 	}
5285 }
5286 
5287 
5288 /**
5289  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5290  * @hw: pointer to hardware structure
5291  * @map: pointer to u8 arr for returning map
5292  *
5293  * Read the rtrup2tc HW register and resolve its content into map
5294  **/
ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw * hw,u8 * map)5295 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5296 {
5297 	u32 reg, i;
5298 
5299 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5300 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5301 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
5302 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5303 	return;
5304 }
5305 
ixgbe_disable_rx_generic(struct ixgbe_hw * hw)5306 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5307 {
5308 	u32 pfdtxgswc;
5309 	u32 rxctrl;
5310 
5311 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5312 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
5313 		if (hw->mac.type != ixgbe_mac_82598EB) {
5314 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5315 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5316 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5317 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5318 				hw->mac.set_lben = TRUE;
5319 			} else {
5320 				hw->mac.set_lben = FALSE;
5321 			}
5322 		}
5323 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
5324 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5325 	}
5326 }
5327 
ixgbe_enable_rx_generic(struct ixgbe_hw * hw)5328 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5329 {
5330 	u32 pfdtxgswc;
5331 	u32 rxctrl;
5332 
5333 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5334 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5335 
5336 	if (hw->mac.type != ixgbe_mac_82598EB) {
5337 		if (hw->mac.set_lben) {
5338 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5339 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5340 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5341 			hw->mac.set_lben = FALSE;
5342 		}
5343 	}
5344 }
5345 
5346 /**
5347  * ixgbe_mng_present - returns TRUE when management capability is present
5348  * @hw: pointer to hardware structure
5349  */
ixgbe_mng_present(struct ixgbe_hw * hw)5350 bool ixgbe_mng_present(struct ixgbe_hw *hw)
5351 {
5352 	u32 fwsm;
5353 
5354 	if (hw->mac.type < ixgbe_mac_82599EB)
5355 		return FALSE;
5356 
5357 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5358 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5359 }
5360 
5361 /**
5362  * ixgbe_mng_enabled - Is the manageability engine enabled?
5363  * @hw: pointer to hardware structure
5364  *
5365  * Returns TRUE if the manageability engine is enabled.
5366  **/
ixgbe_mng_enabled(struct ixgbe_hw * hw)5367 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5368 {
5369 	u32 fwsm, manc, factps;
5370 
5371 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5372 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5373 		return FALSE;
5374 
5375 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5376 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5377 		return FALSE;
5378 
5379 	if (hw->mac.type <= ixgbe_mac_X540) {
5380 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5381 		if (factps & IXGBE_FACTPS_MNGCG)
5382 			return FALSE;
5383 	}
5384 
5385 	return TRUE;
5386 }
5387 
5388 /**
5389  * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5390  * @hw: pointer to hardware structure
5391  * @speed: new link speed
5392  * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5393  *
5394  * Set the link speed in the MAC and/or PHY register and restarts link.
5395  **/
ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw * hw,ixgbe_link_speed speed,bool autoneg_wait_to_complete)5396 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5397 					  ixgbe_link_speed speed,
5398 					  bool autoneg_wait_to_complete)
5399 {
5400 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5401 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5402 	s32 status = IXGBE_SUCCESS;
5403 	u32 speedcnt = 0;
5404 	u32 i = 0;
5405 	bool autoneg, link_up = FALSE;
5406 
5407 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5408 
5409 	/* Mask off requested but non-supported speeds */
5410 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5411 	if (status != IXGBE_SUCCESS)
5412 		return status;
5413 
5414 	speed &= link_speed;
5415 
5416 	/* Try each speed one by one, highest priority first.  We do this in
5417 	 * software because 10Gb fiber doesn't support speed autonegotiation.
5418 	 */
5419 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5420 		speedcnt++;
5421 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5422 
5423 		/* Set the module link speed */
5424 		switch (hw->phy.media_type) {
5425 		case ixgbe_media_type_fiber_fixed:
5426 		case ixgbe_media_type_fiber:
5427 			ixgbe_set_rate_select_speed(hw,
5428 						    IXGBE_LINK_SPEED_10GB_FULL);
5429 			break;
5430 		case ixgbe_media_type_fiber_qsfp:
5431 			/* QSFP module automatically detects MAC link speed */
5432 			break;
5433 		default:
5434 			DEBUGOUT("Unexpected media type.\n");
5435 			break;
5436 		}
5437 
5438 		/* Allow module to change analog characteristics (1G->10G) */
5439 		msec_delay(40);
5440 
5441 		status = ixgbe_setup_mac_link(hw,
5442 					      IXGBE_LINK_SPEED_10GB_FULL,
5443 					      autoneg_wait_to_complete);
5444 		if (status != IXGBE_SUCCESS)
5445 			return status;
5446 
5447 		/* Flap the Tx laser if it has not already been done */
5448 		ixgbe_flap_tx_laser(hw);
5449 
5450 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
5451 		 * Section 73.10.2, we may have to wait up to 1000ms if KR is
5452 		 * attempted.  82599 uses the same timing for 10g SFI.
