xref: /llvm-project/polly/lib/External/isl/isl_map_simplify.c (revision a749e09e184b2b0b6dde71af01c82dd427b3e3e2)
1 /*
2  * Copyright 2008-2009 Katholieke Universiteit Leuven
3  * Copyright 2012-2013 Ecole Normale Superieure
4  * Copyright 2014-2015 INRIA Rocquencourt
5  * Copyright 2016      Sven Verdoolaege
6  *
7  * Use of this software is governed by the MIT license
8  *
9  * Written by Sven Verdoolaege, K.U.Leuven, Departement
10  * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11  * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12  * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13  * B.P. 105 - 78153 Le Chesnay, France
14  */
15 
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
19 #include <isl/map.h>
20 #include <isl_seq.h>
21 #include "isl_tab.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
25 
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
29 #include <set_from_map.c>
30 
swap_equality(__isl_keep isl_basic_map * bmap,int a,int b)31 static void swap_equality(__isl_keep isl_basic_map *bmap, int a, int b)
32 {
33 	isl_int *t = bmap->eq[a];
34 	bmap->eq[a] = bmap->eq[b];
35 	bmap->eq[b] = t;
36 }
37 
swap_inequality(__isl_keep isl_basic_map * bmap,int a,int b)38 static void swap_inequality(__isl_keep isl_basic_map *bmap, int a, int b)
39 {
40 	if (a != b) {
41 		isl_int *t = bmap->ineq[a];
42 		bmap->ineq[a] = bmap->ineq[b];
43 		bmap->ineq[b] = t;
44 	}
45 }
46 
isl_basic_map_normalize_constraints(__isl_take isl_basic_map * bmap)47 __isl_give isl_basic_map *isl_basic_map_normalize_constraints(
48 	__isl_take isl_basic_map *bmap)
49 {
50 	int i;
51 	isl_int gcd;
52 	isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
53 
54 	if (total < 0)
55 		return isl_basic_map_free(bmap);
56 
57 	isl_int_init(gcd);
58 	for (i = bmap->n_eq - 1; i >= 0; --i) {
59 		isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
60 		if (isl_int_is_zero(gcd)) {
61 			if (!isl_int_is_zero(bmap->eq[i][0])) {
62 				bmap = isl_basic_map_set_to_empty(bmap);
63 				break;
64 			}
65 			if (isl_basic_map_drop_equality(bmap, i) < 0)
66 				goto error;
67 			continue;
68 		}
69 		if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
70 			isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
71 		if (isl_int_is_one(gcd))
72 			continue;
73 		if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
74 			bmap = isl_basic_map_set_to_empty(bmap);
75 			break;
76 		}
77 		isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
78 	}
79 
80 	for (i = bmap->n_ineq - 1; i >= 0; --i) {
81 		isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
82 		if (isl_int_is_zero(gcd)) {
83 			if (isl_int_is_neg(bmap->ineq[i][0])) {
84 				bmap = isl_basic_map_set_to_empty(bmap);
85 				break;
86 			}
87 			if (isl_basic_map_drop_inequality(bmap, i) < 0)
88 				goto error;
89 			continue;
90 		}
91 		if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
92 			isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
93 		if (isl_int_is_one(gcd))
94 			continue;
95 		isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
96 		isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
97 	}
98 	isl_int_clear(gcd);
99 
100 	return bmap;
101 error:
102 	isl_int_clear(gcd);
103 	isl_basic_map_free(bmap);
104 	return NULL;
105 }
106 
isl_basic_set_normalize_constraints(__isl_take isl_basic_set * bset)107 __isl_give isl_basic_set *isl_basic_set_normalize_constraints(
108 	__isl_take isl_basic_set *bset)
109 {
110 	isl_basic_map *bmap = bset_to_bmap(bset);
111 	return bset_from_bmap(isl_basic_map_normalize_constraints(bmap));
112 }
113 
114 /* Reduce the coefficient of the variable at position "pos"
115  * in integer division "div", such that it lies in the half-open
116  * interval (1/2,1/2], extracting any excess value from this integer division.
117  * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
118  * corresponds to the constant term.
119  *
120  * That is, the integer division is of the form
121  *
122  *	floor((... + (c * d + r) * x_pos + ...)/d)
123  *
124  * with -d < 2 * r <= d.
125  * Replace it by
126  *
127  *	floor((... + r * x_pos + ...)/d) + c * x_pos
128  *
129  * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
130  * Otherwise, c = floor((c * d + r)/d) + 1.
131  *
132  * This is the same normalization that is performed by isl_aff_floor.
133  */
reduce_coefficient_in_div(__isl_take isl_basic_map * bmap,int div,int pos)134 static __isl_give isl_basic_map *reduce_coefficient_in_div(
135 	__isl_take isl_basic_map *bmap, int div, int pos)
136 {
137 	isl_int shift;
138 	int add_one;
139 
140 	isl_int_init(shift);
141 	isl_int_fdiv_r(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
142 	isl_int_mul_ui(shift, shift, 2);
143 	add_one = isl_int_gt(shift, bmap->div[div][0]);
144 	isl_int_fdiv_q(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
145 	if (add_one)
146 		isl_int_add_ui(shift, shift, 1);
147 	isl_int_neg(shift, shift);
148 	bmap = isl_basic_map_shift_div(bmap, div, pos, shift);
149 	isl_int_clear(shift);
150 
151 	return bmap;
152 }
153 
154 /* Does the coefficient of the variable at position "pos"
155  * in integer division "div" need to be reduced?
156  * That is, does it lie outside the half-open interval (1/2,1/2]?
157  * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
158  * 2 * c != d.
159  */
needs_reduction(__isl_keep isl_basic_map * bmap,int div,int pos)160 static isl_bool needs_reduction(__isl_keep isl_basic_map *bmap, int div,
161 	int pos)
162 {
163 	isl_bool r;
164 
165 	if (isl_int_is_zero(bmap->div[div][1 + pos]))
166 		return isl_bool_false;
167 
168 	isl_int_mul_ui(bmap->div[div][1 + pos], bmap->div[div][1 + pos], 2);
169 	r = isl_int_abs_ge(bmap->div[div][1 + pos], bmap->div[div][0]) &&
170 	    !isl_int_eq(bmap->div[div][1 + pos], bmap->div[div][0]);
171 	isl_int_divexact_ui(bmap->div[div][1 + pos],
172 			    bmap->div[div][1 + pos], 2);
173 
174 	return r;
175 }
176 
177 /* Reduce the coefficients (including the constant term) of
178  * integer division "div", if needed.
179  * In particular, make sure all coefficients lie in
180  * the half-open interval (1/2,1/2].
181  */
reduce_div_coefficients_of_div(__isl_take isl_basic_map * bmap,int div)182 static __isl_give isl_basic_map *reduce_div_coefficients_of_div(
183 	__isl_take isl_basic_map *bmap, int div)
184 {
185 	int i;
186 	isl_size total;
187 
188 	total = isl_basic_map_dim(bmap, isl_dim_all);
189 	if (total < 0)
190 		return isl_basic_map_free(bmap);
191 	for (i = 0; i < 1 + total; ++i) {
192 		isl_bool reduce;
193 
194 		reduce = needs_reduction(bmap, div, i);
195 		if (reduce < 0)
196 			return isl_basic_map_free(bmap);
197 		if (!reduce)
198 			continue;
199 		bmap = reduce_coefficient_in_div(bmap, div, i);
200 		if (!bmap)
201 			break;
202 	}
203 
204 	return bmap;
205 }
206 
207 /* Reduce the coefficients (including the constant term) of
208  * the known integer divisions, if needed
209  * In particular, make sure all coefficients lie in
210  * the half-open interval (1/2,1/2].
211  */
reduce_div_coefficients(__isl_take isl_basic_map * bmap)212 static __isl_give isl_basic_map *reduce_div_coefficients(
213 	__isl_take isl_basic_map *bmap)
214 {
215 	int i;
216 
217 	if (!bmap)
218 		return NULL;
219 	if (bmap->n_div == 0)
220 		return bmap;
221 
222 	for (i = 0; i < bmap->n_div; ++i) {
223 		if (isl_int_is_zero(bmap->div[i][0]))
224 			continue;
225 		bmap = reduce_div_coefficients_of_div(bmap, i);
226 		if (!bmap)
227 			break;
228 	}
229 
230 	return bmap;
231 }
232 
233 /* Remove any common factor in numerator and denominator of the div expression,
234  * not taking into account the constant term.
235  * That is, if the div is of the form
236  *
237  *	floor((a + m f(x))/(m d))
238  *
239  * then replace it by
240  *
241  *	floor((floor(a/m) + f(x))/d)
242  *
243  * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
244  * and can therefore not influence the result of the floor.
245  */
normalize_div_expression(__isl_take isl_basic_map * bmap,int div)246 static __isl_give isl_basic_map *normalize_div_expression(
247 	__isl_take isl_basic_map *bmap, int div)
248 {
249 	isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
250 	isl_ctx *ctx = bmap->ctx;
251 
252 	if (total < 0)
253 		return isl_basic_map_free(bmap);
254 	if (isl_int_is_zero(bmap->div[div][0]))
255 		return bmap;
256 	isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
257 	isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
258 	if (isl_int_is_one(ctx->normalize_gcd))
259 		return bmap;
260 	isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
261 			ctx->normalize_gcd);
262 	isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
263 			ctx->normalize_gcd);
264 	isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
265 			ctx->normalize_gcd, total);
266 
267 	return bmap;
268 }
269 
270 /* Remove any common factor in numerator and denominator of a div expression,
271  * not taking into account the constant term.
272  * That is, look for any div of the form
273  *
274  *	floor((a + m f(x))/(m d))
275  *
276  * and replace it by
277  *
278  *	floor((floor(a/m) + f(x))/d)
279  *
280  * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
281  * and can therefore not influence the result of the floor.
282  */
normalize_div_expressions(__isl_take isl_basic_map * bmap)283 static __isl_give isl_basic_map *normalize_div_expressions(
284 	__isl_take isl_basic_map *bmap)
285 {
286 	int i;
287 
288 	if (!bmap)
289 		return NULL;
290 	if (bmap->n_div == 0)
291 		return bmap;
292 
293 	for (i = 0; i < bmap->n_div; ++i)
294 		bmap = normalize_div_expression(bmap, i);
295 
296 	return bmap;
297 }
298 
299 /* Assumes divs have been ordered if keep_divs is set.
300  */
eliminate_var_using_equality(__isl_take isl_basic_map * bmap,unsigned pos,isl_int * eq,int keep_divs,int * progress)301 static __isl_give isl_basic_map *eliminate_var_using_equality(
302 	__isl_take isl_basic_map *bmap,
303 	unsigned pos, isl_int *eq, int keep_divs, int *progress)
304 {
305 	isl_size total;
306 	isl_size v_div;
307 	int k;
308 	int last_div;
309 
310 	total = isl_basic_map_dim(bmap, isl_dim_all);
311 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
312 	if (total < 0 || v_div < 0)
313 		return isl_basic_map_free(bmap);
314 	last_div = isl_seq_last_non_zero(eq + 1 + v_div, bmap->n_div);
315 	for (k = 0; k < bmap->n_eq; ++k) {
316 		if (bmap->eq[k] == eq)
317 			continue;
318 		if (isl_int_is_zero(bmap->eq[k][1+pos]))
319 			continue;
320 		if (progress)
321 			*progress = 1;
322 		isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
323 		isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
324 	}
325 
326 	for (k = 0; k < bmap->n_ineq; ++k) {
327 		if (isl_int_is_zero(bmap->ineq[k][1+pos]))
328 			continue;
329 		if (progress)
330 			*progress = 1;
331 		isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
332 		isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
333 		ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
334 		ISL_F_CLR(bmap, ISL_BASIC_MAP_SORTED);
335 	}
336 
337 	for (k = 0; k < bmap->n_div; ++k) {
338 		if (isl_int_is_zero(bmap->div[k][0]))
339 			continue;
340 		if (isl_int_is_zero(bmap->div[k][1+1+pos]))
341 			continue;
342 		if (progress)
343 			*progress = 1;
344 		/* We need to be careful about circular definitions,
345 		 * so for now we just remove the definition of div k
346 		 * if the equality contains any divs.
347 		 * If keep_divs is set, then the divs have been ordered
348 		 * and we can keep the definition as long as the result
349 		 * is still ordered.
350 		 */
351 		if (last_div == -1 || (keep_divs && last_div < k)) {
352 			isl_seq_elim(bmap->div[k]+1, eq,
353 					1+pos, 1+total, &bmap->div[k][0]);
354 			bmap = normalize_div_expression(bmap, k);
355 			if (!bmap)
356 				return NULL;
357 		} else
358 			isl_seq_clr(bmap->div[k], 1 + total);
359 	}
360 
361 	return bmap;
362 }
363 
364 /* Assumes divs have been ordered if keep_divs is set.
365  */
eliminate_div(__isl_take isl_basic_map * bmap,isl_int * eq,unsigned div,int keep_divs)366 static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap,
367 	isl_int *eq, unsigned div, int keep_divs)
368 {
369 	isl_size v_div;
370 	unsigned pos;
371 
372 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
373 	if (v_div < 0)
374 		return isl_basic_map_free(bmap);
375 	pos = v_div + div;
376 	bmap = eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
377 
378 	bmap = isl_basic_map_drop_div(bmap, div);
379 
380 	return bmap;
381 }
382 
383 /* Check if elimination of div "div" using equality "eq" would not
384  * result in a div depending on a later div.
385  */
ok_to_eliminate_div(__isl_keep isl_basic_map * bmap,isl_int * eq,unsigned div)386 static isl_bool ok_to_eliminate_div(__isl_keep isl_basic_map *bmap, isl_int *eq,
387 	unsigned div)
388 {
389 	int k;
390 	int last_div;
391 	isl_size v_div;
392 	unsigned pos;
393 
394 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
395 	if (v_div < 0)
396 		return isl_bool_error;
397 	pos = v_div + div;
398 
399 	last_div = isl_seq_last_non_zero(eq + 1 + v_div, bmap->n_div);
400 	if (last_div < 0 || last_div <= div)
401 		return isl_bool_true;
402 
403 	for (k = 0; k <= last_div; ++k) {
404 		if (isl_int_is_zero(bmap->div[k][0]))
405 			continue;
406 		if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
407 			return isl_bool_false;
408 	}
409 
410 	return isl_bool_true;
411 }
412 
413 /* Eliminate divs based on equalities
414  */
eliminate_divs_eq(__isl_take isl_basic_map * bmap,int * progress)415 static __isl_give isl_basic_map *eliminate_divs_eq(
416 	__isl_take isl_basic_map *bmap, int *progress)
417 {
418 	int d;
419 	int i;
420 	int modified = 0;
421 	unsigned off;
422 
423 	bmap = isl_basic_map_order_divs(bmap);
424 
425 	if (!bmap)
426 		return NULL;
427 
428 	off = isl_basic_map_offset(bmap, isl_dim_div);
429 
430 	for (d = bmap->n_div - 1; d >= 0 ; --d) {
431 		for (i = 0; i < bmap->n_eq; ++i) {
432 			isl_bool ok;
433 
434 			if (!isl_int_is_one(bmap->eq[i][off + d]) &&
435 			    !isl_int_is_negone(bmap->eq[i][off + d]))
436 				continue;
437 			ok = ok_to_eliminate_div(bmap, bmap->eq[i], d);
438 			if (ok < 0)
439 				return isl_basic_map_free(bmap);
440 			if (!ok)
441 				continue;
442 			modified = 1;
443 			*progress = 1;
444 			bmap = eliminate_div(bmap, bmap->eq[i], d, 1);
445 			if (isl_basic_map_drop_equality(bmap, i) < 0)
446 				return isl_basic_map_free(bmap);
447 			break;
448 		}
449 	}
450 	if (modified)
451 		return eliminate_divs_eq(bmap, progress);
452 	return bmap;
453 }
454 
455 /* Eliminate divs based on inequalities
456  */
eliminate_divs_ineq(__isl_take isl_basic_map * bmap,int * progress)457 static __isl_give isl_basic_map *eliminate_divs_ineq(
458 	__isl_take isl_basic_map *bmap, int *progress)
459 {
460 	int d;
461 	int i;
462 	unsigned off;
463 	struct isl_ctx *ctx;
464 
465 	if (!bmap)
466 		return NULL;
467 
468 	ctx = bmap->ctx;
469 	off = isl_basic_map_offset(bmap, isl_dim_div);
470 
471 	for (d = bmap->n_div - 1; d >= 0 ; --d) {
472 		for (i = 0; i < bmap->n_eq; ++i)
473 			if (!isl_int_is_zero(bmap->eq[i][off + d]))
474 				break;
475 		if (i < bmap->n_eq)
476 			continue;
477 		for (i = 0; i < bmap->n_ineq; ++i)
478 			if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
479 				break;
480 		if (i < bmap->n_ineq)
481 			continue;
482 		*progress = 1;
483 		bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
484 		if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
485 			break;
486 		bmap = isl_basic_map_drop_div(bmap, d);
487 		if (!bmap)
488 			break;
489 	}
490 	return bmap;
491 }
492 
493 /* Does the equality constraint at position "eq" in "bmap" involve
494  * any local variables in the range [first, first + n)
495  * that are not marked as having an explicit representation?
496  */
bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map * bmap,int eq,unsigned first,unsigned n)497 static isl_bool bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map *bmap,
498 	int eq, unsigned first, unsigned n)
499 {
500 	unsigned o_div;
501 	int i;
502 
503 	if (!bmap)
504 		return isl_bool_error;
505 
506 	o_div = isl_basic_map_offset(bmap, isl_dim_div);
507 	for (i = 0; i < n; ++i) {
508 		isl_bool unknown;
509 
510 		if (isl_int_is_zero(bmap->eq[eq][o_div + first + i]))
511 			continue;
512 		unknown = isl_basic_map_div_is_marked_unknown(bmap, first + i);
513 		if (unknown < 0)
514 			return isl_bool_error;
515 		if (unknown)
516 			return isl_bool_true;
517 	}
518 
519 	return isl_bool_false;
520 }
521 
522 /* The last local variable involved in the equality constraint
523  * at position "eq" in "bmap" is the local variable at position "div".
524  * It can therefore be used to extract an explicit representation
525  * for that variable.
526  * Do so unless the local variable already has an explicit representation or
527  * the explicit representation would involve any other local variables
528  * that in turn do not have an explicit representation.
529  * An equality constraint involving local variables without an explicit
530  * representation can be used in isl_basic_map_drop_redundant_divs
531  * to separate out an independent local variable.  Introducing
532  * an explicit representation here would block this transformation,
533  * while the partial explicit representation in itself is not very useful.
534  * Set *progress if anything is changed.
535  *
536  * The equality constraint is of the form
537  *
538  *	f(x) + n e >= 0
539  *
540  * with n a positive number.  The explicit representation derived from
541  * this constraint is
542  *
543  *	floor((-f(x))/n)
544  */
set_div_from_eq(__isl_take isl_basic_map * bmap,int div,int eq,int * progress)545 static __isl_give isl_basic_map *set_div_from_eq(__isl_take isl_basic_map *bmap,
546 	int div, int eq, int *progress)
547 {
548 	isl_size total;
549 	unsigned o_div;
550 	isl_bool involves;
551 
552 	if (!bmap)
553 		return NULL;
554 
555 	if (!isl_int_is_zero(bmap->div[div][0]))
556 		return bmap;
557 
558 	involves = bmap_eq_involves_unknown_divs(bmap, eq, 0, div);
559 	if (involves < 0)
560 		return isl_basic_map_free(bmap);
561 	if (involves)
562 		return bmap;
563 
564 	total = isl_basic_map_dim(bmap, isl_dim_all);
565 	if (total < 0)
566 		return isl_basic_map_free(bmap);
567 	o_div = isl_basic_map_offset(bmap, isl_dim_div);
568 	isl_seq_neg(bmap->div[div] + 1, bmap->eq[eq], 1 + total);
569 	isl_int_set_si(bmap->div[div][1 + o_div + div], 0);
570 	isl_int_set(bmap->div[div][0], bmap->eq[eq][o_div + div]);
571 	if (progress)
572 		*progress = 1;
573 
574 	return bmap;
575 }
576 
577 /* Perform fangcheng (Gaussian elimination) on the equality
578  * constraints of "bmap".
579  * That is, put them into row-echelon form, starting from the last column
580  * backward and use them to eliminate the corresponding coefficients
581  * from all constraints.
582  *
583  * If "progress" is not NULL, then it gets set if the elimination
584  * results in any changes.
585  * The elimination process may result in some equality constraints
586  * getting interchanged or removed.
587  * If "swap" or "drop" are not NULL, then they get called when
588  * two equality constraints get interchanged or
589  * when a number of final equality constraints get removed.
590  * As a special case, if the input turns out to be empty,
591  * then drop gets called with the number of removed equality
592  * constraints set to the total number of equality constraints.
593  * If "swap" or "drop" are not NULL, then the local variables (if any)
594  * are assumed to be in a valid order.
595  */
isl_basic_map_gauss5(__isl_take isl_basic_map * bmap,int * progress,isl_stat (* swap)(unsigned a,unsigned b,void * user),isl_stat (* drop)(unsigned n,void * user),void * user)596 __isl_give isl_basic_map *isl_basic_map_gauss5(__isl_take isl_basic_map *bmap,
597 	int *progress,
598 	isl_stat (*swap)(unsigned a, unsigned b, void *user),
599 	isl_stat (*drop)(unsigned n, void *user), void *user)
600 {
601 	int k;
602 	int done;
603 	int last_var;
604 	unsigned total_var;
605 	isl_size total;
606 	unsigned n_drop;
607 
608 	if (!swap && !drop)
609 		bmap = isl_basic_map_order_divs(bmap);
610 
611 	total = isl_basic_map_dim(bmap, isl_dim_all);
612 	if (total < 0)
613 		return isl_basic_map_free(bmap);
614 
615 	total_var = total - bmap->n_div;
616 
617 	last_var = total - 1;
618 	for (done = 0; done < bmap->n_eq; ++done) {
619 		for (; last_var >= 0; --last_var) {
620 			for (k = done; k < bmap->n_eq; ++k)
621 				if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
622 					break;
623 			if (k < bmap->n_eq)
624 				break;
625 		}
626 		if (last_var < 0)
627 			break;
628 		if (k != done) {
629 			swap_equality(bmap, k, done);
630 			if (swap && swap(k, done, user) < 0)
631 				return isl_basic_map_free(bmap);
632 		}
633 		if (isl_int_is_neg(bmap->eq[done][1+last_var]))
634 			isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
635 
636 		bmap = eliminate_var_using_equality(bmap, last_var,
637 						bmap->eq[done], 1, progress);
638 
639 		if (last_var >= total_var)
640 			bmap = set_div_from_eq(bmap, last_var - total_var,
641 						done, progress);
642 		if (!bmap)
643 			return NULL;
644 	}
645 	if (done == bmap->n_eq)
646 		return bmap;
647 	for (k = done; k < bmap->n_eq; ++k) {
648 		if (isl_int_is_zero(bmap->eq[k][0]))
649 			continue;
650 		if (drop && drop(bmap->n_eq, user) < 0)
651 			return isl_basic_map_free(bmap);
652 		return isl_basic_map_set_to_empty(bmap);
653 	}
654 	n_drop = bmap->n_eq - done;
655 	bmap = isl_basic_map_free_equality(bmap, n_drop);
656 	if (drop && drop(n_drop, user) < 0)
657 		return isl_basic_map_free(bmap);
658 	return bmap;
659 }
660 
isl_basic_map_gauss(__isl_take isl_basic_map * bmap,int * progress)661 __isl_give isl_basic_map *isl_basic_map_gauss(__isl_take isl_basic_map *bmap,
662 	int *progress)
663 {
664 	return isl_basic_map_gauss5(bmap, progress, NULL, NULL, NULL);
665 }
666 
isl_basic_set_gauss(__isl_take isl_basic_set * bset,int * progress)667 __isl_give isl_basic_set *isl_basic_set_gauss(
668 	__isl_take isl_basic_set *bset, int *progress)
669 {
670 	return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset),
671 							progress));
672 }
673 
674 
round_up(unsigned int v)675 static unsigned int round_up(unsigned int v)
676 {
677 	int old_v = v;
678 
679 	while (v) {
680 		old_v = v;
681 		v ^= v & -v;
682 	}
683 	return old_v << 1;
684 }
685 
686 /* Hash table of inequalities in a basic map.
687  * "index" is an array of addresses of inequalities in the basic map, some
688  * of which are NULL.  The inequalities are hashed on the coefficients
689  * except the constant term.
690  * "size" is the number of elements in the array and is always a power of two
691  * "bits" is the number of bits need to represent an index into the array.
692  * "total" is the total dimension of the basic map.
693  */
694 struct isl_constraint_index {
695 	unsigned int size;
696 	int bits;
697 	isl_int ***index;
698 	isl_size total;
699 };
700 
701 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
702  */
create_constraint_index(struct isl_constraint_index * ci,__isl_keep isl_basic_map * bmap)703 static isl_stat create_constraint_index(struct isl_constraint_index *ci,
704 	__isl_keep isl_basic_map *bmap)
705 {
706 	isl_ctx *ctx;
707 
708 	ci->index = NULL;
709 	if (!bmap)
710 		return isl_stat_error;
711 	ci->total = isl_basic_map_dim(bmap, isl_dim_all);
712 	if (ci->total < 0)
713 		return isl_stat_error;
714 	if (bmap->n_ineq == 0)
715 		return isl_stat_ok;
716 	ci->size = round_up(4 * (bmap->n_ineq + 1) / 3 - 1);
717 	ci->bits = ffs(ci->size) - 1;
718 	ctx = isl_basic_map_get_ctx(bmap);
719 	ci->index = isl_calloc_array(ctx, isl_int **, ci->size);
720 	if (!ci->index)
721 		return isl_stat_error;
722 
723 	return isl_stat_ok;
724 }
725 
726 /* Free the memory allocated by create_constraint_index.
727  */
constraint_index_free(struct isl_constraint_index * ci)728 static void constraint_index_free(struct isl_constraint_index *ci)
729 {
730 	free(ci->index);
731 }
732 
733 /* Return the position in ci->index that contains the address of
734  * an inequality that is equal to *ineq up to the constant term,
735  * provided this address is not identical to "ineq".
736  * If there is no such inequality, then return the position where
737  * such an inequality should be inserted.
738  */
hash_index_ineq(struct isl_constraint_index * ci,isl_int ** ineq)739 static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq)
740 {
741 	int h;
742 	uint32_t hash = isl_seq_get_hash_bits((*ineq) + 1, ci->total, ci->bits);
743 	for (h = hash; ci->index[h]; h = (h+1) % ci->size)
744 		if (ineq != ci->index[h] &&
745 		    isl_seq_eq((*ineq) + 1, ci->index[h][0]+1, ci->total))
746 			break;
747 	return h;
748 }
749 
750 /* Return the position in ci->index that contains the address of
751  * an inequality that is equal to the k'th inequality of "bmap"
752  * up to the constant term, provided it does not point to the very
753  * same inequality.
