xref: /netbsd-src/external/mit/isl/dist/isl_polynomial.c (revision 5971e316fdea024efff6be8f03536623db06833e)
1 /*
2  * Copyright 2010      INRIA Saclay
3  *
4  * Use of this software is governed by the MIT license
5  *
6  * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7  * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8  * 91893 Orsay, France
9  */
10 
11 #include <stdlib.h>
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
15 #include <isl_lp_private.h>
16 #include <isl_seq.h>
17 #include <isl_union_map_private.h>
18 #include <isl_constraint_private.h>
19 #include <isl_polynomial_private.h>
20 #include <isl_point_private.h>
21 #include <isl_space_private.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
24 #include <isl_range.h>
25 #include <isl_local.h>
26 #include <isl_local_space_private.h>
27 #include <isl_aff_private.h>
28 #include <isl_val_private.h>
29 #include <isl_config.h>
30 
31 #undef EL_BASE
32 #define EL_BASE qpolynomial
33 
34 #include <isl_list_templ.c>
35 
36 #undef EL_BASE
37 #define EL_BASE pw_qpolynomial
38 
39 #include <isl_list_templ.c>
40 
pos(__isl_keep isl_space * space,enum isl_dim_type type)41 static unsigned pos(__isl_keep isl_space *space, enum isl_dim_type type)
42 {
43 	switch (type) {
44 	case isl_dim_param:	return 0;
45 	case isl_dim_in:	return space->nparam;
46 	case isl_dim_out:	return space->nparam + space->n_in;
47 	default:		return 0;
48 	}
49 }
50 
isl_poly_is_cst(__isl_keep isl_poly * poly)51 isl_bool isl_poly_is_cst(__isl_keep isl_poly *poly)
52 {
53 	if (!poly)
54 		return isl_bool_error;
55 
56 	return isl_bool_ok(poly->var < 0);
57 }
58 
isl_poly_as_cst(__isl_keep isl_poly * poly)59 __isl_keep isl_poly_cst *isl_poly_as_cst(__isl_keep isl_poly *poly)
60 {
61 	if (!poly)
62 		return NULL;
63 
64 	isl_assert(poly->ctx, poly->var < 0, return NULL);
65 
66 	return (isl_poly_cst *) poly;
67 }
68 
isl_poly_as_rec(__isl_keep isl_poly * poly)69 __isl_keep isl_poly_rec *isl_poly_as_rec(__isl_keep isl_poly *poly)
70 {
71 	if (!poly)
72 		return NULL;
73 
74 	isl_assert(poly->ctx, poly->var >= 0, return NULL);
75 
76 	return (isl_poly_rec *) poly;
77 }
78 
79 /* Compare two polynomials.
80  *
81  * Return -1 if "poly1" is "smaller" than "poly2", 1 if "poly1" is "greater"
82  * than "poly2" and 0 if they are equal.
83  */
isl_poly_plain_cmp(__isl_keep isl_poly * poly1,__isl_keep isl_poly * poly2)84 static int isl_poly_plain_cmp(__isl_keep isl_poly *poly1,
85 	__isl_keep isl_poly *poly2)
86 {
87 	int i;
88 	isl_bool is_cst1;
89 	isl_poly_rec *rec1, *rec2;
90 
91 	if (poly1 == poly2)
92 		return 0;
93 	is_cst1 = isl_poly_is_cst(poly1);
94 	if (is_cst1 < 0)
95 		return -1;
96 	if (!poly2)
97 		return 1;
98 	if (poly1->var != poly2->var)
99 		return poly1->var - poly2->var;
100 
101 	if (is_cst1) {
102 		isl_poly_cst *cst1, *cst2;
103 		int cmp;
104 
105 		cst1 = isl_poly_as_cst(poly1);
106 		cst2 = isl_poly_as_cst(poly2);
107 		if (!cst1 || !cst2)
108 			return 0;
109 		cmp = isl_int_cmp(cst1->n, cst2->n);
110 		if (cmp != 0)
111 			return cmp;
112 		return isl_int_cmp(cst1->d, cst2->d);
113 	}
114 
115 	rec1 = isl_poly_as_rec(poly1);
116 	rec2 = isl_poly_as_rec(poly2);
117 	if (!rec1 || !rec2)
118 		return 0;
119 
120 	if (rec1->n != rec2->n)
121 		return rec1->n - rec2->n;
122 
123 	for (i = 0; i < rec1->n; ++i) {
124 		int cmp = isl_poly_plain_cmp(rec1->p[i], rec2->p[i]);
125 		if (cmp != 0)
126 			return cmp;
127 	}
128 
129 	return 0;
130 }
131 
isl_poly_is_equal(__isl_keep isl_poly * poly1,__isl_keep isl_poly * poly2)132 isl_bool isl_poly_is_equal(__isl_keep isl_poly *poly1,
133 	__isl_keep isl_poly *poly2)
134 {
135 	int i;
136 	isl_bool is_cst1;
137 	isl_poly_rec *rec1, *rec2;
138 
139 	is_cst1 = isl_poly_is_cst(poly1);
140 	if (is_cst1 < 0 || !poly2)
141 		return isl_bool_error;
142 	if (poly1 == poly2)
143 		return isl_bool_true;
144 	if (poly1->var != poly2->var)
145 		return isl_bool_false;
146 	if (is_cst1) {
147 		isl_poly_cst *cst1, *cst2;
148 		int r;
149 		cst1 = isl_poly_as_cst(poly1);
150 		cst2 = isl_poly_as_cst(poly2);
151 		if (!cst1 || !cst2)
152 			return isl_bool_error;
153 		r = isl_int_eq(cst1->n, cst2->n) &&
154 		    isl_int_eq(cst1->d, cst2->d);
155 		return isl_bool_ok(r);
156 	}
157 
158 	rec1 = isl_poly_as_rec(poly1);
159 	rec2 = isl_poly_as_rec(poly2);
160 	if (!rec1 || !rec2)
161 		return isl_bool_error;
162 
163 	if (rec1->n != rec2->n)
164 		return isl_bool_false;
165 
166 	for (i = 0; i < rec1->n; ++i) {
167 		isl_bool eq = isl_poly_is_equal(rec1->p[i], rec2->p[i]);
168 		if (eq < 0 || !eq)
169 			return eq;
170 	}
171 
172 	return isl_bool_true;
173 }
174 
isl_poly_is_zero(__isl_keep isl_poly * poly)175 isl_bool isl_poly_is_zero(__isl_keep isl_poly *poly)
176 {
177 	isl_bool is_cst;
178 	isl_poly_cst *cst;
179 
180 	is_cst = isl_poly_is_cst(poly);
181 	if (is_cst < 0 || !is_cst)
182 		return is_cst;
183 
184 	cst = isl_poly_as_cst(poly);
185 	if (!cst)
186 		return isl_bool_error;
187 
188 	return isl_bool_ok(isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d));
189 }
190 
isl_poly_sgn(__isl_keep isl_poly * poly)191 int isl_poly_sgn(__isl_keep isl_poly *poly)
192 {
193 	isl_bool is_cst;
194 	isl_poly_cst *cst;
195 
196 	is_cst = isl_poly_is_cst(poly);
197 	if (is_cst < 0 || !is_cst)
198 		return 0;
199 
200 	cst = isl_poly_as_cst(poly);
201 	if (!cst)
202 		return 0;
203 
204 	return isl_int_sgn(cst->n);
205 }
206 
isl_poly_is_nan(__isl_keep isl_poly * poly)207 isl_bool isl_poly_is_nan(__isl_keep isl_poly *poly)
208 {
209 	isl_bool is_cst;
210 	isl_poly_cst *cst;
211 
212 	is_cst = isl_poly_is_cst(poly);
213 	if (is_cst < 0 || !is_cst)
214 		return is_cst;
215 
216 	cst = isl_poly_as_cst(poly);
217 	if (!cst)
218 		return isl_bool_error;
219 
220 	return isl_bool_ok(isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d));
221 }
222 
isl_poly_is_infty(__isl_keep isl_poly * poly)223 isl_bool isl_poly_is_infty(__isl_keep isl_poly *poly)
224 {
225 	isl_bool is_cst;
226 	isl_poly_cst *cst;
227 
228 	is_cst = isl_poly_is_cst(poly);
229 	if (is_cst < 0 || !is_cst)
230 		return is_cst;
231 
232 	cst = isl_poly_as_cst(poly);
233 	if (!cst)
234 		return isl_bool_error;
235 
236 	return isl_bool_ok(isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d));
237 }
238 
isl_poly_is_neginfty(__isl_keep isl_poly * poly)239 isl_bool isl_poly_is_neginfty(__isl_keep isl_poly *poly)
240 {
241 	isl_bool is_cst;
242 	isl_poly_cst *cst;
243 
244 	is_cst = isl_poly_is_cst(poly);
245 	if (is_cst < 0 || !is_cst)
246 		return is_cst;
247 
248 	cst = isl_poly_as_cst(poly);
249 	if (!cst)
250 		return isl_bool_error;
251 
252 	return isl_bool_ok(isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d));
253 }
254 
isl_poly_is_one(__isl_keep isl_poly * poly)255 isl_bool isl_poly_is_one(__isl_keep isl_poly *poly)
256 {
257 	isl_bool is_cst;
258 	isl_poly_cst *cst;
259 	int r;
260 
261 	is_cst = isl_poly_is_cst(poly);
262 	if (is_cst < 0 || !is_cst)
263 		return is_cst;
264 
265 	cst = isl_poly_as_cst(poly);
266 	if (!cst)
267 		return isl_bool_error;
268 
269 	r = isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
270 	return isl_bool_ok(r);
271 }
272 
isl_poly_is_negone(__isl_keep isl_poly * poly)273 isl_bool isl_poly_is_negone(__isl_keep isl_poly *poly)
274 {
275 	isl_bool is_cst;
276 	isl_poly_cst *cst;
277 
278 	is_cst = isl_poly_is_cst(poly);
279 	if (is_cst < 0 || !is_cst)
280 		return is_cst;
281 
282 	cst = isl_poly_as_cst(poly);
283 	if (!cst)
284 		return isl_bool_error;
285 
286 	return isl_bool_ok(isl_int_is_negone(cst->n) && isl_int_is_one(cst->d));
287 }
288 
isl_poly_cst_alloc(isl_ctx * ctx)289 __isl_give isl_poly_cst *isl_poly_cst_alloc(isl_ctx *ctx)
290 {
291 	isl_poly_cst *cst;
292 
293 	cst = isl_alloc_type(ctx, struct isl_poly_cst);
294 	if (!cst)
295 		return NULL;
296 
297 	cst->poly.ref = 1;
298 	cst->poly.ctx = ctx;
299 	isl_ctx_ref(ctx);
300 	cst->poly.var = -1;
301 
302 	isl_int_init(cst->n);
303 	isl_int_init(cst->d);
304 
305 	return cst;
306 }
307 
isl_poly_zero(isl_ctx * ctx)308 __isl_give isl_poly *isl_poly_zero(isl_ctx *ctx)
309 {
310 	isl_poly_cst *cst;
311 
312 	cst = isl_poly_cst_alloc(ctx);
313 	if (!cst)
314 		return NULL;
315 
316 	isl_int_set_si(cst->n, 0);
317 	isl_int_set_si(cst->d, 1);
318 
319 	return &cst->poly;
320 }
321 
isl_poly_one(isl_ctx * ctx)322 __isl_give isl_poly *isl_poly_one(isl_ctx *ctx)
323 {
324 	isl_poly_cst *cst;
325 
326 	cst = isl_poly_cst_alloc(ctx);
327 	if (!cst)
328 		return NULL;
329 
330 	isl_int_set_si(cst->n, 1);
331 	isl_int_set_si(cst->d, 1);
332 
333 	return &cst->poly;
334 }
335 
isl_poly_infty(isl_ctx * ctx)336 __isl_give isl_poly *isl_poly_infty(isl_ctx *ctx)
337 {
338 	isl_poly_cst *cst;
339 
340 	cst = isl_poly_cst_alloc(ctx);
341 	if (!cst)
342 		return NULL;
343 
344 	isl_int_set_si(cst->n, 1);
345 	isl_int_set_si(cst->d, 0);
346 
347 	return &cst->poly;
348 }
349 
isl_poly_neginfty(isl_ctx * ctx)350 __isl_give isl_poly *isl_poly_neginfty(isl_ctx *ctx)
351 {
352 	isl_poly_cst *cst;
353 
354 	cst = isl_poly_cst_alloc(ctx);
355 	if (!cst)
356 		return NULL;
357 
358 	isl_int_set_si(cst->n, -1);
359 	isl_int_set_si(cst->d, 0);
360 
361 	return &cst->poly;
362 }
363 
isl_poly_nan(isl_ctx * ctx)364 __isl_give isl_poly *isl_poly_nan(isl_ctx *ctx)
365 {
366 	isl_poly_cst *cst;
367 
368 	cst = isl_poly_cst_alloc(ctx);
369 	if (!cst)
370 		return NULL;
371 
372 	isl_int_set_si(cst->n, 0);
373 	isl_int_set_si(cst->d, 0);
374 
375 	return &cst->poly;
376 }
377 
isl_poly_rat_cst(isl_ctx * ctx,isl_int n,isl_int d)378 __isl_give isl_poly *isl_poly_rat_cst(isl_ctx *ctx, isl_int n, isl_int d)
379 {
380 	isl_poly_cst *cst;
381 
382 	cst = isl_poly_cst_alloc(ctx);
383 	if (!cst)
384 		return NULL;
385 
386 	isl_int_set(cst->n, n);
387 	isl_int_set(cst->d, d);
388 
389 	return &cst->poly;
390 }
391 
isl_poly_alloc_rec(isl_ctx * ctx,int var,int size)392 __isl_give isl_poly_rec *isl_poly_alloc_rec(isl_ctx *ctx, int var, int size)
393 {
394 	isl_poly_rec *rec;
395 
396 	isl_assert(ctx, var >= 0, return NULL);
397 	isl_assert(ctx, size >= 0, return NULL);
398 	rec = isl_calloc(ctx, struct isl_poly_rec,
399 			sizeof(struct isl_poly_rec) +
400 			size * sizeof(struct isl_poly *));
401 	if (!rec)
402 		return NULL;
403 
404 	rec->poly.ref = 1;
405 	rec->poly.ctx = ctx;
406 	isl_ctx_ref(ctx);
407 	rec->poly.var = var;
408 
409 	rec->n = 0;
410 	rec->size = size;
411 
412 	return rec;
413 }
414 
415 /* Return the domain space of "qp".