5453 		 */
5454 		for (i = 0; i < 10; i++) {
5455 			/* Wait for the link partner to also set speed */
5456 			msec_delay(100);
5457 
5458 			/* If we have link, just jump out */
5459 			status = ixgbe_check_link(hw, &link_speed,
5460 						  &link_up, FALSE);
5461 			if (status != IXGBE_SUCCESS)
5462 				return status;
5463 
5464 			if (link_up)
5465 				goto out;
5466 		}
5467 	}
5468 
5469 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5470 		speedcnt++;
5471 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5472 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5473 
5474 		/* Set the module link speed */
5475 		switch (hw->phy.media_type) {
5476 		case ixgbe_media_type_fiber_fixed:
5477 		case ixgbe_media_type_fiber:
5478 			ixgbe_set_rate_select_speed(hw,
5479 						    IXGBE_LINK_SPEED_1GB_FULL);
5480 			break;
5481 		case ixgbe_media_type_fiber_qsfp:
5482 			/* QSFP module automatically detects link speed */
5483 			break;
5484 		default:
5485 			DEBUGOUT("Unexpected media type.\n");
5486 			break;
5487 		}
5488 
5489 		/* Allow module to change analog characteristics (10G->1G) */
5490 		msec_delay(40);
5491 
5492 		status = ixgbe_setup_mac_link(hw,
5493 					      IXGBE_LINK_SPEED_1GB_FULL,
5494 					      autoneg_wait_to_complete);
5495 		if (status != IXGBE_SUCCESS)
5496 			return status;
5497 
5498 		/* Flap the Tx laser if it has not already been done */
5499 		ixgbe_flap_tx_laser(hw);
5500 
5501 		/* Wait for the link partner to also set speed */
5502 		msec_delay(100);
5503 
5504 		/* If we have link, just jump out */
5505 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5506 		if (status != IXGBE_SUCCESS)
5507 			return status;
5508 
5509 		if (link_up)
5510 			goto out;
5511 	}
5512 
5513 	if (speed == 0) {
5514 		/* Disable the Tx laser for media none */
5515 		ixgbe_disable_tx_laser(hw);
5516 
5517 		goto out;
5518 	}
5519 
5520 	/* We didn't get link.  Configure back to the highest speed we tried,
5521 	 * (if there was more than one).  We call ourselves back with just the
5522 	 * single highest speed that the user requested.
5523 	 */
5524 	if (speedcnt > 1)
5525 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5526 						      highest_link_speed,
5527 						      autoneg_wait_to_complete);
5528 
5529 out:
5530 	/* Set autoneg_advertised value based on input link speed */
5531 	hw->phy.autoneg_advertised = 0;
5532 
5533 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5534 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5535 
5536 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5537 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5538 
5539 	return status;
5540 }
5541 
5542 /**
5543  * ixgbe_set_soft_rate_select_speed - Set module link speed
5544  * @hw: pointer to hardware structure
5545  * @speed: link speed to set
5546  *
5547  * Set module link speed via the soft rate select.
5548  */
ixgbe_set_soft_rate_select_speed(struct ixgbe_hw * hw,ixgbe_link_speed speed)5549 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5550 					ixgbe_link_speed speed)
5551 {
5552 	s32 status;
5553 	u8 rs, eeprom_data;
5554 
5555 	switch (speed) {
5556 	case IXGBE_LINK_SPEED_10GB_FULL:
5557 		/* one bit mask same as setting on */
5558 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5559 		break;
5560 	case IXGBE_LINK_SPEED_1GB_FULL:
5561 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5562 		break;
5563 	default:
5564 		DEBUGOUT("Invalid fixed module speed\n");
5565 		return;
5566 	}
5567 
5568 	/* Set RS0 */
5569 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5570 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5571 					   &eeprom_data);
5572 	if (status) {
5573 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5574 		goto out;
5575 	}
5576 
5577 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5578 
5579 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5580 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5581 					    eeprom_data);
5582 	if (status) {
5583 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5584 		goto out;
5585 	}
5586 
5587 	/* Set RS1 */
5588 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5589 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5590 					   &eeprom_data);
5591 	if (status) {
5592 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5593 		goto out;
5594 	}
5595 
5596 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5597 
5598 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5599 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5600 					    eeprom_data);
5601 	if (status) {
5602 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5603 		goto out;
5604 	}
5605 out:
5606 	return;
5607 }
5608