754  * If there is no such inequality, then return the position where
755  * such an inequality should be inserted.
756  */
hash_index(struct isl_constraint_index * ci,__isl_keep isl_basic_map * bmap,int k)757 static int hash_index(struct isl_constraint_index *ci,
758 	__isl_keep isl_basic_map *bmap, int k)
759 {
760 	return hash_index_ineq(ci, &bmap->ineq[k]);
761 }
762 
set_hash_index(struct isl_constraint_index * ci,__isl_keep isl_basic_set * bset,int k)763 static int set_hash_index(struct isl_constraint_index *ci,
764 	__isl_keep isl_basic_set *bset, int k)
765 {
766 	return hash_index(ci, bset, k);
767 }
768 
769 /* Fill in the "ci" data structure with the inequalities of "bset".
770  */
setup_constraint_index(struct isl_constraint_index * ci,__isl_keep isl_basic_set * bset)771 static isl_stat setup_constraint_index(struct isl_constraint_index *ci,
772 	__isl_keep isl_basic_set *bset)
773 {
774 	int k, h;
775 
776 	if (create_constraint_index(ci, bset) < 0)
777 		return isl_stat_error;
778 
779 	for (k = 0; k < bset->n_ineq; ++k) {
780 		h = set_hash_index(ci, bset, k);
781 		ci->index[h] = &bset->ineq[k];
782 	}
783 
784 	return isl_stat_ok;
785 }
786 
787 /* Is the inequality ineq (obviously) redundant with respect
788  * to the constraints in "ci"?
789  *
790  * Look for an inequality in "ci" with the same coefficients and then
791  * check if the contant term of "ineq" is greater than or equal
792  * to the constant term of that inequality.  If so, "ineq" is clearly
793  * redundant.
794  *
795  * Note that hash_index_ineq ignores a stored constraint if it has
796  * the same address as the passed inequality.  It is ok to pass
797  * the address of a local variable here since it will never be
798  * the same as the address of a constraint in "ci".
799  */
constraint_index_is_redundant(struct isl_constraint_index * ci,isl_int * ineq)800 static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci,
801 	isl_int *ineq)
802 {
803 	int h;
804 
805 	h = hash_index_ineq(ci, &ineq);
806 	if (!ci->index[h])
807 		return isl_bool_false;
808 	return isl_int_ge(ineq[0], (*ci->index[h])[0]);
809 }
810 
811 /* If we can eliminate more than one div, then we need to make
812  * sure we do it from last div to first div, in order not to
813  * change the position of the other divs that still need to
814  * be removed.
815  */
remove_duplicate_divs(__isl_take isl_basic_map * bmap,int * progress)816 static __isl_give isl_basic_map *remove_duplicate_divs(
817 	__isl_take isl_basic_map *bmap, int *progress)
818 {
819 	unsigned int size;
820 	int *index;
821 	int *elim_for;
822 	int k, l, h;
823 	int bits;
824 	struct isl_blk eq;
825 	isl_size v_div;
826 	unsigned total;
827 	struct isl_ctx *ctx;
828 
829 	bmap = isl_basic_map_order_divs(bmap);
830 	if (!bmap || bmap->n_div <= 1)
831 		return bmap;
832 
833 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
834 	if (v_div < 0)
835 		return isl_basic_map_free(bmap);
836 	total = v_div + bmap->n_div;
837 
838 	ctx = bmap->ctx;
839 	for (k = bmap->n_div - 1; k >= 0; --k)
840 		if (!isl_int_is_zero(bmap->div[k][0]))
841 			break;
842 	if (k <= 0)
843 		return bmap;
844 
845 	size = round_up(4 * bmap->n_div / 3 - 1);
846 	if (size == 0)
847 		return bmap;
848 	elim_for = isl_calloc_array(ctx, int, bmap->n_div);
849 	bits = ffs(size) - 1;
850 	index = isl_calloc_array(ctx, int, size);
851 	if (!elim_for || !index)
852 		goto out;
853 	eq = isl_blk_alloc(ctx, 1+total);
854 	if (isl_blk_is_error(eq))
855 		goto out;
856 
857 	isl_seq_clr(eq.data, 1+total);
858 	index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
859 	for (--k; k >= 0; --k) {
860 		uint32_t hash;
861 
862 		if (isl_int_is_zero(bmap->div[k][0]))
863 			continue;
864 
865 		hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
866 		for (h = hash; index[h]; h = (h+1) % size)
867 			if (isl_seq_eq(bmap->div[k],
868 				       bmap->div[index[h]-1], 2+total))
869 				break;
870 		if (index[h]) {
871 			*progress = 1;
872 			l = index[h] - 1;
873 			elim_for[l] = k + 1;
874 		}
875 		index[h] = k+1;
876 	}
877 	for (l = bmap->n_div - 1; l >= 0; --l) {
878 		if (!elim_for[l])
879 			continue;
880 		k = elim_for[l] - 1;
881 		isl_int_set_si(eq.data[1 + v_div + k], -1);
882 		isl_int_set_si(eq.data[1 + v_div + l], 1);
883 		bmap = eliminate_div(bmap, eq.data, l, 1);
884 		if (!bmap)
885 			break;
886 		isl_int_set_si(eq.data[1 + v_div + k], 0);
887 		isl_int_set_si(eq.data[1 + v_div + l], 0);
888 	}
889 
890 	isl_blk_free(ctx, eq);
891 out:
892 	free(index);
893 	free(elim_for);
894 	return bmap;
895 }
896 
n_pure_div_eq(__isl_keep isl_basic_map * bmap)897 static int n_pure_div_eq(__isl_keep isl_basic_map *bmap)
898 {
899 	int i, j;
900 	isl_size v_div;
901 
902 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
903 	if (v_div < 0)
904 		return -1;
905 	for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
906 		while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
907 			--j;
908 		if (j < 0)
909 			break;
910 		if (isl_seq_first_non_zero(bmap->eq[i] + 1 + v_div, j) != -1)
911 			return 0;
912 	}
913 	return i;
914 }
915 
916 /* Normalize divs that appear in equalities.
917  *
918  * In particular, we assume that bmap contains some equalities
919  * of the form
920  *
921  *	a x = m * e_i
922  *
923  * and we want to replace the set of e_i by a minimal set and
924  * such that the new e_i have a canonical representation in terms
925  * of the vector x.
926  * If any of the equalities involves more than one divs, then
927  * we currently simply bail out.
928  *
929  * Let us first additionally assume that all equalities involve
930  * a div.  The equalities then express modulo constraints on the
931  * remaining variables and we can use "parameter compression"
932  * to find a minimal set of constraints.  The result is a transformation
933  *
934  *	x = T(x') = x_0 + G x'
935  *
936  * with G a lower-triangular matrix with all elements below the diagonal
937  * non-negative and smaller than the diagonal element on the same row.
938  * We first normalize x_0 by making the same property hold in the affine
939  * T matrix.
940  * The rows i of G with a 1 on the diagonal do not impose any modulo
941  * constraint and simply express x_i = x'_i.
942  * For each of the remaining rows i, we introduce a div and a corresponding
943  * equality.  In particular
944  *
945  *	g_ii e_j = x_i - g_i(x')
946  *
947  * where each x'_k is replaced either by x_k (if g_kk = 1) or the
948  * corresponding div (if g_kk != 1).
949  *
950  * If there are any equalities not involving any div, then we
951  * first apply a variable compression on the variables x:
952  *
953  *	x = C x''	x'' = C_2 x
954  *
955  * and perform the above parameter compression on A C instead of on A.
956  * The resulting compression is then of the form
957  *
958  *	x'' = T(x') = x_0 + G x'
959  *
960  * and in constructing the new divs and the corresponding equalities,
961  * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
962  * by the corresponding row from C_2.
963  */
normalize_divs(__isl_take isl_basic_map * bmap,int * progress)964 static __isl_give isl_basic_map *normalize_divs(__isl_take isl_basic_map *bmap,
965 	int *progress)
966 {
967 	int i, j, k;
968 	isl_size v_div;
969 	int div_eq;
970 	struct isl_mat *B;
971 	struct isl_vec *d;
972 	struct isl_mat *T = NULL;
973 	struct isl_mat *C = NULL;
974 	struct isl_mat *C2 = NULL;
975 	isl_int v;
976 	int *pos = NULL;
977 	int dropped, needed;
978 
979 	if (!bmap)
980 		return NULL;
981 
982 	if (bmap->n_div == 0)
983 		return bmap;
984 
985 	if (bmap->n_eq == 0)
986 		return bmap;
987 
988 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
989 		return bmap;
990 
991 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
992 	div_eq = n_pure_div_eq(bmap);
993 	if (v_div < 0 || div_eq < 0)
994 		return isl_basic_map_free(bmap);
995 	if (div_eq == 0)
996 		return bmap;
997 
998 	if (div_eq < bmap->n_eq) {
999 		B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
1000 					bmap->n_eq - div_eq, 0, 1 + v_div);
1001 		C = isl_mat_variable_compression(B, &C2);
1002 		if (!C || !C2)
1003 			goto error;
1004 		if (C->n_col == 0) {
1005 			bmap = isl_basic_map_set_to_empty(bmap);
1006 			isl_mat_free(C);
1007 			isl_mat_free(C2);
1008 			goto done;
1009 		}
1010 	}
1011 
1012 	d = isl_vec_alloc(bmap->ctx, div_eq);
1013 	if (!d)
1014 		goto error;
1015 	for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
1016 		while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
1017 			--j;
1018 		isl_int_set(d->block.data[i], bmap->eq[i][1 + v_div + j]);
1019 	}
1020 	B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + v_div);
1021 
1022 	if (C) {
1023 		B = isl_mat_product(B, C);
1024 		C = NULL;
1025 	}
1026 
1027 	T = isl_mat_parameter_compression(B, d);
1028 	if (!T)
1029 		goto error;
1030 	if (T->n_col == 0) {
1031 		bmap = isl_basic_map_set_to_empty(bmap);
1032 		isl_mat_free(C2);
1033 		isl_mat_free(T);
1034 		goto done;
1035 	}
1036 	isl_int_init(v);
1037 	for (i = 0; i < T->n_row - 1; ++i) {
1038 		isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
1039 		if (isl_int_is_zero(v))
1040 			continue;
1041 		isl_mat_col_submul(T, 0, v, 1 + i);
1042 	}
1043 	isl_int_clear(v);
1044 	pos = isl_alloc_array(bmap->ctx, int, T->n_row);
1045 	if (!pos)
1046 		goto error;
1047 	/* We have to be careful because dropping equalities may reorder them */
1048 	dropped = 0;
1049 	for (j = bmap->n_div - 1; j >= 0; --j) {
1050 		for (i = 0; i < bmap->n_eq; ++i)
1051 			if (!isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
1052 				break;
1053 		if (i < bmap->n_eq) {
1054 			bmap = isl_basic_map_drop_div(bmap, j);
1055 			if (isl_basic_map_drop_equality(bmap, i) < 0)
1056 				goto error;
1057 			++dropped;
1058 		}
1059 	}
1060 	pos[0] = 0;
1061 	needed = 0;
1062 	for (i = 1; i < T->n_row; ++i) {
1063 		if (isl_int_is_one(T->row[i][i]))
1064 			pos[i] = i;
1065 		else
1066 			needed++;
1067 	}
1068 	if (needed > dropped) {
1069 		bmap = isl_basic_map_extend(bmap, needed, needed, 0);
1070 		if (!bmap)
1071 			goto error;
1072 	}
1073 	for (i = 1; i < T->n_row; ++i) {
1074 		if (isl_int_is_one(T->row[i][i]))
1075 			continue;
1076 		k = isl_basic_map_alloc_div(bmap);
1077 		pos[i] = 1 + v_div + k;
1078 		isl_seq_clr(bmap->div[k] + 1, 1 + v_div + bmap->n_div);
1079 		isl_int_set(bmap->div[k][0], T->row[i][i]);
1080 		if (C2)
1081 			isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + v_div);
1082 		else
1083 			isl_int_set_si(bmap->div[k][1 + i], 1);
1084 		for (j = 0; j < i; ++j) {
1085 			if (isl_int_is_zero(T->row[i][j]))
1086 				continue;
1087 			if (pos[j] < T->n_row && C2)
1088 				isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
1089 						C2->row[pos[j]], 1 + v_div);
1090 			else
1091 				isl_int_neg(bmap->div[k][1 + pos[j]],
1092 								T->row[i][j]);
1093 		}
1094 		j = isl_basic_map_alloc_equality(bmap);
1095 		isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+v_div+bmap->n_div);
1096 		isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
1097 	}
1098 	free(pos);
1099 	isl_mat_free(C2);
1100 	isl_mat_free(T);
1101 
1102 	if (progress)
1103 		*progress = 1;
1104 done:
1105 	ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
1106 
1107 	return bmap;
1108 error:
1109 	free(pos);
1110 	isl_mat_free(C);
1111 	isl_mat_free(C2);
1112 	isl_mat_free(T);
1113 	isl_basic_map_free(bmap);
1114 	return NULL;
1115 }
1116 
set_div_from_lower_bound(__isl_take isl_basic_map * bmap,int div,int ineq)1117 static __isl_give isl_basic_map *set_div_from_lower_bound(
1118 	__isl_take isl_basic_map *bmap, int div, int ineq)
1119 {
1120 	unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1121 
1122 	isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1123 	isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1124 	isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1125 	isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1126 	isl_int_set_si(bmap->div[div][1 + total + div], 0);
1127 
1128 	return bmap;
1129 }
1130 
1131 /* Check whether it is ok to define a div based on an inequality.
1132  * To avoid the introduction of circular definitions of divs, we
1133  * do not allow such a definition if the resulting expression would refer to
1134  * any other undefined divs or if any known div is defined in
1135  * terms of the unknown div.
1136  */
ok_to_set_div_from_bound(__isl_keep isl_basic_map * bmap,int div,int ineq)1137 static isl_bool ok_to_set_div_from_bound(__isl_keep isl_basic_map *bmap,
1138 	int div, int ineq)
1139 {
1140 	int j;
1141 	unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1142 
1143 	/* Not defined in terms of unknown divs */
1144 	for (j = 0; j < bmap->n_div; ++j) {
1145 		if (div == j)
1146 			continue;
1147 		if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1148 			continue;
1149 		if (isl_int_is_zero(bmap->div[j][0]))
1150 			return isl_bool_false;
1151 	}
1152 
1153 	/* No other div defined in terms of this one => avoid loops */
1154 	for (j = 0; j < bmap->n_div; ++j) {
1155 		if (div == j)
1156 			continue;
1157 		if (isl_int_is_zero(bmap->div[j][0]))
1158 			continue;
1159 		if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1160 			return isl_bool_false;
1161 	}
1162 
1163 	return isl_bool_true;
1164 }
1165 
1166 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1167  * be a better expression than the current one?
1168  *
1169  * If we do not have any expression yet, then any expression would be better.
1170  * Otherwise we check if the last variable involved in the inequality
1171  * (disregarding the div that it would define) is in an earlier position
1172  * than the last variable involved in the current div expression.
1173  */
better_div_constraint(__isl_keep isl_basic_map * bmap,int div,int ineq)1174 static isl_bool better_div_constraint(__isl_keep isl_basic_map *bmap,
1175 	int div, int ineq)
1176 {
1177 	unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1178 	int last_div;
1179 	int last_ineq;
1180 
1181 	if (isl_int_is_zero(bmap->div[div][0]))
1182 		return isl_bool_true;
1183 
1184 	if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1185 				  bmap->n_div - (div + 1)) >= 0)
1186 		return isl_bool_false;
1187 
1188 	last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1189 	last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1190 					 total + bmap->n_div);
1191 
1192 	return last_ineq < last_div;
1193 }
1194 
1195 /* Given two constraints "k" and "l" that are opposite to each other,
1196  * except for the constant term, check if we can use them
1197  * to obtain an expression for one of the hitherto unknown divs or
1198  * a "better" expression for a div for which we already have an expression.
1199  * "sum" is the sum of the constant terms of the constraints.
1200  * If this sum is strictly smaller than the coefficient of one
1201  * of the divs, then this pair can be used to define the div.
1202  * To avoid the introduction of circular definitions of divs, we
1203  * do not use the pair if the resulting expression would refer to
1204  * any other undefined divs or if any known div is defined in
1205  * terms of the unknown div.
1206  */
check_for_div_constraints(__isl_take isl_basic_map * bmap,int k,int l,isl_int sum,int * progress)1207 static __isl_give isl_basic_map *check_for_div_constraints(
1208 	__isl_take isl_basic_map *bmap, int k, int l, isl_int sum,
1209 	int *progress)
1210 {
1211 	int i;
1212 	unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1213 
1214 	for (i = 0; i < bmap->n_div; ++i) {
1215 		isl_bool set_div;
1216 
1217 		if (isl_int_is_zero(bmap->ineq[k][total + i]))
1218 			continue;
1219 		if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1220 			continue;
1221 		set_div = better_div_constraint(bmap, i, k);
1222 		if (set_div >= 0 && set_div)
1223 			set_div = ok_to_set_div_from_bound(bmap, i, k);
1224 		if (set_div < 0)
1225 			return isl_basic_map_free(bmap);
1226 		if (!set_div)
1227 			break;
1228 		if (isl_int_is_pos(bmap->ineq[k][total + i]))
1229 			bmap = set_div_from_lower_bound(bmap, i, k);
1230 		else
1231 			bmap = set_div_from_lower_bound(bmap, i, l);
1232 		if (progress)
1233 			*progress = 1;
1234 		break;
1235 	}
1236 	return bmap;
1237 }
1238 
isl_basic_map_remove_duplicate_constraints(__isl_take isl_basic_map * bmap,int * progress,int detect_divs)1239 __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
1240 	__isl_take isl_basic_map *bmap, int *progress, int detect_divs)
1241 {
1242 	struct isl_constraint_index ci;
1243 	int k, l, h;
1244 	isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
1245 	isl_int sum;
1246 
1247 	if (total < 0 || bmap->n_ineq <= 1)
1248 		return bmap;
1249 
1250 	if (create_constraint_index(&ci, bmap) < 0)
1251 		return bmap;
1252 
1253 	h = isl_seq_get_hash_bits(bmap->ineq[0] + 1, total, ci.bits);
1254 	ci.index[h] = &bmap->ineq[0];
1255 	for (k = 1; k < bmap->n_ineq; ++k) {
1256 		h = hash_index(&ci, bmap, k);
1257 		if (!ci.index[h]) {
1258 			ci.index[h] = &bmap->ineq[k];
1259 			continue;
1260 		}
1261 		if (progress)
1262 			*progress = 1;
1263 		l = ci.index[h] - &bmap->ineq[0];
1264 		if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1265 			swap_inequality(bmap, k, l);
1266 		isl_basic_map_drop_inequality(bmap, k);
1267 		--k;
1268 	}
1269 	isl_int_init(sum);
1270 	for (k = 0; bmap && k < bmap->n_ineq-1; ++k) {
1271 		isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1272 		h = hash_index(&ci, bmap, k);
1273 		isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1274 		if (!ci.index[h])
1275 			continue;
1276 		l = ci.index[h] - &bmap->ineq[0];
1277 		isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1278 		if (isl_int_is_pos(sum)) {
1279 			if (detect_divs)
1280 				bmap = check_for_div_constraints(bmap, k, l,
1281 								 sum, progress);
1282 			continue;
1283 		}
1284 		if (isl_int_is_zero(sum)) {
1285 			/* We need to break out of the loop after these
1286 			 * changes since the contents of the hash
1287 			 * will no longer be valid.
1288 			 * Plus, we probably we want to regauss first.
1289 			 */
1290 			if (progress)
1291 				*progress = 1;
1292 			isl_basic_map_drop_inequality(bmap, l);
1293 			isl_basic_map_inequality_to_equality(bmap, k);
1294 		} else
1295 			bmap = isl_basic_map_set_to_empty(bmap);
1296 		break;
1297 	}
1298 	isl_int_clear(sum);
1299 
1300 	constraint_index_free(&ci);
1301 	return bmap;
1302 }
1303 
1304 /* Detect all pairs of inequalities that form an equality.
1305  *
1306  * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1307  * Call it repeatedly while it is making progress.
1308  */
isl_basic_map_detect_inequality_pairs(__isl_take isl_basic_map * bmap,int * progress)1309 __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
1310 	__isl_take isl_basic_map *bmap, int *progress)
1311 {
1312 	int duplicate;
1313 
1314 	do {
1315 		duplicate = 0;
1316 		bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1317 								&duplicate, 0);
1318 		if (progress && duplicate)
1319 			*progress = 1;
1320 	} while (duplicate);
1321 
1322 	return bmap;
1323 }
1324 
1325 /* Given a known integer division "div" that is not integral
1326  * (with denominator 1), eliminate it from the constraints in "bmap"
1327  * where it appears with a (positive or negative) unit coefficient.
1328  * If "progress" is not NULL, then it gets set if the elimination
1329  * results in any changes.
1330  *
1331  * That is, replace
1332  *
1333  *	floor(e/m) + f >= 0
1334  *
1335  * by
1336  *
1337  *	e + m f >= 0
1338  *
1339  * and
1340  *
1341  *	-floor(e/m) + f >= 0
1342  *
1343  * by
1344  *
1345  *	-e + m f + m - 1 >= 0
1346  *
1347  * The first conversion is valid because floor(e/m) >= -f is equivalent
1348  * to e/m >= -f because -f is an integral expression.
1349  * The second conversion follows from the fact that
1350  *
1351  *	-floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1352  *
1353  *
1354  * Note that one of the div constraints may have been eliminated
1355  * due to being redundant with respect to the constraint that is
1356  * being modified by this function.  The modified constraint may
1357  * no longer imply this div constraint, so we add it back to make
1358  * sure we do not lose any information.
1359  */
eliminate_unit_div(__isl_take isl_basic_map * bmap,int div,int * progress)1360 static __isl_give isl_basic_map *eliminate_unit_div(
1361 	__isl_take isl_basic_map *bmap, int div, int *progress)
1362 {
1363 	int j;
1364 	isl_size v_div, dim;
1365 	isl_ctx *ctx;
1366 
1367 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1368 	dim = isl_basic_map_dim(bmap, isl_dim_all);
1369 	if (v_div < 0 || dim < 0)
1370 		return isl_basic_map_free(bmap);
1371 
1372 	ctx = isl_basic_map_get_ctx(bmap);
1373 
1374 	for (j = 0; j < bmap->n_ineq; ++j) {
1375 		int s;
1376 
1377 		if (!isl_int_is_one(bmap->ineq[j][1 + v_div + div]) &&
1378 		    !isl_int_is_negone(bmap->ineq[j][1 + v_div + div]))
1379 			continue;
1380 
1381 		if (progress)
1382 			*progress = 1;
1383 
1384 		s = isl_int_sgn(bmap->ineq[j][1 + v_div + div]);
1385 		isl_int_set_si(bmap->ineq[j][1 + v_div + div], 0);
1386 		if (s < 0)
1387 			isl_seq_combine(bmap->ineq[j],
1388 				ctx->negone, bmap->div[div] + 1,
1389 				bmap->div[div][0], bmap->ineq[j], 1 + dim);
1390 		else
1391 			isl_seq_combine(bmap->ineq[j],
1392 				ctx->one, bmap->div[div] + 1,
1393 				bmap->div[div][0], bmap->ineq[j], 1 + dim);
1394 		if (s < 0) {
1395 			isl_int_add(bmap->ineq[j][0],
1396 				bmap->ineq[j][0], bmap->div[div][0]);
1397 			isl_int_sub_ui(bmap->ineq[j][0],
1398 				bmap->ineq[j][0], 1);
1399 		}
1400 
1401 		bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1402 		bmap = isl_basic_map_add_div_constraint(bmap, div, s);
1403 		if (!bmap)
1404 			return NULL;
1405 	}
1406 
1407 	return bmap;
1408 }
1409 
1410 /* Eliminate selected known divs from constraints where they appear with
1411  * a (positive or negative) unit coefficient.
1412  * In particular, only handle those for which "select" returns isl_bool_true.
1413  * If "progress" is not NULL, then it gets set if the elimination
1414  * results in any changes.
1415  *
1416  * We skip integral divs, i.e., those with denominator 1, as we would
1417  * risk eliminating the div from the div constraints.  We do not need
1418  * to handle those divs here anyway since the div constraints will turn
1419  * out to form an equality and this equality can then be used to eliminate
1420  * the div from all constraints.
1421  */
eliminate_selected_unit_divs(__isl_take isl_basic_map * bmap,isl_bool (* select)(__isl_keep isl_basic_map * bmap,int div),int * progress)1422 static __isl_give isl_basic_map *eliminate_selected_unit_divs(
1423 	__isl_take isl_basic_map *bmap,
1424 	isl_bool (*select)(__isl_keep isl_basic_map *bmap, int div),
1425 	int *progress)
1426 {
1427 	int i;
1428 
1429 	if (!bmap)
1430 		return NULL;
1431 
1432 	for (i = 0; i < bmap->n_div; ++i) {
1433 		isl_bool selected;
1434 
1435 		if (isl_int_is_zero(bmap->div[i][0]))
1436 			continue;
1437 		if (isl_int_is_one(bmap->div[i][0]))
1438 			continue;
1439 		selected = select(bmap, i);
1440 		if (selected < 0)
1441 			return isl_basic_map_free(bmap);
1442 		if (!selected)
1443 			continue;
1444 		bmap = eliminate_unit_div(bmap, i, progress);
1445 		if (!bmap)
1446 			return NULL;
1447 	}
1448 
1449 	return bmap;
1450 }
1451 
1452 /* eliminate_selected_unit_divs callback that selects every
1453  * integer division.
1454  */
is_any_div(__isl_keep isl_basic_map * bmap,int div)1455 static isl_bool is_any_div(__isl_keep isl_basic_map *bmap, int div)
1456 {
1457 	return isl_bool_true;
1458 }
1459 
1460 /* Eliminate known divs from constraints where they appear with
1461  * a (positive or negative) unit coefficient.
1462  * If "progress" is not NULL, then it gets set if the elimination
1463  * results in any changes.
1464  */
eliminate_unit_divs(__isl_take isl_basic_map * bmap,int * progress)1465 static __isl_give isl_basic_map *eliminate_unit_divs(
1466 	__isl_take isl_basic_map *bmap, int *progress)
1467 {
1468 	return eliminate_selected_unit_divs(bmap, &is_any_div, progress);
1469 }
1470 
1471 /* eliminate_selected_unit_divs callback that selects
1472  * integer divisions that only appear with
1473  * a (positive or negative) unit coefficient
1474  * (outside their div constraints).