416  * This may be either a copy or the space itself
417  * if there is only one reference to "qp".
418  * This allows the space to be modified inplace
419  * if both the quasi-polynomial and its domain space
420  * have only a single reference.
421  * The caller is not allowed to modify "qp" between this call and
422  * a subsequent call to isl_qpolynomial_restore_domain_space.
423  * The only exception is that isl_qpolynomial_free can be called instead.
424  */
isl_qpolynomial_take_domain_space(__isl_keep isl_qpolynomial * qp)425 static __isl_give isl_space *isl_qpolynomial_take_domain_space(
426 	__isl_keep isl_qpolynomial *qp)
427 {
428 	isl_space *space;
429 
430 	if (!qp)
431 		return NULL;
432 	if (qp->ref != 1)
433 		return isl_qpolynomial_get_domain_space(qp);
434 	space = qp->dim;
435 	qp->dim = NULL;
436 	return space;
437 }
438 
439 /* Set the domain space of "qp" to "space",
440  * where the domain space of "qp" may be missing
441  * due to a preceding call to isl_qpolynomial_take_domain_space.
442  * However, in this case, "qp" only has a single reference and
443  * then the call to isl_qpolynomial_cow has no effect.
444  */
isl_qpolynomial_restore_domain_space(__isl_take isl_qpolynomial * qp,__isl_take isl_space * space)445 static __isl_give isl_qpolynomial *isl_qpolynomial_restore_domain_space(
446 	__isl_take isl_qpolynomial *qp, __isl_take isl_space *space)
447 {
448 	if (!qp || !space)
449 		goto error;
450 
451 	if (qp->dim == space) {
452 		isl_space_free(space);
453 		return qp;
454 	}
455 
456 	qp = isl_qpolynomial_cow(qp);
457 	if (!qp)
458 		goto error;
459 	isl_space_free(qp->dim);
460 	qp->dim = space;
461 
462 	return qp;
463 error:
464 	isl_qpolynomial_free(qp);
465 	isl_space_free(space);
466 	return NULL;
467 }
468 
isl_qpolynomial_reset_domain_space(__isl_take isl_qpolynomial * qp,__isl_take isl_space * space)469 __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space(
470 	__isl_take isl_qpolynomial *qp, __isl_take isl_space *space)
471 {
472 	return isl_qpolynomial_restore_domain_space(qp, space);
473 }
474 
475 /* Reset the space of "qp".  This function is called from isl_pw_templ.c
476  * and doesn't know if the space of an element object is represented
477  * directly or through its domain.  It therefore passes along both.
478  */
isl_qpolynomial_reset_space_and_domain(__isl_take isl_qpolynomial * qp,__isl_take isl_space * space,__isl_take isl_space * domain)479 __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain(
480 	__isl_take isl_qpolynomial *qp, __isl_take isl_space *space,
481 	__isl_take isl_space *domain)
482 {
483 	isl_space_free(space);
484 	return isl_qpolynomial_reset_domain_space(qp, domain);
485 }
486 
isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial * qp)487 isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
488 {
489 	return qp ? qp->dim->ctx : NULL;
490 }
491 
492 /* Return the domain space of "qp".
493  */
isl_qpolynomial_peek_domain_space(__isl_keep isl_qpolynomial * qp)494 static __isl_keep isl_space *isl_qpolynomial_peek_domain_space(
495 	__isl_keep isl_qpolynomial *qp)
496 {
497 	return qp ? qp->dim : NULL;
498 }
499 
500 /* Return a copy of the domain space of "qp".
501  */
isl_qpolynomial_get_domain_space(__isl_keep isl_qpolynomial * qp)502 __isl_give isl_space *isl_qpolynomial_get_domain_space(
503 	__isl_keep isl_qpolynomial *qp)
504 {
505 	return isl_space_copy(isl_qpolynomial_peek_domain_space(qp));
506 }
507 
508 #undef TYPE
509 #define TYPE		isl_qpolynomial
510 #undef PEEK_SPACE
511 #define PEEK_SPACE	peek_domain_space
512 
513 static
514 #include "isl_type_has_equal_space_bin_templ.c"
515 static
516 #include "isl_type_check_equal_space_templ.c"
517 
518 #undef PEEK_SPACE
519 
520 /* Return a copy of the local variables of "qp".
521  */
isl_qpolynomial_get_local(__isl_keep isl_qpolynomial * qp)522 __isl_keep isl_local *isl_qpolynomial_get_local(
523 	__isl_keep isl_qpolynomial *qp)
524 {
525 	return qp ? isl_local_copy(qp->div) : NULL;
526 }
527 
528 /* Return the local variables of "qp".
529  * This may be either a copy or the local variables themselves
530  * if there is only one reference to "qp".
531  * This allows the local variables to be modified in-place
532  * if both the quasi-polynomial and its local variables
533  * have only a single reference.
534  * The caller is not allowed to modify "qp" between this call and
535  * the subsequent call to isl_qpolynomial_restore_local.
536  * The only exception is that isl_qpolynomial_free can be called instead.
537  */
isl_qpolynomial_take_local(__isl_keep isl_qpolynomial * qp)538 static __isl_give isl_local *isl_qpolynomial_take_local(
539 	__isl_keep isl_qpolynomial *qp)
540 {
541 	isl_local *local;
542 
543 	if (!qp)
544 		return NULL;
545 	if (qp->ref != 1)
546 		return isl_qpolynomial_get_local(qp);
547 	local = qp->div;
548 	qp->div = NULL;
549 	return local;
550 }
551 
552 /* Set the local variables of "qp" to "local",
553  * where the local variables of "qp" may be missing
554  * due to a preceding call to isl_qpolynomial_take_local.
555  * However, in this case, "qp" only has a single reference and
556  * then the call to isl_qpolynomial_cow has no effect.
557  */
isl_qpolynomial_restore_local(__isl_keep isl_qpolynomial * qp,__isl_take isl_local * local)558 static __isl_give isl_qpolynomial *isl_qpolynomial_restore_local(
559 	__isl_keep isl_qpolynomial *qp, __isl_take isl_local *local)
560 {
561 	if (!qp || !local)
562 		goto error;
563 
564 	if (qp->div == local) {
565 		isl_local_free(local);
566 		return qp;
567 	}
568 
569 	qp = isl_qpolynomial_cow(qp);
570 	if (!qp)
571 		goto error;
572 	isl_local_free(qp->div);
573 	qp->div = local;
574 
575 	return qp;
576 error:
577 	isl_qpolynomial_free(qp);
578 	isl_local_free(local);
579 	return NULL;
580 }
581 
582 /* Return a copy of the local space on which "qp" is defined.
583  */
isl_qpolynomial_get_domain_local_space(__isl_keep isl_qpolynomial * qp)584 static __isl_give isl_local_space *isl_qpolynomial_get_domain_local_space(
585 	__isl_keep isl_qpolynomial *qp)
586 {
587 	isl_space *space;
588 	isl_local *local;
589 
590 	if (!qp)
591 		return NULL;
592 
593 	space = isl_qpolynomial_get_domain_space(qp);
594 	local = isl_qpolynomial_get_local(qp);
595 	return isl_local_space_alloc_div(space, local);
596 }
597 
isl_qpolynomial_get_space(__isl_keep isl_qpolynomial * qp)598 __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp)
599 {
600 	isl_space *space;
601 	if (!qp)
602 		return NULL;
603 	space = isl_space_copy(qp->dim);
604 	space = isl_space_from_domain(space);
605 	space = isl_space_add_dims(space, isl_dim_out, 1);
606 	return space;
607 }
608 
609 /* Return the number of variables of the given type in the domain of "qp".
610  */
isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type)611 isl_size isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial *qp,
612 	enum isl_dim_type type)
613 {
614 	isl_space *space;
615 	isl_size dim;
616 
617 	space = isl_qpolynomial_peek_domain_space(qp);
618 
619 	if (!space)
620 		return isl_size_error;
621 	if (type == isl_dim_div)
622 		return qp->div->n_row;
623 	dim = isl_space_dim(space, type);
624 	if (dim < 0)
625 		return isl_size_error;
626 	if (type == isl_dim_all) {
627 		isl_size n_div;
628 
629 		n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
630 		if (n_div < 0)
631 			return isl_size_error;
632 		dim += n_div;
633 	}
634 	return dim;
635 }
636 
637 /* Given the type of a dimension of an isl_qpolynomial,
638  * return the type of the corresponding dimension in its domain.
639  * This function is only called for "type" equal to isl_dim_in or
640  * isl_dim_param.
641  */
domain_type(enum isl_dim_type type)642 static enum isl_dim_type domain_type(enum isl_dim_type type)
643 {
644 	return type == isl_dim_in ? isl_dim_set : type;
645 }
646 
647 /* Externally, an isl_qpolynomial has a map space, but internally, the
648  * ls field corresponds to the domain of that space.
649  */
isl_qpolynomial_dim(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type)650 isl_size isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
651 	enum isl_dim_type type)
652 {
653 	if (!qp)
654 		return isl_size_error;
655 	if (type == isl_dim_out)
656 		return 1;
657 	type = domain_type(type);
658 	return isl_qpolynomial_domain_dim(qp, type);
659 }
660 
661 /* Return the offset of the first variable of type "type" within
662  * the variables of the domain of "qp".
663  */
isl_qpolynomial_domain_var_offset(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type)664 static isl_size isl_qpolynomial_domain_var_offset(
665 	__isl_keep isl_qpolynomial *qp, enum isl_dim_type type)
666 {
667 	isl_space *space;
668 
669 	space = isl_qpolynomial_peek_domain_space(qp);
670 
671 	switch (type) {
672 	case isl_dim_param:
673 	case isl_dim_set:	return isl_space_offset(space, type);
674 	case isl_dim_div:	return isl_space_dim(space, isl_dim_all);
675 	case isl_dim_cst:
676 	default:
677 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
678 			"invalid dimension type", return isl_size_error);
679 	}
680 }
681 
682 /* Return the offset of the first coefficient of type "type" in
683  * the domain of "qp".
684  */
isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type)685 unsigned isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial *qp,
686 	enum isl_dim_type type)
687 {
688 	switch (type) {
689 	case isl_dim_cst:
690 		return 0;
691 	case isl_dim_param:
692 	case isl_dim_set:
693 	case isl_dim_div:
694 		return 1 + isl_qpolynomial_domain_var_offset(qp, type);
695 	default:
696 		return 0;
697 	}
698 }
699 
isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial * qp)700 isl_bool isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
701 {
702 	return qp ? isl_poly_is_zero(qp->poly) : isl_bool_error;
703 }
704 
isl_qpolynomial_is_one(__isl_keep isl_qpolynomial * qp)705 isl_bool isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
706 {
707 	return qp ? isl_poly_is_one(qp->poly) : isl_bool_error;
708 }
709 
isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial * qp)710 isl_bool isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
711 {
712 	return qp ? isl_poly_is_nan(qp->poly) : isl_bool_error;
713 }
714 
isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial * qp)715 isl_bool isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
716 {
717 	return qp ? isl_poly_is_infty(qp->poly) : isl_bool_error;
718 }
719 
isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial * qp)720 isl_bool isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
721 {
722 	return qp ? isl_poly_is_neginfty(qp->poly) : isl_bool_error;