1475  */
is_pure_unit_div(__isl_keep isl_basic_map * bmap,int div)1476 static isl_bool is_pure_unit_div(__isl_keep isl_basic_map *bmap, int div)
1477 {
1478 	int i;
1479 	isl_size v_div, n_ineq;
1480 
1481 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1482 	n_ineq = isl_basic_map_n_inequality(bmap);
1483 	if (v_div < 0 || n_ineq < 0)
1484 		return isl_bool_error;
1485 
1486 	for (i = 0; i < n_ineq; ++i) {
1487 		isl_bool skip;
1488 
1489 		if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div]))
1490 			continue;
1491 		skip = isl_basic_map_is_div_constraint(bmap,
1492 							bmap->ineq[i], div);
1493 		if (skip < 0)
1494 			return isl_bool_error;
1495 		if (skip)
1496 			continue;
1497 		if (!isl_int_is_one(bmap->ineq[i][1 + v_div + div]) &&
1498 		    !isl_int_is_negone(bmap->ineq[i][1 + v_div + div]))
1499 			return isl_bool_false;
1500 	}
1501 
1502 	return isl_bool_true;
1503 }
1504 
1505 /* Eliminate known divs from constraints where they appear with
1506  * a (positive or negative) unit coefficient,
1507  * but only if they do not appear in any other constraints
1508  * (other than the div constraints).
1509  */
isl_basic_map_eliminate_pure_unit_divs(__isl_take isl_basic_map * bmap)1510 __isl_give isl_basic_map *isl_basic_map_eliminate_pure_unit_divs(
1511 	__isl_take isl_basic_map *bmap)
1512 {
1513 	return eliminate_selected_unit_divs(bmap, &is_pure_unit_div, NULL);
1514 }
1515 
isl_basic_map_simplify(__isl_take isl_basic_map * bmap)1516 __isl_give isl_basic_map *isl_basic_map_simplify(__isl_take isl_basic_map *bmap)
1517 {
1518 	int progress = 1;
1519 	if (!bmap)
1520 		return NULL;
1521 	while (progress) {
1522 		isl_bool empty;
1523 
1524 		progress = 0;
1525 		empty = isl_basic_map_plain_is_empty(bmap);
1526 		if (empty < 0)
1527 			return isl_basic_map_free(bmap);
1528 		if (empty)
1529 			break;
1530 		bmap = isl_basic_map_normalize_constraints(bmap);
1531 		bmap = reduce_div_coefficients(bmap);
1532 		bmap = normalize_div_expressions(bmap);
1533 		bmap = remove_duplicate_divs(bmap, &progress);
1534 		bmap = eliminate_unit_divs(bmap, &progress);
1535 		bmap = eliminate_divs_eq(bmap, &progress);
1536 		bmap = eliminate_divs_ineq(bmap, &progress);
1537 		bmap = isl_basic_map_gauss(bmap, &progress);
1538 		/* requires equalities in normal form */
1539 		bmap = normalize_divs(bmap, &progress);
1540 		bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1541 								&progress, 1);
1542 		if (bmap && progress)
1543 			ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
1544 	}
1545 	return bmap;
1546 }
1547 
isl_basic_set_simplify(__isl_take isl_basic_set * bset)1548 __isl_give isl_basic_set *isl_basic_set_simplify(
1549 	__isl_take isl_basic_set *bset)
1550 {
1551 	return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset)));
1552 }
1553 
1554 
isl_basic_map_is_div_constraint(__isl_keep isl_basic_map * bmap,isl_int * constraint,unsigned div)1555 isl_bool isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1556 	isl_int *constraint, unsigned div)
1557 {
1558 	unsigned pos;
1559 
1560 	if (!bmap)
1561 		return isl_bool_error;
1562 
1563 	pos = isl_basic_map_offset(bmap, isl_dim_div) + div;
1564 
1565 	if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1566 		int neg;
1567 		isl_int_sub(bmap->div[div][1],
1568 				bmap->div[div][1], bmap->div[div][0]);
1569 		isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1570 		neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1571 		isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1572 		isl_int_add(bmap->div[div][1],
1573 				bmap->div[div][1], bmap->div[div][0]);
1574 		if (!neg)
1575 			return isl_bool_false;
1576 		if (isl_seq_first_non_zero(constraint+pos+1,
1577 					    bmap->n_div-div-1) != -1)
1578 			return isl_bool_false;
1579 	} else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1580 		if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1581 			return isl_bool_false;
1582 		if (isl_seq_first_non_zero(constraint+pos+1,
1583 					    bmap->n_div-div-1) != -1)
1584 			return isl_bool_false;
1585 	} else
1586 		return isl_bool_false;
1587 
1588 	return isl_bool_true;
1589 }
1590 
1591 /* If the only constraints a div d=floor(f/m)
1592  * appears in are its two defining constraints
1593  *
1594  *	f - m d >=0
1595  *	-(f - (m - 1)) + m d >= 0
1596  *
1597  * then it can safely be removed.
1598  */
div_is_redundant(__isl_keep isl_basic_map * bmap,int div)1599 static isl_bool div_is_redundant(__isl_keep isl_basic_map *bmap, int div)
1600 {
1601 	int i;
1602 	isl_size v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1603 	unsigned pos = 1 + v_div + div;
1604 
1605 	if (v_div < 0)
1606 		return isl_bool_error;
1607 
1608 	for (i = 0; i < bmap->n_eq; ++i)
1609 		if (!isl_int_is_zero(bmap->eq[i][pos]))
1610 			return isl_bool_false;
1611 
1612 	for (i = 0; i < bmap->n_ineq; ++i) {
1613 		isl_bool red;
1614 
1615 		if (isl_int_is_zero(bmap->ineq[i][pos]))
1616 			continue;
1617 		red = isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div);
1618 		if (red < 0 || !red)
1619 			return red;
1620 	}
1621 
1622 	for (i = 0; i < bmap->n_div; ++i) {
1623 		if (isl_int_is_zero(bmap->div[i][0]))
1624 			continue;
1625 		if (!isl_int_is_zero(bmap->div[i][1+pos]))
1626 			return isl_bool_false;
1627 	}
1628 
1629 	return isl_bool_true;
1630 }
1631 
1632 /*
1633  * Remove divs that don't occur in any of the constraints or other divs.
1634  * These can arise when dropping constraints from a basic map or
1635  * when the divs of a basic map have been temporarily aligned
1636  * with the divs of another basic map.
1637  */
remove_redundant_divs(__isl_take isl_basic_map * bmap)1638 static __isl_give isl_basic_map *remove_redundant_divs(
1639 	__isl_take isl_basic_map *bmap)
1640 {
1641 	int i;
1642 	isl_size v_div;
1643 
1644 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1645 	if (v_div < 0)
1646 		return isl_basic_map_free(bmap);
1647 
1648 	for (i = bmap->n_div-1; i >= 0; --i) {
1649 		isl_bool redundant;
1650 
1651 		redundant = div_is_redundant(bmap, i);
1652 		if (redundant < 0)
1653 			return isl_basic_map_free(bmap);
1654 		if (!redundant)
1655 			continue;
1656 		bmap = isl_basic_map_drop_constraints_involving(bmap,
1657 								v_div + i, 1);
1658 		bmap = isl_basic_map_drop_div(bmap, i);
1659 	}
1660 	return bmap;
1661 }
1662 
1663 /* Mark "bmap" as final, without checking for obviously redundant
1664  * integer divisions.  This function should be used when "bmap"
1665  * is known not to involve any such integer divisions.
1666  */
isl_basic_map_mark_final(__isl_take isl_basic_map * bmap)1667 __isl_give isl_basic_map *isl_basic_map_mark_final(
1668 	__isl_take isl_basic_map *bmap)
1669 {
1670 	if (!bmap)
1671 		return NULL;
1672 	ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1673 	return bmap;
1674 }
1675 
1676 /* Mark "bmap" as final, after removing obviously redundant integer divisions.
1677  */
isl_basic_map_finalize(__isl_take isl_basic_map * bmap)1678 __isl_give isl_basic_map *isl_basic_map_finalize(__isl_take isl_basic_map *bmap)
1679 {
1680 	bmap = remove_redundant_divs(bmap);
1681 	bmap = isl_basic_map_mark_final(bmap);
1682 	return bmap;
1683 }
1684 
isl_basic_set_finalize(__isl_take isl_basic_set * bset)1685 __isl_give isl_basic_set *isl_basic_set_finalize(
1686 	__isl_take isl_basic_set *bset)
1687 {
1688 	return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset)));
1689 }
1690 
1691 /* Remove definition of any div that is defined in terms of the given variable.
1692  * The div itself is not removed.  Functions such as
1693  * eliminate_divs_ineq depend on the other divs remaining in place.
1694  */
remove_dependent_vars(__isl_take isl_basic_map * bmap,int pos)1695 static __isl_give isl_basic_map *remove_dependent_vars(
1696 	__isl_take isl_basic_map *bmap, int pos)
1697 {
1698 	int i;
1699 
1700 	if (!bmap)
1701 		return NULL;
1702 
1703 	for (i = 0; i < bmap->n_div; ++i) {
1704 		if (isl_int_is_zero(bmap->div[i][0]))
1705 			continue;
1706 		if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1707 			continue;
1708 		bmap = isl_basic_map_mark_div_unknown(bmap, i);
1709 		if (!bmap)
1710 			return NULL;
1711 	}
1712 	return bmap;
1713 }
1714 
1715 /* Eliminate the specified variables from the constraints using
1716  * Fourier-Motzkin.  The variables themselves are not removed.
1717  */
isl_basic_map_eliminate_vars(__isl_take isl_basic_map * bmap,unsigned pos,unsigned n)1718 __isl_give isl_basic_map *isl_basic_map_eliminate_vars(
1719 	__isl_take isl_basic_map *bmap, unsigned pos, unsigned n)
1720 {
1721 	int d;
1722 	int i, j, k;
1723 	isl_size total;
1724 	int need_gauss = 0;
1725 
1726 	if (n == 0)
1727 		return bmap;
1728 	total = isl_basic_map_dim(bmap, isl_dim_all);
1729 	if (total < 0)
1730 		return isl_basic_map_free(bmap);
1731 
1732 	bmap = isl_basic_map_cow(bmap);
1733 	for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1734 		bmap = remove_dependent_vars(bmap, d);
1735 	if (!bmap)
1736 		return NULL;
1737 
1738 	for (d = pos + n - 1;
1739 	     d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1740 		isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1741 	for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1742 		int n_lower, n_upper;
1743 		if (!bmap)
1744 			return NULL;
1745 		for (i = 0; i < bmap->n_eq; ++i) {
1746 			if (isl_int_is_zero(bmap->eq[i][1+d]))
1747 				continue;
1748 			bmap = eliminate_var_using_equality(bmap, d,
1749 							bmap->eq[i], 0, NULL);
1750 			if (isl_basic_map_drop_equality(bmap, i) < 0)
1751 				return isl_basic_map_free(bmap);
1752 			need_gauss = 1;
1753 			break;
1754 		}
1755 		if (i < bmap->n_eq)
1756 			continue;
1757 		n_lower = 0;
1758 		n_upper = 0;
1759 		for (i = 0; i < bmap->n_ineq; ++i) {
1760 			if (isl_int_is_pos(bmap->ineq[i][1+d]))
1761 				n_lower++;
1762 			else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1763 				n_upper++;
1764 		}
1765 		bmap = isl_basic_map_extend_constraints(bmap,
1766 				0, n_lower * n_upper);
1767 		if (!bmap)
1768 			goto error;
1769 		for (i = bmap->n_ineq - 1; i >= 0; --i) {
1770 			int last;
1771 			if (isl_int_is_zero(bmap->ineq[i][1+d]))
1772 				continue;
1773 			last = -1;
1774 			for (j = 0; j < i; ++j) {
1775 				if (isl_int_is_zero(bmap->ineq[j][1+d]))
1776 					continue;
1777 				last = j;
1778 				if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1779 				    isl_int_sgn(bmap->ineq[j][1+d]))
1780 					continue;
1781 				k = isl_basic_map_alloc_inequality(bmap);
1782 				if (k < 0)
1783 					goto error;
1784 				isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1785 						1+total);
1786 				isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1787 						1+d, 1+total, NULL);
1788 			}
1789 			isl_basic_map_drop_inequality(bmap, i);
1790 			i = last + 1;
1791 		}
1792 		if (n_lower > 0 && n_upper > 0) {
1793 			bmap = isl_basic_map_normalize_constraints(bmap);
1794 			bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1795 								    NULL, 0);
1796 			bmap = isl_basic_map_gauss(bmap, NULL);
1797 			bmap = isl_basic_map_remove_redundancies(bmap);
1798 			need_gauss = 0;
1799 			if (!bmap)
1800 				goto error;
1801 			if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1802 				break;
1803 		}
1804 	}
1805 	if (need_gauss)
1806 		bmap = isl_basic_map_gauss(bmap, NULL);
1807 	return bmap;
1808 error:
1809 	isl_basic_map_free(bmap);
1810 	return NULL;
1811 }
1812 
isl_basic_set_eliminate_vars(__isl_take isl_basic_set * bset,unsigned pos,unsigned n)1813 __isl_give isl_basic_set *isl_basic_set_eliminate_vars(
1814 	__isl_take isl_basic_set *bset, unsigned pos, unsigned n)
1815 {
1816 	return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset),
1817 								pos, n));
1818 }
1819 
1820 /* Eliminate the specified n dimensions starting at first from the
1821  * constraints, without removing the dimensions from the space.
1822  * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1823  * Otherwise, they are projected out and the original space is restored.
1824  */
isl_basic_map_eliminate(__isl_take isl_basic_map * bmap,enum isl_dim_type type,unsigned first,unsigned n)1825 __isl_give isl_basic_map *isl_basic_map_eliminate(
1826 	__isl_take isl_basic_map *bmap,
1827 	enum isl_dim_type type, unsigned first, unsigned n)
1828 {
1829 	isl_space *space;
1830 
1831 	if (!bmap)
1832 		return NULL;
1833 	if (n == 0)
1834 		return bmap;
1835 
1836 	if (isl_basic_map_check_range(bmap, type, first, n) < 0)
1837 		return isl_basic_map_free(bmap);
1838 
1839 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1840 		first += isl_basic_map_offset(bmap, type) - 1;
1841 		bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1842 		return isl_basic_map_finalize(bmap);
1843 	}
1844 
1845 	space = isl_basic_map_get_space(bmap);
1846 	bmap = isl_basic_map_project_out(bmap, type, first, n);
1847 	bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1848 	bmap = isl_basic_map_reset_space(bmap, space);
1849 	return bmap;
1850 }
1851 
isl_basic_set_eliminate(__isl_take isl_basic_set * bset,enum isl_dim_type type,unsigned first,unsigned n)1852 __isl_give isl_basic_set *isl_basic_set_eliminate(
1853 	__isl_take isl_basic_set *bset,
1854 	enum isl_dim_type type, unsigned first, unsigned n)
1855 {
1856 	return isl_basic_map_eliminate(bset, type, first, n);
1857 }
1858 
1859 /* Remove all constraints from "bmap" that reference any unknown local
1860  * variables (directly or indirectly).
1861  *
1862  * Dropping all constraints on a local variable will make it redundant,
1863  * so it will get removed implicitly by
1864  * isl_basic_map_drop_constraints_involving_dims.  Some other local
1865  * variables may also end up becoming redundant if they only appear
1866  * in constraints together with the unknown local variable.
1867  * Therefore, start over after calling
1868  * isl_basic_map_drop_constraints_involving_dims.
1869  */
isl_basic_map_drop_constraints_involving_unknown_divs(__isl_take isl_basic_map * bmap)1870 __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_unknown_divs(
1871 	__isl_take isl_basic_map *bmap)
1872 {
1873 	isl_bool known;
1874 	isl_size n_div;
1875 	int i, o_div;
1876 
1877 	known = isl_basic_map_divs_known(bmap);
1878 	if (known < 0)
1879 		return isl_basic_map_free(bmap);
1880 	if (known)
1881 		return bmap;
1882 
1883 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
1884 	if (n_div < 0)
1885 		return isl_basic_map_free(bmap);
1886 	o_div = isl_basic_map_offset(bmap, isl_dim_div) - 1;
1887 
1888 	for (i = 0; i < n_div; ++i) {
1889 		known = isl_basic_map_div_is_known(bmap, i);
1890 		if (known < 0)
1891 			return isl_basic_map_free(bmap);
1892 		if (known)
1893 			continue;
1894 		bmap = remove_dependent_vars(bmap, o_div + i);
1895 		bmap = isl_basic_map_drop_constraints_involving_dims(bmap,
1896 							    isl_dim_div, i, 1);
1897 		n_div = isl_basic_map_dim(bmap, isl_dim_div);
1898 		if (n_div < 0)
1899 			return isl_basic_map_free(bmap);
1900 		i = -1;
1901 	}
1902 
1903 	return bmap;
1904 }
1905 
1906 /* Remove all constraints from "bset" that reference any unknown local
1907  * variables (directly or indirectly).
1908  */
isl_basic_set_drop_constraints_involving_unknown_divs(__isl_take isl_basic_set * bset)1909 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_unknown_divs(
1910 	__isl_take isl_basic_set *bset)
1911 {
1912 	isl_basic_map *bmap;
1913 
1914 	bmap = bset_to_bmap(bset);
1915 	bmap = isl_basic_map_drop_constraints_involving_unknown_divs(bmap);
1916 	return bset_from_bmap(bmap);
1917 }
1918 
1919 /* Remove all constraints from "map" that reference any unknown local
1920  * variables (directly or indirectly).
1921  *
1922  * Since constraints may get dropped from the basic maps,
1923  * they may no longer be disjoint from each other.
1924  */
isl_map_drop_constraints_involving_unknown_divs(__isl_take isl_map * map)1925 __isl_give isl_map *isl_map_drop_constraints_involving_unknown_divs(
1926 	__isl_take isl_map *map)
1927 {
1928 	int i;
1929 	isl_bool known;
1930 
1931 	known = isl_map_divs_known(map);
1932 	if (known < 0)
1933 		return isl_map_free(map);
1934 	if (known)
1935 		return map;
1936 
1937 	map = isl_map_cow(map);
1938 	if (!map)
1939 		return NULL;
1940 
1941 	for (i = 0; i < map->n; ++i) {
1942 		map->p[i] =
1943 		    isl_basic_map_drop_constraints_involving_unknown_divs(
1944 								    map->p[i]);
1945 		if (!map->p[i])
1946 			return isl_map_free(map);
1947 	}
1948 
1949 	if (map->n > 1)
1950 		ISL_F_CLR(map, ISL_MAP_DISJOINT);
1951 
1952 	return map;
1953 }
1954 
1955 /* Don't assume equalities are in order, because align_divs
1956  * may have changed the order of the divs.
1957  */
compute_elimination_index(__isl_keep isl_basic_map * bmap,int * elim,unsigned len)1958 static void compute_elimination_index(__isl_keep isl_basic_map *bmap, int *elim,
1959 	unsigned len)
1960 {
1961 	int d, i;
1962 
1963 	for (d = 0; d < len; ++d)
1964 		elim[d] = -1;
1965 	for (i = 0; i < bmap->n_eq; ++i) {
1966 		for (d = len - 1; d >= 0; --d) {
1967 			if (isl_int_is_zero(bmap->eq[i][1+d]))
1968 				continue;
1969 			elim[d] = i;
1970 			break;
1971 		}
1972 	}
1973 }
1974 
set_compute_elimination_index(__isl_keep isl_basic_set * bset,int * elim,unsigned len)1975 static void set_compute_elimination_index(__isl_keep isl_basic_set *bset,
1976 	int *elim, unsigned len)
1977 {
1978 	compute_elimination_index(bset_to_bmap(bset), elim, len);
1979 }
1980 
reduced_using_equalities(isl_int * dst,isl_int * src,__isl_keep isl_basic_map * bmap,int * elim,unsigned total)1981 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1982 	__isl_keep isl_basic_map *bmap, int *elim, unsigned total)
1983 {
1984 	int d;
1985 	int copied = 0;
1986 
1987 	for (d = total - 1; d >= 0; --d) {
1988 		if (isl_int_is_zero(src[1+d]))
1989 			continue;
1990 		if (elim[d] == -1)
1991 			continue;
1992 		if (!copied) {
1993 			isl_seq_cpy(dst, src, 1 + total);
1994 			copied = 1;
1995 		}
1996 		isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1997 	}
1998 	return copied;
1999 }
2000 
set_reduced_using_equalities(isl_int * dst,isl_int * src,__isl_keep isl_basic_set * bset,int * elim,unsigned total)2001 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
2002 	__isl_keep isl_basic_set *bset, int *elim, unsigned total)
2003 {
2004 	return reduced_using_equalities(dst, src,
2005 					bset_to_bmap(bset), elim, total);
2006 }
2007 
isl_basic_set_reduce_using_equalities(__isl_take isl_basic_set * bset,__isl_take isl_basic_set * context)2008 static __isl_give isl_basic_set *isl_basic_set_reduce_using_equalities(
2009 	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
2010 {
2011 	int i;
2012 	int *elim;
2013 	isl_size dim;
2014 
2015 	if (!bset || !context)
2016 		goto error;
2017 
2018 	if (context->n_eq == 0) {
2019 		isl_basic_set_free(context);
2020 		return bset;
2021 	}
2022 
2023 	bset = isl_basic_set_cow(bset);
2024 	dim = isl_basic_set_dim(bset, isl_dim_set);
2025 	if (dim < 0)
2026 		goto error;
2027 
2028 	elim = isl_alloc_array(bset->ctx, int, dim);
2029 	if (!elim)
2030 		goto error;
2031 	set_compute_elimination_index(context, elim, dim);
2032 	for (i = 0; i < bset->n_eq; ++i)
2033 		set_reduced_using_equalities(bset->eq[i], bset->eq[i],
2034 							context, elim, dim);
2035 	for (i = 0; i < bset->n_ineq; ++i)
2036 		set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
2037 							context, elim, dim);
2038 	isl_basic_set_free(context);
2039 	free(elim);
2040 	bset = isl_basic_set_simplify(bset);
2041 	bset = isl_basic_set_finalize(bset);
2042 	return bset;
2043 error:
2044 	isl_basic_set_free(bset);
2045 	isl_basic_set_free(context);
2046 	return NULL;
2047 }
2048 
2049 /* For each inequality in "ineq" that is a shifted (more relaxed)
2050  * copy of an inequality in "context", mark the corresponding entry
2051  * in "row" with -1.
2052  * If an inequality only has a non-negative constant term, then
2053  * mark it as well.
2054  */
mark_shifted_constraints(__isl_keep isl_mat * ineq,__isl_keep isl_basic_set * context,int * row)2055 static isl_stat mark_shifted_constraints(__isl_keep isl_mat *ineq,
2056 	__isl_keep isl_basic_set *context, int *row)
2057 {
2058 	struct isl_constraint_index ci;
2059 	isl_size n_ineq, cols;
2060 	unsigned total;
2061 	int k;
2062 
2063 	if (!ineq || !context)
2064 		return isl_stat_error;
2065 	if (context->n_ineq == 0)
2066 		return isl_stat_ok;
2067 	if (setup_constraint_index(&ci, context) < 0)
2068 		return isl_stat_error;
2069 
2070 	n_ineq = isl_mat_rows(ineq);
2071 	cols = isl_mat_cols(ineq);
2072 	if (n_ineq < 0 || cols < 0)
2073 		return isl_stat_error;
2074 	total = cols - 1;
2075 	for (k = 0; k < n_ineq; ++k) {
2076 		int l;
2077 		isl_bool redundant;
2078 
2079 		l = isl_seq_first_non_zero(ineq->row[k] + 1, total);
2080 		if (l < 0 && isl_int_is_nonneg(ineq->row[k][0])) {
2081 			row[k] = -1;
2082 			continue;
2083 		}
2084 		redundant = constraint_index_is_redundant(&ci, ineq->row[k]);
2085 		if (redundant < 0)
2086 			goto error;
2087 		if (!redundant)
2088 			continue;
2089 		row[k] = -1;
2090 	}
2091 	constraint_index_free(&ci);
2092 	return isl_stat_ok;
2093 error:
2094 	constraint_index_free(&ci);
2095 	return isl_stat_error;
2096 }
2097 
remove_shifted_constraints(__isl_take isl_basic_set * bset,__isl_keep isl_basic_set * context)2098 static __isl_give isl_basic_set *remove_shifted_constraints(
2099 	__isl_take isl_basic_set *bset, __isl_keep isl_basic_set *context)
2100 {
2101 	struct isl_constraint_index ci;
2102 	int k;
2103 
2104 	if (!bset || !context)
2105 		return bset;
2106 
2107 	if (context->n_ineq == 0)
2108 		return bset;
2109 	if (setup_constraint_index(&ci, context) < 0)
2110 		return bset;
2111 
2112 	for (k = 0; k < bset->n_ineq; ++k) {
2113 		isl_bool redundant;
2114 
2115 		redundant = constraint_index_is_redundant(&ci, bset->ineq[k]);
2116 		if (redundant < 0)
2117 			goto error;
2118 		if (!redundant)
2119 			continue;
2120 		bset = isl_basic_set_cow(bset);
2121 		if (!bset)
2122 			goto error;
2123 		isl_basic_set_drop_inequality(bset, k);
2124 		--k;
2125 	}
2126 	constraint_index_free(&ci);
2127 	return bset;
2128 error:
2129 	constraint_index_free(&ci);
2130 	return bset;
2131 }
2132 
2133 /* Remove constraints from "bmap" that are identical to constraints
2134  * in "context" or that are more relaxed (greater constant term).
2135  *
2136  * We perform the test for shifted copies on the pure constraints
2137  * in remove_shifted_constraints.
2138  */
isl_basic_map_remove_shifted_constraints(__isl_take isl_basic_map * bmap,__isl_take isl_basic_map * context)2139 static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
2140 	__isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
2141 {
2142 	isl_basic_set *bset, *bset_context;
2143 
2144 	if (!bmap || !context)
2145 		goto error;
2146 
2147 	if (bmap->n_ineq == 0 || context->n_ineq == 0) {
2148 		isl_basic_map_free(context);
2149 		return bmap;
2150 	}
2151 
2152 	bmap = isl_basic_map_order_divs(bmap);
2153 	context = isl_basic_map_align_divs(context, bmap);
2154 	bmap = isl_basic_map_align_divs(bmap, context);
2155 
2156 	bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
2157 	bset_context = isl_basic_map_underlying_set(context);
2158 	bset = remove_shifted_constraints(bset, bset_context);
2159 	isl_basic_set_free(bset_context);
2160 
2161 	bmap = isl_basic_map_overlying_set(bset, bmap);
2162 
2163 	return bmap;
2164 error:
2165 	isl_basic_map_free(bmap);
2166 	isl_basic_map_free(context);
2167 	return NULL;
2168 }
2169 
2170 /* Does the (linear part of a) constraint "c" involve any of the "len"
2171  * "relevant" dimensions?
2172  */
is_related(isl_int * c,int len,int * relevant)2173 static int is_related(isl_int *c, int len, int *relevant)
2174 {
2175 	int i;
2176 
2177 	for (i = 0; i < len; ++i) {
2178 		if (!relevant[i])
2179 			continue;
2180 		if (!isl_int_is_zero(c[i]))
2181 			return 1;
2182 	}
2183 
2184 	return 0;
2185 }
2186 
2187 /* Drop constraints from "bmap" that do not involve any of
2188  * the dimensions marked "relevant".
2189  */
drop_unrelated_constraints(__isl_take isl_basic_map * bmap,int * relevant)2190 static __isl_give isl_basic_map *drop_unrelated_constraints(
2191 	__isl_take isl_basic_map *bmap, int *relevant)
2192 {
2193 	int i;
2194 	isl_size dim;
2195 
2196 	dim = isl_basic_map_dim(bmap, isl_dim_all);
2197 	if (dim < 0)
2198 		return isl_basic_map_free(bmap);
2199 	for (i = 0; i < dim; ++i)
2200 		if (!relevant[i])
2201 			break;
2202 	if (i >= dim)
2203 		return bmap;
2204 
2205 	for (i = bmap->n_eq - 1; i >= 0; --i)
2206 		if (!is_related(bmap->eq[i] + 1, dim, relevant)) {
2207 			bmap = isl_basic_map_cow(bmap);
2208 			if (isl_basic_map_drop_equality(bmap, i) < 0)
2209 				return isl_basic_map_free(bmap);
2210 		}
2211 
2212 	for (i = bmap->n_ineq - 1; i >= 0; --i)
2213 		if (!is_related(bmap->ineq[i] + 1, dim, relevant)) {
2214 			bmap = isl_basic_map_cow(bmap);
2215 			if (isl_basic_map_drop_inequality(bmap, i) < 0)
2216 				return isl_basic_map_free(bmap);
2217 		}
2218 
2219 	return bmap;
2220 }
2221 
2222 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2223  *
2224  * In particular, for any variable involved in the constraint,
2225  * find the actual group id from before and replace the group
2226  * of the corresponding variable by the minimal group of all
2227  * the variables involved in the constraint considered so far
2228  * (if this minimum is smaller) or replace the minimum by this group
2229  * (if the minimum is larger).
2230  *
2231  * At the end, all the variables in "c" will (indirectly) point
2232  * to the minimal of the groups that they referred to originally.
2233  */
update_groups(int dim,int * group,isl_int * c)2234 static void update_groups(int dim, int *group, isl_int *c)
2235 {
2236 	int j;
2237 	int min = dim;
2238 
2239 	for (j = 0; j < dim; ++j) {
2240 		if (isl_int_is_zero(c[j]))
2241 			continue;
2242 		while (group[j] >= 0 && group[group[j]] != group[j])
2243 			group[j] = group[group[j]];
2244 		if (group[j] == min)
2245 			continue;
2246 		if (group[j] < min) {
2247 			if (min >= 0 && min < dim)
2248 				group[min] = group[j];
2249 			min = group[j];
2250 		} else
2251 			group[group[j]] = min;
2252 	}
2253 }
2254 
2255 /* Allocate an array of groups of variables, one for each variable
2256  * in "context", initialized to zero.
2257  */
alloc_groups(__isl_keep isl_basic_set * context)2258 static int *alloc_groups(__isl_keep isl_basic_set *context)
2259 {
2260 	isl_ctx *ctx;
2261 	isl_size dim;
2262 
2263 	dim = isl_basic_set_dim(context, isl_dim_set);
2264 	if (dim < 0)
2265 		return NULL;
2266 	ctx = isl_basic_set_get_ctx(context);
2267 	return isl_calloc_array(ctx, int, dim);
2268 }
2269 
2270 /* Drop constraints from "bmap" that only involve variables that are
2271  * not related to any of the variables marked with a "-1" in "group".
2272  *
2273  * We construct groups of variables that collect variables that
2274  * (indirectly) appear in some common constraint of "bmap".
2275  * Each group is identified by the first variable in the group,
2276  * except for the special group of variables that was already identified
2277  * in the input as -1 (or are related to those variables).
2278  * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2279  * otherwise the group of i is the group of group[i].
2280  *
2281  * We first initialize groups for the remaining variables.
2282  * Then we iterate over the constraints of "bmap" and update the
2283  * group of the variables in the constraint by the smallest group.
2284  * Finally, we resolve indirect references to groups by running over
2285  * the variables.
2286  *
2287  * After computing the groups, we drop constraints that do not involve
2288  * any variables in the -1 group.
2289  */
isl_basic_map_drop_unrelated_constraints(__isl_take isl_basic_map * bmap,__isl_take int * group)2290 __isl_give isl_basic_map *isl_basic_map_drop_unrelated_constraints(
2291 	__isl_take isl_basic_map *bmap, __isl_take int *group)
2292 {
2293 	isl_size dim;
2294 	int i;
2295 	int last;
2296 
2297 	dim = isl_basic_map_dim(bmap, isl_dim_all);
2298 	if (dim < 0)
2299 		return isl_basic_map_free(bmap);
2300 
2301 	last = -1;
2302 	for (i = 0; i < dim; ++i)
2303 		if (group[i] >= 0)
2304 			last = group[i] = i;
2305 	if (last < 0) {
2306 		free(group);
2307 		return bmap;
2308 	}
2309 
2310 	for (i = 0; i < bmap->n_eq; ++i)
2311 		update_groups(dim, group, bmap->eq[i] + 1);
2312 	for (i = 0; i < bmap->n_ineq; ++i)
2313 		update_groups(dim, group, bmap->ineq[i] + 1);
2314 
2315 	for (i = 0; i < dim; ++i)
2316 		if (group[i] >= 0)
2317 			group[i] = group[group[i]];
2318 
2319 	for (i = 0; i < dim; ++i)
2320 		group[i] = group[i] == -1;
2321 
2322 	bmap = drop_unrelated_constraints(bmap, group);
2323 
2324 	free(group);
2325 	return bmap;
2326 }
2327 
2328 /* Drop constraints from "context" that are irrelevant for computing
2329  * the gist of "bset".
2330  *
2331  * In particular, drop constraints in variables that are not related
2332  * to any of the variables involved in the constraints of "bset"
2333  * in the sense that there is no sequence of constraints that connects them.
2334  *
2335  * We first mark all variables that appear in "bset" as belonging
2336  * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2337  */
drop_irrelevant_constraints(__isl_take isl_basic_set * context,__isl_keep isl_basic_set * bset)2338 static __isl_give isl_basic_set *drop_irrelevant_constraints(
2339 	__isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
2340 {
2341 	int *group;
2342 	isl_size dim;
2343 	int i, j;
2344 
2345 	dim = isl_basic_set_dim(bset, isl_dim_set);
2346 	if (!context || dim < 0)
2347 		return isl_basic_set_free(context);
2348 
2349 	group = alloc_groups(context);
2350 
2351 	if (!group)
2352 		return isl_basic_set_free(context);
2353 
2354 	for (i = 0; i < dim; ++i) {
2355 		for (j = 0; j < bset->n_eq; ++j)
2356 			if (!isl_int_is_zero(bset->eq[j][1 + i]))
2357 				break;
2358 		if (j < bset->n_eq) {
2359 			group[i] = -1;
2360 			continue;
2361 		}
2362 		for (j = 0; j < bset->n_ineq; ++j)
2363 			if (!isl_int_is_zero(bset->ineq[j][1 + i]))
2364 				break;
2365 		if (j < bset->n_ineq)
2366 			group[i] = -1;
2367 	}
2368 
2369 	return isl_basic_map_drop_unrelated_constraints(context, group);
2370 }
2371 
2372 /* Drop constraints from "context" that are irrelevant for computing
2373  * the gist of the inequalities "ineq".
2374  * Inequalities in "ineq" for which the corresponding element of row
2375  * is set to -1 have already been marked for removal and should be ignored.
2376  *
2377  * In particular, drop constraints in variables that are not related
2378  * to any of the variables involved in "ineq"
2379  * in the sense that there is no sequence of constraints that connects them.
2380  *
2381  * We first mark all variables that appear in "bset" as belonging
2382  * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2383  */
drop_irrelevant_constraints_marked(__isl_take isl_basic_set * context,__isl_keep isl_mat * ineq,int * row)2384 static __isl_give isl_basic_set *drop_irrelevant_constraints_marked(
2385 	__isl_take isl_basic_set *context, __isl_keep isl_mat *ineq, int *row)
2386 {
2387 	int *group;
2388 	isl_size dim;
2389 	int i, j;
2390 	isl_size n;
2391 
2392 	dim = isl_basic_set_dim(context, isl_dim_set);
2393 	n = isl_mat_rows(ineq);
2394 	if (dim < 0 || n < 0)
2395 		return isl_basic_set_free(context);
2396 
2397 	group = alloc_groups(context);
2398 
2399 	if (!group)
2400 		return isl_basic_set_free(context);
2401 
2402 	for (i = 0; i < dim; ++i) {
2403 		for (j = 0; j < n; ++j) {
2404 			if (row[j] < 0)
2405 				continue;
2406 			if (!isl_int_is_zero(ineq->row[j][1 + i]))
2407 				break;
2408 		}
2409 		if (j < n)
2410 			group[i] = -1;
2411 	}
2412 
2413 	return isl_basic_map_drop_unrelated_constraints(context, group);
2414 }
2415 
2416 /* Do all "n" entries of "row" contain a negative value?
2417  */
all_neg(int * row,int n)2418 static int all_neg(int *row, int n)
2419 {
2420 	int i;
2421 
2422 	for (i = 0; i < n; ++i)
2423 		if (row[i] >= 0)
2424 			return 0;
2425 
2426 	return 1;
2427 }
2428 
2429 /* Update the inequalities in "bset" based on the information in "row"
2430  * and "tab".
2431  *
2432  * In particular, the array "row" contains either -1, meaning that
2433  * the corresponding inequality of "bset" is redundant, or the index
2434  * of an inequality in "tab".
2435  *
2436  * If the row entry is -1, then drop the inequality.
2437  * Otherwise, if the constraint is marked redundant in the tableau,
2438  * then drop the inequality.  Similarly, if it is marked as an equality
2439  * in the tableau, then turn the inequality into an equality and
2440  * perform Gaussian elimination.
2441  */
update_ineq(__isl_take isl_basic_set * bset,__isl_keep int * row,struct isl_tab * tab)2442 static __isl_give isl_basic_set *update_ineq(__isl_take isl_basic_set *bset,
2443 	__isl_keep int *row, struct isl_tab *tab)
2444 {
2445 	int i;
2446 	unsigned n_ineq;
2447 	unsigned n_eq;
2448 	int found_equality = 0;
2449 
2450 	if (!bset)
2451 		return NULL;
2452 	if (tab && tab->empty)
2453 		return isl_basic_set_set_to_empty(bset);
2454 
2455 	n_ineq = bset->n_ineq;
2456 	for (i = n_ineq - 1; i >= 0; --i) {
2457 		if (row[i] < 0) {
2458 			if (isl_basic_set_drop_inequality(bset, i) < 0)
2459 				return isl_basic_set_free(bset);
2460 			continue;
2461 		}
2462 		if (!tab)
2463 			continue;
2464 		n_eq = tab->n_eq;
2465 		if (isl_tab_is_equality(tab, n_eq + row[i])) {
2466 			isl_basic_map_inequality_to_equality(bset, i);
2467 			found_equality = 1;
2468 		} else if (isl_tab_is_redundant(tab, n_eq + row[i])) {
2469 			if (isl_basic_set_drop_inequality(bset, i) < 0)
2470 				return isl_basic_set_free(bset);
2471 		}
2472 	}
2473 
2474 	if (found_equality)
2475 		bset = isl_basic_set_gauss(bset, NULL);
2476 	bset = isl_basic_set_finalize(bset);
2477 	return bset;
2478 }
2479 
2480 /* Update the inequalities in "bset" based on the information in "row"
2481  * and "tab" and free all arguments (other than "bset").
2482  */
update_ineq_free(__isl_take isl_basic_set * bset,__isl_take isl_mat * ineq,__isl_take isl_basic_set * context,__isl_take int * row,struct isl_tab * tab)2483 static __isl_give isl_basic_set *update_ineq_free(
2484 	__isl_take isl_basic_set *bset, __isl_take isl_mat *ineq,
2485 	__isl_take isl_basic_set *context, __isl_take int *row,
2486 	struct isl_tab *tab)
2487 {
2488 	isl_mat_free(ineq);
2489 	isl_basic_set_free(context);
2490 
2491 	bset = update_ineq(bset, row, tab);
2492 
2493 	free(row);
2494 	isl_tab_free(tab);
2495 	return bset;
2496 }
2497 
2498 /* Remove all information from bset that is redundant in the context
2499  * of context.
2500  * "ineq" contains the (possibly transformed) inequalities of "bset",
2501  * in the same order.
2502  * The (explicit) equalities of "bset" are assumed to have been taken
2503  * into account by the transformation such that only the inequalities
2504  * are relevant.
2505  * "context" is assumed not to be empty.
2506  *
2507  * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2508  * A value of -1 means that the inequality is obviously redundant and may
2509  * not even appear in  "tab".
2510  *
2511  * We first mark the inequalities of "bset"
2512  * that are obviously redundant with respect to some inequality in "context".
2513  * Then we remove those constraints from "context" that have become
2514  * irrelevant for computing the gist of "bset".
2515  * Note that this removal of constraints cannot be replaced by
2516  * a factorization because factors in "bset" may still be connected
2517  * to each other through constraints in "context".
2518  *
2519  * If there are any inequalities left, we construct a tableau for
2520  * the context and then add the inequalities of "bset".
2521  * Before adding these inequalities, we freeze all constraints such that
2522  * they won't be considered redundant in terms of the constraints of "bset".
2523  * Then we detect all redundant constraints (among the
2524  * constraints that weren't frozen), first by checking for redundancy in the
2525  * the tableau and then by checking if replacing a constraint by its negation
2526  * would lead to an empty set.  This last step is fairly expensive
2527  * and could be optimized by more reuse of the tableau.
2528  * Finally, we update bset according to the results.
2529  */
uset_gist_full(__isl_take isl_basic_set * bset,__isl_take isl_mat * ineq,__isl_take isl_basic_set * context)2530 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
2531 	__isl_take isl_mat *ineq, __isl_take isl_basic_set *context)
2532 {
2533 	int i, r;
2534 	int *row = NULL;
2535 	isl_ctx *ctx;
2536 	isl_basic_set *combined = NULL;
2537 	struct isl_tab *tab = NULL;
2538 	unsigned n_eq, context_ineq;
2539 
2540 	if (!bset || !ineq || !context)
2541 		goto error;
2542 
2543 	if (bset->n_ineq == 0 || isl_basic_set_plain_is_universe(context)) {
2544 		isl_basic_set_free(context);
2545 		isl_mat_free(ineq);
2546 		return bset;
2547 	}
2548 
2549 	ctx = isl_basic_set_get_ctx(context);
2550 	row = isl_calloc_array(ctx, int, bset->n_ineq);
2551 	if (!row)
2552 		goto error;
2553 
2554 	if (mark_shifted_constraints(ineq, context, row) < 0)
2555 		goto error;
2556 	if (all_neg(row, bset->n_ineq))
2557 		return update_ineq_free(bset, ineq, context, row, NULL);
2558 
2559 	context = drop_irrelevant_constraints_marked(context, ineq, row);
2560 	if (!context)
2561 		goto error;
2562 	if (isl_basic_set_plain_is_universe(context))
2563 		return update_ineq_free(bset, ineq, context, row, NULL);
2564 
2565 	n_eq = context->n_eq;
2566 	context_ineq = context->n_ineq;
2567 	combined = isl_basic_set_cow(isl_basic_set_copy(context));
2568 	combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
2569 	tab = isl_tab_from_basic_set(combined, 0);
2570 	for (i = 0; i < context_ineq; ++i)
2571 		if (isl_tab_freeze_constraint(tab, n_eq + i) < 0)
2572 			goto error;
2573 	if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
2574 		goto error;
2575 	r = context_ineq;
2576 	for (i = 0; i < bset->n_ineq; ++i) {
2577 		if (row[i] < 0)
2578 			continue;
2579 		combined = isl_basic_set_add_ineq(combined, ineq->row[i]);
2580 		if (isl_tab_add_ineq(tab, ineq->row[i]) < 0)
2581 			goto error;
2582 		row[i] = r++;
2583 	}
2584 	if (isl_tab_detect_implicit_equalities(tab) < 0)
2585 		goto error;
2586 	if (isl_tab_detect_redundant(tab) < 0)
2587 		goto error;
2588 	for (i = bset->n_ineq - 1; i >= 0; --i) {
2589 		isl_basic_set *test;
2590 		int is_empty;
2591 
2592 		if (row[i] < 0)
2593 			continue;
2594 		r = row[i];
2595 		if (tab->con[n_eq + r].is_redundant)
2596 			continue;
2597 		test = isl_basic_set_dup(combined);
2598 		test = isl_inequality_negate(test, r);
2599 		test = isl_basic_set_update_from_tab(test, tab);
2600 		is_empty = isl_basic_set_is_empty(test);
2601 		isl_basic_set_free(test);
2602 		if (is_empty < 0)
2603 			goto error;
2604 		if (is_empty)
2605 			tab->con[n_eq + r].is_redundant = 1;
2606 	}
2607 	bset = update_ineq_free(bset, ineq, context, row, tab);
2608 	if (bset) {
2609 		ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2610 		ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2611 	}
2612 
2613 	isl_basic_set_free(combined);
2614 	return bset;
2615 error:
2616 	free(row);
2617 	isl_mat_free(ineq);
2618 	isl_tab_free(tab);
2619 	isl_basic_set_free(combined);
2620 	isl_basic_set_free(context);
2621 	isl_basic_set_free(bset);
2622 	return NULL;
2623 }
2624 
2625 /* Extract the inequalities of "bset" as an isl_mat.
2626  */
extract_ineq(__isl_keep isl_basic_set * bset)2627 static __isl_give isl_mat *extract_ineq(__isl_keep isl_basic_set *bset)
2628 {
2629 	isl_size total;
2630 	isl_ctx *ctx;
2631 	isl_mat *ineq;
2632 
2633 	total = isl_basic_set_dim(bset, isl_dim_all);
2634 	if (total < 0)
2635 		return NULL;
2636 
2637 	ctx = isl_basic_set_get_ctx(bset);
2638 	ineq = isl_mat_sub_alloc6(ctx, bset->ineq, 0, bset->n_ineq,
2639 				    0, 1 + total);
2640 
2641 	return ineq;
2642 }
2643 
2644 /* Remove all information from "bset" that is redundant in the context
2645  * of "context", for the case where both "bset" and "context" are
2646  * full-dimensional.
2647  */
uset_gist_uncompressed(__isl_take isl_basic_set * bset,__isl_take isl_basic_set * context)2648 static __isl_give isl_basic_set *uset_gist_uncompressed(
2649 	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
2650 {
2651 	isl_mat *ineq;
2652 
2653 	ineq = extract_ineq(bset);
2654 	return uset_gist_full(bset, ineq, context);
2655 }
2656 
2657 /* Replace "bset" by an empty basic set in the same space.
2658  */
replace_by_empty(__isl_take isl_basic_set * bset)2659 static __isl_give isl_basic_set *replace_by_empty(
2660 	__isl_take isl_basic_set *bset)
2661 {
2662 	isl_space *space;
2663 
2664 	space = isl_basic_set_get_space(bset);
2665 	isl_basic_set_free(bset);
2666 	return isl_basic_set_empty(space);
2667 }
2668 
2669 /* Remove all information from "bset" that is redundant in the context
2670  * of "context", for the case where the combined equalities of
2671  * "bset" and "context" allow for a compression that can be obtained
2672  * by preapplication of "T".
2673  * If the compression of "context" is empty, meaning that "bset" and
2674  * "context" do not intersect, then return the empty set.
2675  *
2676  * "bset" itself is not transformed by "T".  Instead, the inequalities
2677  * are extracted from "bset" and those are transformed by "T".
2678  * uset_gist_full then determines which of the transformed inequalities
2679  * are redundant with respect to the transformed "context" and removes
2680  * the corresponding inequalities from "bset".
2681  *
2682  * After preapplying "T" to the inequalities, any common factor is
2683  * removed from the coefficients.  If this results in a tightening
2684  * of the constant term, then the same tightening is applied to
2685  * the corresponding untransformed inequality in "bset".
2686  * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2687  *
2688  *	g f'(x) + r >= 0
2689  *
2690  * with 0 <= r < g, then it is equivalent to
2691  *
2692  *	f'(x) >= 0
2693  *
2694  * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2695  * subspace compressed by T since the latter would be transformed to
2696  *
2697  *	g f'(x) >= 0
2698  */
uset_gist_compressed(__isl_take isl_basic_set * bset,__isl_take isl_basic_set * context,__isl_take isl_mat * T)2699 static __isl_give isl_basic_set *uset_gist_compressed(
2700 	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context,
2701 	__isl_take isl_mat *T)
2702 {
2703 	isl_ctx *ctx;
2704 	isl_mat *ineq;
2705 	int i;
2706 	isl_size n_row, n_col;
2707 	isl_int rem;
2708 
2709 	ineq = extract_ineq(bset);
2710 	ineq = isl_mat_product(ineq, isl_mat_copy(T));
2711 	context = isl_basic_set_preimage(context, T);
2712 
2713 	if (!ineq || !context)
2714 		goto error;
2715 	if (isl_basic_set_plain_is_empty(context)) {
2716 		isl_mat_free(ineq);
2717 		isl_basic_set_free(context);
2718 		return replace_by_empty(bset);
2719 	}
2720 
2721 	ctx = isl_mat_get_ctx(ineq);
2722 	n_row = isl_mat_rows(ineq);
2723 	n_col = isl_mat_cols(ineq);
2724 	if (n_row < 0 || n_col < 0)
2725 		goto error;
2726 	isl_int_init(rem);
2727 	for (i = 0; i < n_row; ++i) {
2728 		isl_seq_gcd(ineq->row[i] + 1, n_col - 1, &ctx->normalize_gcd);
2729 		if (isl_int_is_zero(ctx->normalize_gcd))
2730 			continue;
2731 		if (isl_int_is_one(ctx->normalize_gcd))
2732 			continue;
2733 		isl_seq_scale_down(ineq->row[i] + 1, ineq->row[i] + 1,
2734 				    ctx->normalize_gcd, n_col - 1);
2735 		isl_int_fdiv_r(rem, ineq->row[i][0], ctx->normalize_gcd);
2736 		isl_int_fdiv_q(ineq->row[i][0],
2737 				ineq->row[i][0], ctx->normalize_gcd);
2738 		if (isl_int_is_zero(rem))
2739 			continue;
2740 		bset = isl_basic_set_cow(bset);
2741 		if (!bset)
2742 			break;
2743 		isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], rem);
2744 	}
2745 	isl_int_clear(rem);
2746 
2747 	return uset_gist_full(bset, ineq, context);
2748 error:
2749 	isl_mat_free(ineq);
2750 	isl_basic_set_free(context);
2751 	isl_basic_set_free(bset);
2752 	return NULL;
2753 }
2754 
2755 /* Project "bset" onto the variables that are involved in "template".
2756  */
project_onto_involved(__isl_take isl_basic_set * bset,__isl_keep isl_basic_set * template)2757 static __isl_give isl_basic_set *project_onto_involved(
2758 	__isl_take isl_basic_set *bset, __isl_keep isl_basic_set *template)
2759 {
2760 	int i;
2761 	isl_size n;
2762 
2763 	n = isl_basic_set_dim(template, isl_dim_set);
2764 	if (n < 0 || !template)
2765 		return isl_basic_set_free(bset);
2766 
2767 	for (i = 0; i < n; ++i) {
2768 		isl_bool involved;
2769 
2770 		involved = isl_basic_set_involves_dims(template,
2771 							isl_dim_set, i, 1);
2772 		if (involved < 0)
2773 			return isl_basic_set_free(bset);
2774 		if (involved)
2775 			continue;
2776 		bset = isl_basic_set_eliminate_vars(bset, i, 1);
2777 	}
2778 
2779 	return bset;
2780 }
2781 
2782 /* Remove all information from bset that is redundant in the context
2783  * of context.  In particular, equalities that are linear combinations
2784  * of those in context are removed.  Then the inequalities that are
2785  * redundant in the context of the equalities and inequalities of
2786  * context are removed.
2787  *
2788  * First of all, we drop those constraints from "context"
2789  * that are irrelevant for computing the gist of "bset".
2790  * Alternatively, we could factorize the intersection of "context" and "bset".
2791  *
2792  * We first compute the intersection of the integer affine hulls
2793  * of "bset" and "context",
2794  * compute the gist inside this intersection and then reduce
2795  * the constraints with respect to the equalities of the context
2796  * that only involve variables already involved in the input.
2797  * If the intersection of the affine hulls turns out to be empty,
2798  * then return the empty set.
2799  *
2800  * If two constraints are mutually redundant, then uset_gist_full
2801  * will remove the second of those constraints.  We therefore first
2802  * sort the constraints so that constraints not involving existentially
2803  * quantified variables are given precedence over those that do.
2804  * We have to perform this sorting before the variable compression,
2805  * because that may effect the order of the variables.
2806  */
uset_gist(__isl_take isl_basic_set * bset,__isl_take isl_basic_set * context)2807 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2808 	__isl_take isl_basic_set *context)
2809 {
2810 	isl_mat *eq;
2811 	isl_mat *T;
2812 	isl_basic_set *aff;
2813 	isl_basic_set *aff_context;
2814 	isl_size total;
2815 
2816 	total = isl_basic_set_dim(bset, isl_dim_all);
2817 	if (total < 0 || !context)
2818 		goto error;
2819 
2820 	context = drop_irrelevant_constraints(context, bset);
2821 
2822 	bset = isl_basic_set_detect_equalities(bset);
2823 	aff = isl_basic_set_copy(bset);
2824 	aff = isl_basic_set_plain_affine_hull(aff);
2825 	context = isl_basic_set_detect_equalities(context);
2826 	aff_context = isl_basic_set_copy(context);
2827 	aff_context = isl_basic_set_plain_affine_hull(aff_context);
2828 	aff = isl_basic_set_intersect(aff, aff_context);
2829 	if (!aff)
2830 		goto error;
2831 	if (isl_basic_set_plain_is_empty(aff)) {
2832 		isl_basic_set_free(bset);
2833 		isl_basic_set_free(context);
2834 		return aff;
2835 	}
2836 	bset = isl_basic_set_sort_constraints(bset);
2837 	if (aff->n_eq == 0) {
2838 		isl_basic_set_free(aff);
2839 		return uset_gist_uncompressed(bset, context);
2840 	}
2841 	eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2842 	eq = isl_mat_cow(eq);
2843 	T = isl_mat_variable_compression(eq, NULL);
2844 	isl_basic_set_free(aff);
2845 	if (T && T->n_col == 0) {
2846 		isl_mat_free(T);
2847 		isl_basic_set_free(context);
2848 		return replace_by_empty(bset);
2849 	}
2850 
2851 	aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2852 	aff_context = project_onto_involved(aff_context, bset);
2853 
2854 	bset = uset_gist_compressed(bset, context, T);
2855 	bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2856 
2857 	if (bset) {
2858 		ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2859 		ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2860 	}
2861 
2862 	return bset;
2863 error:
2864 	isl_basic_set_free(bset);
2865 	isl_basic_set_free(context);
2866 	return NULL;
2867 }
2868 
2869 /* Return the number of equality constraints in "bmap" that involve
2870  * local variables.  This function assumes that Gaussian elimination
2871  * has been applied to the equality constraints.