723 }
724 
isl_qpolynomial_sgn(__isl_keep isl_qpolynomial * qp)725 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
726 {
727 	return qp ? isl_poly_sgn(qp->poly) : 0;
728 }
729 
poly_free_cst(__isl_take isl_poly_cst * cst)730 static void poly_free_cst(__isl_take isl_poly_cst *cst)
731 {
732 	isl_int_clear(cst->n);
733 	isl_int_clear(cst->d);
734 }
735 
poly_free_rec(__isl_take isl_poly_rec * rec)736 static void poly_free_rec(__isl_take isl_poly_rec *rec)
737 {
738 	int i;
739 
740 	for (i = 0; i < rec->n; ++i)
741 		isl_poly_free(rec->p[i]);
742 }
743 
isl_poly_copy(__isl_keep isl_poly * poly)744 __isl_give isl_poly *isl_poly_copy(__isl_keep isl_poly *poly)
745 {
746 	if (!poly)
747 		return NULL;
748 
749 	poly->ref++;
750 	return poly;
751 }
752 
isl_poly_dup_cst(__isl_keep isl_poly * poly)753 __isl_give isl_poly *isl_poly_dup_cst(__isl_keep isl_poly *poly)
754 {
755 	isl_poly_cst *cst;
756 	isl_poly_cst *dup;
757 
758 	cst = isl_poly_as_cst(poly);
759 	if (!cst)
760 		return NULL;
761 
762 	dup = isl_poly_as_cst(isl_poly_zero(poly->ctx));
763 	if (!dup)
764 		return NULL;
765 	isl_int_set(dup->n, cst->n);
766 	isl_int_set(dup->d, cst->d);
767 
768 	return &dup->poly;
769 }
770 
isl_poly_dup_rec(__isl_keep isl_poly * poly)771 __isl_give isl_poly *isl_poly_dup_rec(__isl_keep isl_poly *poly)
772 {
773 	int i;
774 	isl_poly_rec *rec;
775 	isl_poly_rec *dup;
776 
777 	rec = isl_poly_as_rec(poly);
778 	if (!rec)
779 		return NULL;
780 
781 	dup = isl_poly_alloc_rec(poly->ctx, poly->var, rec->n);
782 	if (!dup)
783 		return NULL;
784 
785 	for (i = 0; i < rec->n; ++i) {
786 		dup->p[i] = isl_poly_copy(rec->p[i]);
787 		if (!dup->p[i])
788 			goto error;
789 		dup->n++;
790 	}
791 
792 	return &dup->poly;
793 error:
794 	isl_poly_free(&dup->poly);
795 	return NULL;
796 }
797 
isl_poly_dup(__isl_keep isl_poly * poly)798 __isl_give isl_poly *isl_poly_dup(__isl_keep isl_poly *poly)
799 {
800 	isl_bool is_cst;
801 
802 	is_cst = isl_poly_is_cst(poly);
803 	if (is_cst < 0)
804 		return NULL;
805 	if (is_cst)
806 		return isl_poly_dup_cst(poly);
807 	else
808 		return isl_poly_dup_rec(poly);
809 }
810 
isl_poly_cow(__isl_take isl_poly * poly)811 __isl_give isl_poly *isl_poly_cow(__isl_take isl_poly *poly)
812 {
813 	if (!poly)
814 		return NULL;
815 
816 	if (poly->ref == 1)
817 		return poly;
818 	poly->ref--;
819 	return isl_poly_dup(poly);
820 }
821 
isl_poly_free(__isl_take isl_poly * poly)822 __isl_null isl_poly *isl_poly_free(__isl_take isl_poly *poly)
823 {
824 	if (!poly)
825 		return NULL;
826 
827 	if (--poly->ref > 0)
828 		return NULL;
829 
830 	if (poly->var < 0)
831 		poly_free_cst((isl_poly_cst *) poly);
832 	else
833 		poly_free_rec((isl_poly_rec *) poly);
834 
835 	isl_ctx_deref(poly->ctx);
836 	free(poly);
837 	return NULL;
838 }
839 
isl_poly_cst_reduce(__isl_keep isl_poly_cst * cst)840 static void isl_poly_cst_reduce(__isl_keep isl_poly_cst *cst)
841 {
842 	isl_int gcd;
843 
844 	isl_int_init(gcd);
845 	isl_int_gcd(gcd, cst->n, cst->d);
846 	if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
847 		isl_int_divexact(cst->n, cst->n, gcd);
848 		isl_int_divexact(cst->d, cst->d, gcd);
849 	}
850 	isl_int_clear(gcd);
851 }
852 
isl_poly_sum_cst(__isl_take isl_poly * poly1,__isl_take isl_poly * poly2)853 __isl_give isl_poly *isl_poly_sum_cst(__isl_take isl_poly *poly1,
854 	__isl_take isl_poly *poly2)
855 {
856 	isl_poly_cst *cst1;
857 	isl_poly_cst *cst2;
858 
859 	poly1 = isl_poly_cow(poly1);
860 	if (!poly1 || !poly2)
861 		goto error;
862 
863 	cst1 = isl_poly_as_cst(poly1);
864 	cst2 = isl_poly_as_cst(poly2);
865 
866 	if (isl_int_eq(cst1->d, cst2->d))
867 		isl_int_add(cst1->n, cst1->n, cst2->n);
868 	else {
869 		isl_int_mul(cst1->n, cst1->n, cst2->d);
870 		isl_int_addmul(cst1->n, cst2->n, cst1->d);
871 		isl_int_mul(cst1->d, cst1->d, cst2->d);
872 	}
873 
874 	isl_poly_cst_reduce(cst1);
875 
876 	isl_poly_free(poly2);
877 	return poly1;
878 error:
879 	isl_poly_free(poly1);
880 	isl_poly_free(poly2);
881 	return NULL;
882 }
883 
replace_by_zero(__isl_take isl_poly * poly)884 static __isl_give isl_poly *replace_by_zero(__isl_take isl_poly *poly)
885 {
886 	struct isl_ctx *ctx;
887 
888 	if (!poly)
889 		return NULL;
890 	ctx = poly->ctx;
891 	isl_poly_free(poly);
892 	return isl_poly_zero(ctx);
893 }
894 
replace_by_constant_term(__isl_take isl_poly * poly)895 static __isl_give isl_poly *replace_by_constant_term(__isl_take isl_poly *poly)
896 {
897 	isl_poly_rec *rec;
898 	isl_poly *cst;
899 
900 	if (!poly)
901 		return NULL;
902 
903 	rec = isl_poly_as_rec(poly);
904 	if (!rec)
905 		goto error;
906 	cst = isl_poly_copy(rec->p[0]);
907 	isl_poly_free(poly);
908 	return cst;
909 error:
910 	isl_poly_free(poly);
911 	return NULL;
912 }
913 
isl_poly_sum(__isl_take isl_poly * poly1,__isl_take isl_poly * poly2)914 __isl_give isl_poly *isl_poly_sum(__isl_take isl_poly *poly1,
915 	__isl_take isl_poly *poly2)
916 {
917 	int i;
918 	isl_bool is_zero, is_nan, is_cst;
919 	isl_poly_rec *rec1, *rec2;
920 
921 	if (!poly1 || !poly2)
922 		goto error;
923 
924 	is_nan = isl_poly_is_nan(poly1);
925 	if (is_nan < 0)
926 		goto error;
927 	if (is_nan) {
928 		isl_poly_free(poly2);
929 		return poly1;
930 	}
931 
932 	is_nan = isl_poly_is_nan(poly2);
933 	if (is_nan < 0)
934 		goto error;
935 	if (is_nan) {
936 		isl_poly_free(poly1);
937 		return poly2;
938 	}
939 
940 	is_zero = isl_poly_is_zero(poly1);
941 	if (is_zero < 0)
942 		goto error;
943 	if (is_zero) {
944 		isl_poly_free(poly1);
945 		return poly2;
946 	}
947 
948 	is_zero = isl_poly_is_zero(poly2);
949 	if (is_zero < 0)
950 		goto error;
951 	if (is_zero) {
952 		isl_poly_free(poly2);
953 		return poly1;
954 	}
955 
956 	if (poly1->var < poly2->var)
957 		return isl_poly_sum(poly2, poly1);
958 
959 	if (poly2->var < poly1->var) {
960 		isl_poly_rec *rec;
961 		isl_bool is_infty;
962 
963 		is_infty = isl_poly_is_infty(poly2);
964 		if (is_infty >= 0 && !is_infty)
965 			is_infty = isl_poly_is_neginfty(poly2);
966 		if (is_infty < 0)
967 			goto error;
968 		if (is_infty) {
969 			isl_poly_free(poly1);
970 			return poly2;
971 		}
972 		poly1 = isl_poly_cow(poly1);
973 		rec = isl_poly_as_rec(poly1);
974 		if (!rec)
975 			goto error;
976 		rec->p[0] = isl_poly_sum(rec->p[0], poly2);
977 		if (rec->n == 1)
978 			poly1 = replace_by_constant_term(poly1);
979 		return poly1;
980 	}
981 
982 	is_cst = isl_poly_is_cst(poly1);
983 	if (is_cst < 0)
984 		goto error;
985 	if (is_cst)
986 		return isl_poly_sum_cst(poly1, poly2);
987 
988 	rec1 = isl_poly_as_rec(poly1);
989 	rec2 = isl_poly_as_rec(poly2);
990 	if (!rec1 || !rec2)
991 		goto error;
992 
993 	if (rec1->n < rec2->n)
994 		return isl_poly_sum(poly2, poly1);
995 
996 	poly1 = isl_poly_cow(poly1);
997 	rec1 = isl_poly_as_rec(poly1);
998 	if (!rec1)
999 		goto error;
1000 
1001 	for (i = rec2->n - 1; i >= 0; --i) {
1002 		isl_bool is_zero;
1003 
1004 		rec1->p[i] = isl_poly_sum(rec1->p[i],
1005 					    isl_poly_copy(rec2->p[i]));
1006 		if (!rec1->p[i])
1007 			goto error;
1008 		if (i != rec1->n - 1)
1009 			continue;
1010 		is_zero = isl_poly_is_zero(rec1->p[i]);
1011 		if (is_zero < 0)
1012 			goto error;
1013 		if (is_zero) {
1014 			isl_poly_free(rec1->p[i]);
1015 			rec1->n--;
1016 		}
1017 	}
1018 
1019 	if (rec1->n == 0)
1020 		poly1 = replace_by_zero(poly1);
1021 	else if (rec1->n == 1)
1022 		poly1 = replace_by_constant_term(poly1);
1023 
1024 	isl_poly_free(poly2);
1025 
1026 	return poly1;
1027 error:
1028 	isl_poly_free(poly1);
1029 	isl_poly_free(poly2);
1030 	return NULL;
1031 }
1032 
isl_poly_cst_add_isl_int(__isl_take isl_poly * poly,isl_int v)1033 __isl_give isl_poly *isl_poly_cst_add_isl_int(__isl_take isl_poly *poly,
1034 	isl_int v)
1035 {
1036 	isl_poly_cst *cst;
1037 
1038 	poly = isl_poly_cow(poly);
1039 	if (!poly)
1040 		return NULL;
1041 
1042 	cst = isl_poly_as_cst(poly);
1043 
1044 	isl_int_addmul(cst->n, cst->d, v);
1045 
1046 	return poly;
1047 }
1048 
isl_poly_add_isl_int(__isl_take isl_poly * poly,isl_int v)1049 __isl_give isl_poly *isl_poly_add_isl_int(__isl_take isl_poly *poly, isl_int v)
1050 {
1051 	isl_bool is_cst;
1052 	isl_poly_rec *rec;
1053 
1054 	is_cst = isl_poly_is_cst(poly);
1055 	if (is_cst < 0)
1056 		return isl_poly_free(poly);
1057 	if (is_cst)
1058 		return isl_poly_cst_add_isl_int(poly, v);
1059 
1060 	poly = isl_poly_cow(poly);
1061 	rec = isl_poly_as_rec(poly);
1062 	if (!rec)
1063 		goto error;
1064 
1065 	rec->p[0] = isl_poly_add_isl_int(rec->p[0], v);
1066 	if (!rec->p[0])
1067 		goto error;
1068 
1069 	return poly;
1070 error:
1071 	isl_poly_free(poly);
1072 	return NULL;
1073 }
1074 
isl_poly_cst_mul_isl_int(__isl_take isl_poly * poly,isl_int v)1075 __isl_give isl_poly *isl_poly_cst_mul_isl_int(__isl_take isl_poly *poly,
1076 	isl_int v)
1077 {
1078 	isl_bool is_zero;
1079 	isl_poly_cst *cst;
1080 
1081 	is_zero = isl_poly_is_zero(poly);
1082 	if (is_zero < 0)
1083 		return isl_poly_free(poly);
1084 	if (is_zero)
1085 		return poly;
1086 
1087 	poly = isl_poly_cow(poly);
1088 	if (!poly)
1089 		return NULL;
1090 
1091 	cst = isl_poly_as_cst(poly);
1092 
1093 	isl_int_mul(cst->n, cst->n, v);
1094 
1095 	return poly;
1096 }
1097 
isl_poly_mul_isl_int(__isl_take isl_poly * poly,isl_int v)1098 __isl_give isl_poly *isl_poly_mul_isl_int(__isl_take isl_poly *poly, isl_int v)
1099 {
1100 	int i;
1101 	isl_bool is_cst;
1102 	isl_poly_rec *rec;
1103 
1104 	is_cst = isl_poly_is_cst(poly);
1105 	if (is_cst < 0)
1106 		return isl_poly_free(poly);
1107 	if (is_cst)
1108 		return isl_poly_cst_mul_isl_int(poly, v);
1109 
1110 	poly = isl_poly_cow(poly);
1111 	rec = isl_poly_as_rec(poly);
1112 	if (!rec)
1113 		goto error;
1114 
1115 	for (i = 0; i < rec->n; ++i) {
1116 		rec->p[i] = isl_poly_mul_isl_int(rec->p[i], v);
1117 		if (!rec->p[i])
1118 			goto error;
1119 	}
1120 
1121 	return poly;
1122 error:
1123 	isl_poly_free(poly);
1124 	return NULL;
1125 }
1126 
1127 /* Multiply the constant polynomial "poly" by "v".
1128  */
isl_poly_cst_scale_val(__isl_take isl_poly * poly,__isl_keep isl_val * v)1129 static __isl_give isl_poly *isl_poly_cst_scale_val(__isl_take isl_poly *poly,
1130 	__isl_keep isl_val *v)
1131 {
1132 	isl_bool is_zero;
1133 	isl_poly_cst *cst;
1134 
1135 	is_zero = isl_poly_is_zero(poly);
1136 	if (is_zero < 0)
1137 		return isl_poly_free(poly);
1138 	if (is_zero)
1139 		return poly;
1140 
1141 	poly = isl_poly_cow(poly);
1142 	if (!poly)
1143 		return NULL;
1144 
1145 	cst = isl_poly_as_cst(poly);
1146 
1147 	isl_int_mul(cst->n, cst->n, v->n);
1148 	isl_int_mul(cst->d, cst->d, v->d);
1149 	isl_poly_cst_reduce(cst);
1150 
1151 	return poly;
1152 }
1153 
1154 /* Multiply the polynomial "poly" by "v".