2872  */
n_div_eq(__isl_keep isl_basic_map * bmap)2873 static int n_div_eq(__isl_keep isl_basic_map *bmap)
2874 {
2875 	int i;
2876 	isl_size total, n_div;
2877 
2878 	if (!bmap)
2879 		return -1;
2880 
2881 	if (bmap->n_eq == 0)
2882 		return 0;
2883 
2884 	total = isl_basic_map_dim(bmap, isl_dim_all);
2885 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
2886 	if (total < 0 || n_div < 0)
2887 		return -1;
2888 	total -= n_div;
2889 
2890 	for (i = 0; i < bmap->n_eq; ++i)
2891 		if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total,
2892 					    n_div) == -1)
2893 			return i;
2894 
2895 	return bmap->n_eq;
2896 }
2897 
2898 /* Construct a basic map in "space" defined by the equality constraints in "eq".
2899  * The constraints are assumed not to involve any local variables.
2900  */
basic_map_from_equalities(__isl_take isl_space * space,__isl_take isl_mat * eq)2901 static __isl_give isl_basic_map *basic_map_from_equalities(
2902 	__isl_take isl_space *space, __isl_take isl_mat *eq)
2903 {
2904 	int i, k;
2905 	isl_size total;
2906 	isl_basic_map *bmap = NULL;
2907 
2908 	total = isl_space_dim(space, isl_dim_all);
2909 	if (total < 0 || !eq)
2910 		goto error;
2911 
2912 	if (1 + total != eq->n_col)
2913 		isl_die(isl_space_get_ctx(space), isl_error_internal,
2914 			"unexpected number of columns", goto error);
2915 
2916 	bmap = isl_basic_map_alloc_space(isl_space_copy(space),
2917 					    0, eq->n_row, 0);
2918 	for (i = 0; i < eq->n_row; ++i) {
2919 		k = isl_basic_map_alloc_equality(bmap);
2920 		if (k < 0)
2921 			goto error;
2922 		isl_seq_cpy(bmap->eq[k], eq->row[i], eq->n_col);
2923 	}
2924 
2925 	isl_space_free(space);
2926 	isl_mat_free(eq);
2927 	return bmap;
2928 error:
2929 	isl_space_free(space);
2930 	isl_mat_free(eq);
2931 	isl_basic_map_free(bmap);
2932 	return NULL;
2933 }
2934 
2935 /* Construct and return a variable compression based on the equality
2936  * constraints in "bmap1" and "bmap2" that do not involve the local variables.
2937  * "n1" is the number of (initial) equality constraints in "bmap1"
2938  * that do involve local variables.
2939  * "n2" is the number of (initial) equality constraints in "bmap2"
2940  * that do involve local variables.
2941  * "total" is the total number of other variables.
2942  * This function assumes that Gaussian elimination
2943  * has been applied to the equality constraints in both "bmap1" and "bmap2"
2944  * such that the equality constraints not involving local variables
2945  * are those that start at "n1" or "n2".
2946  *
2947  * If either of "bmap1" and "bmap2" does not have such equality constraints,
2948  * then simply compute the compression based on the equality constraints
2949  * in the other basic map.
2950  * Otherwise, combine the equality constraints from both into a new
2951  * basic map such that Gaussian elimination can be applied to this combination
2952  * and then construct a variable compression from the resulting
2953  * equality constraints.
2954  */
combined_variable_compression(__isl_keep isl_basic_map * bmap1,int n1,__isl_keep isl_basic_map * bmap2,int n2,int total)2955 static __isl_give isl_mat *combined_variable_compression(
2956 	__isl_keep isl_basic_map *bmap1, int n1,
2957 	__isl_keep isl_basic_map *bmap2, int n2, int total)
2958 {
2959 	isl_ctx *ctx;
2960 	isl_mat *E1, *E2, *V;
2961 	isl_basic_map *bmap;
2962 
2963 	ctx = isl_basic_map_get_ctx(bmap1);
2964 	if (bmap1->n_eq == n1) {
2965 		E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
2966 					n2, bmap2->n_eq - n2, 0, 1 + total);
2967 		return isl_mat_variable_compression(E2, NULL);
2968 	}
2969 	if (bmap2->n_eq == n2) {
2970 		E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
2971 					n1, bmap1->n_eq - n1, 0, 1 + total);
2972 		return isl_mat_variable_compression(E1, NULL);
2973 	}
2974 	E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
2975 				n1, bmap1->n_eq - n1, 0, 1 + total);
2976 	E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
2977 				n2, bmap2->n_eq - n2, 0, 1 + total);
2978 	E1 = isl_mat_concat(E1, E2);
2979 	bmap = basic_map_from_equalities(isl_basic_map_get_space(bmap1), E1);
2980 	bmap = isl_basic_map_gauss(bmap, NULL);
2981 	if (!bmap)
2982 		return NULL;
2983 	E1 = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
2984 	V = isl_mat_variable_compression(E1, NULL);
2985 	isl_basic_map_free(bmap);
2986 
2987 	return V;
2988 }
2989 
2990 /* Extract the stride constraints from "bmap", compressed
2991  * with respect to both the stride constraints in "context" and
2992  * the remaining equality constraints in both "bmap" and "context".
2993  * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
2994  * "context_n_eq" is the number of (initial) stride constraints in "context".
2995  *
2996  * Let x be all variables in "bmap" (and "context") other than the local
2997  * variables.  First compute a variable compression
2998  *
2999  *	x = V x'
3000  *
3001  * based on the non-stride equality constraints in "bmap" and "context".
3002  * Consider the stride constraints of "context",
3003  *
3004  *	A(x) + B(y) = 0
3005  *
3006  * with y the local variables and plug in the variable compression,
3007  * resulting in
3008  *
3009  *	A(V x') + B(y) = 0
3010  *
3011  * Use these constraints to compute a parameter compression on x'
3012  *
3013  *	x' = T x''
3014  *
3015  * Now consider the stride constraints of "bmap"
3016  *
3017  *	C(x) + D(y) = 0
3018  *
3019  * and plug in x = V*T x''.
3020  * That is, return A = [C*V*T D].
3021  */
extract_compressed_stride_constraints(__isl_keep isl_basic_map * bmap,int bmap_n_eq,__isl_keep isl_basic_map * context,int context_n_eq)3022 static __isl_give isl_mat *extract_compressed_stride_constraints(
3023 	__isl_keep isl_basic_map *bmap, int bmap_n_eq,
3024 	__isl_keep isl_basic_map *context, int context_n_eq)
3025 {
3026 	isl_size total, n_div;
3027 	isl_ctx *ctx;
3028 	isl_mat *A, *B, *T, *V;
3029 
3030 	total = isl_basic_map_dim(context, isl_dim_all);
3031 	n_div = isl_basic_map_dim(context, isl_dim_div);
3032 	if (total < 0 || n_div < 0)
3033 		return NULL;
3034 	total -= n_div;
3035 
3036 	ctx = isl_basic_map_get_ctx(bmap);
3037 
3038 	V = combined_variable_compression(bmap, bmap_n_eq,
3039 						context, context_n_eq, total);
3040 
3041 	A = isl_mat_sub_alloc6(ctx, context->eq, 0, context_n_eq, 0, 1 + total);
3042 	B = isl_mat_sub_alloc6(ctx, context->eq,
3043 				0, context_n_eq, 1 + total, n_div);
3044 	A = isl_mat_product(A, isl_mat_copy(V));
3045 	T = isl_mat_parameter_compression_ext(A, B);
3046 	T = isl_mat_product(V, T);
3047 
3048 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
3049 	if (n_div < 0)
3050 		T = isl_mat_free(T);
3051 	else
3052 		T = isl_mat_diagonal(T, isl_mat_identity(ctx, n_div));
3053 
3054 	A = isl_mat_sub_alloc6(ctx, bmap->eq,
3055 				0, bmap_n_eq, 0, 1 + total + n_div);
3056 	A = isl_mat_product(A, T);
3057 
3058 	return A;
3059 }
3060 
3061 /* Remove the prime factors from *g that have an exponent that
3062  * is strictly smaller than the exponent in "c".
3063  * All exponents in *g are known to be smaller than or equal
3064  * to those in "c".
3065  *
3066  * That is, if *g is equal to
3067  *
3068  *	p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
3069  *
3070  * and "c" is equal to
3071  *
3072  *	p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
3073  *
3074  * then update *g to
3075  *
3076  *	p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
3077  *		p_n^{e_n * (e_n = f_n)}
3078  *
3079  * If e_i = f_i, then c / *g does not have any p_i factors and therefore
3080  * neither does the gcd of *g and c / *g.
3081  * If e_i < f_i, then the gcd of *g and c / *g has a positive
3082  * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
3083  * Dividing *g by this gcd therefore strictly reduces the exponent
3084  * of the prime factors that need to be removed, while leaving the
3085  * other prime factors untouched.
3086  * Repeating this process until gcd(*g, c / *g) = 1 therefore
3087  * removes all undesired factors, without removing any others.
3088  */
remove_incomplete_powers(isl_int * g,isl_int c)3089 static void remove_incomplete_powers(isl_int *g, isl_int c)
3090 {
3091 	isl_int t;
3092 
3093 	isl_int_init(t);
3094 	for (;;) {
3095 		isl_int_divexact(t, c, *g);
3096 		isl_int_gcd(t, t, *g);
3097 		if (isl_int_is_one(t))
3098 			break;
3099 		isl_int_divexact(*g, *g, t);
3100 	}
3101 	isl_int_clear(t);
3102 }
3103 
3104 /* Reduce the "n" stride constraints in "bmap" based on a copy "A"
3105  * of the same stride constraints in a compressed space that exploits
3106  * all equalities in the context and the other equalities in "bmap".
3107  *
3108  * If the stride constraints of "bmap" are of the form
3109  *
3110  *	C(x) + D(y) = 0
3111  *
3112  * then A is of the form
3113  *
3114  *	B(x') + D(y) = 0
3115  *
3116  * If any of these constraints involves only a single local variable y,
3117  * then the constraint appears as
3118  *
3119  *	f(x) + m y_i = 0
3120  *
3121  * in "bmap" and as
3122  *
3123  *	h(x') + m y_i = 0
3124  *
3125  * in "A".
3126  *
3127  * Let g be the gcd of m and the coefficients of h.
3128  * Then, in particular, g is a divisor of the coefficients of h and
3129  *
3130  *	f(x) = h(x')
3131  *
3132  * is known to be a multiple of g.
3133  * If some prime factor in m appears with the same exponent in g,
3134  * then it can be removed from m because f(x) is already known
3135  * to be a multiple of g and therefore in particular of this power
3136  * of the prime factors.
3137  * Prime factors that appear with a smaller exponent in g cannot
3138  * be removed from m.
3139  * Let g' be the divisor of g containing all prime factors that
3140  * appear with the same exponent in m and g, then
3141  *
3142  *	f(x) + m y_i = 0
3143  *
3144  * can be replaced by
3145  *
3146  *	f(x) + m/g' y_i' = 0
3147  *
3148  * Note that (if g' != 1) this changes the explicit representation
3149  * of y_i to that of y_i', so the integer division at position i
3150  * is marked unknown and later recomputed by a call to
3151  * isl_basic_map_gauss.
3152  */
reduce_stride_constraints(__isl_take isl_basic_map * bmap,int n,__isl_keep isl_mat * A)3153 static __isl_give isl_basic_map *reduce_stride_constraints(
3154 	__isl_take isl_basic_map *bmap, int n, __isl_keep isl_mat *A)
3155 {
3156 	int i;
3157 	isl_size total, n_div;
3158 	int any = 0;
3159 	isl_int gcd;
3160 
3161 	total = isl_basic_map_dim(bmap, isl_dim_all);
3162 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
3163 	if (total < 0 || n_div < 0 || !A)
3164 		return isl_basic_map_free(bmap);
3165 	total -= n_div;
3166 
3167 	isl_int_init(gcd);
3168 	for (i = 0; i < n; ++i) {
3169 		int div;
3170 
3171 		div = isl_seq_first_non_zero(bmap->eq[i] + 1 + total, n_div);
3172 		if (div < 0)
3173 			isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
3174 				"equality constraints modified unexpectedly",
3175 				goto error);
3176 		if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total + div + 1,
3177 						n_div - div - 1) != -1)
3178 			continue;
3179 		if (isl_mat_row_gcd(A, i, &gcd) < 0)
3180 			goto error;
3181 		if (isl_int_is_one(gcd))
3182 			continue;
3183 		remove_incomplete_powers(&gcd, bmap->eq[i][1 + total + div]);
3184 		if (isl_int_is_one(gcd))
3185 			continue;
3186 		isl_int_divexact(bmap->eq[i][1 + total + div],
3187 				bmap->eq[i][1 + total + div], gcd);
3188 		bmap = isl_basic_map_mark_div_unknown(bmap, div);
3189 		if (!bmap)
3190 			goto error;
3191 		any = 1;
3192 	}
3193 	isl_int_clear(gcd);
3194 
3195 	if (any)
3196 		bmap = isl_basic_map_gauss(bmap, NULL);
3197 
3198 	return bmap;
3199 error:
3200 	isl_int_clear(gcd);
3201 	isl_basic_map_free(bmap);
3202 	return NULL;
3203 }
3204 
3205 /* Simplify the stride constraints in "bmap" based on
3206  * the remaining equality constraints in "bmap" and all equality
3207  * constraints in "context".
3208  * Only do this if both "bmap" and "context" have stride constraints.
3209  *
3210  * First extract a copy of the stride constraints in "bmap" in a compressed
3211  * space exploiting all the other equality constraints and then
3212  * use this compressed copy to simplify the original stride constraints.
3213  */
gist_strides(__isl_take isl_basic_map * bmap,__isl_keep isl_basic_map * context)3214 static __isl_give isl_basic_map *gist_strides(__isl_take isl_basic_map *bmap,
3215 	__isl_keep isl_basic_map *context)
3216 {
3217 	int bmap_n_eq, context_n_eq;
3218 	isl_mat *A;
3219 
3220 	if (!bmap || !context)
3221 		return isl_basic_map_free(bmap);
3222 
3223 	bmap_n_eq = n_div_eq(bmap);
3224 	context_n_eq = n_div_eq(context);
3225 
3226 	if (bmap_n_eq < 0 || context_n_eq < 0)
3227 		return isl_basic_map_free(bmap);
3228 	if (bmap_n_eq == 0 || context_n_eq == 0)
3229 		return bmap;
3230 
3231 	A = extract_compressed_stride_constraints(bmap, bmap_n_eq,
3232 						    context, context_n_eq);
3233 	bmap = reduce_stride_constraints(bmap, bmap_n_eq, A);
3234 
3235 	isl_mat_free(A);
3236 
3237 	return bmap;
3238 }
3239 
3240 /* Return a basic map that has the same intersection with "context" as "bmap"
3241  * and that is as "simple" as possible.
3242  *
3243  * The core computation is performed on the pure constraints.
3244  * When we add back the meaning of the integer divisions, we need
3245  * to (re)introduce the div constraints.  If we happen to have
3246  * discovered that some of these integer divisions are equal to
3247  * some affine combination of other variables, then these div
3248  * constraints may end up getting simplified in terms of the equalities,
3249  * resulting in extra inequalities on the other variables that
3250  * may have been removed already or that may not even have been
3251  * part of the input.  We try and remove those constraints of
3252  * this form that are most obviously redundant with respect to
3253  * the context.  We also remove those div constraints that are
3254  * redundant with respect to the other constraints in the result.
3255  *
3256  * The stride constraints among the equality constraints in "bmap" are
3257  * also simplified with respecting to the other equality constraints
3258  * in "bmap" and with respect to all equality constraints in "context".
3259  */
isl_basic_map_gist(__isl_take isl_basic_map * bmap,__isl_take isl_basic_map * context)3260 __isl_give isl_basic_map *isl_basic_map_gist(__isl_take isl_basic_map *bmap,
3261 	__isl_take isl_basic_map *context)
3262 {
3263 	isl_basic_set *bset, *eq;
3264 	isl_basic_map *eq_bmap;
3265 	isl_size total, n_div, n_div_bmap;
3266 	unsigned extra, n_eq, n_ineq;
3267 
3268 	if (!bmap || !context)
3269 		goto error;
3270 
3271 	if (isl_basic_map_plain_is_universe(bmap)) {
3272 		isl_basic_map_free(context);
3273 		return bmap;
3274 	}
3275 	if (isl_basic_map_plain_is_empty(context)) {
3276 		isl_space *space = isl_basic_map_get_space(bmap);
3277 		isl_basic_map_free(bmap);
3278 		isl_basic_map_free(context);
3279 		return isl_basic_map_universe(space);
3280 	}
3281 	if (isl_basic_map_plain_is_empty(bmap)) {
3282 		isl_basic_map_free(context);
3283 		return bmap;
3284 	}
3285 
3286 	bmap = isl_basic_map_remove_redundancies(bmap);
3287 	context = isl_basic_map_remove_redundancies(context);
3288 	bmap = isl_basic_map_order_divs(bmap);
3289 	context = isl_basic_map_align_divs(context, bmap);
3290 
3291 	n_div = isl_basic_map_dim(context, isl_dim_div);
3292 	total = isl_basic_map_dim(bmap, isl_dim_all);
3293 	n_div_bmap = isl_basic_map_dim(bmap, isl_dim_div);
3294 	if (n_div < 0 || total < 0 || n_div_bmap < 0)
3295 		goto error;
3296 	extra = n_div - n_div_bmap;
3297 
3298 	bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
3299 	bset = isl_basic_set_add_dims(bset, isl_dim_set, extra);
3300 	bset = uset_gist(bset,
3301 		    isl_basic_map_underlying_set(isl_basic_map_copy(context)));
3302 	bset = isl_basic_set_project_out(bset, isl_dim_set, total, extra);
3303 
3304 	if (!bset || bset->n_eq == 0 || n_div == 0 ||
3305 	    isl_basic_set_plain_is_empty(bset)) {
3306 		isl_basic_map_free(context);
3307 		return isl_basic_map_overlying_set(bset, bmap);
3308 	}
3309 
3310 	n_eq = bset->n_eq;
3311 	n_ineq = bset->n_ineq;
3312 	eq = isl_basic_set_copy(bset);
3313 	eq = isl_basic_set_cow(eq);
3314 	eq = isl_basic_set_free_inequality(eq, n_ineq);
3315 	bset = isl_basic_set_free_equality(bset, n_eq);
3316 
3317 	eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
3318 	eq_bmap = gist_strides(eq_bmap, context);
3319 	eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
3320 	bmap = isl_basic_map_overlying_set(bset, bmap);
3321 	bmap = isl_basic_map_intersect(bmap, eq_bmap);
3322 	bmap = isl_basic_map_remove_redundancies(bmap);
3323 
3324 	return bmap;
3325 error:
3326 	isl_basic_map_free(bmap);
3327 	isl_basic_map_free(context);
3328 	return NULL;
3329 }
3330 
3331 /*
3332  * Assumes context has no implicit divs.
3333  */
isl_map_gist_basic_map(__isl_take isl_map * map,__isl_take isl_basic_map * context)3334 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
3335 	__isl_take isl_basic_map *context)
3336 {
3337 	int i;
3338 
3339 	if (!map || !context)
3340 		goto error;
3341 
3342 	if (isl_basic_map_plain_is_empty(context)) {
3343 		isl_space *space = isl_map_get_space(map);
3344 		isl_map_free(map);
3345 		isl_basic_map_free(context);
3346 		return isl_map_universe(space);
3347 	}
3348 
3349 	context = isl_basic_map_remove_redundancies(context);
3350 	map = isl_map_cow(map);
3351 	if (isl_map_basic_map_check_equal_space(map, context) < 0)
3352 		goto error;
3353 	map = isl_map_compute_divs(map);
3354 	if (!map)
3355 		goto error;
3356 	for (i = map->n - 1; i >= 0; --i) {
3357 		map->p[i] = isl_basic_map_gist(map->p[i],
3358 						isl_basic_map_copy(context));
3359 		if (!map->p[i])
3360 			goto error;
3361 		if (isl_basic_map_plain_is_empty(map->p[i])) {
3362 			isl_basic_map_free(map->p[i]);
3363 			if (i != map->n - 1)
3364 				map->p[i] = map->p[map->n - 1];
3365 			map->n--;
3366 		}
3367 	}
3368 	isl_basic_map_free(context);
3369 	ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3370 	return map;
3371 error:
3372 	isl_map_free(map);
3373 	isl_basic_map_free(context);
3374 	return NULL;
3375 }
3376 
3377 /* Drop all inequalities from "bmap" that also appear in "context".
3378  * "context" is assumed to have only known local variables and
3379  * the initial local variables of "bmap" are assumed to be the same
3380  * as those of "context".
3381  * The constraints of both "bmap" and "context" are assumed
3382  * to have been sorted using isl_basic_map_sort_constraints.
3383  *
3384  * Run through the inequality constraints of "bmap" and "context"
3385  * in sorted order.
3386  * If a constraint of "bmap" involves variables not in "context",
3387  * then it cannot appear in "context".
3388  * If a matching constraint is found, it is removed from "bmap".
3389  */
drop_inequalities(__isl_take isl_basic_map * bmap,__isl_keep isl_basic_map * context)3390 static __isl_give isl_basic_map *drop_inequalities(
3391 	__isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
3392 {
3393 	int i1, i2;
3394 	isl_size total, bmap_total;
3395 	unsigned extra;
3396 
3397 	total = isl_basic_map_dim(context, isl_dim_all);
3398 	bmap_total = isl_basic_map_dim(bmap, isl_dim_all);
3399 	if (total < 0 || bmap_total < 0)
3400 		return isl_basic_map_free(bmap);
3401 
3402 	extra = bmap_total - total;
3403 
3404 	i1 = bmap->n_ineq - 1;
3405 	i2 = context->n_ineq - 1;
3406 	while (bmap && i1 >= 0 && i2 >= 0) {
3407 		int cmp;
3408 
3409 		if (isl_seq_first_non_zero(bmap->ineq[i1] + 1 + total,
3410 					    extra) != -1) {
3411 			--i1;
3412 			continue;
3413 		}
3414 		cmp = isl_basic_map_constraint_cmp(context, bmap->ineq[i1],
3415 							context->ineq[i2]);
3416 		if (cmp < 0) {
3417 			--i2;
3418 			continue;
3419 		}
3420 		if (cmp > 0) {
3421 			--i1;
3422 			continue;
3423 		}
3424 		if (isl_int_eq(bmap->ineq[i1][0], context->ineq[i2][0])) {
3425 			bmap = isl_basic_map_cow(bmap);
3426 			if (isl_basic_map_drop_inequality(bmap, i1) < 0)
3427 				bmap = isl_basic_map_free(bmap);
3428 		}
3429 		--i1;
3430 		--i2;
3431 	}
3432 
3433 	return bmap;
3434 }
3435 
3436 /* Drop all equalities from "bmap" that also appear in "context".
3437  * "context" is assumed to have only known local variables and
3438  * the initial local variables of "bmap" are assumed to be the same
3439  * as those of "context".
3440  *
3441  * Run through the equality constraints of "bmap" and "context"
3442  * in sorted order.
3443  * If a constraint of "bmap" involves variables not in "context",
3444  * then it cannot appear in "context".
3445  * If a matching constraint is found, it is removed from "bmap".
3446  */
drop_equalities(__isl_take isl_basic_map * bmap,__isl_keep isl_basic_map * context)3447 static __isl_give isl_basic_map *drop_equalities(
3448 	__isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
3449 {
3450 	int i1, i2;
3451 	isl_size total, bmap_total;
3452 	unsigned extra;
3453 
3454 	total = isl_basic_map_dim(context, isl_dim_all);
3455 	bmap_total = isl_basic_map_dim(bmap, isl_dim_all);
3456 	if (total < 0 || bmap_total < 0)
3457 		return isl_basic_map_free(bmap);
3458 
3459 	extra = bmap_total - total;
3460 
3461 	i1 = bmap->n_eq - 1;
3462 	i2 = context->n_eq - 1;
3463 
3464 	while (bmap && i1 >= 0 && i2 >= 0) {
3465 		int last1, last2;
3466 
3467 		if (isl_seq_first_non_zero(bmap->eq[i1] + 1 + total,
3468 					    extra) != -1)
3469 			break;
3470 		last1 = isl_seq_last_non_zero(bmap->eq[i1] + 1, total);
3471 		last2 = isl_seq_last_non_zero(context->eq[i2] + 1, total);
3472 		if (last1 > last2) {
3473 			--i2;
3474 			continue;
3475 		}
3476 		if (last1 < last2) {
3477 			--i1;
3478 			continue;
3479 		}
3480 		if (isl_seq_eq(bmap->eq[i1], context->eq[i2], 1 + total)) {
3481 			bmap = isl_basic_map_cow(bmap);
3482 			if (isl_basic_map_drop_equality(bmap, i1) < 0)
3483 				bmap = isl_basic_map_free(bmap);
3484 		}
3485 		--i1;
3486 		--i2;
3487 	}
3488 
3489 	return bmap;
3490 }
3491 
3492 /* Remove the constraints in "context" from "bmap".
3493  * "context" is assumed to have explicit representations
3494  * for all local variables.
3495  *
3496  * First align the divs of "bmap" to those of "context" and
3497  * sort the constraints.  Then drop all constraints from "bmap"
3498  * that appear in "context".