1155  */
isl_poly_scale_val(__isl_take isl_poly * poly,__isl_keep isl_val * v)1156 static __isl_give isl_poly *isl_poly_scale_val(__isl_take isl_poly *poly,
1157 	__isl_keep isl_val *v)
1158 {
1159 	int i;
1160 	isl_bool is_cst;
1161 	isl_poly_rec *rec;
1162 
1163 	is_cst = isl_poly_is_cst(poly);
1164 	if (is_cst < 0)
1165 		return isl_poly_free(poly);
1166 	if (is_cst)
1167 		return isl_poly_cst_scale_val(poly, v);
1168 
1169 	poly = isl_poly_cow(poly);
1170 	rec = isl_poly_as_rec(poly);
1171 	if (!rec)
1172 		goto error;
1173 
1174 	for (i = 0; i < rec->n; ++i) {
1175 		rec->p[i] = isl_poly_scale_val(rec->p[i], v);
1176 		if (!rec->p[i])
1177 			goto error;
1178 	}
1179 
1180 	return poly;
1181 error:
1182 	isl_poly_free(poly);
1183 	return NULL;
1184 }
1185 
isl_poly_mul_cst(__isl_take isl_poly * poly1,__isl_take isl_poly * poly2)1186 __isl_give isl_poly *isl_poly_mul_cst(__isl_take isl_poly *poly1,
1187 	__isl_take isl_poly *poly2)
1188 {
1189 	isl_poly_cst *cst1;
1190 	isl_poly_cst *cst2;
1191 
1192 	poly1 = isl_poly_cow(poly1);
1193 	if (!poly1 || !poly2)
1194 		goto error;
1195 
1196 	cst1 = isl_poly_as_cst(poly1);
1197 	cst2 = isl_poly_as_cst(poly2);
1198 
1199 	isl_int_mul(cst1->n, cst1->n, cst2->n);
1200 	isl_int_mul(cst1->d, cst1->d, cst2->d);
1201 
1202 	isl_poly_cst_reduce(cst1);
1203 
1204 	isl_poly_free(poly2);
1205 	return poly1;
1206 error:
1207 	isl_poly_free(poly1);
1208 	isl_poly_free(poly2);
1209 	return NULL;
1210 }
1211 
isl_poly_mul_rec(__isl_take isl_poly * poly1,__isl_take isl_poly * poly2)1212 __isl_give isl_poly *isl_poly_mul_rec(__isl_take isl_poly *poly1,
1213 	__isl_take isl_poly *poly2)
1214 {
1215 	isl_poly_rec *rec1;
1216 	isl_poly_rec *rec2;
1217 	isl_poly_rec *res = NULL;
1218 	int i, j;
1219 	int size;
1220 
1221 	rec1 = isl_poly_as_rec(poly1);
1222 	rec2 = isl_poly_as_rec(poly2);
1223 	if (!rec1 || !rec2)
1224 		goto error;
1225 	size = rec1->n + rec2->n - 1;
1226 	res = isl_poly_alloc_rec(poly1->ctx, poly1->var, size);
1227 	if (!res)
1228 		goto error;
1229 
1230 	for (i = 0; i < rec1->n; ++i) {
1231 		res->p[i] = isl_poly_mul(isl_poly_copy(rec2->p[0]),
1232 					    isl_poly_copy(rec1->p[i]));
1233 		if (!res->p[i])
1234 			goto error;
1235 		res->n++;
1236 	}
1237 	for (; i < size; ++i) {
1238 		res->p[i] = isl_poly_zero(poly1->ctx);
1239 		if (!res->p[i])
1240 			goto error;
1241 		res->n++;
1242 	}
1243 	for (i = 0; i < rec1->n; ++i) {
1244 		for (j = 1; j < rec2->n; ++j) {
1245 			isl_poly *poly;
1246 			poly = isl_poly_mul(isl_poly_copy(rec2->p[j]),
1247 					    isl_poly_copy(rec1->p[i]));
1248 			res->p[i + j] = isl_poly_sum(res->p[i + j], poly);
1249 			if (!res->p[i + j])
1250 				goto error;
1251 		}
1252 	}
1253 
1254 	isl_poly_free(poly1);
1255 	isl_poly_free(poly2);
1256 
1257 	return &res->poly;
1258 error:
1259 	isl_poly_free(poly1);
1260 	isl_poly_free(poly2);
1261 	isl_poly_free(&res->poly);
1262 	return NULL;
1263 }
1264 
isl_poly_mul(__isl_take isl_poly * poly1,__isl_take isl_poly * poly2)1265 __isl_give isl_poly *isl_poly_mul(__isl_take isl_poly *poly1,
1266 	__isl_take isl_poly *poly2)
1267 {
1268 	isl_bool is_zero, is_nan, is_one, is_cst;
1269 
1270 	if (!poly1 || !poly2)
1271 		goto error;
1272 
1273 	is_nan = isl_poly_is_nan(poly1);
1274 	if (is_nan < 0)
1275 		goto error;
1276 	if (is_nan) {
1277 		isl_poly_free(poly2);
1278 		return poly1;
1279 	}
1280 
1281 	is_nan = isl_poly_is_nan(poly2);
1282 	if (is_nan < 0)
1283 		goto error;
1284 	if (is_nan) {
1285 		isl_poly_free(poly1);
1286 		return poly2;
1287 	}
1288 
1289 	is_zero = isl_poly_is_zero(poly1);
1290 	if (is_zero < 0)
1291 		goto error;
1292 	if (is_zero) {
1293 		isl_poly_free(poly2);
1294 		return poly1;
1295 	}
1296 
1297 	is_zero = isl_poly_is_zero(poly2);
1298 	if (is_zero < 0)
1299 		goto error;
1300 	if (is_zero) {
1301 		isl_poly_free(poly1);
1302 		return poly2;
1303 	}
1304 
1305 	is_one = isl_poly_is_one(poly1);
1306 	if (is_one < 0)
1307 		goto error;
1308 	if (is_one) {
1309 		isl_poly_free(poly1);
1310 		return poly2;
1311 	}
1312 
1313 	is_one = isl_poly_is_one(poly2);
1314 	if (is_one < 0)
1315 		goto error;
1316 	if (is_one) {
1317 		isl_poly_free(poly2);
1318 		return poly1;
1319 	}
1320 
1321 	if (poly1->var < poly2->var)
1322 		return isl_poly_mul(poly2, poly1);
1323 
1324 	if (poly2->var < poly1->var) {
1325 		int i;
1326 		isl_poly_rec *rec;
1327 		isl_bool is_infty;
1328 
1329 		is_infty = isl_poly_is_infty(poly2);
1330 		if (is_infty >= 0 && !is_infty)
1331 			is_infty = isl_poly_is_neginfty(poly2);
1332 		if (is_infty < 0)
1333 			goto error;
1334 		if (is_infty) {
1335 			isl_ctx *ctx = poly1->ctx;
1336 			isl_poly_free(poly1);
1337 			isl_poly_free(poly2);
1338 			return isl_poly_nan(ctx);
1339 		}
1340 		poly1 = isl_poly_cow(poly1);
1341 		rec = isl_poly_as_rec(poly1);
1342 		if (!rec)
1343 			goto error;
1344 
1345 		for (i = 0; i < rec->n; ++i) {
1346 			rec->p[i] = isl_poly_mul(rec->p[i],
1347 						isl_poly_copy(poly2));
1348 			if (!rec->p[i])
1349 				goto error;
1350 		}
1351 		isl_poly_free(poly2);
1352 		return poly1;
1353 	}
1354 
1355 	is_cst = isl_poly_is_cst(poly1);
1356 	if (is_cst < 0)
1357 		goto error;
1358 	if (is_cst)
1359 		return isl_poly_mul_cst(poly1, poly2);
1360 
1361 	return isl_poly_mul_rec(poly1, poly2);
1362 error:
1363 	isl_poly_free(poly1);
1364 	isl_poly_free(poly2);
1365 	return NULL;
1366 }
1367 
isl_poly_pow(__isl_take isl_poly * poly,unsigned power)1368 __isl_give isl_poly *isl_poly_pow(__isl_take isl_poly *poly, unsigned power)
1369 {
1370 	isl_poly *res;
1371 
1372 	if (!poly)
1373 		return NULL;
1374 	if (power == 1)
1375 		return poly;
1376 
1377 	if (power % 2)
1378 		res = isl_poly_copy(poly);
1379 	else
1380 		res = isl_poly_one(poly->ctx);
1381 
1382 	while (power >>= 1) {
1383 		poly = isl_poly_mul(poly, isl_poly_copy(poly));
1384 		if (power % 2)
1385 			res = isl_poly_mul(res, isl_poly_copy(poly));
1386 	}
1387 
1388 	isl_poly_free(poly);
1389 	return res;
1390 }
1391 
isl_qpolynomial_alloc(__isl_take isl_space * space,unsigned n_div,__isl_take isl_poly * poly)1392 __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *space,
1393 	unsigned n_div, __isl_take isl_poly *poly)
1394 {
1395 	struct isl_qpolynomial *qp = NULL;
1396 	isl_size total;
1397 
1398 	total = isl_space_dim(space, isl_dim_all);
1399 	if (total < 0 || !poly)
1400 		goto error;
1401 
1402 	if (!isl_space_is_set(space))
1403 		isl_die(isl_space_get_ctx(space), isl_error_invalid,
1404 			"domain of polynomial should be a set", goto error);
1405 
1406 	qp = isl_calloc_type(space->ctx, struct isl_qpolynomial);
1407 	if (!qp)
1408 		goto error;
1409 
1410 	qp->ref = 1;
1411 	qp->div = isl_mat_alloc(space->ctx, n_div, 1 + 1 + total + n_div);
1412 	if (!qp->div)
1413 		goto error;
1414 
1415 	qp->dim = space;
1416 	qp->poly = poly;
1417 
1418 	return qp;
1419 error:
1420 	isl_space_free(space);
1421 	isl_poly_free(poly);
1422 	isl_qpolynomial_free(qp);
1423 	return NULL;
1424 }
1425 
isl_qpolynomial_copy(__isl_keep isl_qpolynomial * qp)1426 __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
1427 {
1428 	if (!qp)
1429 		return NULL;
1430 
1431 	qp->ref++;
1432 	return qp;
1433 }
1434 
1435 /* Return a copy of the polynomial expression of "qp".
1436  */
isl_qpolynomial_get_poly(__isl_keep isl_qpolynomial * qp)1437 __isl_give isl_poly *isl_qpolynomial_get_poly(__isl_keep isl_qpolynomial *qp)
1438 {
1439 	return qp ? isl_poly_copy(qp->poly) : NULL;
1440 }
1441 
1442 /* Return the polynomial expression of "qp".
1443  * This may be either a copy or the polynomial expression itself
1444  * if there is only one reference to "qp".
1445  * This allows the polynomial expression to be modified inplace
1446  * if both the quasi-polynomial and its polynomial expression
1447  * have only a single reference.
1448  * The caller is not allowed to modify "qp" between this call and
1449  * a subsequent call to isl_qpolynomial_restore_poly.
1450  * The only exception is that isl_qpolynomial_free can be called instead.
1451  */
isl_qpolynomial_take_poly(__isl_keep isl_qpolynomial * qp)1452 static __isl_give isl_poly *isl_qpolynomial_take_poly(
1453 	__isl_keep isl_qpolynomial *qp)
1454 {
1455 	isl_poly *poly;
1456 
1457 	if (!qp)
1458 		return NULL;
1459 	if (qp->ref != 1)
1460 		return isl_qpolynomial_get_poly(qp);
1461 	poly = qp->poly;
1462 	qp->poly = NULL;
1463 	return poly;
1464 }
1465 
1466 /* Set the polynomial expression of "qp" to "space",
1467  * where the polynomial expression of "qp" may be missing
1468  * due to a preceding call to isl_qpolynomial_take_poly.
1469  * However, in this case, "qp" only has a single reference and
1470  * then the call to isl_qpolynomial_cow has no effect.
1471  */
isl_qpolynomial_restore_poly(__isl_keep isl_qpolynomial * qp,__isl_take isl_poly * poly)1472 static __isl_give isl_qpolynomial *isl_qpolynomial_restore_poly(
1473 	__isl_keep isl_qpolynomial *qp, __isl_take isl_poly *poly)
1474 {
1475 	if (!qp || !poly)
1476 		goto error;
1477 
1478 	if (qp->poly == poly) {
1479 		isl_poly_free(poly);
1480 		return qp;
1481 	}
1482 
1483 	qp = isl_qpolynomial_cow(qp);
1484 	if (!qp)
1485 		goto error;
1486 	isl_poly_free(qp->poly);
1487 	qp->poly = poly;
1488 
1489 	return qp;
1490 error:
1491 	isl_qpolynomial_free(qp);
1492 	isl_poly_free(poly);
1493 	return NULL;
1494 }
1495 
isl_qpolynomial_dup(__isl_keep isl_qpolynomial * qp)1496 __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
1497 {
1498 	isl_poly *poly;
1499 	struct isl_qpolynomial *dup;
1500 
1501 	if (!qp)
1502 		return NULL;
1503 
1504 	poly = isl_qpolynomial_get_poly(qp);
1505 	dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row,
1506 				    poly);
1507 	if (!dup)
1508 		return NULL;
1509 	isl_mat_free(dup->div);
1510 	dup->div = isl_qpolynomial_get_local(qp);
1511 	if (!dup->div)
1512 		goto error;
1513 
1514 	return dup;
1515 error:
1516 	isl_qpolynomial_free(dup);
1517 	return NULL;
1518 }
1519 
isl_qpolynomial_cow(__isl_take isl_qpolynomial * qp)1520 __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
1521 {
1522 	if (!qp)
1523 		return NULL;
1524 
1525 	if (qp->ref == 1)
1526 		return qp;
1527 	qp->ref--;
1528 	return isl_qpolynomial_dup(qp);
1529 }
1530 
isl_qpolynomial_free(__isl_take isl_qpolynomial * qp)1531 __isl_null isl_qpolynomial *isl_qpolynomial_free(
1532 	__isl_take isl_qpolynomial *qp)
1533 {
1534 	if (!qp)
1535 		return NULL;
1536 
1537 	if (--qp->ref > 0)
1538 		return NULL;
1539 
1540 	isl_space_free(qp->dim);
1541 	isl_mat_free(qp->div);
1542 	isl_poly_free(qp->poly);
1543 
1544 	free(qp);
1545 	return NULL;
1546 }
1547 
isl_poly_var_pow(isl_ctx * ctx,int pos,int power)1548 __isl_give isl_poly *isl_poly_var_pow(isl_ctx *ctx, int pos, int power)
1549 {
1550 	int i;
1551 	isl_poly_rec *rec;
1552 	isl_poly_cst *cst;
1553 
1554 	rec = isl_poly_alloc_rec(ctx, pos, 1 + power);
1555 	if (!rec)
1556 		return NULL;
1557 	for (i = 0; i < 1 + power; ++i) {
1558 		rec->p[i] = isl_poly_zero(ctx);
1559 		if (!rec->p[i])
1560 			goto error;
1561 		rec->n++;
1562 	}
1563 	cst = isl_poly_as_cst(rec->p[power]);
1564 	isl_int_set_si(cst->n, 1);
1565 
1566 	return &rec->poly;
1567 error:
1568 	isl_poly_free(&rec->poly);
1569 	return NULL;
1570 }
1571 
1572 /* r array maps original positions to new positions.
1573  */
reorder(__isl_take isl_poly * poly,int * r)1574 static __isl_give isl_poly *reorder(__isl_take isl_poly *poly, int *r)
1575 {
1576 	int i;
1577 	isl_bool is_cst;
1578 	isl_poly_rec *rec;
1579 	isl_poly *base;
1580 	isl_poly *res;
1581 
1582 	is_cst = isl_poly_is_cst(poly);
1583 	if (is_cst < 0)
1584 		return isl_poly_free(poly);
1585 	if (is_cst)
1586 		return poly;
1587 
1588 	rec = isl_poly_as_rec(poly);
1589 	if (!rec)
1590 		goto error;
1591 
1592 	isl_assert(poly->ctx, rec->n >= 1, goto error);
1593 
1594 	base = isl_poly_var_pow(poly->ctx, r[poly->var], 1);
1595 	res = reorder(isl_poly_copy(rec->p[rec->n - 1]), r);
1596 
1597 	for (i = rec->n - 2; i >= 0; --i) {
1598 		res = isl_poly_mul(res, isl_poly_copy(base));
1599 		res = isl_poly_sum(res, reorder(isl_poly_copy(rec->p[i]), r));
1600 	}
1601 
1602 	isl_poly_free(base);
1603 	isl_poly_free(poly);
1604 
1605 	return res;
1606 error:
1607 	isl_poly_free(poly);
1608 	return NULL;
1609 }
1610 
compatible_divs(__isl_keep isl_mat * div1,__isl_keep isl_mat * div2)1611 static isl_bool compatible_divs(__isl_keep isl_mat *div1,
1612 	__isl_keep isl_mat *div2)
1613 {
1614 	int n_row, n_col;
1615 	isl_bool equal;
1616 
1617 	isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
1618 				div1->n_col >= div2->n_col,
1619 		    return isl_bool_error);
1620 
1621 	if (div1->n_row == div2->n_row)
1622 		return isl_mat_is_equal(div1, div2);
1623 
1624 	n_row = div1->n_row;
1625 	n_col = div1->n_col;
1626 	div1->n_row = div2->n_row;
1627 	div1->n_col = div2->n_col;
1628 
1629 	equal = isl_mat_is_equal(div1, div2);
1630 
1631 	div1->n_row = n_row;
1632 	div1->n_col = n_col;
1633 
1634 	return equal;
1635 }
1636 
cmp_row(__isl_keep isl_mat * div,int i,int j)1637 static int cmp_row(__isl_keep isl_mat *div, int i, int j)
1638 {
1639 	int li, lj;
1640 
1641 	li = isl_seq_last_non_zero(div->row[i], div->n_col);
1642 	lj = isl_seq_last_non_zero(div->row[j], div->n_col);
1643 
1644 	if (li != lj)
1645 		return li - lj;
1646 
1647 	return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
1648 }
1649 
1650 struct isl_div_sort_info {
1651 	isl_mat	*div;
1652 	int	 row;
1653 };
1654 
div_sort_cmp(const void * p1,const void * p2)1655 static int div_sort_cmp(const void *p1, const void *p2)
1656 {
1657 	const struct isl_div_sort_info *i1, *i2;
1658 	i1 = (const struct isl_div_sort_info *) p1;
1659 	i2 = (const struct isl_div_sort_info *) p2;
1660 
1661 	return cmp_row(i1->div, i1->row, i2->row);
1662 }
1663 
1664 /* Sort divs and remove duplicates.
1665  */
sort_divs(__isl_take isl_qpolynomial * qp)1666 static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
1667 {
1668 	int i;
1669 	int skip;
1670 	int len;
1671 	struct isl_div_sort_info *array = NULL;
1672 	int *pos = NULL, *at = NULL;
1673 	int *reordering = NULL;
1674 	isl_size div_pos;
1675 
1676 	if (!qp)
1677 		return NULL;
1678 	if (qp->div->n_row <= 1)
1679 		return qp;
1680 
1681 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
1682 	if (div_pos < 0)
1683 		return isl_qpolynomial_free(qp);
1684 
1685 	array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
1686 				qp->div->n_row);
1687 	pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1688 	at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1689 	len = qp->div->n_col - 2;
1690 	reordering = isl_alloc_array(qp->div->ctx, int, len);
1691 	if (!array || !pos || !at || !reordering)
1692 		goto error;
1693 
1694 	for (i = 0; i < qp->div->n_row; ++i) {
1695 		array[i].div = qp->div;
1696 		array[i].row = i;
1697 		pos[i] = i;
1698 		at[i] = i;
1699 	}
1700 
1701 	qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
1702 		div_sort_cmp);
1703 
1704 	for (i = 0; i < div_pos; ++i)
1705 		reordering[i] = i;
1706 
1707 	for (i = 0; i < qp->div->n_row; ++i) {
1708 		if (pos[array[i].row] == i)
1709 			continue;
1710 		qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
1711 		pos[at[i]] = pos[array[i].row];
1712 		at[pos[array[i].row]] = at[i];
1713 		at[i] = array[i].row;
1714 		pos[array[i].row] = i;
1715 	}
1716 
1717 	skip = 0;
1718 	for (i = 0; i < len - div_pos; ++i) {
1719 		if (i > 0 &&
1720 		    isl_seq_eq(qp->div->row[i - skip - 1],
1721 			       qp->div->row[i - skip], qp->div->n_col)) {
1722 			qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
1723 			isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
1724 						 2 + div_pos + i - skip);
1725 			qp->div = isl_mat_drop_cols(qp->div,
1726 						    2 + div_pos + i - skip, 1);
1727 			skip++;
1728 		}
1729 		reordering[div_pos + array[i].row] = div_pos + i - skip;
1730 	}
1731 
1732 	qp->poly = reorder(qp->poly, reordering);
1733 
1734 	if (!qp->poly || !qp->div)
1735 		goto error;
1736 
1737 	free(at);
1738 	free(pos);
1739 	free(array);
1740 	free(reordering);
1741 
1742 	return qp;
1743 error:
1744 	free(at);
1745 	free(pos);
1746 	free(array);
1747 	free(reordering);
1748 	isl_qpolynomial_free(qp);
1749 	return NULL;
1750 }
1751 
expand(__isl_take isl_poly * poly,int * exp,int first)1752 static __isl_give isl_poly *expand(__isl_take isl_poly *poly, int *exp,
1753 	int first)
1754 {
1755 	int i;
1756 	isl_bool is_cst;
1757 	isl_poly_rec *rec;
1758 
1759 	is_cst = isl_poly_is_cst(poly);
1760 	if (is_cst < 0)
1761 		return isl_poly_free(poly);
1762 	if (is_cst)
1763 		return poly;
1764 
1765 	if (poly->var < first)
1766 		return poly;
1767 
1768 	if (exp[poly->var - first] == poly->var - first)
1769 		return poly;
1770 
1771 	poly = isl_poly_cow(poly);
1772 	if (!poly)
1773 		goto error;
1774 
1775 	poly->var = exp[poly->var - first] + first;
1776 
1777 	rec = isl_poly_as_rec(poly);
1778 	if (!rec)
1779 		goto error;
1780 
1781 	for (i = 0; i < rec->n; ++i) {
1782 		rec->p[i] = expand(rec->p[i], exp, first);
1783 		if (!rec->p[i])
1784 			goto error;
1785 	}
1786 
1787 	return poly;
1788 error:
1789 	isl_poly_free(poly);
1790 	return NULL;
1791 }
1792 
with_merged_divs(__isl_give isl_qpolynomial * (* fn)(__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2),__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1793 static __isl_give isl_qpolynomial *with_merged_divs(
1794 	__isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
1795 					  __isl_take isl_qpolynomial *qp2),
1796 	__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
1797 {
1798 	int *exp1 = NULL;
1799 	int *exp2 = NULL;
1800 	isl_mat *div = NULL;
1801 	int n_div1, n_div2;
1802 
1803 	qp1 = isl_qpolynomial_cow(qp1);
1804 	qp2 = isl_qpolynomial_cow(qp2);
1805 
1806 	if (!qp1 || !qp2)
1807 		goto error;
1808 
1809 	isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
1810 				qp1->div->n_col >= qp2->div->n_col, goto error);
1811 
1812 	n_div1 = qp1->div->n_row;
1813 	n_div2 = qp2->div->n_row;
1814 	exp1 = isl_alloc_array(qp1->div->ctx, int, n_div1);
1815 	exp2 = isl_alloc_array(qp2->div->ctx, int, n_div2);
1816 	if ((n_div1 && !exp1) || (n_div2 && !exp2))
1817 		goto error;
1818 
1819 	div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
1820 	if (!div)
1821 		goto error;
1822 
1823 	isl_mat_free(qp1->div);
1824 	qp1->div = isl_mat_copy(div);
1825 	isl_mat_free(qp2->div);
1826 	qp2->div = isl_mat_copy(div);
1827 
1828 	qp1->poly = expand(qp1->poly, exp1, div->n_col - div->n_row - 2);
1829 	qp2->poly = expand(qp2->poly, exp2, div->n_col - div->n_row - 2);
1830 
1831 	if (!qp1->poly || !qp2->poly)
1832 		goto error;
1833 
1834 	isl_mat_free(div);
1835 	free(exp1);
1836 	free(exp2);
1837 
1838 	return fn(qp1, qp2);
1839 error:
1840 	isl_mat_free(div);
1841 	free(exp1);
1842 	free(exp2);
1843 	isl_qpolynomial_free(qp1);
1844 	isl_qpolynomial_free(qp2);
1845 	return NULL;
1846 }
1847 
isl_qpolynomial_add(__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1848 __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
1849 	__isl_take isl_qpolynomial *qp2)
1850 {
1851 	isl_bool compatible;
1852 	isl_poly *poly;
1853 
1854 	if (isl_qpolynomial_check_equal_space(qp1, qp2) < 0)
1855 		goto error;
1856 
1857 	if (qp1->div->n_row < qp2->div->n_row)
1858 		return isl_qpolynomial_add(qp2, qp1);
1859 
1860 	compatible = compatible_divs(qp1->div, qp2->div);
1861 	if (compatible < 0)
1862 		goto error;
1863 	if (!compatible)
1864 		return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
1865 
1866 	poly = isl_qpolynomial_take_poly(qp1);
1867 	poly = isl_poly_sum(poly, isl_qpolynomial_get_poly(qp2));
1868 	qp1 = isl_qpolynomial_restore_poly(qp1, poly);
1869 
1870 	isl_qpolynomial_free(qp2);
1871 
1872 	return qp1;
1873 error:
1874 	isl_qpolynomial_free(qp1);
1875 	isl_qpolynomial_free(qp2);
1876 	return NULL;
1877 }
1878 
isl_qpolynomial_add_on_domain(__isl_keep isl_set * dom,__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1879 __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
1880 	__isl_keep isl_set *dom,
1881 	__isl_take isl_qpolynomial *qp1,
1882 	__isl_take isl_qpolynomial *qp2)
1883 {
1884 	qp1 = isl_qpolynomial_add(qp1, qp2);
1885 	qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
1886 	return qp1;
1887 }
1888 
isl_qpolynomial_sub(__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1889 __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
1890 	__isl_take isl_qpolynomial *qp2)
1891 {
1892 	return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
1893 }
1894 
isl_qpolynomial_add_isl_int(__isl_take isl_qpolynomial * qp,isl_int v)1895 __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
1896 	__isl_take isl_qpolynomial *qp, isl_int v)
1897 {
1898 	isl_poly *poly;
1899 
1900 	if (isl_int_is_zero(v))
1901 		return qp;
1902 
1903 	poly = isl_qpolynomial_take_poly(qp);
1904 	poly = isl_poly_add_isl_int(poly, v);
1905 	qp = isl_qpolynomial_restore_poly(qp, poly);
1906 
1907 	return qp;
1908 }
1909 
isl_qpolynomial_neg(__isl_take isl_qpolynomial * qp)1910 __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
1911 {
1912 	if (!qp)
1913 		return NULL;
1914 
1915 	return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
1916 }
1917 
isl_qpolynomial_mul_isl_int(__isl_take isl_qpolynomial * qp,isl_int v)1918 __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
1919 	__isl_take isl_qpolynomial *qp, isl_int v)
1920 {
1921 	isl_poly *poly;
1922 
1923 	if (isl_int_is_one(v))
1924 		return qp;
1925 
1926 	if (qp && isl_int_is_zero(v)) {
1927 		isl_qpolynomial *zero;
1928 		zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim));
1929 		isl_qpolynomial_free(qp);
1930 		return zero;
1931 	}
1932 
1933 	poly = isl_qpolynomial_take_poly(qp);
1934 	poly = isl_poly_mul_isl_int(poly, v);
1935 	qp = isl_qpolynomial_restore_poly(qp, poly);
1936 
1937 	return qp;
1938 }
1939 
isl_qpolynomial_scale(__isl_take isl_qpolynomial * qp,isl_int v)1940 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
1941 	__isl_take isl_qpolynomial *qp, isl_int v)
1942 {
1943 	return isl_qpolynomial_mul_isl_int(qp, v);
1944 }
1945 
1946 /* Multiply "qp" by "v".
1947  */
isl_qpolynomial_scale_val(__isl_take isl_qpolynomial * qp,__isl_take isl_val * v)1948 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
1949 	__isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
1950 {
1951 	isl_poly *poly;
1952 
1953 	if (!qp || !v)
1954 		goto error;
1955 
1956 	if (!isl_val_is_rat(v))
1957 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
1958 			"expecting rational factor", goto error);
1959 
1960 	if (isl_val_is_one(v)) {
1961 		isl_val_free(v);
1962 		return qp;
1963 	}
1964 
1965 	if (isl_val_is_zero(v)) {
1966 		isl_space *space;
1967 
1968 		space = isl_qpolynomial_get_domain_space(qp);
1969 		isl_qpolynomial_free(qp);
1970 		isl_val_free(v);
1971 		return isl_qpolynomial_zero_on_domain(space);
1972 	}
1973 
1974 	poly = isl_qpolynomial_take_poly(qp);
1975 	poly = isl_poly_scale_val(poly, v);
1976 	qp = isl_qpolynomial_restore_poly(qp, poly);
1977 
1978 	isl_val_free(v);
1979 	return qp;
1980 error:
1981 	isl_val_free(v);
1982 	isl_qpolynomial_free(qp);
1983 	return NULL;
1984 }
1985 
1986 /* Divide "qp" by "v".