3499  */
isl_basic_map_plain_gist(__isl_take isl_basic_map * bmap,__isl_take isl_basic_map * context)3500 __isl_give isl_basic_map *isl_basic_map_plain_gist(
3501 	__isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
3502 {
3503 	isl_bool done, known;
3504 
3505 	done = isl_basic_map_plain_is_universe(context);
3506 	if (done == isl_bool_false)
3507 		done = isl_basic_map_plain_is_universe(bmap);
3508 	if (done == isl_bool_false)
3509 		done = isl_basic_map_plain_is_empty(context);
3510 	if (done == isl_bool_false)
3511 		done = isl_basic_map_plain_is_empty(bmap);
3512 	if (done < 0)
3513 		goto error;
3514 	if (done) {
3515 		isl_basic_map_free(context);
3516 		return bmap;
3517 	}
3518 	known = isl_basic_map_divs_known(context);
3519 	if (known < 0)
3520 		goto error;
3521 	if (!known)
3522 		isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
3523 			"context has unknown divs", goto error);
3524 
3525 	context = isl_basic_map_order_divs(context);
3526 	bmap = isl_basic_map_align_divs(bmap, context);
3527 	bmap = isl_basic_map_gauss(bmap, NULL);
3528 	bmap = isl_basic_map_sort_constraints(bmap);
3529 	context = isl_basic_map_sort_constraints(context);
3530 
3531 	bmap = drop_inequalities(bmap, context);
3532 	bmap = drop_equalities(bmap, context);
3533 
3534 	isl_basic_map_free(context);
3535 	bmap = isl_basic_map_finalize(bmap);
3536 	return bmap;
3537 error:
3538 	isl_basic_map_free(bmap);
3539 	isl_basic_map_free(context);
3540 	return NULL;
3541 }
3542 
3543 /* Replace "map" by the disjunct at position "pos" and free "context".
3544  */
replace_by_disjunct(__isl_take isl_map * map,int pos,__isl_take isl_basic_map * context)3545 static __isl_give isl_map *replace_by_disjunct(__isl_take isl_map *map,
3546 	int pos, __isl_take isl_basic_map *context)
3547 {
3548 	isl_basic_map *bmap;
3549 
3550 	bmap = isl_basic_map_copy(map->p[pos]);
3551 	isl_map_free(map);
3552 	isl_basic_map_free(context);
3553 	return isl_map_from_basic_map(bmap);
3554 }
3555 
3556 /* Remove the constraints in "context" from "map".
3557  * If any of the disjuncts in the result turns out to be the universe,
3558  * then return this universe.
3559  * "context" is assumed to have explicit representations
3560  * for all local variables.
3561  */
isl_map_plain_gist_basic_map(__isl_take isl_map * map,__isl_take isl_basic_map * context)3562 __isl_give isl_map *isl_map_plain_gist_basic_map(__isl_take isl_map *map,
3563 	__isl_take isl_basic_map *context)
3564 {
3565 	int i;
3566 	isl_bool univ, known;
3567 
3568 	univ = isl_basic_map_plain_is_universe(context);
3569 	if (univ < 0)
3570 		goto error;
3571 	if (univ) {
3572 		isl_basic_map_free(context);
3573 		return map;
3574 	}
3575 	known = isl_basic_map_divs_known(context);
3576 	if (known < 0)
3577 		goto error;
3578 	if (!known)
3579 		isl_die(isl_map_get_ctx(map), isl_error_invalid,
3580 			"context has unknown divs", goto error);
3581 
3582 	map = isl_map_cow(map);
3583 	if (!map)
3584 		goto error;
3585 	for (i = 0; i < map->n; ++i) {
3586 		map->p[i] = isl_basic_map_plain_gist(map->p[i],
3587 						isl_basic_map_copy(context));
3588 		univ = isl_basic_map_plain_is_universe(map->p[i]);
3589 		if (univ < 0)
3590 			goto error;
3591 		if (univ && map->n > 1)
3592 			return replace_by_disjunct(map, i, context);
3593 	}
3594 
3595 	isl_basic_map_free(context);
3596 	ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3597 	if (map->n > 1)
3598 		ISL_F_CLR(map, ISL_MAP_DISJOINT);
3599 	return map;
3600 error:
3601 	isl_map_free(map);
3602 	isl_basic_map_free(context);
3603 	return NULL;
3604 }
3605 
3606 /* Remove the constraints in "context" from "set".
3607  * If any of the disjuncts in the result turns out to be the universe,
3608  * then return this universe.
3609  * "context" is assumed to have explicit representations
3610  * for all local variables.
3611  */
isl_set_plain_gist_basic_set(__isl_take isl_set * set,__isl_take isl_basic_set * context)3612 __isl_give isl_set *isl_set_plain_gist_basic_set(__isl_take isl_set *set,
3613 	__isl_take isl_basic_set *context)
3614 {
3615 	return set_from_map(isl_map_plain_gist_basic_map(set_to_map(set),
3616 							bset_to_bmap(context)));
3617 }
3618 
3619 /* Remove the constraints in "context" from "map".
3620  * If any of the disjuncts in the result turns out to be the universe,
3621  * then return this universe.
3622  * "context" is assumed to consist of a single disjunct and
3623  * to have explicit representations for all local variables.
3624  */
isl_map_plain_gist(__isl_take isl_map * map,__isl_take isl_map * context)3625 __isl_give isl_map *isl_map_plain_gist(__isl_take isl_map *map,
3626 	__isl_take isl_map *context)
3627 {
3628 	isl_basic_map *hull;
3629 
3630 	hull = isl_map_unshifted_simple_hull(context);
3631 	return isl_map_plain_gist_basic_map(map, hull);
3632 }
3633 
3634 /* Replace "map" by a universe map in the same space and free "drop".
3635  */
replace_by_universe(__isl_take isl_map * map,__isl_take isl_map * drop)3636 static __isl_give isl_map *replace_by_universe(__isl_take isl_map *map,
3637 	__isl_take isl_map *drop)
3638 {
3639 	isl_map *res;
3640 
3641 	res = isl_map_universe(isl_map_get_space(map));
3642 	isl_map_free(map);
3643 	isl_map_free(drop);
3644 	return res;
3645 }
3646 
3647 /* Return a map that has the same intersection with "context" as "map"
3648  * and that is as "simple" as possible.
3649  *
3650  * If "map" is already the universe, then we cannot make it any simpler.
3651  * Similarly, if "context" is the universe, then we cannot exploit it
3652  * to simplify "map"
3653  * If "map" and "context" are identical to each other, then we can
3654  * return the corresponding universe.
3655  *
3656  * If either "map" or "context" consists of multiple disjuncts,
3657  * then check if "context" happens to be a subset of "map",
3658  * in which case all constraints can be removed.
3659  * In case of multiple disjuncts, the standard procedure
3660  * may not be able to detect that all constraints can be removed.
3661  *
3662  * If none of these cases apply, we have to work a bit harder.
3663  * During this computation, we make use of a single disjunct context,
3664  * so if the original context consists of more than one disjunct
3665  * then we need to approximate the context by a single disjunct set.
3666  * Simply taking the simple hull may drop constraints that are
3667  * only implicitly available in each disjunct.  We therefore also
3668  * look for constraints among those defining "map" that are valid
3669  * for the context.  These can then be used to simplify away
3670  * the corresponding constraints in "map".
3671  */
isl_map_gist(__isl_take isl_map * map,__isl_take isl_map * context)3672 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
3673 	__isl_take isl_map *context)
3674 {
3675 	int equal;
3676 	int is_universe;
3677 	isl_size n_disjunct_map, n_disjunct_context;
3678 	isl_bool subset;
3679 	isl_basic_map *hull;
3680 
3681 	is_universe = isl_map_plain_is_universe(map);
3682 	if (is_universe >= 0 && !is_universe)
3683 		is_universe = isl_map_plain_is_universe(context);
3684 	if (is_universe < 0)
3685 		goto error;
3686 	if (is_universe) {
3687 		isl_map_free(context);
3688 		return map;
3689 	}
3690 
3691 	isl_map_align_params_bin(&map, &context);
3692 	equal = isl_map_plain_is_equal(map, context);
3693 	if (equal < 0)
3694 		goto error;
3695 	if (equal)
3696 		return replace_by_universe(map, context);
3697 
3698 	n_disjunct_map = isl_map_n_basic_map(map);
3699 	n_disjunct_context = isl_map_n_basic_map(context);
3700 	if (n_disjunct_map < 0 || n_disjunct_context < 0)
3701 		goto error;
3702 	if (n_disjunct_map != 1 || n_disjunct_context != 1) {
3703 		subset = isl_map_is_subset(context, map);
3704 		if (subset < 0)
3705 			goto error;
3706 		if (subset)
3707 			return replace_by_universe(map, context);
3708 	}
3709 
3710 	context = isl_map_compute_divs(context);
3711 	if (!context)
3712 		goto error;
3713 	if (n_disjunct_context == 1) {
3714 		hull = isl_map_simple_hull(context);
3715 	} else {
3716 		isl_ctx *ctx;
3717 		isl_map_list *list;
3718 
3719 		ctx = isl_map_get_ctx(map);
3720 		list = isl_map_list_alloc(ctx, 2);
3721 		list = isl_map_list_add(list, isl_map_copy(context));
3722 		list = isl_map_list_add(list, isl_map_copy(map));
3723 		hull = isl_map_unshifted_simple_hull_from_map_list(context,
3724 								    list);
3725 	}
3726 	return isl_map_gist_basic_map(map, hull);
3727 error:
3728 	isl_map_free(map);
3729 	isl_map_free(context);
3730 	return NULL;
3731 }
3732 
isl_basic_set_gist(__isl_take isl_basic_set * bset,__isl_take isl_basic_set * context)3733 __isl_give isl_basic_set *isl_basic_set_gist(__isl_take isl_basic_set *bset,
3734 	__isl_take isl_basic_set *context)
3735 {
3736 	return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset),
3737 						bset_to_bmap(context)));
3738 }
3739 
isl_set_gist_basic_set(__isl_take isl_set * set,__isl_take isl_basic_set * context)3740 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
3741 	__isl_take isl_basic_set *context)
3742 {
3743 	return set_from_map(isl_map_gist_basic_map(set_to_map(set),
3744 					bset_to_bmap(context)));
3745 }
3746 
isl_set_gist_params_basic_set(__isl_take isl_set * set,__isl_take isl_basic_set * context)3747 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
3748 	__isl_take isl_basic_set *context)
3749 {
3750 	isl_space *space = isl_set_get_space(set);
3751 	isl_basic_set *dom_context = isl_basic_set_universe(space);
3752 	dom_context = isl_basic_set_intersect_params(dom_context, context);
3753 	return isl_set_gist_basic_set(set, dom_context);
3754 }
3755 
isl_set_gist(__isl_take isl_set * set,__isl_take isl_set * context)3756 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
3757 	__isl_take isl_set *context)
3758 {
3759 	return set_from_map(isl_map_gist(set_to_map(set), set_to_map(context)));
3760 }
3761 
3762 /* Compute the gist of "bmap" with respect to the constraints "context"
3763  * on the domain.
3764  */
isl_basic_map_gist_domain(__isl_take isl_basic_map * bmap,__isl_take isl_basic_set * context)3765 __isl_give isl_basic_map *isl_basic_map_gist_domain(
3766 	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
3767 {
3768 	isl_space *space = isl_basic_map_get_space(bmap);
3769 	isl_basic_map *bmap_context = isl_basic_map_universe(space);
3770 
3771 	bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
3772 	return isl_basic_map_gist(bmap, bmap_context);
3773 }
3774 
isl_map_gist_domain(__isl_take isl_map * map,__isl_take isl_set * context)3775 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
3776 	__isl_take isl_set *context)
3777 {
3778 	isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3779 	map_context = isl_map_intersect_domain(map_context, context);
3780 	return isl_map_gist(map, map_context);
3781 }
3782 
isl_map_gist_range(__isl_take isl_map * map,__isl_take isl_set * context)3783 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
3784 	__isl_take isl_set *context)
3785 {
3786 	isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3787 	map_context = isl_map_intersect_range(map_context, context);
3788 	return isl_map_gist(map, map_context);
3789 }
3790 
isl_map_gist_params(__isl_take isl_map * map,__isl_take isl_set * context)3791 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
3792 	__isl_take isl_set *context)
3793 {
3794 	isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3795 	map_context = isl_map_intersect_params(map_context, context);
3796 	return isl_map_gist(map, map_context);
3797 }
3798 
isl_set_gist_params(__isl_take isl_set * set,__isl_take isl_set * context)3799 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
3800 	__isl_take isl_set *context)
3801 {
3802 	return isl_map_gist_params(set, context);
3803 }
3804 
3805 /* Quick check to see if two basic maps are disjoint.
3806  * In particular, we reduce the equalities and inequalities of
3807  * one basic map in the context of the equalities of the other
3808  * basic map and check if we get a contradiction.
3809  */
isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map * bmap1,__isl_keep isl_basic_map * bmap2)3810 isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
3811 	__isl_keep isl_basic_map *bmap2)
3812 {
3813 	struct isl_vec *v = NULL;
3814 	int *elim = NULL;
3815 	isl_size total;
3816 	int i;
3817 
3818 	if (isl_basic_map_check_equal_space(bmap1, bmap2) < 0)
3819 		return isl_bool_error;
3820 	if (bmap1->n_div || bmap2->n_div)
3821 		return isl_bool_false;
3822 	if (!bmap1->n_eq && !bmap2->n_eq)
3823 		return isl_bool_false;
3824 
3825 	total = isl_space_dim(bmap1->dim, isl_dim_all);
3826 	if (total < 0)
3827 		return isl_bool_error;
3828 	if (total == 0)
3829 		return isl_bool_false;
3830 	v = isl_vec_alloc(bmap1->ctx, 1 + total);
3831 	if (!v)
3832 		goto error;
3833 	elim = isl_alloc_array(bmap1->ctx, int, total);
3834 	if (!elim)
3835 		goto error;
3836 	compute_elimination_index(bmap1, elim, total);
3837 	for (i = 0; i < bmap2->n_eq; ++i) {
3838 		int reduced;
3839 		reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
3840 							bmap1, elim, total);
3841 		if (reduced && !isl_int_is_zero(v->block.data[0]) &&
3842 		    isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3843 			goto disjoint;
3844 	}
3845 	for (i = 0; i < bmap2->n_ineq; ++i) {
3846 		int reduced;
3847 		reduced = reduced_using_equalities(v->block.data,
3848 					bmap2->ineq[i], bmap1, elim, total);
3849 		if (reduced && isl_int_is_neg(v->block.data[0]) &&
3850 		    isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3851 			goto disjoint;
3852 	}
3853 	compute_elimination_index(bmap2, elim, total);
3854 	for (i = 0; i < bmap1->n_ineq; ++i) {
3855 		int reduced;
3856 		reduced = reduced_using_equalities(v->block.data,
3857 					bmap1->ineq[i], bmap2, elim, total);
3858 		if (reduced && isl_int_is_neg(v->block.data[0]) &&
3859 		    isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3860 			goto disjoint;
3861 	}
3862 	isl_vec_free(v);
3863 	free(elim);
3864 	return isl_bool_false;
3865 disjoint:
3866 	isl_vec_free(v);
3867 	free(elim);
3868 	return isl_bool_true;
3869 error:
3870 	isl_vec_free(v);
3871 	free(elim);
3872 	return isl_bool_error;
3873 }
3874 
isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set * bset1,__isl_keep isl_basic_set * bset2)3875 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
3876 	__isl_keep isl_basic_set *bset2)
3877 {
3878 	return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1),
3879 					      bset_to_bmap(bset2));
3880 }
3881 
3882 /* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
3883  */
all_pairs(__isl_keep isl_map * map1,__isl_keep isl_map * map2,isl_bool (* test)(__isl_keep isl_basic_map * bmap1,__isl_keep isl_basic_map * bmap2))3884 static isl_bool all_pairs(__isl_keep isl_map *map1, __isl_keep isl_map *map2,
3885 	isl_bool (*test)(__isl_keep isl_basic_map *bmap1,
3886 		__isl_keep isl_basic_map *bmap2))
3887 {
3888 	int i, j;
3889 
3890 	if (!map1 || !map2)
3891 		return isl_bool_error;
3892 
3893 	for (i = 0; i < map1->n; ++i) {
3894 		for (j = 0; j < map2->n; ++j) {
3895 			isl_bool d = test(map1->p[i], map2->p[j]);
3896 			if (d != isl_bool_true)
3897 				return d;
3898 		}
3899 	}
3900 
3901 	return isl_bool_true;
3902 }
3903 
3904 /* Are "map1" and "map2" obviously disjoint, based on information
3905  * that can be derived without looking at the individual basic maps?
3906  *
3907  * In particular, if one of them is empty or if they live in different spaces
3908  * (ignoring parameters), then they are clearly disjoint.
3909  */
isl_map_plain_is_disjoint_global(__isl_keep isl_map * map1,__isl_keep isl_map * map2)3910 static isl_bool isl_map_plain_is_disjoint_global(__isl_keep isl_map *map1,
3911 	__isl_keep isl_map *map2)
3912 {
3913 	isl_bool disjoint;
3914 	isl_bool match;
3915 
3916 	if (!map1 || !map2)
3917 		return isl_bool_error;
3918 
3919 	disjoint = isl_map_plain_is_empty(map1);
3920 	if (disjoint < 0 || disjoint)
3921 		return disjoint;
3922 
3923 	disjoint = isl_map_plain_is_empty(map2);
3924 	if (disjoint < 0 || disjoint)
3925 		return disjoint;
3926 
3927 	match = isl_map_tuple_is_equal(map1, isl_dim_in, map2, isl_dim_in);
3928 	if (match < 0 || !match)
3929 		return match < 0 ? isl_bool_error : isl_bool_true;
3930 
3931 	match = isl_map_tuple_is_equal(map1, isl_dim_out, map2, isl_dim_out);
3932 	if (match < 0 || !match)
3933 		return match < 0 ? isl_bool_error : isl_bool_true;
3934 
3935 	return isl_bool_false;
3936 }
3937 
3938 /* Are "map1" and "map2" obviously disjoint?
3939  *
3940  * If one of them is empty or if they live in different spaces (ignoring
3941  * parameters), then they are clearly disjoint.
3942  * This is checked by isl_map_plain_is_disjoint_global.
3943  *
3944  * If they have different parameters, then we skip any further tests.
3945  *
3946  * If they are obviously equal, but not obviously empty, then we will
3947  * not be able to detect if they are disjoint.
3948  *
3949  * Otherwise we check if each basic map in "map1" is obviously disjoint
3950  * from each basic map in "map2".
3951  */
isl_map_plain_is_disjoint(__isl_keep isl_map * map1,__isl_keep isl_map * map2)3952 isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
3953 	__isl_keep isl_map *map2)
3954 {
3955 	isl_bool disjoint;
3956 	isl_bool intersect;
3957 	isl_bool match;
3958 
3959 	disjoint = isl_map_plain_is_disjoint_global(map1, map2);
3960 	if (disjoint < 0 || disjoint)
3961 		return disjoint;
3962 
3963 	match = isl_map_has_equal_params(map1, map2);
3964 	if (match < 0 || !match)
3965 		return match < 0 ? isl_bool_error : isl_bool_false;
3966 
3967 	intersect = isl_map_plain_is_equal(map1, map2);
3968 	if (intersect < 0 || intersect)
3969 		return intersect < 0 ? isl_bool_error : isl_bool_false;
3970 
3971 	return all_pairs(map1, map2, &isl_basic_map_plain_is_disjoint);
3972 }
3973 
3974 /* Are "map1" and "map2" disjoint?
3975  * The parameters are assumed to have been aligned.
3976  *
3977  * In particular, check whether all pairs of basic maps are disjoint.
3978  */
isl_map_is_disjoint_aligned(__isl_keep isl_map * map1,__isl_keep isl_map * map2)3979 static isl_bool isl_map_is_disjoint_aligned(__isl_keep isl_map *map1,
3980 	__isl_keep isl_map *map2)
3981 {
3982 	return all_pairs(map1, map2, &isl_basic_map_is_disjoint);
3983 }
3984 
3985 /* Are "map1" and "map2" disjoint?
3986  *
3987  * They are disjoint if they are "obviously disjoint" or if one of them
3988  * is empty.  Otherwise, they are not disjoint if one of them is universal.
3989  * If the two inputs are (obviously) equal and not empty, then they are
3990  * not disjoint.
3991  * If none of these cases apply, then check if all pairs of basic maps
3992  * are disjoint after aligning the parameters.
3993  */
isl_map_is_disjoint(__isl_keep isl_map * map1,__isl_keep isl_map * map2)3994 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
3995 {
3996 	isl_bool disjoint;
3997 	isl_bool intersect;
3998 
3999 	disjoint = isl_map_plain_is_disjoint_global(map1, map2);
4000 	if (disjoint < 0 || disjoint)
4001 		return disjoint;
4002 
4003 	disjoint = isl_map_is_empty(map1);
4004 	if (disjoint < 0 || disjoint)
4005 		return disjoint;
4006 
4007 	disjoint = isl_map_is_empty(map2);
4008 	if (disjoint < 0 || disjoint)
4009 		return disjoint;
4010 
4011 	intersect = isl_map_plain_is_universe(map1);
4012 	if (intersect < 0 || intersect)
4013 		return isl_bool_not(intersect);
4014 
4015 	intersect = isl_map_plain_is_universe(map2);
4016 	if (intersect < 0 || intersect)
4017 		return isl_bool_not(intersect);
4018 
4019 	intersect = isl_map_plain_is_equal(map1, map2);
4020 	if (intersect < 0 || intersect)
4021 		return isl_bool_not(intersect);
4022 
4023 	return isl_map_align_params_map_map_and_test(map1, map2,
4024 						&isl_map_is_disjoint_aligned);
4025 }
4026 
4027 /* Are "bmap1" and "bmap2" disjoint?
4028  *
4029  * They are disjoint if they are "obviously disjoint" or if one of them
4030  * is empty.  Otherwise, they are not disjoint if one of them is universal.
4031  * If none of these cases apply, we compute the intersection and see if
4032  * the result is empty.
4033  */
isl_basic_map_is_disjoint(__isl_keep isl_basic_map * bmap1,__isl_keep isl_basic_map * bmap2)4034 isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
4035 	__isl_keep isl_basic_map *bmap2)
4036 {
4037 	isl_bool disjoint;
4038 	isl_bool intersect;
4039 	isl_basic_map *test;
4040 
4041 	disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
4042 	if (disjoint < 0 || disjoint)
4043 		return disjoint;
4044 
4045 	disjoint = isl_basic_map_is_empty(bmap1);
4046 	if (disjoint < 0 || disjoint)
4047 		return disjoint;
4048 
4049 	disjoint = isl_basic_map_is_empty(bmap2);
4050 	if (disjoint < 0 || disjoint)
4051 		return disjoint;
4052 
4053 	intersect = isl_basic_map_plain_is_universe(bmap1);
4054 	if (intersect < 0 || intersect)
4055 		return isl_bool_not(intersect);
4056 
4057 	intersect = isl_basic_map_plain_is_universe(bmap2);
4058 	if (intersect < 0 || intersect)
4059 		return isl_bool_not(intersect);
4060 
4061 	test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
4062 		isl_basic_map_copy(bmap2));
4063 	disjoint = isl_basic_map_is_empty(test);
4064 	isl_basic_map_free(test);
4065 
4066 	return disjoint;
4067 }
4068 
4069 /* Are "bset1" and "bset2" disjoint?
4070  */
isl_basic_set_is_disjoint(__isl_keep isl_basic_set * bset1,__isl_keep isl_basic_set * bset2)4071 isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
4072 	__isl_keep isl_basic_set *bset2)
4073 {
4074 	return isl_basic_map_is_disjoint(bset1, bset2);
4075 }
4076 
isl_set_plain_is_disjoint(__isl_keep isl_set * set1,__isl_keep isl_set * set2)4077 isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
4078 	__isl_keep isl_set *set2)
4079 {
4080 	return isl_map_plain_is_disjoint(set_to_map(set1), set_to_map(set2));
4081 }
4082 
4083 /* Are "set1" and "set2" disjoint?
4084  */
isl_set_is_disjoint(__isl_keep isl_set * set1,__isl_keep isl_set * set2)4085 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
4086 {
4087 	return isl_map_is_disjoint(set1, set2);
4088 }
4089 
4090 /* Is "v" equal to 0, 1 or -1?
4091  */
is_zero_or_one(isl_int v)4092 static int is_zero_or_one(isl_int v)
4093 {
4094 	return isl_int_is_zero(v) || isl_int_is_one(v) || isl_int_is_negone(v);
4095 }
4096 
4097 /* Are the "n" coefficients starting at "first" of inequality constraints
4098  * "i" and "j" of "bmap" opposite to each other?
4099  */
is_opposite_part(__isl_keep isl_basic_map * bmap,int i,int j,int first,int n)4100 static int is_opposite_part(__isl_keep isl_basic_map *bmap, int i, int j,
4101 	int first, int n)
4102 {
4103 	return isl_seq_is_neg(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
4104 }
4105 
4106 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4107  * apart from the constant term?
4108  */
is_opposite(__isl_keep isl_basic_map * bmap,int i,int j)4109 static isl_bool is_opposite(__isl_keep isl_basic_map *bmap, int i, int j)
4110 {
4111 	isl_size total;
4112 
4113 	total = isl_basic_map_dim(bmap, isl_dim_all);
4114 	if (total < 0)
4115 		return isl_bool_error;
4116 	return is_opposite_part(bmap, i, j, 1, total);
4117 }
4118 
4119 /* Check if we can combine a given div with lower bound l and upper
4120  * bound u with some other div and if so return that other div.
4121  * Otherwise, return a position beyond the integer divisions.
4122  * Return -1 on error.
4123  *
4124  * We first check that
4125  *	- the bounds are opposites of each other (except for the constant
4126  *	  term)
4127  *	- the bounds do not reference any other div
4128  *	- no div is defined in terms of this div
4129  *
4130  * Let m be the size of the range allowed on the div by the bounds.
4131  * That is, the bounds are of the form
4132  *
4133  *	e <= a <= e + m - 1
4134  *
4135  * with e some expression in the other variables.
4136  * We look for another div b such that no third div is defined in terms
4137  * of this second div b and such that in any constraint that contains
4138  * a (except for the given lower and upper bound), also contains b
4139  * with a coefficient that is m times that of b.
4140  * That is, all constraints (except for the lower and upper bound)
4141  * are of the form
4142  *
4143  *	e + f (a + m b) >= 0
4144  *
4145  * Furthermore, in the constraints that only contain b, the coefficient
4146  * of b should be equal to 1 or -1.
4147  * If so, we return b so that "a + m b" can be replaced by
4148  * a single div "c = a + m b".