1987  */
isl_qpolynomial_scale_down_val(__isl_take isl_qpolynomial * qp,__isl_take isl_val * v)1988 __isl_give isl_qpolynomial *isl_qpolynomial_scale_down_val(
1989 	__isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
1990 {
1991 	if (!qp || !v)
1992 		goto error;
1993 
1994 	if (!isl_val_is_rat(v))
1995 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
1996 			"expecting rational factor", goto error);
1997 	if (isl_val_is_zero(v))
1998 		isl_die(isl_val_get_ctx(v), isl_error_invalid,
1999 			"cannot scale down by zero", goto error);
2000 
2001 	return isl_qpolynomial_scale_val(qp, isl_val_inv(v));
2002 error:
2003 	isl_val_free(v);
2004 	isl_qpolynomial_free(qp);
2005 	return NULL;
2006 }
2007 
isl_qpolynomial_mul(__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)2008 __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
2009 	__isl_take isl_qpolynomial *qp2)
2010 {
2011 	isl_bool compatible;
2012 	isl_poly *poly;
2013 
2014 	if (isl_qpolynomial_check_equal_space(qp1, qp2) < 0)
2015 		goto error;
2016 
2017 	if (qp1->div->n_row < qp2->div->n_row)
2018 		return isl_qpolynomial_mul(qp2, qp1);
2019 
2020 	compatible = compatible_divs(qp1->div, qp2->div);
2021 	if (compatible < 0)
2022 		goto error;
2023 	if (!compatible)
2024 		return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
2025 
2026 	poly = isl_qpolynomial_take_poly(qp1);
2027 	poly = isl_poly_mul(poly, isl_qpolynomial_get_poly(qp2));
2028 	qp1 = isl_qpolynomial_restore_poly(qp1, poly);
2029 
2030 	isl_qpolynomial_free(qp2);
2031 
2032 	return qp1;
2033 error:
2034 	isl_qpolynomial_free(qp1);
2035 	isl_qpolynomial_free(qp2);
2036 	return NULL;
2037 }
2038 
isl_qpolynomial_pow(__isl_take isl_qpolynomial * qp,unsigned power)2039 __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
2040 	unsigned power)
2041 {
2042 	isl_poly *poly;
2043 
2044 	poly = isl_qpolynomial_take_poly(qp);
2045 	poly = isl_poly_pow(poly, power);
2046 	qp = isl_qpolynomial_restore_poly(qp, poly);
2047 
2048 	return qp;
2049 }
2050 
isl_pw_qpolynomial_pow(__isl_take isl_pw_qpolynomial * pwqp,unsigned power)2051 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
2052 	__isl_take isl_pw_qpolynomial *pwqp, unsigned power)
2053 {
2054 	int i;
2055 
2056 	if (power == 1)
2057 		return pwqp;
2058 
2059 	pwqp = isl_pw_qpolynomial_cow(pwqp);
2060 	if (!pwqp)
2061 		return NULL;
2062 
2063 	for (i = 0; i < pwqp->n; ++i) {
2064 		pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power);
2065 		if (!pwqp->p[i].qp)
2066 			return isl_pw_qpolynomial_free(pwqp);
2067 	}
2068 
2069 	return pwqp;
2070 }
2071 
isl_qpolynomial_zero_on_domain(__isl_take isl_space * domain)2072 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
2073 	__isl_take isl_space *domain)
2074 {
2075 	if (!domain)
2076 		return NULL;
2077 	return isl_qpolynomial_alloc(domain, 0, isl_poly_zero(domain->ctx));
2078 }
2079 
isl_qpolynomial_one_on_domain(__isl_take isl_space * domain)2080 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
2081 	__isl_take isl_space *domain)
2082 {
2083 	if (!domain)
2084 		return NULL;
2085 	return isl_qpolynomial_alloc(domain, 0, isl_poly_one(domain->ctx));
2086 }
2087 
isl_qpolynomial_infty_on_domain(__isl_take isl_space * domain)2088 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
2089 	__isl_take isl_space *domain)
2090 {
2091 	if (!domain)
2092 		return NULL;
2093 	return isl_qpolynomial_alloc(domain, 0, isl_poly_infty(domain->ctx));
2094 }
2095 
isl_qpolynomial_neginfty_on_domain(__isl_take isl_space * domain)2096 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
2097 	__isl_take isl_space *domain)
2098 {
2099 	if (!domain)
2100 		return NULL;
2101 	return isl_qpolynomial_alloc(domain, 0, isl_poly_neginfty(domain->ctx));
2102 }
2103 
isl_qpolynomial_nan_on_domain(__isl_take isl_space * domain)2104 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
2105 	__isl_take isl_space *domain)
2106 {
2107 	if (!domain)
2108 		return NULL;
2109 	return isl_qpolynomial_alloc(domain, 0, isl_poly_nan(domain->ctx));
2110 }
2111 
isl_qpolynomial_cst_on_domain(__isl_take isl_space * domain,isl_int v)2112 __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(
2113 	__isl_take isl_space *domain,
2114 	isl_int v)
2115 {
2116 	struct isl_qpolynomial *qp;
2117 	isl_poly_cst *cst;
2118 
2119 	qp = isl_qpolynomial_zero_on_domain(domain);
2120 	if (!qp)
2121 		return NULL;
2122 
2123 	cst = isl_poly_as_cst(qp->poly);
2124 	isl_int_set(cst->n, v);
2125 
2126 	return qp;
2127 }
2128 
isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial * qp,isl_int * n,isl_int * d)2129 isl_bool isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
2130 	isl_int *n, isl_int *d)
2131 {
2132 	isl_bool is_cst;
2133 	isl_poly_cst *cst;
2134 
2135 	if (!qp)
2136 		return isl_bool_error;
2137 
2138 	is_cst = isl_poly_is_cst(qp->poly);
2139 	if (is_cst < 0 || !is_cst)
2140 		return is_cst;
2141 
2142 	cst = isl_poly_as_cst(qp->poly);
2143 	if (!cst)
2144 		return isl_bool_error;
2145 
2146 	if (n)
2147 		isl_int_set(*n, cst->n);
2148 	if (d)
2149 		isl_int_set(*d, cst->d);
2150 
2151 	return isl_bool_true;
2152 }
2153 
2154 /* Return the constant term of "poly".
2155  */
isl_poly_get_constant_val(__isl_keep isl_poly * poly)2156 static __isl_give isl_val *isl_poly_get_constant_val(__isl_keep isl_poly *poly)
2157 {
2158 	isl_bool is_cst;
2159 	isl_poly_cst *cst;
2160 
2161 	if (!poly)
2162 		return NULL;
2163 
2164 	while ((is_cst = isl_poly_is_cst(poly)) == isl_bool_false) {
2165 		isl_poly_rec *rec;
2166 
2167 		rec = isl_poly_as_rec(poly);
2168 		if (!rec)
2169 			return NULL;
2170 		poly = rec->p[0];
2171 	}
2172 	if (is_cst < 0)
2173 		return NULL;
2174 
2175 	cst = isl_poly_as_cst(poly);
2176 	if (!cst)
2177 		return NULL;
2178 	return isl_val_rat_from_isl_int(cst->poly.ctx, cst->n, cst->d);
2179 }
2180 
2181 /* Return the constant term of "qp".
2182  */
isl_qpolynomial_get_constant_val(__isl_keep isl_qpolynomial * qp)2183 __isl_give isl_val *isl_qpolynomial_get_constant_val(
2184 	__isl_keep isl_qpolynomial *qp)
2185 {
2186 	if (!qp)
2187 		return NULL;
2188 
2189 	return isl_poly_get_constant_val(qp->poly);
2190 }
2191 
isl_poly_is_affine(__isl_keep isl_poly * poly)2192 isl_bool isl_poly_is_affine(__isl_keep isl_poly *poly)
2193 {
2194 	isl_bool is_cst;
2195 	isl_poly_rec *rec;
2196 
2197 	if (!poly)
2198 		return isl_bool_error;
2199 
2200 	if (poly->var < 0)
2201 		return isl_bool_true;
2202 
2203 	rec = isl_poly_as_rec(poly);
2204 	if (!rec)
2205 		return isl_bool_error;
2206 
2207 	if (rec->n > 2)
2208 		return isl_bool_false;
2209 
2210 	isl_assert(poly->ctx, rec->n > 1, return isl_bool_error);
2211 
2212 	is_cst = isl_poly_is_cst(rec->p[1]);
2213 	if (is_cst < 0 || !is_cst)
2214 		return is_cst;
2215 
2216 	return isl_poly_is_affine(rec->p[0]);
2217 }
2218 
isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial * qp)2219 isl_bool isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
2220 {
2221 	if (!qp)
2222 		return isl_bool_error;
2223 
2224 	if (qp->div->n_row > 0)
2225 		return isl_bool_false;
2226 
2227 	return isl_poly_is_affine(qp->poly);
2228 }
2229 
update_coeff(__isl_keep isl_vec * aff,__isl_keep isl_poly_cst * cst,int pos)2230 static void update_coeff(__isl_keep isl_vec *aff,
2231 	__isl_keep isl_poly_cst *cst, int pos)
2232 {
2233 	isl_int gcd;
2234 	isl_int f;
2235 
2236 	if (isl_int_is_zero(cst->n))
2237 		return;
2238 
2239 	isl_int_init(gcd);
2240 	isl_int_init(f);
2241 	isl_int_gcd(gcd, cst->d, aff->el[0]);
2242 	isl_int_divexact(f, cst->d, gcd);
2243 	isl_int_divexact(gcd, aff->el[0], gcd);
2244 	isl_seq_scale(aff->el, aff->el, f, aff->size);
2245 	isl_int_mul(aff->el[1 + pos], gcd, cst->n);
2246 	isl_int_clear(gcd);
2247 	isl_int_clear(f);
2248 }
2249 
isl_poly_update_affine(__isl_keep isl_poly * poly,__isl_keep isl_vec * aff)2250 int isl_poly_update_affine(__isl_keep isl_poly *poly, __isl_keep isl_vec *aff)
2251 {
2252 	isl_poly_cst *cst;
2253 	isl_poly_rec *rec;
2254 
2255 	if (!poly || !aff)
2256 		return -1;
2257 
2258 	if (poly->var < 0) {
2259 		isl_poly_cst *cst;
2260 
2261 		cst = isl_poly_as_cst(poly);
2262 		if (!cst)
2263 			return -1;
2264 		update_coeff(aff, cst, 0);
2265 		return 0;
2266 	}
2267 
2268 	rec = isl_poly_as_rec(poly);
2269 	if (!rec)
2270 		return -1;
2271 	isl_assert(poly->ctx, rec->n == 2, return -1);
2272 
2273 	cst = isl_poly_as_cst(rec->p[1]);
2274 	if (!cst)
2275 		return -1;
2276 	update_coeff(aff, cst, 1 + poly->var);
2277 
2278 	return isl_poly_update_affine(rec->p[0], aff);
2279 }
2280 
isl_qpolynomial_extract_affine(__isl_keep isl_qpolynomial * qp)2281 __isl_give isl_vec *isl_qpolynomial_extract_affine(
2282 	__isl_keep isl_qpolynomial *qp)
2283 {
2284 	isl_vec *aff;
2285 	isl_size d;
2286 
2287 	d = isl_qpolynomial_domain_dim(qp, isl_dim_all);
2288 	if (d < 0)
2289 		return NULL;
2290 
2291 	aff = isl_vec_alloc(qp->div->ctx, 2 + d);
2292 	if (!aff)
2293 		return NULL;
2294 
2295 	isl_seq_clr(aff->el + 1, 1 + d);
2296 	isl_int_set_si(aff->el[0], 1);
2297 
2298 	if (isl_poly_update_affine(qp->poly, aff) < 0)
2299 		goto error;
2300 
2301 	return aff;
2302 error:
2303 	isl_vec_free(aff);
2304 	return NULL;
2305 }
2306 
2307 /* Compare two quasi-polynomials.
2308  *
2309  * Return -1 if "qp1" is "smaller" than "qp2", 1 if "qp1" is "greater"
2310  * than "qp2" and 0 if they are equal.
2311  */
isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial * qp1,__isl_keep isl_qpolynomial * qp2)2312 int isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial *qp1,
2313 	__isl_keep isl_qpolynomial *qp2)
2314 {
2315 	int cmp;
2316 
2317 	if (qp1 == qp2)
2318 		return 0;
2319 	if (!qp1)
2320 		return -1;
2321 	if (!qp2)
2322 		return 1;
2323 
2324 	cmp = isl_space_cmp(qp1->dim, qp2->dim);
2325 	if (cmp != 0)
2326 		return cmp;
2327 
2328 	cmp = isl_local_cmp(qp1->div, qp2->div);
2329 	if (cmp != 0)
2330 		return cmp;
2331 
2332 	return isl_poly_plain_cmp(qp1->poly, qp2->poly);
2333 }
2334 
2335 /* Is "qp1" obviously equal to "qp2"?
2336  *
2337  * NaN is not equal to anything, not even to another NaN.
2338  */
isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial * qp1,__isl_keep isl_qpolynomial * qp2)2339 isl_bool isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
2340 	__isl_keep isl_qpolynomial *qp2)
2341 {
2342 	isl_bool equal;
2343 
2344 	if (!qp1 || !qp2)
2345 		return isl_bool_error;
2346 
2347 	if (isl_qpolynomial_is_nan(qp1) || isl_qpolynomial_is_nan(qp2))
2348 		return isl_bool_false;
2349 
2350 	equal = isl_space_is_equal(qp1->dim, qp2->dim);
2351 	if (equal < 0 || !equal)
2352 		return equal;
2353 
2354 	equal = isl_mat_is_equal(qp1->div, qp2->div);
2355 	if (equal < 0 || !equal)
2356 		return equal;
2357 
2358 	return isl_poly_is_equal(qp1->poly, qp2->poly);
2359 }
2360 
poly_update_den(__isl_keep isl_poly * poly,isl_int * d)2361 static isl_stat poly_update_den(__isl_keep isl_poly *poly, isl_int *d)
2362 {
2363 	int i;
2364 	isl_bool is_cst;
2365 	isl_poly_rec *rec;
2366 
2367 	is_cst = isl_poly_is_cst(poly);
2368 	if (is_cst < 0)
2369 		return isl_stat_error;
2370 	if (is_cst) {
2371 		isl_poly_cst *cst;
2372 		cst = isl_poly_as_cst(poly);
2373 		if (!cst)
2374 			return isl_stat_error;
2375 		isl_int_lcm(*d, *d, cst->d);
2376 		return isl_stat_ok;
2377 	}
2378 
2379 	rec = isl_poly_as_rec(poly);
2380 	if (!rec)
2381 		return isl_stat_error;
2382 
2383 	for (i = 0; i < rec->n; ++i)
2384 		poly_update_den(rec->p[i], d);
2385 
2386 	return isl_stat_ok;
2387 }
2388 
isl_qpolynomial_get_den(__isl_keep isl_qpolynomial * qp)2389 __isl_give isl_val *isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp)
2390 {
2391 	isl_val *d;
2392 
2393 	if (!qp)
2394 		return NULL;
2395 	d = isl_val_one(isl_qpolynomial_get_ctx(qp));
2396 	if (!d)
2397 		return NULL;
2398 	if (poly_update_den(qp->poly, &d->n) < 0)
2399 		return isl_val_free(d);
2400 	return d;
2401 }
2402 
isl_qpolynomial_var_pow_on_domain(__isl_take isl_space * domain,int pos,int power)2403 __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(
2404 	__isl_take isl_space *domain, int pos, int power)
2405 {
2406 	struct isl_ctx *ctx;
2407 
2408 	if (!domain)
2409 		return NULL;
2410 
2411 	ctx = domain->ctx;
2412 
2413 	return isl_qpolynomial_alloc(domain, 0,
2414 					isl_poly_var_pow(ctx, pos, power));
2415 }
2416 
isl_qpolynomial_var_on_domain(__isl_take isl_space * domain,enum isl_dim_type type,unsigned pos)2417 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
2418 	__isl_take isl_space *domain, enum isl_dim_type type, unsigned pos)
2419 {
2420 	isl_size off;
2421 
2422 	if (isl_space_check_is_set(domain ) < 0)
2423 		goto error;
2424 	if (isl_space_check_range(domain, type, pos, 1) < 0)
2425 		goto error;
2426 
2427 	off = isl_space_offset(domain, type);
2428 	if (off < 0)
2429 		goto error;
2430 
2431 	return isl_qpolynomial_var_pow_on_domain(domain, off + pos, 1);
2432 error:
2433 	isl_space_free(domain);
2434 	return NULL;
2435 }
2436 
isl_poly_subs(__isl_take isl_poly * poly,unsigned first,unsigned n,__isl_keep isl_poly ** subs)2437 __isl_give isl_poly *isl_poly_subs(__isl_take isl_poly *poly,
2438 	unsigned first, unsigned n, __isl_keep isl_poly **subs)
2439 {
2440 	int i;
2441 	isl_bool is_cst;
2442 	isl_poly_rec *rec;
2443 	isl_poly *base, *res;
2444 
2445 	is_cst = isl_poly_is_cst(poly);
2446 	if (is_cst < 0)
2447 		return isl_poly_free(poly);
2448 	if (is_cst)
2449 		return poly;
2450 
2451 	if (poly->var < first)
2452 		return poly;
2453 
2454 	rec = isl_poly_as_rec(poly);
2455 	if (!rec)
2456 		goto error;
2457 
2458 	isl_assert(poly->ctx, rec->n >= 1, goto error);
2459 
2460 	if (poly->var >= first + n)
2461 		base = isl_poly_var_pow(poly->ctx, poly->var, 1);
2462 	else
2463 		base = isl_poly_copy(subs[poly->var - first]);
2464 
2465 	res = isl_poly_subs(isl_poly_copy(rec->p[rec->n - 1]), first, n, subs);
2466 	for (i = rec->n - 2; i >= 0; --i) {
2467 		isl_poly *t;
2468 		t = isl_poly_subs(isl_poly_copy(rec->p[i]), first, n, subs);
2469 		res = isl_poly_mul(res, isl_poly_copy(base));
2470 		res = isl_poly_sum(res, t);
2471 	}
2472 
2473 	isl_poly_free(base);
2474 	isl_poly_free(poly);
2475 
2476 	return res;
2477 error:
2478 	isl_poly_free(poly);
2479 	return NULL;
2480 }
2481 
isl_poly_from_affine(isl_ctx * ctx,isl_int * f,isl_int denom,unsigned len)2482 __isl_give isl_poly *isl_poly_from_affine(isl_ctx *ctx, isl_int *f,
2483 	isl_int denom, unsigned len)
2484 {
2485 	int i;
2486 	isl_poly *poly;
2487 
2488 	isl_assert(ctx, len >= 1, return NULL);
2489 
2490 	poly = isl_poly_rat_cst(ctx, f[0], denom);
2491 	for (i = 0; i < len - 1; ++i) {
2492 		isl_poly *t;
2493 		isl_poly *c;
2494 
2495 		if (isl_int_is_zero(f[1 + i]))
2496 			continue;
2497 
2498 		c = isl_poly_rat_cst(ctx, f[1 + i], denom);
2499 		t = isl_poly_var_pow(ctx, i, 1);
2500 		t = isl_poly_mul(c, t);
2501 		poly = isl_poly_sum(poly, t);
2502 	}
2503 
2504 	return poly;
2505 }
2506 
2507 /* Remove common factor of non-constant terms and denominator.
2508  */
normalize_div(__isl_keep isl_qpolynomial * qp,int div)2509 static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
2510 {
2511 	isl_ctx *ctx = qp->div->ctx;
2512 	unsigned total = qp->div->n_col - 2;
2513 
2514 	isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
2515 	isl_int_gcd(ctx->normalize_gcd,
2516 		    ctx->normalize_gcd, qp->div->row[div][0]);
2517 	if (isl_int_is_one(ctx->normalize_gcd))
2518 		return;
2519 
2520 	isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
2521 			    ctx->normalize_gcd, total);
2522 	isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
2523 			    ctx->normalize_gcd);
2524 	isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
2525 			    ctx->normalize_gcd);
2526 }
2527 
2528 /* Replace the integer division identified by "div" by the polynomial "s".
2529  * The integer division is assumed not to appear in the definition
2530  * of any other integer divisions.
2531  */
substitute_div(__isl_take isl_qpolynomial * qp,int div,__isl_take isl_poly * s)2532 static __isl_give isl_qpolynomial *substitute_div(
2533 	__isl_take isl_qpolynomial *qp, int div, __isl_take isl_poly *s)
2534 {
2535 	int i;
2536 	isl_size div_pos;
2537 	int *reordering;
2538 	isl_ctx *ctx;
2539 
2540 	if (!qp || !s)
2541 		goto error;
2542 
2543 	qp = isl_qpolynomial_cow(qp);
2544 	if (!qp)
2545 		goto error;
2546 
2547 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
2548 	if (div_pos < 0)
2549 		goto error;
2550 	qp->poly = isl_poly_subs(qp->poly, div_pos + div, 1, &s);
2551 	if (!qp->poly)
2552 		goto error;
2553 
2554 	ctx = isl_qpolynomial_get_ctx(qp);
2555 	reordering = isl_alloc_array(ctx, int, div_pos + qp->div->n_row);
2556 	if (!reordering)
2557 		goto error;
2558 	for (i = 0; i < div_pos + div; ++i)
2559 		reordering[i] = i;
2560 	for (i = div_pos + div + 1; i < div_pos + qp->div->n_row; ++i)
2561 		reordering[i] = i - 1;
2562 	qp->div = isl_mat_drop_rows(qp->div, div, 1);
2563 	qp->div = isl_mat_drop_cols(qp->div, 2 + div_pos + div, 1);
2564 	qp->poly = reorder(qp->poly, reordering);
2565 	free(reordering);
2566 
2567 	if (!qp->poly || !qp->div)
2568 		goto error;
2569 
2570 	isl_poly_free(s);
2571 	return qp;
2572 error:
2573 	isl_qpolynomial_free(qp);
2574 	isl_poly_free(s);
2575 	return NULL;
2576 }
2577 
2578 /* Replace all integer divisions [e/d] that turn out to not actually be integer
2579  * divisions because d is equal to 1 by their definition, i.e., e.
2580  */
substitute_non_divs(__isl_take isl_qpolynomial * qp)2581 static __isl_give isl_qpolynomial *substitute_non_divs(
2582 	__isl_take isl_qpolynomial *qp)
2583 {
2584 	int i, j;
2585 	isl_size div_pos;
2586 	isl_poly *s;
2587 
2588 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
2589 	if (div_pos < 0)
2590 		return isl_qpolynomial_free(qp);
2591 
2592 	for (i = 0; qp && i < qp->div->n_row; ++i) {
2593 		if (!isl_int_is_one(qp->div->row[i][0]))
2594 			continue;
2595 		for (j = i + 1; j < qp->div->n_row; ++j) {
2596 			if (isl_int_is_zero(qp->div->row[j][2 + div_pos + i]))
2597 				continue;
2598 			isl_seq_combine(qp->div->row[j] + 1,
2599 				qp->div->ctx->one, qp->div->row[j] + 1,
2600 				qp->div->row[j][2 + div_pos + i],
2601 				qp->div->row[i] + 1, 1 + div_pos + i);
2602 			isl_int_set_si(qp->div->row[j][2 + div_pos + i], 0);
2603 			normalize_div(qp, j);
2604 		}
2605 		s = isl_poly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
2606 					qp->div->row[i][0], qp->div->n_col - 1);
2607 		qp = substitute_div(qp, i, s);
2608 		--i;
2609 	}
2610 
2611 	return qp;
2612 }
2613 
2614 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
2615  * with d the denominator.  When replacing the coefficient e of x by
2616  * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
2617  * inside the division, so we need to add floor(e/d) * x outside.
2618  * That is, we replace q by q' + floor(e/d) * x and we therefore need
2619  * to adjust the coefficient of x in each later div that depends on the
2620  * current div "div" and also in the affine expressions in the rows of "mat"
2621  * (if they too depend on "div").
2622  */
reduce_div(__isl_keep isl_qpolynomial * qp,int div,__isl_keep isl_mat ** mat)2623 static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
2624 	__isl_keep isl_mat **mat)
2625 {
2626 	int i, j;
2627 	isl_int v;
2628 	unsigned total = qp->div->n_col - qp->div->n_row - 2;
2629 
2630 	isl_int_init(v);
2631 	for (i = 0; i < 1 + total + div; ++i) {
2632 		if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
2633 		    isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
2634 			continue;
2635 		isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
2636 		isl_int_fdiv_r(qp->div->row[div][1 + i],
2637 				qp->div->row[div][1 + i], qp->div->row[div][0]);
2638 		*mat = isl_mat_col_addmul(*mat, i, v, 1 + total + div);
2639 		for (j = div + 1; j < qp->div->n_row; ++j) {
2640 			if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
2641 				continue;
2642 			isl_int_addmul(qp->div->row[j][1 + i],
2643 					v, qp->div->row[j][2 + total + div]);
2644 		}
2645 	}
2646 	isl_int_clear(v);
2647 }
2648 
2649 /* Check if the last non-zero coefficient is bigger that half of the
2650  * denominator.  If so, we will invert the div to further reduce the number
2651  * of distinct divs that may appear.
2652  * If the last non-zero coefficient is exactly half the denominator,
2653  * then we continue looking for earlier coefficients that are bigger
2654  * than half the denominator.
2655  */
needs_invert(__isl_keep isl_mat * div,int row)2656 static int needs_invert(__isl_keep isl_mat *div, int row)
2657 {
2658 	int i;
2659 	int cmp;
2660 
2661 	for (i = div->n_col - 1; i >= 1; --i) {
2662 		if (isl_int_is_zero(div->row[row][i]))
2663 			continue;
2664 		isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
2665 		cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
2666 		isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
2667 		if (cmp)
2668 			return cmp > 0;
2669 		if (i == 1)
2670 			return 1;
2671 	}
2672 
2673 	return 0;
2674 }
2675 
2676 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2677  * We only invert the coefficients of e (and the coefficient of q in
2678  * later divs and in the rows of "mat").  After calling this function, the
2679  * coefficients of e should be reduced again.
2680  */
invert_div(__isl_keep isl_qpolynomial * qp,int div,__isl_keep isl_mat ** mat)2681 static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
2682 	__isl_keep isl_mat **mat)
2683 {
2684 	unsigned total = qp->div->n_col - qp->div->n_row - 2;
2685 
2686 	isl_seq_neg(qp->div->row[div] + 1,
2687 		    qp->div->row[div] + 1, qp->div->n_col - 1);
2688 	isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
2689 	isl_int_add(qp->div->row[div][1],
2690 		    qp->div->row[div][1], qp->div->row[div][0]);
2691 	*mat = isl_mat_col_neg(*mat, 1 + total + div);
2692 	isl_mat_col_mul(qp->div, 2 + total + div,
2693 			qp->div->ctx->negone, 2 + total + div);
2694 }
2695 
2696 /* Reduce all divs of "qp" to have coefficients
2697  * in the interval [0, d-1], with d the denominator and such that the
2698  * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2699  * The modifications to the integer divisions need to be reflected
2700  * in the factors of the polynomial that refer to the original
2701  * integer divisions.  To this end, the modifications are collected
2702  * as a set of affine expressions and then plugged into the polynomial.
2703  *
2704  * After the reduction, some divs may have become redundant or identical,
2705  * so we call substitute_non_divs and sort_divs.  If these functions
2706  * eliminate divs or merge two or more divs into one, the coefficients
2707  * of the enclosing divs may have to be reduced again, so we call
2708  * ourselves recursively if the number of divs decreases.
2709  */
reduce_divs(__isl_take isl_qpolynomial * qp)2710 static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
2711 {
2712 	int i;
2713 	isl_ctx *ctx;
2714 	isl_mat *mat;
2715 	isl_poly **s;
2716 	unsigned o_div;
2717 	isl_size n_div, total, new_n_div;
2718 
2719 	total = isl_qpolynomial_domain_dim(qp, isl_dim_all);
2720 	n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
2721 	o_div = isl_qpolynomial_domain_offset(qp, isl_dim_div);
2722 	if (total < 0 || n_div < 0)
2723 		return isl_qpolynomial_free(qp);
2724 	ctx = isl_qpolynomial_get_ctx(qp);
2725 	mat = isl_mat_zero(ctx, n_div, 1 + total);
2726 
2727 	for (i = 0; i < n_div; ++i)
2728 		mat = isl_mat_set_element_si(mat, i, o_div + i, 1);
2729 
2730 	for (i = 0; i < qp->div->n_row; ++i) {
2731 		normalize_div(qp, i);
2732 		reduce_div(qp, i, &mat);
2733 		if (needs_invert(qp->div, i)) {
2734 			invert_div(qp, i, &mat);
2735 			reduce_div(qp, i, &mat);
2736 		}
2737 	}
2738 	if (!mat)
2739 		goto error;
2740 
2741 	s = isl_alloc_array(ctx, struct isl_poly *, n_div);
2742 	if (n_div && !s)
2743 		goto error;
2744 	for (i = 0; i < n_div; ++i)
2745 		s[i] = isl_poly_from_affine(ctx, mat->row[i], ctx->one,
2746 					    1 + total);
2747 	qp->poly = isl_poly_subs(qp->poly, o_div - 1, n_div, s);
2748 	for (i = 0; i < n_div; ++i)
2749 		isl_poly_free(s[i]);
2750 	free(s);
2751 	if (!qp->poly)
2752 		goto error;
2753 
2754 	isl_mat_free(mat);
2755 
2756 	qp = substitute_non_divs(qp);
2757 	qp = sort_divs(qp);
2758 	new_n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
2759 	if (new_n_div < 0)
2760 		return isl_qpolynomial_free(qp);
2761 	if (new_n_div < n_div)
2762 		return reduce_divs(qp);
2763 
2764 	return qp;
2765 error:
2766 	isl_qpolynomial_free(qp);
2767 	isl_mat_free(mat);
2768 	return NULL;
2769 }
2770 
isl_qpolynomial_rat_cst_on_domain(__isl_take isl_space * domain,const isl_int n,const isl_int d)2771 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
2772 	__isl_take isl_space *domain, const isl_int n, const isl_int d)
2773 {
2774 	struct isl_qpolynomial *qp;
2775 	isl_poly_cst *cst;
2776 
2777 	qp = isl_qpolynomial_zero_on_domain(domain);
2778 	if (!qp)
2779 		return NULL;
2780 
2781 	cst = isl_poly_as_cst(qp->poly);
2782 	isl_int_set(cst->n, n);
2783 	isl_int_set(cst->d, d);
2784 
2785 	return qp;
2786 }
2787 
2788 /* Return an isl_qpolynomial that is equal to "val" on domain space "domain".