4149  */
div_find_coalesce(__isl_keep isl_basic_map * bmap,int * pairs,unsigned div,unsigned l,unsigned u)4150 static int div_find_coalesce(__isl_keep isl_basic_map *bmap, int *pairs,
4151 	unsigned div, unsigned l, unsigned u)
4152 {
4153 	int i, j;
4154 	unsigned n_div;
4155 	isl_size v_div;
4156 	int coalesce;
4157 	isl_bool opp;
4158 
4159 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4160 	if (n_div <= 1)
4161 		return n_div;
4162 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4163 	if (v_div < 0)
4164 		return -1;
4165 	if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + v_div, div) != -1)
4166 		return n_div;
4167 	if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + v_div + div + 1,
4168 				   n_div - div - 1) != -1)
4169 		return n_div;
4170 	opp = is_opposite(bmap, l, u);
4171 	if (opp < 0 || !opp)
4172 		return opp < 0 ? -1 : n_div;
4173 
4174 	for (i = 0; i < n_div; ++i) {
4175 		if (isl_int_is_zero(bmap->div[i][0]))
4176 			continue;
4177 		if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div]))
4178 			return n_div;
4179 	}
4180 
4181 	isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
4182 	if (isl_int_is_neg(bmap->ineq[l][0])) {
4183 		isl_int_sub(bmap->ineq[l][0],
4184 			    bmap->ineq[l][0], bmap->ineq[u][0]);
4185 		bmap = isl_basic_map_copy(bmap);
4186 		bmap = isl_basic_map_set_to_empty(bmap);
4187 		isl_basic_map_free(bmap);
4188 		return n_div;
4189 	}
4190 	isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
4191 	coalesce = n_div;
4192 	for (i = 0; i < n_div; ++i) {
4193 		if (i == div)
4194 			continue;
4195 		if (!pairs[i])
4196 			continue;
4197 		for (j = 0; j < n_div; ++j) {
4198 			if (isl_int_is_zero(bmap->div[j][0]))
4199 				continue;
4200 			if (!isl_int_is_zero(bmap->div[j][1 + 1 + v_div + i]))
4201 				break;
4202 		}
4203 		if (j < n_div)
4204 			continue;
4205 		for (j = 0; j < bmap->n_ineq; ++j) {
4206 			int valid;
4207 			if (j == l || j == u)
4208 				continue;
4209 			if (isl_int_is_zero(bmap->ineq[j][1 + v_div + div])) {
4210 				if (is_zero_or_one(bmap->ineq[j][1 + v_div + i]))
4211 					continue;
4212 				break;
4213 			}
4214 			if (isl_int_is_zero(bmap->ineq[j][1 + v_div + i]))
4215 				break;
4216 			isl_int_mul(bmap->ineq[j][1 + v_div + div],
4217 				    bmap->ineq[j][1 + v_div + div],
4218 				    bmap->ineq[l][0]);
4219 			valid = isl_int_eq(bmap->ineq[j][1 + v_div + div],
4220 					   bmap->ineq[j][1 + v_div + i]);
4221 			isl_int_divexact(bmap->ineq[j][1 + v_div + div],
4222 					 bmap->ineq[j][1 + v_div + div],
4223 					 bmap->ineq[l][0]);
4224 			if (!valid)
4225 				break;
4226 		}
4227 		if (j < bmap->n_ineq)
4228 			continue;
4229 		coalesce = i;
4230 		break;
4231 	}
4232 	isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
4233 	isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
4234 	return coalesce;
4235 }
4236 
4237 /* Internal data structure used during the construction and/or evaluation of
4238  * an inequality that ensures that a pair of bounds always allows
4239  * for an integer value.
4240  *
4241  * "tab" is the tableau in which the inequality is evaluated.  It may
4242  * be NULL until it is actually needed.
4243  * "v" contains the inequality coefficients.
4244  * "g", "fl" and "fu" are temporary scalars used during the construction and
4245  * evaluation.
4246  */
4247 struct test_ineq_data {
4248 	struct isl_tab *tab;
4249 	isl_vec *v;
4250 	isl_int g;
4251 	isl_int fl;
4252 	isl_int fu;
4253 };
4254 
4255 /* Free all the memory allocated by the fields of "data".
4256  */
test_ineq_data_clear(struct test_ineq_data * data)4257 static void test_ineq_data_clear(struct test_ineq_data *data)
4258 {
4259 	isl_tab_free(data->tab);
4260 	isl_vec_free(data->v);
4261 	isl_int_clear(data->g);
4262 	isl_int_clear(data->fl);
4263 	isl_int_clear(data->fu);
4264 }
4265 
4266 /* Is the inequality stored in data->v satisfied by "bmap"?
4267  * That is, does it only attain non-negative values?
4268  * data->tab is a tableau corresponding to "bmap".
4269  */
test_ineq_is_satisfied(__isl_keep isl_basic_map * bmap,struct test_ineq_data * data)4270 static isl_bool test_ineq_is_satisfied(__isl_keep isl_basic_map *bmap,
4271 	struct test_ineq_data *data)
4272 {
4273 	isl_ctx *ctx;
4274 	enum isl_lp_result res;
4275 
4276 	ctx = isl_basic_map_get_ctx(bmap);
4277 	if (!data->tab)
4278 		data->tab = isl_tab_from_basic_map(bmap, 0);
4279 	res = isl_tab_min(data->tab, data->v->el, ctx->one, &data->g, NULL, 0);
4280 	if (res == isl_lp_error)
4281 		return isl_bool_error;
4282 	return res == isl_lp_ok && isl_int_is_nonneg(data->g);
4283 }
4284 
4285 /* Given a lower and an upper bound on div i, do they always allow
4286  * for an integer value of the given div?
4287  * Determine this property by constructing an inequality
4288  * such that the property is guaranteed when the inequality is nonnegative.
4289  * The lower bound is inequality l, while the upper bound is inequality u.
4290  * The constructed inequality is stored in data->v.
4291  *
4292  * Let the upper bound be
4293  *
4294  *	-n_u a + e_u >= 0
4295  *
4296  * and the lower bound
4297  *
4298  *	n_l a + e_l >= 0
4299  *
4300  * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
4301  * We have
4302  *
4303  *	- f_u e_l <= f_u f_l g a <= f_l e_u
4304  *
4305  * Since all variables are integer valued, this is equivalent to
4306  *
4307  *	- f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
4308  *
4309  * If this interval is at least f_u f_l g, then it contains at least
4310  * one integer value for a.
4311  * That is, the test constraint is
4312  *
4313  *	f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
4314  *
4315  * or
4316  *
4317  *	f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
4318  *
4319  * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
4320  * then the constraint can be scaled down by a factor g',
4321  * with the constant term replaced by
4322  * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
4323  * Note that the result of applying Fourier-Motzkin to this pair
4324  * of constraints is
4325  *
4326  *	f_l e_u + f_u e_l >= 0
4327  *
4328  * If the constant term of the scaled down version of this constraint,
4329  * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
4330  * term of the scaled down test constraint, then the test constraint
4331  * is known to hold and no explicit evaluation is required.
4332  * This is essentially the Omega test.
4333  *
4334  * If the test constraint consists of only a constant term, then
4335  * it is sufficient to look at the sign of this constant term.
4336  */
int_between_bounds(__isl_keep isl_basic_map * bmap,int i,int l,int u,struct test_ineq_data * data)4337 static isl_bool int_between_bounds(__isl_keep isl_basic_map *bmap, int i,
4338 	int l, int u, struct test_ineq_data *data)
4339 {
4340 	unsigned offset;
4341 	isl_size n_div;
4342 
4343 	offset = isl_basic_map_offset(bmap, isl_dim_div);
4344 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4345 	if (n_div < 0)
4346 		return isl_bool_error;
4347 
4348 	isl_int_gcd(data->g,
4349 		    bmap->ineq[l][offset + i], bmap->ineq[u][offset + i]);
4350 	isl_int_divexact(data->fl, bmap->ineq[l][offset + i], data->g);
4351 	isl_int_divexact(data->fu, bmap->ineq[u][offset + i], data->g);
4352 	isl_int_neg(data->fu, data->fu);
4353 	isl_seq_combine(data->v->el, data->fl, bmap->ineq[u],
4354 			data->fu, bmap->ineq[l], offset + n_div);
4355 	isl_int_mul(data->g, data->g, data->fl);
4356 	isl_int_mul(data->g, data->g, data->fu);
4357 	isl_int_sub(data->g, data->g, data->fl);
4358 	isl_int_sub(data->g, data->g, data->fu);
4359 	isl_int_add_ui(data->g, data->g, 1);
4360 	isl_int_sub(data->fl, data->v->el[0], data->g);
4361 
4362 	isl_seq_gcd(data->v->el + 1, offset - 1 + n_div, &data->g);
4363 	if (isl_int_is_zero(data->g))
4364 		return isl_int_is_nonneg(data->fl);
4365 	if (isl_int_is_one(data->g)) {
4366 		isl_int_set(data->v->el[0], data->fl);
4367 		return test_ineq_is_satisfied(bmap, data);
4368 	}
4369 	isl_int_fdiv_q(data->fl, data->fl, data->g);
4370 	isl_int_fdiv_q(data->v->el[0], data->v->el[0], data->g);
4371 	if (isl_int_eq(data->fl, data->v->el[0]))
4372 		return isl_bool_true;
4373 	isl_int_set(data->v->el[0], data->fl);
4374 	isl_seq_scale_down(data->v->el + 1, data->v->el + 1, data->g,
4375 			    offset - 1 + n_div);
4376 
4377 	return test_ineq_is_satisfied(bmap, data);
4378 }
4379 
4380 /* Remove more kinds of divs that are not strictly needed.
4381  * In particular, if all pairs of lower and upper bounds on a div
4382  * are such that they allow at least one integer value of the div,
4383  * then we can eliminate the div using Fourier-Motzkin without
4384  * introducing any spurious solutions.
4385  *
4386  * If at least one of the two constraints has a unit coefficient for the div,
4387  * then the presence of such a value is guaranteed so there is no need to check.
4388  * In particular, the value attained by the bound with unit coefficient
4389  * can serve as this intermediate value.
4390  */
drop_more_redundant_divs(__isl_take isl_basic_map * bmap,__isl_take int * pairs,int n)4391 static __isl_give isl_basic_map *drop_more_redundant_divs(
4392 	__isl_take isl_basic_map *bmap, __isl_take int *pairs, int n)
4393 {
4394 	isl_ctx *ctx;
4395 	struct test_ineq_data data = { NULL, NULL };
4396 	unsigned off;
4397 	isl_size n_div;
4398 	int remove = -1;
4399 
4400 	isl_int_init(data.g);
4401 	isl_int_init(data.fl);
4402 	isl_int_init(data.fu);
4403 
4404 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4405 	if (n_div < 0)
4406 		goto error;
4407 
4408 	ctx = isl_basic_map_get_ctx(bmap);
4409 	off = isl_basic_map_offset(bmap, isl_dim_div);
4410 	data.v = isl_vec_alloc(ctx, off + n_div);
4411 	if (!data.v)
4412 		goto error;
4413 
4414 	while (n > 0) {
4415 		int i, l, u;
4416 		int best = -1;
4417 		isl_bool has_int;
4418 
4419 		for (i = 0; i < n_div; ++i) {
4420 			if (!pairs[i])
4421 				continue;
4422 			if (best >= 0 && pairs[best] <= pairs[i])
4423 				continue;
4424 			best = i;
4425 		}
4426 
4427 		i = best;
4428 		for (l = 0; l < bmap->n_ineq; ++l) {
4429 			if (!isl_int_is_pos(bmap->ineq[l][off + i]))
4430 				continue;
4431 			if (isl_int_is_one(bmap->ineq[l][off + i]))
4432 				continue;
4433 			for (u = 0; u < bmap->n_ineq; ++u) {
4434 				if (!isl_int_is_neg(bmap->ineq[u][off + i]))
4435 					continue;
4436 				if (isl_int_is_negone(bmap->ineq[u][off + i]))
4437 					continue;
4438 				has_int = int_between_bounds(bmap, i, l, u,
4439 								&data);
4440 				if (has_int < 0)
4441 					goto error;
4442 				if (data.tab && data.tab->empty)
4443 					break;
4444 				if (!has_int)
4445 					break;
4446 			}
4447 			if (u < bmap->n_ineq)
4448 				break;
4449 		}
4450 		if (data.tab && data.tab->empty) {
4451 			bmap = isl_basic_map_set_to_empty(bmap);
4452 			break;
4453 		}
4454 		if (l == bmap->n_ineq) {
4455 			remove = i;
4456 			break;
4457 		}
4458 		pairs[i] = 0;
4459 		--n;
4460 	}
4461 
4462 	test_ineq_data_clear(&data);
4463 
4464 	free(pairs);
4465 
4466 	if (remove < 0)
4467 		return bmap;
4468 
4469 	bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
4470 	return isl_basic_map_drop_redundant_divs(bmap);
4471 error:
4472 	free(pairs);
4473 	isl_basic_map_free(bmap);
4474 	test_ineq_data_clear(&data);
4475 	return NULL;
4476 }
4477 
4478 /* Given a pair of divs div1 and div2 such that, except for the lower bound l
4479  * and the upper bound u, div1 always occurs together with div2 in the form
4480  * (div1 + m div2), where m is the constant range on the variable div1
4481  * allowed by l and u, replace the pair div1 and div2 by a single
4482  * div that is equal to div1 + m div2.
4483  *
4484  * The new div will appear in the location that contains div2.
4485  * We need to modify all constraints that contain
4486  * div2 = (div - div1) / m
4487  * The coefficient of div2 is known to be equal to 1 or -1.
4488  * (If a constraint does not contain div2, it will also not contain div1.)
4489  * If the constraint also contains div1, then we know they appear
4490  * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
4491  * i.e., the coefficient of div is f.
4492  *
4493  * Otherwise, we first need to introduce div1 into the constraint.
4494  * Let l be
4495  *
4496  *	div1 + f >=0
4497  *
4498  * and u
4499  *
4500  *	-div1 + f' >= 0
4501  *
4502  * A lower bound on div2
4503  *
4504  *	div2 + t >= 0
4505  *
4506  * can be replaced by
4507  *
4508  *	m div2 + div1 + m t + f >= 0
4509  *
4510  * An upper bound
4511  *
4512  *	-div2 + t >= 0
4513  *
4514  * can be replaced by
4515  *
4516  *	-(m div2 + div1) + m t + f' >= 0
4517  *
4518  * These constraint are those that we would obtain from eliminating
4519  * div1 using Fourier-Motzkin.
4520  *
4521  * After all constraints have been modified, we drop the lower and upper
4522  * bound and then drop div1.
4523  * Since the new div is only placed in the same location that used
4524  * to store div2, but otherwise has a different meaning, any possible
4525  * explicit representation of the original div2 is removed.
4526  */
coalesce_divs(__isl_take isl_basic_map * bmap,unsigned div1,unsigned div2,unsigned l,unsigned u)4527 static __isl_give isl_basic_map *coalesce_divs(__isl_take isl_basic_map *bmap,
4528 	unsigned div1, unsigned div2, unsigned l, unsigned u)
4529 {
4530 	isl_ctx *ctx;
4531 	isl_int m;
4532 	isl_size v_div;
4533 	unsigned total;
4534 	int i;
4535 
4536 	ctx = isl_basic_map_get_ctx(bmap);
4537 
4538 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4539 	if (v_div < 0)
4540 		return isl_basic_map_free(bmap);
4541 	total = 1 + v_div + bmap->n_div;
4542 
4543 	isl_int_init(m);
4544 	isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
4545 	isl_int_add_ui(m, m, 1);
4546 
4547 	for (i = 0; i < bmap->n_ineq; ++i) {
4548 		if (i == l || i == u)
4549 			continue;
4550 		if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div2]))
4551 			continue;
4552 		if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div1])) {
4553 			if (isl_int_is_pos(bmap->ineq[i][1 + v_div + div2]))
4554 				isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
4555 						ctx->one, bmap->ineq[l], total);
4556 			else
4557 				isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
4558 						ctx->one, bmap->ineq[u], total);
4559 		}
4560 		isl_int_set(bmap->ineq[i][1 + v_div + div2],
4561 			    bmap->ineq[i][1 + v_div + div1]);
4562 		isl_int_set_si(bmap->ineq[i][1 + v_div + div1], 0);
4563 	}
4564 
4565 	isl_int_clear(m);
4566 	if (l > u) {
4567 		isl_basic_map_drop_inequality(bmap, l);
4568 		isl_basic_map_drop_inequality(bmap, u);
4569 	} else {
4570 		isl_basic_map_drop_inequality(bmap, u);
4571 		isl_basic_map_drop_inequality(bmap, l);
4572 	}
4573 	bmap = isl_basic_map_mark_div_unknown(bmap, div2);
4574 	bmap = isl_basic_map_drop_div(bmap, div1);
4575 	return bmap;
4576 }
4577 
4578 /* First check if we can coalesce any pair of divs and
4579  * then continue with dropping more redundant divs.
4580  *
4581  * We loop over all pairs of lower and upper bounds on a div
4582  * with coefficient 1 and -1, respectively, check if there
4583  * is any other div "c" with which we can coalesce the div
4584  * and if so, perform the coalescing.
4585  */
coalesce_or_drop_more_redundant_divs(__isl_take isl_basic_map * bmap,int * pairs,int n)4586 static __isl_give isl_basic_map *coalesce_or_drop_more_redundant_divs(
4587 	__isl_take isl_basic_map *bmap, int *pairs, int n)
4588 {
4589 	int i, l, u;
4590 	isl_size v_div;
4591 	isl_size n_div;
4592 
4593 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4594 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4595 	if (v_div < 0 || n_div < 0)
4596 		return isl_basic_map_free(bmap);
4597 
4598 	for (i = 0; i < n_div; ++i) {
4599 		if (!pairs[i])
4600 			continue;
4601 		for (l = 0; l < bmap->n_ineq; ++l) {
4602 			if (!isl_int_is_one(bmap->ineq[l][1 + v_div + i]))
4603 				continue;
4604 			for (u = 0; u < bmap->n_ineq; ++u) {
4605 				int c;
4606 
4607 				if (!isl_int_is_negone(bmap->ineq[u][1+v_div+i]))
4608 					continue;
4609 				c = div_find_coalesce(bmap, pairs, i, l, u);
4610 				if (c < 0)
4611 					goto error;
4612 				if (c >= n_div)
4613 					continue;
4614 				free(pairs);
4615 				bmap = coalesce_divs(bmap, i, c, l, u);
4616 				return isl_basic_map_drop_redundant_divs(bmap);
4617 			}
4618 		}
4619 	}
4620 
4621 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
4622 		free(pairs);
4623 		return bmap;
4624 	}
4625 
4626 	return drop_more_redundant_divs(bmap, pairs, n);
4627 error:
4628 	free(pairs);
4629 	isl_basic_map_free(bmap);
4630 	return NULL;
4631 }
4632 
4633 /* Are the "n" coefficients starting at "first" of inequality constraints
4634  * "i" and "j" of "bmap" equal to each other?
4635  */
is_parallel_part(__isl_keep isl_basic_map * bmap,int i,int j,int first,int n)4636 static int is_parallel_part(__isl_keep isl_basic_map *bmap, int i, int j,
4637 	int first, int n)
4638 {
4639 	return isl_seq_eq(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
4640 }
4641 
4642 /* Are inequality constraints "i" and "j" of "bmap" equal to each other,
4643  * apart from the constant term and the coefficient at position "pos"?
4644  */
is_parallel_except(__isl_keep isl_basic_map * bmap,int i,int j,int pos)4645 static isl_bool is_parallel_except(__isl_keep isl_basic_map *bmap, int i, int j,
4646 	int pos)
4647 {
4648 	isl_size total;
4649 
4650 	total = isl_basic_map_dim(bmap, isl_dim_all);
4651 	if (total < 0)
4652 		return isl_bool_error;
4653 	return is_parallel_part(bmap, i, j, 1, pos - 1) &&
4654 		is_parallel_part(bmap, i, j, pos + 1, total - pos);
4655 }
4656 
4657 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4658  * apart from the constant term and the coefficient at position "pos"?
4659  */
is_opposite_except(__isl_keep isl_basic_map * bmap,int i,int j,int pos)4660 static isl_bool is_opposite_except(__isl_keep isl_basic_map *bmap, int i, int j,
4661 	int pos)
4662 {
4663 	isl_size total;
4664 
4665 	total = isl_basic_map_dim(bmap, isl_dim_all);
4666 	if (total < 0)
4667 		return isl_bool_error;
4668 	return is_opposite_part(bmap, i, j, 1, pos - 1) &&
4669 		is_opposite_part(bmap, i, j, pos + 1, total - pos);
4670 }
4671 
4672 /* Restart isl_basic_map_drop_redundant_divs after "bmap" has
4673  * been modified, simplying it if "simplify" is set.
4674  * Free the temporary data structure "pairs" that was associated
4675  * to the old version of "bmap".
4676  */
drop_redundant_divs_again(__isl_take isl_basic_map * bmap,__isl_take int * pairs,int simplify)4677 static __isl_give isl_basic_map *drop_redundant_divs_again(
4678 	__isl_take isl_basic_map *bmap, __isl_take int *pairs, int simplify)
4679 {
4680 	if (simplify)
4681 		bmap = isl_basic_map_simplify(bmap);
4682 	free(pairs);
4683 	return isl_basic_map_drop_redundant_divs(bmap);
4684 }
4685 
4686 /* Is "div" the single unknown existentially quantified variable
4687  * in inequality constraint "ineq" of "bmap"?
4688  * "div" is known to have a non-zero coefficient in "ineq".
4689  */
single_unknown(__isl_keep isl_basic_map * bmap,int ineq,int div)4690 static isl_bool single_unknown(__isl_keep isl_basic_map *bmap, int ineq,
4691 	int div)
4692 {
4693 	int i;
4694 	isl_size n_div;
4695 	unsigned o_div;
4696 	isl_bool known;
4697 
4698 	known = isl_basic_map_div_is_known(bmap, div);
4699 	if (known < 0 || known)
4700 		return isl_bool_not(known);
4701 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4702 	if (n_div < 0)
4703 		return isl_bool_error;
4704 	if (n_div == 1)
4705 		return isl_bool_true;
4706 	o_div = isl_basic_map_offset(bmap, isl_dim_div);
4707 	for (i = 0; i < n_div; ++i) {
4708 		isl_bool known;
4709 
4710 		if (i == div)
4711 			continue;
4712 		if (isl_int_is_zero(bmap->ineq[ineq][o_div + i]))
4713 			continue;
4714 		known = isl_basic_map_div_is_known(bmap, i);
4715 		if (known < 0 || !known)
4716 			return known;
4717 	}
4718 
4719 	return isl_bool_true;
4720 }
4721 
4722 /* Does integer division "div" have coefficient 1 in inequality constraint
4723  * "ineq" of "map"?
4724  */
has_coef_one(__isl_keep isl_basic_map * bmap,int div,int ineq)4725 static isl_bool has_coef_one(__isl_keep isl_basic_map *bmap, int div, int ineq)
4726 {
4727 	unsigned o_div;
4728 
4729 	o_div = isl_basic_map_offset(bmap, isl_dim_div);
4730 	if (isl_int_is_one(bmap->ineq[ineq][o_div + div]))
4731 		return isl_bool_true;
4732 
4733 	return isl_bool_false;
4734 }
4735 
4736 /* Turn inequality constraint "ineq" of "bmap" into an equality and
4737  * then try and drop redundant divs again,
4738  * freeing the temporary data structure "pairs" that was associated
4739  * to the old version of "bmap".
4740  */
set_eq_and_try_again(__isl_take isl_basic_map * bmap,int ineq,__isl_take int * pairs)4741 static __isl_give isl_basic_map *set_eq_and_try_again(
4742 	__isl_take isl_basic_map *bmap, int ineq, __isl_take int *pairs)
4743 {
4744 	bmap = isl_basic_map_cow(bmap);
4745 	isl_basic_map_inequality_to_equality(bmap, ineq);
4746 	return drop_redundant_divs_again(bmap, pairs, 1);
4747 }
4748 
4749 /* Drop the integer division at position "div", along with the two
4750  * inequality constraints "ineq1" and "ineq2" in which it appears
4751  * from "bmap" and then try and drop redundant divs again,
4752  * freeing the temporary data structure "pairs" that was associated
4753  * to the old version of "bmap".
4754  */
drop_div_and_try_again(__isl_take isl_basic_map * bmap,int div,int ineq1,int ineq2,__isl_take int * pairs)4755 static __isl_give isl_basic_map *drop_div_and_try_again(
4756 	__isl_take isl_basic_map *bmap, int div, int ineq1, int ineq2,
4757 	__isl_take int *pairs)
4758 {
4759 	if (ineq1 > ineq2) {
4760 		isl_basic_map_drop_inequality(bmap, ineq1);
4761 		isl_basic_map_drop_inequality(bmap, ineq2);
4762 	} else {
4763 		isl_basic_map_drop_inequality(bmap, ineq2);
4764 		isl_basic_map_drop_inequality(bmap, ineq1);
4765 	}
4766 	bmap = isl_basic_map_drop_div(bmap, div);
4767 	return drop_redundant_divs_again(bmap, pairs, 0);
4768 }
4769 
4770 /* Given two inequality constraints
4771  *
4772  *	f(x) + n d + c >= 0,		(ineq)
4773  *
4774  * with d the variable at position "pos", and
4775  *
4776  *	f(x) + c0 >= 0,			(lower)
4777  *
4778  * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
4779  * determined by the first constraint.
4780  * That is, store
4781  *
4782  *	ceil((c0 - c)/n)
4783  *
4784  * in *l.
4785  */
lower_bound_from_parallel(__isl_keep isl_basic_map * bmap,int ineq,int lower,int pos,isl_int * l)4786 static void lower_bound_from_parallel(__isl_keep isl_basic_map *bmap,
4787 	int ineq, int lower, int pos, isl_int *l)
4788 {
4789 	isl_int_neg(*l, bmap->ineq[ineq][0]);
4790 	isl_int_add(*l, *l, bmap->ineq[lower][0]);
4791 	isl_int_cdiv_q(*l, *l, bmap->ineq[ineq][pos]);
4792 }
4793 
4794 /* Given two inequality constraints
4795  *
4796  *	f(x) + n d + c >= 0,		(ineq)
4797  *
4798  * with d the variable at position "pos", and
4799  *
4800  *	-f(x) - c0 >= 0,		(upper)
4801  *
4802  * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
4803  * determined by the first constraint.
4804  * That is, store
4805  *
4806  *	ceil((-c1 - c)/n)
4807  *
4808  * in *u.
4809  */
lower_bound_from_opposite(__isl_keep isl_basic_map * bmap,int ineq,int upper,int pos,isl_int * u)4810 static void lower_bound_from_opposite(__isl_keep isl_basic_map *bmap,
4811 	int ineq, int upper, int pos, isl_int *u)
4812 {
4813 	isl_int_neg(*u, bmap->ineq[ineq][0]);
4814 	isl_int_sub(*u, *u, bmap->ineq[upper][0]);
4815 	isl_int_cdiv_q(*u, *u, bmap->ineq[ineq][pos]);
4816 }
4817 
4818 /* Given a lower bound constraint "ineq" on "div" in "bmap",
4819  * does the corresponding lower bound have a fixed value in "bmap"?
4820  *
4821  * In particular, "ineq" is of the form
4822  *
4823  *	f(x) + n d + c >= 0
4824  *
4825  * with n > 0, c the constant term and
4826  * d the existentially quantified variable "div".
4827  * That is, the lower bound is
4828  *
4829  *	ceil((-f(x) - c)/n)
4830  *
4831  * Look for a pair of constraints
4832  *
4833  *	f(x) + c0 >= 0
4834  *	-f(x) + c1 >= 0
4835  *
4836  * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
4837  * That is, check that
4838  *
4839  *	ceil((-c1 - c)/n) = ceil((c0 - c)/n)
4840  *
4841  * If so, return the index of inequality f(x) + c0 >= 0.
4842  * Otherwise, return bmap->n_ineq.
4843  * Return -1 on error.
4844  */
lower_bound_is_cst(__isl_keep isl_basic_map * bmap,int div,int ineq)4845 static int lower_bound_is_cst(__isl_keep isl_basic_map *bmap, int div, int ineq)
4846 {
4847 	int i;
4848 	int lower = -1, upper = -1;
4849 	unsigned o_div;
4850 	isl_int l, u;
4851 	int equal;
4852 
4853 	o_div = isl_basic_map_offset(bmap, isl_dim_div);
4854 	for (i = 0; i < bmap->n_ineq && (lower < 0 || upper < 0); ++i) {
4855 		isl_bool par, opp;
4856 
4857 		if (i == ineq)
4858 			continue;
4859 		if (!isl_int_is_zero(bmap->ineq[i][o_div + div]))
4860 			continue;
4861 		par = isl_bool_false;
4862 		if (lower < 0)
4863 			par = is_parallel_except(bmap, ineq, i, o_div + div);
4864 		if (par < 0)
4865 			return -1;
4866 		if (par) {
4867 			lower = i;
4868 			continue;
4869 		}
4870 		opp = isl_bool_false;
4871 		if (upper < 0)
4872 			opp = is_opposite_except(bmap, ineq, i, o_div + div);
4873 		if (opp < 0)
4874 			return -1;
4875 		if (opp)
4876 			upper = i;
4877 	}
4878 
4879 	if (lower < 0 || upper < 0)
4880 		return bmap->n_ineq;
4881 
4882 	isl_int_init(l);
4883 	isl_int_init(u);
4884 
4885 	lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &l);
4886 	lower_bound_from_opposite(bmap, ineq, upper, o_div + div, &u);
4887 
4888 	equal = isl_int_eq(l, u);
4889 
4890 	isl_int_clear(l);
4891 	isl_int_clear(u);
4892 
4893 	return equal ? lower : bmap->n_ineq;
4894 }
4895 
4896 /* Given a lower bound constraint "ineq" on the existentially quantified
4897  * variable "div", such that the corresponding lower bound has
4898  * a fixed value in "bmap", assign this fixed value to the variable and
4899  * then try and drop redundant divs again,
4900  * freeing the temporary data structure "pairs" that was associated
4901  * to the old version of "bmap".
4902  * "lower" determines the constant value for the lower bound.
4903  *
4904  * In particular, "ineq" is of the form
4905  *
4906  *	f(x) + n d + c >= 0,
4907  *
4908  * while "lower" is of the form
4909  *
4910  *	f(x) + c0 >= 0
4911  *
4912  * The lower bound is ceil((-f(x) - c)/n) and its constant value
4913  * is ceil((c0 - c)/n).
4914  */
fix_cst_lower(__isl_take isl_basic_map * bmap,int div,int ineq,int lower,int * pairs)4915 static __isl_give isl_basic_map *fix_cst_lower(__isl_take isl_basic_map *bmap,
4916 	int div, int ineq, int lower, int *pairs)
4917 {
4918 	isl_int c;
4919 	unsigned o_div;
4920 
4921 	isl_int_init(c);
4922 
4923 	o_div = isl_basic_map_offset(bmap, isl_dim_div);
4924 	lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &c);
4925 	bmap = isl_basic_map_fix(bmap, isl_dim_div, div, c);
4926 	free(pairs);
4927 
4928 	isl_int_clear(c);
4929 
4930 	return isl_basic_map_drop_redundant_divs(bmap);
4931 }
4932 
4933 /* Do any of the integer divisions of "bmap" involve integer division "div"?
4934  *
4935  * The integer division "div" could only ever appear in any later
4936  * integer division (with an explicit representation).
4937  */
any_div_involves_div(__isl_keep isl_basic_map * bmap,int div)4938 static isl_bool any_div_involves_div(__isl_keep isl_basic_map *bmap, int div)
4939 {
4940 	int i;
4941 	isl_size v_div, n_div;
4942 
4943 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4944 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4945 	if (v_div < 0 || n_div < 0)
4946 		return isl_bool_error;
4947 
4948 	for (i = div + 1; i < n_div; ++i) {
4949 		isl_bool unknown;
4950 
4951 		unknown = isl_basic_map_div_is_marked_unknown(bmap, i);
4952 		if (unknown < 0)
4953 			return isl_bool_error;
4954 		if (unknown)
4955 			continue;
4956 		if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div]))
4957 			return isl_bool_true;
4958 	}
4959 
4960 	return isl_bool_false;
4961 }
4962 
4963 /* Remove divs that are not strictly needed based on the inequality
4964  * constraints.
4965  * In particular, if a div only occurs positively (or negatively)
4966  * in constraints, then it can simply be dropped.
4967  * Also, if a div occurs in only two constraints and if moreover
4968  * those two constraints are opposite to each other, except for the constant
4969  * term and if the sum of the constant terms is such that for any value
4970  * of the other values, there is always at least one integer value of the
4971  * div, i.e., if one plus this sum is greater than or equal to
4972  * the (absolute value) of the coefficient of the div in the constraints,
4973  * then we can also simply drop the div.
4974  *
4975  * If an existentially quantified variable does not have an explicit
4976  * representation, appears in only a single lower bound that does not
4977  * involve any other such existentially quantified variables and appears
4978  * in this lower bound with coefficient 1,
4979  * then fix the variable to the value of the lower bound.  That is,
4980  * turn the inequality into an equality.
4981  * If for any value of the other variables, there is any value
4982  * for the existentially quantified variable satisfying the constraints,
4983  * then this lower bound also satisfies the constraints.
4984  * It is therefore safe to pick this lower bound.
4985  *
4986  * The same reasoning holds even if the coefficient is not one.
4987  * However, fixing the variable to the value of the lower bound may
4988  * in general introduce an extra integer division, in which case
4989  * it may be better to pick another value.
4990  * If this integer division has a known constant value, then plugging
4991  * in this constant value removes the existentially quantified variable
4992  * completely.  In particular, if the lower bound is of the form
4993  * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
4994  * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
4995  * then the existentially quantified variable can be assigned this
4996  * shared value.
4997  *
4998  * We skip divs that appear in equalities or in the definition of other divs.
4999  * Divs that appear in the definition of other divs usually occur in at least
5000  * 4 constraints, but the constraints may have been simplified.
5001  *
5002  * If any divs are left after these simple checks then we move on
5003  * to more complicated cases in drop_more_redundant_divs.
5004  */
isl_basic_map_drop_redundant_divs_ineq(__isl_take isl_basic_map * bmap)5005 static __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs_ineq(
5006 	__isl_take isl_basic_map *bmap)
5007 {
5008 	int i, j;
5009 	isl_size off;
5010 	int *pairs = NULL;
5011 	int n = 0;
5012 	isl_size n_ineq;
5013 
5014 	if (!bmap)
5015 		goto error;
5016 	if (bmap->n_div == 0)
5017 		return bmap;
5018 
5019 	off = isl_basic_map_var_offset(bmap, isl_dim_div);
5020 	if (off < 0)
5021 		return isl_basic_map_free(bmap);
5022 	pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
5023 	if (!pairs)
5024 		goto error;
5025 
5026 	n_ineq = isl_basic_map_n_inequality(bmap);
5027 	if (n_ineq < 0)
5028 		goto error;
5029 	for (i = 0; i < bmap->n_div; ++i) {
5030 		int pos, neg;
5031 		int last_pos, last_neg;
5032 		int redundant;
5033 		int defined;
5034 		isl_bool involves, opp, set_div;
5035 
5036 		defined = !isl_int_is_zero(bmap->div[i][0]);
5037 		involves = any_div_involves_div(bmap, i);
5038 		if (involves < 0)
5039 			goto error;
5040 		if (involves)
5041 			continue;
5042 		for (j = 0; j < bmap->n_eq; ++j)
5043 			if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
5044 				break;
5045 		if (j < bmap->n_eq)
5046 			continue;
5047 		++n;
5048 		pos = neg = 0;
5049 		for (j = 0; j < bmap->n_ineq; ++j) {
5050 			if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
5051 				last_pos = j;
5052 				++pos;
5053 			}
5054 			if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
5055 				last_neg = j;
5056 				++neg;
5057 			}
5058 		}
5059 		pairs[i] = pos * neg;
5060 		if (pairs[i] == 0) {
5061 			for (j = bmap->n_ineq - 1; j >= 0; --j)
5062 				if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
5063 					isl_basic_map_drop_inequality(bmap, j);
5064 			bmap = isl_basic_map_drop_div(bmap, i);
5065 			return drop_redundant_divs_again(bmap, pairs, 0);
5066 		}
5067 		if (pairs[i] != 1)
5068 			opp = isl_bool_false;
5069 		else
5070 			opp = is_opposite(bmap, last_pos, last_neg);
5071 		if (opp < 0)
5072 			goto error;
5073 		if (!opp) {
5074 			int lower;
5075 			isl_bool single, one;
5076 
5077 			if (pos != 1)
5078 				continue;
5079 			single = single_unknown(bmap, last_pos, i);
5080 			if (single < 0)
5081 				goto error;
5082 			if (!single)
5083 				continue;
5084 			one = has_coef_one(bmap, i, last_pos);
5085 			if (one < 0)
5086 				goto error;
5087 			if (one)
5088 				return set_eq_and_try_again(bmap, last_pos,
5089 							    pairs);
5090 			lower = lower_bound_is_cst(bmap, i, last_pos);
5091 			if (lower < 0)
5092 				goto error;
5093 			if (lower < n_ineq)
5094 				return fix_cst_lower(bmap, i, last_pos, lower,
5095 						pairs);
5096 			continue;
5097 		}
5098 
5099 		isl_int_add(bmap->ineq[last_pos][0],
5100 			    bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
5101 		isl_int_add_ui(bmap->ineq[last_pos][0],
5102 			       bmap->ineq[last_pos][0], 1);
5103 		redundant = isl_int_ge(bmap->ineq[last_pos][0],
5104 				bmap->ineq[last_pos][1+off+i]);
5105 		isl_int_sub_ui(bmap->ineq[last_pos][0],
5106 			       bmap->ineq[last_pos][0], 1);
5107 		isl_int_sub(bmap->ineq[last_pos][0],
5108 			    bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
5109 		if (redundant)
5110 			return drop_div_and_try_again(bmap, i,
5111 						    last_pos, last_neg, pairs);
5112 		if (defined)
5113 			set_div = isl_bool_false;
5114 		else
5115 			set_div = ok_to_set_div_from_bound(bmap, i, last_pos);
5116 		if (set_div < 0)
5117 			return isl_basic_map_free(bmap);
5118 		if (set_div) {
5119 			bmap = set_div_from_lower_bound(bmap, i, last_pos);
5120 			return drop_redundant_divs_again(bmap, pairs, 1);
5121 		}
5122 		pairs[i] = 0;
5123 		--n;
5124 	}
5125 
5126 	if (n > 0)
5127 		return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
5128 
5129 	free(pairs);
5130 	return bmap;
5131 error:
5132 	free(pairs);
5133 	isl_basic_map_free(bmap);
5134 	return NULL;
5135 }
5136 
5137 /* Consider the coefficients at "c" as a row vector and replace
5138  * them with their product with "T".  "T" is assumed to be a square matrix.
5139  */
preimage(isl_int * c,__isl_keep isl_mat * T)5140 static isl_stat preimage(isl_int *c, __isl_keep isl_mat *T)
5141 {
5142 	isl_size n;
5143 	isl_ctx *ctx;
5144 	isl_vec *v;
5145 
5146 	n = isl_mat_rows(T);
5147 	if (n < 0)
5148 		return isl_stat_error;
5149 	if (isl_seq_first_non_zero(c, n) == -1)
5150 		return isl_stat_ok;
5151 	ctx = isl_mat_get_ctx(T);
5152 	v = isl_vec_alloc(ctx, n);
5153 	if (!v)
5154 		return isl_stat_error;
5155 	isl_seq_swp_or_cpy(v->el, c, n);
5156 	v = isl_vec_mat_product(v, isl_mat_copy(T));
5157 	if (!v)
5158 		return isl_stat_error;
5159 	isl_seq_swp_or_cpy(c, v->el, n);
5160 	isl_vec_free(v);
5161 
5162 	return isl_stat_ok;
5163 }
5164 
5165 /* Plug in T for the variables in "bmap" starting at "pos".
5166  * T is a linear unimodular matrix, i.e., without constant term.
5167  */
isl_basic_map_preimage_vars(__isl_take isl_basic_map * bmap,unsigned pos,__isl_take isl_mat * T)5168 static __isl_give isl_basic_map *isl_basic_map_preimage_vars(
5169 	__isl_take isl_basic_map *bmap, unsigned pos, __isl_take isl_mat *T)
5170 {
5171 	int i;
5172 	isl_size n_row, n_col;
5173 
5174 	bmap = isl_basic_map_cow(bmap);
5175 	n_row = isl_mat_rows(T);
5176 	n_col = isl_mat_cols(T);
5177 	if (!bmap || n_row < 0 || n_col < 0)
5178 		goto error;
5179 
5180 	if (n_col != n_row)
5181 		isl_die(isl_mat_get_ctx(T), isl_error_invalid,
5182 			"expecting square matrix", goto error);
5183 
5184 	if (isl_basic_map_check_range(bmap, isl_dim_all, pos, n_col) < 0)
5185 		goto error;
5186 
5187 	for (i = 0; i < bmap->n_eq; ++i)
5188 		if (preimage(bmap->eq[i] + 1 + pos, T) < 0)
5189 			goto error;
5190 	for (i = 0; i < bmap->n_ineq; ++i)
5191 		if (preimage(bmap->ineq[i] + 1 + pos, T) < 0)
5192 			goto error;
5193 	for (i = 0; i < bmap->n_div; ++i) {
5194 		if (isl_basic_map_div_is_marked_unknown(bmap, i))
5195 			continue;
5196 		if (preimage(bmap->div[i] + 1 + 1 + pos, T) < 0)
5197 			goto error;
5198 	}
5199 
5200 	isl_mat_free(T);
5201 	return bmap;
5202 error:
5203 	isl_basic_map_free(bmap);
5204 	isl_mat_free(T);
5205 	return NULL;
5206 }
5207 
5208 /* Remove divs that are not strictly needed.
5209  *
5210  * First look for an equality constraint involving two or more
5211  * existentially quantified variables without an explicit
5212  * representation.  Replace the combination that appears
5213  * in the equality constraint by a single existentially quantified
5214  * variable such that the equality can be used to derive
5215  * an explicit representation for the variable.
5216  * If there are no more such equality constraints, then continue
5217  * with isl_basic_map_drop_redundant_divs_ineq.
5218  *
5219  * In particular, if the equality constraint is of the form
5220  *
5221  *	f(x) + \sum_i c_i a_i = 0
5222  *
5223  * with a_i existentially quantified variable without explicit
5224  * representation, then apply a transformation on the existentially
5225  * quantified variables to turn the constraint into
5226  *
5227  *	f(x) + g a_1' = 0
5228  *
5229  * with g the gcd of the c_i.
5230  * In order to easily identify which existentially quantified variables
5231  * have a complete explicit representation, i.e., without being defined
5232  * in terms of other existentially quantified variables without
5233  * an explicit representation, the existentially quantified variables
5234  * are first sorted.
5235  *
5236  * The variable transformation is computed by extending the row
5237  * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
5238  *
5239  *	[a_1']   [c_1/g ... c_n/g]   [ a_1 ]
5240  *	[a_2']                       [ a_2 ]
5241  *	 ...   =         U             ....
5242  *	[a_n']            	     [ a_n ]
5243  *
5244  * with [c_1/g ... c_n/g] representing the first row of U.
5245  * The inverse of U is then plugged into the original constraints.
5246  * The call to isl_basic_map_simplify makes sure the explicit
5247  * representation for a_1' is extracted from the equality constraint.
5248  */
isl_basic_map_drop_redundant_divs(__isl_take isl_basic_map * bmap)5249 __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs(
5250 	__isl_take isl_basic_map *bmap)
5251 {
5252 	int first;
5253 	int i;
5254 	unsigned o_div;
5255 	isl_size n_div;
5256 	int l;
5257 	isl_ctx *ctx;
5258 	isl_mat *T;
5259 
5260 	if (!bmap)
5261 		return NULL;
5262 	if (isl_basic_map_divs_known(bmap))
5263 		return isl_basic_map_drop_redundant_divs_ineq(bmap);
5264 	if (bmap->n_eq == 0)
5265 		return isl_basic_map_drop_redundant_divs_ineq(bmap);
5266 	bmap = isl_basic_map_sort_divs(bmap);
5267 	if (!bmap)
5268 		return NULL;
5269 
5270 	first = isl_basic_map_first_unknown_div(bmap);
5271 	if (first < 0)
5272 		return isl_basic_map_free(bmap);
5273 
5274 	o_div = isl_basic_map_offset(bmap, isl_dim_div);
5275 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
5276 	if (n_div < 0)
5277 		return isl_basic_map_free(bmap);
5278 
5279 	for (i = 0; i < bmap->n_eq; ++i) {
5280 		l = isl_seq_first_non_zero(bmap->eq[i] + o_div + first,
5281 					    n_div - (first));
5282 		if (l < 0)
5283 			continue;
5284 		l += first;
5285 		if (isl_seq_first_non_zero(bmap->eq[i] + o_div + l + 1,
5286 					    n_div - (l + 1)) == -1)
5287 			continue;
5288 		break;
5289 	}
5290 	if (i >= bmap->n_eq)
5291 		return isl_basic_map_drop_redundant_divs_ineq(bmap);
5292 
5293 	ctx = isl_basic_map_get_ctx(bmap);
5294 	T = isl_mat_alloc(ctx, n_div - l, n_div - l);
5295 	if (!T)
5296 		return isl_basic_map_free(bmap);
5297 	isl_seq_cpy(T->row[0], bmap->eq[i] + o_div + l, n_div - l);
5298 	T = isl_mat_normalize_row(T, 0);
5299 	T = isl_mat_unimodular_complete(T, 1);
5300 	T = isl_mat_right_inverse(T);
5301 
5302 	for (i = l; i < n_div; ++i)
5303 		bmap = isl_basic_map_mark_div_unknown(bmap, i);
5304 	bmap = isl_basic_map_preimage_vars(bmap, o_div - 1 + l, T);
5305 	bmap = isl_basic_map_simplify(bmap);
5306 
5307 	return isl_basic_map_drop_redundant_divs(bmap);
5308 }
5309 
5310 /* Does "bmap" satisfy any equality that involves more than 2 variables
5311  * and/or has coefficients different from -1 and 1?
5312  */
has_multiple_var_equality(__isl_keep isl_basic_map * bmap)5313 static isl_bool has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
5314 {
5315 	int i;
5316 	isl_size total;
5317 
5318 	total = isl_basic_map_dim(bmap, isl_dim_all);
5319 	if (total < 0)
5320 		return isl_bool_error;
5321 
5322 	for (i = 0; i < bmap->n_eq; ++i) {
5323 		int j, k;
5324 
5325 		j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
5326 		if (j < 0)
5327 			continue;
5328 		if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
5329 		    !isl_int_is_negone(bmap->eq[i][1 + j]))
5330 			return isl_bool_true;
5331 
5332 		j += 1;
5333 		k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
5334 		if (k < 0)
5335 			continue;
5336 		j += k;
5337 		if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
5338 		    !isl_int_is_negone(bmap->eq[i][1 + j]))
5339 			return isl_bool_true;
5340 
5341 		j += 1;
5342 		k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
5343 		if (k >= 0)
5344 			return isl_bool_true;
5345 	}
5346 
5347 	return isl_bool_false;
5348 }
5349 
5350 /* Remove any common factor g from the constraint coefficients in "v".
5351  * The constant term is stored in the first position and is replaced
5352  * by floor(c/g).  If any common factor is removed and if this results
5353  * in a tightening of the constraint, then set *tightened.
5354  */
normalize_constraint(__isl_take isl_vec * v,int * tightened)5355 static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
5356 	int *tightened)
5357 {
5358 	isl_ctx *ctx;
5359 
5360 	if (!v)
5361 		return NULL;
5362 	ctx = isl_vec_get_ctx(v);
5363 	isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
5364 	if (isl_int_is_zero(ctx->normalize_gcd))
5365 		return v;
5366 	if (isl_int_is_one(ctx->normalize_gcd))
5367 		return v;
5368 	v = isl_vec_cow(v);
5369 	if (!v)
5370 		return NULL;
5371 	if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
5372 		*tightened = 1;
5373 	isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
5374 	isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
5375 				v->size - 1);
5376 	return v;
5377 }
5378 
5379 /* If "bmap" is an integer set that satisfies any equality involving
5380  * more than 2 variables and/or has coefficients different from -1 and 1,
5381  * then use variable compression to reduce the coefficients by removing
5382  * any (hidden) common factor.
5383  * In particular, apply the variable compression to each constraint,
5384  * factor out any common factor in the non-constant coefficients and
5385  * then apply the inverse of the compression.
5386  * At the end, we mark the basic map as having reduced constants.
5387  * If this flag is still set on the next invocation of this function,
5388  * then we skip the computation.
5389  *
5390  * Removing a common factor may result in a tightening of some of
5391  * the constraints.  If this happens, then we may end up with two
5392  * opposite inequalities that can be replaced by an equality.
5393  * We therefore call isl_basic_map_detect_inequality_pairs,
5394  * which checks for such pairs of inequalities as well as eliminate_divs_eq
5395  * and isl_basic_map_gauss if such a pair was found.
5396  *
5397  * Tightening may also result in some other constraints becoming
5398  * (rationally) redundant with respect to the tightened constraint
5399  * (in combination with other constraints).  The basic map may
5400  * therefore no longer be assumed to have no redundant constraints.
5401  *
5402  * Note that this function may leave the result in an inconsistent state.
5403  * In particular, the constraints may not be gaussed.
5404  * Unfortunately, isl_map_coalesce actually depends on this inconsistent state
5405  * for some of the test cases to pass successfully.
5406  * Any potential modification of the representation is therefore only
5407  * performed on a single copy of the basic map.
5408  */
isl_basic_map_reduce_coefficients(__isl_take isl_basic_map * bmap)5409 __isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
5410 	__isl_take isl_basic_map *bmap)
5411 {
5412 	isl_size total;
5413 	isl_bool multi;
5414 	isl_ctx *ctx;
5415 	isl_vec *v;
5416 	isl_mat *eq, *T, *T2;
5417 	int i;
5418 	int tightened;
5419 
5420 	if (!bmap)
5421 		return NULL;
5422 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
5423 		return bmap;
5424 	if (isl_basic_map_is_rational(bmap))
5425 		return bmap;
5426 	if (bmap->n_eq == 0)
5427 		return bmap;
5428 	multi = has_multiple_var_equality(bmap);
5429 	if (multi < 0)
5430 		return isl_basic_map_free(bmap);
5431 	if (!multi)
5432 		return bmap;
5433 
5434 	total = isl_basic_map_dim(bmap, isl_dim_all);
5435 	if (total < 0)
5436 		return isl_basic_map_free(bmap);
5437 	ctx = isl_basic_map_get_ctx(bmap);
5438 	v = isl_vec_alloc(ctx, 1 + total);
5439 	if (!v)
5440 		return isl_basic_map_free(bmap);
5441 
5442 	eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
5443 	T = isl_mat_variable_compression(eq, &T2);
5444 	if (!T || !T2)
5445 		goto error;
5446 	if (T->n_col == 0) {
5447 		isl_mat_free(T);
5448 		isl_mat_free(T2);
5449 		isl_vec_free(v);
5450 		return isl_basic_map_set_to_empty(bmap);
5451 	}
5452 
5453 	bmap = isl_basic_map_cow(bmap);
5454 	if (!bmap)
5455 		goto error;
5456 
5457 	tightened = 0;
5458 	for (i = 0; i < bmap->n_ineq; ++i) {
5459 		isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
5460 		v = isl_vec_mat_product(v, isl_mat_copy(T));
5461 		v = normalize_constraint(v, &tightened);
5462 		v = isl_vec_mat_product(v, isl_mat_copy(T2));
5463 		if (!v)
5464 			goto error;
5465 		isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
5466 	}
5467 
5468 	isl_mat_free(T);
5469 	isl_mat_free(T2);
5470 	isl_vec_free(v);
5471 
5472 	ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
5473 
5474 	if (tightened) {
5475 		int progress = 0;
5476 
5477 		ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
5478 		bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
5479 		if (progress) {
5480 			bmap = eliminate_divs_eq(bmap, &progress);
5481 			bmap = isl_basic_map_gauss(bmap, NULL);
5482 		}
5483 	}
5484 
5485 	return bmap;
5486 error:
5487 	isl_mat_free(T);
5488 	isl_mat_free(T2);
5489 	isl_vec_free(v);
5490 	return isl_basic_map_free(bmap);
5491 }
5492 
5493 /* Shift the integer division at position "div" of "bmap"
5494  * by "shift" times the variable at position "pos".
5495  * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
5496  * corresponds to the constant term.
5497  *
5498  * That is, if the integer division has the form
5499  *
5500  *	floor(f(x)/d)
5501  *
5502  * then replace it by
5503  *
5504  *	floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
5505  */
isl_basic_map_shift_div(__isl_take isl_basic_map * bmap,int div,int pos,isl_int shift)5506 __isl_give isl_basic_map *isl_basic_map_shift_div(
5507 	__isl_take isl_basic_map *bmap, int div, int pos, isl_int shift)
5508 {
5509 	int i;
5510 	isl_size total, n_div;
5511 
5512 	if (isl_int_is_zero(shift))
5513 		return bmap;
5514 	total = isl_basic_map_dim(bmap, isl_dim_all);
5515 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
5516 	total -= n_div;
5517 	if (total < 0 || n_div < 0)
5518 		return isl_basic_map_free(bmap);
5519 
5520 	isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]);
5521 
5522 	for (i = 0; i < bmap->n_eq; ++i) {
5523 		if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
5524 			continue;
5525 		isl_int_submul(bmap->eq[i][pos],
5526 				shift, bmap->eq[i][1 + total + div]);
5527 	}
5528 	for (i = 0; i < bmap->n_ineq; ++i) {
5529 		if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
5530 			continue;
5531 		isl_int_submul(bmap->ineq[i][pos],
5532 				shift, bmap->ineq[i][1 + total + div]);
5533 	}
5534 	for (i = 0; i < bmap->n_div; ++i) {
5535 		if (isl_int_is_zero(bmap->div[i][0]))
5536 			continue;
5537 		if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
5538 			continue;
5539 		isl_int_submul(bmap->div[i][1 + pos],
5540 				shift, bmap->div[i][1 + 1 + total + div]);
5541 	}
5542 
5543 	return bmap;
5544 }
5545