2789  */
isl_qpolynomial_val_on_domain(__isl_take isl_space * domain,__isl_take isl_val * val)2790 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
2791 	__isl_take isl_space *domain, __isl_take isl_val *val)
2792 {
2793 	isl_qpolynomial *qp;
2794 	isl_poly_cst *cst;
2795 
2796 	qp = isl_qpolynomial_zero_on_domain(domain);
2797 	if (!qp || !val)
2798 		goto error;
2799 
2800 	cst = isl_poly_as_cst(qp->poly);
2801 	isl_int_set(cst->n, val->n);
2802 	isl_int_set(cst->d, val->d);
2803 
2804 	isl_val_free(val);
2805 	return qp;
2806 error:
2807 	isl_val_free(val);
2808 	isl_qpolynomial_free(qp);
2809 	return NULL;
2810 }
2811 
poly_set_active(__isl_keep isl_poly * poly,int * active,int d)2812 static isl_stat poly_set_active(__isl_keep isl_poly *poly, int *active, int d)
2813 {
2814 	isl_bool is_cst;
2815 	isl_poly_rec *rec;
2816 	int i;
2817 
2818 	is_cst = isl_poly_is_cst(poly);
2819 	if (is_cst < 0)
2820 		return isl_stat_error;
2821 	if (is_cst)
2822 		return isl_stat_ok;
2823 
2824 	if (poly->var < d)
2825 		active[poly->var] = 1;
2826 
2827 	rec = isl_poly_as_rec(poly);
2828 	for (i = 0; i < rec->n; ++i)
2829 		if (poly_set_active(rec->p[i], active, d) < 0)
2830 			return isl_stat_error;
2831 
2832 	return isl_stat_ok;
2833 }
2834 
set_active(__isl_keep isl_qpolynomial * qp,int * active)2835 static isl_stat set_active(__isl_keep isl_qpolynomial *qp, int *active)
2836 {
2837 	int i, j;
2838 	isl_size d;
2839 	isl_space *space;
2840 
2841 	space = isl_qpolynomial_peek_domain_space(qp);
2842 	d = isl_space_dim(space, isl_dim_all);
2843 	if (d < 0 || !active)
2844 		return isl_stat_error;
2845 
2846 	for (i = 0; i < d; ++i)
2847 		for (j = 0; j < qp->div->n_row; ++j) {
2848 			if (isl_int_is_zero(qp->div->row[j][2 + i]))
2849 				continue;
2850 			active[i] = 1;
2851 			break;
2852 		}
2853 
2854 	return poly_set_active(qp->poly, active, d);
2855 }
2856 
2857 #undef TYPE
2858 #define TYPE	isl_qpolynomial
2859 static
2860 #include "check_type_range_templ.c"
2861 
isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type,unsigned first,unsigned n)2862 isl_bool isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
2863 	enum isl_dim_type type, unsigned first, unsigned n)
2864 {
2865 	int i;
2866 	int *active = NULL;
2867 	isl_bool involves = isl_bool_false;
2868 	isl_size offset;
2869 	isl_size d;
2870 	isl_space *space;
2871 
2872 	if (!qp)
2873 		return isl_bool_error;
2874 	if (n == 0)
2875 		return isl_bool_false;
2876 
2877 	if (isl_qpolynomial_check_range(qp, type, first, n) < 0)
2878 		return isl_bool_error;
2879 	isl_assert(qp->dim->ctx, type == isl_dim_param ||
2880 				 type == isl_dim_in, return isl_bool_error);
2881 
2882 	space = isl_qpolynomial_peek_domain_space(qp);
2883 	d = isl_space_dim(space, isl_dim_all);
2884 	if (d < 0)
2885 		return isl_bool_error;
2886 	active = isl_calloc_array(qp->dim->ctx, int, d);
2887 	if (set_active(qp, active) < 0)
2888 		goto error;
2889 
2890 	offset = isl_qpolynomial_domain_var_offset(qp, domain_type(type));
2891 	if (offset < 0)
2892 		goto error;
2893 	first += offset;
2894 	for (i = 0; i < n; ++i)
2895 		if (active[first + i]) {
2896 			involves = isl_bool_true;
2897 			break;
2898 		}
2899 
2900 	free(active);
2901 
2902 	return involves;
2903 error:
2904 	free(active);
2905 	return isl_bool_error;
2906 }
2907 
2908 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2909  * of the divs that do appear in the quasi-polynomial.
2910  */
remove_redundant_divs(__isl_take isl_qpolynomial * qp)2911 static __isl_give isl_qpolynomial *remove_redundant_divs(
2912 	__isl_take isl_qpolynomial *qp)
2913 {
2914 	int i, j;
2915 	isl_size div_pos;
2916 	int len;
2917 	int skip;
2918 	int *active = NULL;
2919 	int *reordering = NULL;
2920 	int redundant = 0;
2921 	int n_div;
2922 	isl_ctx *ctx;
2923 
2924 	if (!qp)
2925 		return NULL;
2926 	if (qp->div->n_row == 0)
2927 		return qp;
2928 
2929 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
2930 	if (div_pos < 0)
2931 		return isl_qpolynomial_free(qp);
2932 	len = qp->div->n_col - 2;
2933 	ctx = isl_qpolynomial_get_ctx(qp);
2934 	active = isl_calloc_array(ctx, int, len);
2935 	if (!active)
2936 		goto error;
2937 
2938 	if (poly_set_active(qp->poly, active, len) < 0)
2939 		goto error;
2940 
2941 	for (i = qp->div->n_row - 1; i >= 0; --i) {
2942 		if (!active[div_pos + i]) {
2943 			redundant = 1;
2944 			continue;
2945 		}
2946 		for (j = 0; j < i; ++j) {
2947 			if (isl_int_is_zero(qp->div->row[i][2 + div_pos + j]))
2948 				continue;
2949 			active[div_pos + j] = 1;
2950 			break;
2951 		}
2952 	}
2953 
2954 	if (!redundant) {
2955 		free(active);
2956 		return qp;
2957 	}
2958 
2959 	reordering = isl_alloc_array(qp->div->ctx, int, len);
2960 	if (!reordering)
2961 		goto error;
2962 
2963 	for (i = 0; i < div_pos; ++i)
2964 		reordering[i] = i;
2965 
2966 	skip = 0;
2967 	n_div = qp->div->n_row;
2968 	for (i = 0; i < n_div; ++i) {
2969 		if (!active[div_pos + i]) {
2970 			qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
2971 			qp->div = isl_mat_drop_cols(qp->div,
2972 						    2 + div_pos + i - skip, 1);
2973 			skip++;
2974 		}
2975 		reordering[div_pos + i] = div_pos + i - skip;
2976 	}
2977 
2978 	qp->poly = reorder(qp->poly, reordering);
2979 
2980 	if (!qp->poly || !qp->div)
2981 		goto error;
2982 
2983 	free(active);
2984 	free(reordering);
2985 
2986 	return qp;
2987 error:
2988 	free(active);
2989 	free(reordering);
2990 	isl_qpolynomial_free(qp);
2991 	return NULL;
2992 }
2993 
isl_poly_drop(__isl_take isl_poly * poly,unsigned first,unsigned n)2994 __isl_give isl_poly *isl_poly_drop(__isl_take isl_poly *poly,
2995 	unsigned first, unsigned n)
2996 {
2997 	int i;
2998 	isl_poly_rec *rec;
2999 
3000 	if (!poly)
3001 		return NULL;
3002 	if (n == 0 || poly->var < 0 || poly->var < first)
3003 		return poly;
3004 	if (poly->var < first + n) {
3005 		poly = replace_by_constant_term(poly);
3006 		return isl_poly_drop(poly, first, n);
3007 	}
3008 	poly = isl_poly_cow(poly);
3009 	if (!poly)
3010 		return NULL;
3011 	poly->var -= n;
3012 	rec = isl_poly_as_rec(poly);
3013 	if (!rec)
3014 		goto error;
3015 
3016 	for (i = 0; i < rec->n; ++i) {
3017 		rec->p[i] = isl_poly_drop(rec->p[i], first, n);
3018 		if (!rec->p[i])
3019 			goto error;
3020 	}
3021 
3022 	return poly;
3023 error:
3024 	isl_poly_free(poly);
3025 	return NULL;
3026 }
3027 
isl_qpolynomial_set_dim_name(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned pos,const char * s)3028 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
3029 	__isl_take isl_qpolynomial *qp,
3030 	enum isl_dim_type type, unsigned pos, const char *s)
3031 {
3032 	isl_space *space;
3033 
3034 	if (!qp)
3035 		return NULL;
3036 	if (type == isl_dim_out)
3037 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
3038 			"cannot set name of output/set dimension",
3039 			return isl_qpolynomial_free(qp));
3040 	type = domain_type(type);
3041 	space = isl_qpolynomial_take_domain_space(qp);
3042 	space = isl_space_set_dim_name(space, type, pos, s);
3043 	qp = isl_qpolynomial_restore_domain_space(qp, space);
3044 	return qp;
3045 }
3046 
isl_qpolynomial_drop_dims(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned first,unsigned n)3047 __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
3048 	__isl_take isl_qpolynomial *qp,
3049 	enum isl_dim_type type, unsigned first, unsigned n)
3050 {
3051 	isl_space *space;
3052 	isl_size offset;
3053 
3054 	if (!qp)
3055 		return NULL;
3056 	if (type == isl_dim_out)
3057 		isl_die(qp->dim->ctx, isl_error_invalid,
3058 			"cannot drop output/set dimension",
3059 			goto error);
3060 	if (isl_qpolynomial_check_range(qp, type, first, n) < 0)
3061 		return isl_qpolynomial_free(qp);
3062 	type = domain_type(type);
3063 	if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
3064 		return qp;
3065 
3066 
3067 	isl_assert(qp->dim->ctx, type == isl_dim_param ||
3068 				 type == isl_dim_set, goto error);
3069 
3070 	space = isl_qpolynomial_take_domain_space(qp);
3071 	space = isl_space_drop_dims(space, type, first, n);
3072 	qp = isl_qpolynomial_restore_domain_space(qp, space);
3073 
3074 	qp = isl_qpolynomial_cow(qp);
3075 	if (!qp)
3076 		return NULL;
3077 
3078 	offset = isl_qpolynomial_domain_var_offset(qp, type);
3079 	if (offset < 0)
3080 		goto error;
3081 	first += offset;
3082 
3083 	qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
3084 	if (!qp->div)
3085 		goto error;
3086 
3087 	qp->poly = isl_poly_drop(qp->poly, first, n);
3088 	if (!qp->poly)
3089 		goto error;
3090 
3091 	return qp;
3092 error:
3093 	isl_qpolynomial_free(qp);
3094 	return NULL;
3095 }
3096 
3097 /* Project the domain of the quasi-polynomial onto its parameter space.
3098  * The quasi-polynomial may not involve any of the domain dimensions.
3099  */
isl_qpolynomial_project_domain_on_params(__isl_take isl_qpolynomial * qp)3100 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
3101 	__isl_take isl_qpolynomial *qp)
3102 {
3103 	isl_space *space;
3104 	isl_size n;
3105 	isl_bool involves;
3106 
3107 	n = isl_qpolynomial_dim(qp, isl_dim_in);
3108 	if (n < 0)
3109 		return isl_qpolynomial_free(qp);
3110 	involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n);
3111 	if (involves < 0)
3112 		return isl_qpolynomial_free(qp);
3113 	if (involves)
3114 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
3115 			"polynomial involves some of the domain dimensions",
3116 			return isl_qpolynomial_free(qp));
3117 	qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n);
3118 	space = isl_qpolynomial_get_domain_space(qp);
3119 	space = isl_space_params(space);
3120 	qp = isl_qpolynomial_reset_domain_space(qp, space);
3121 	return qp;
3122 }
3123 
isl_qpolynomial_substitute_equalities_lifted(__isl_take isl_qpolynomial * qp,__isl_take isl_basic_set * eq)3124 static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
3125 	__isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
3126 {
3127 	int i, j, k;
3128 	isl_int denom;
3129 	unsigned total;
3130 	unsigned n_div;
3131 	isl_poly *poly;
3132 
3133 	if (!eq)
3134 		goto error;
3135 	if (eq->n_eq == 0) {
3136 		isl_basic_set_free(eq);
3137 		return qp;
3138 	}
3139 
3140 	qp = isl_qpolynomial_cow(qp);
3141 	if (!qp)
3142 		goto error;
3143 	qp->div = isl_mat_cow(qp->div);
3144 	if (!qp->div)
3145 		goto error;
3146 
3147 	total = isl_basic_set_offset(eq, isl_dim_div);
3148 	n_div = eq->n_div;
3149 	isl_int_init(denom);
3150 	for (i = 0; i < eq->n_eq; ++i) {
3151 		j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
3152 		if (j < 0 || j == 0 || j >= total)
3153 			continue;
3154 
3155 		for (k = 0; k < qp->div->n_row; ++k) {
3156 			if (isl_int_is_zero(qp->div->row[k][1 + j]))
3157 				continue;
3158 			isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
3159 					&qp->div->row[k][0]);
3160 			normalize_div(qp, k);
3161 		}
3162 
3163 		if (isl_int_is_pos(eq->eq[i][j]))
3164 			isl_seq_neg(eq->eq[i], eq->eq[i], total);
3165 		isl_int_abs(denom, eq->eq[i][j]);
3166 		isl_int_set_si(eq->eq[i][j], 0);
3167 
3168 		poly = isl_poly_from_affine(qp->dim->ctx,
3169 						   eq->eq[i], denom, total);
3170 		qp->poly = isl_poly_subs(qp->poly, j - 1, 1, &poly);
3171 		isl_poly_free(poly);
3172 	}
3173 	isl_int_clear(denom);
3174 
3175 	if (!qp->poly)
3176 		goto error;
3177 
3178 	isl_basic_set_free(eq);
3179 
3180 	qp = substitute_non_divs(qp);
3181 	qp = sort_divs(qp);
3182 
3183 	return qp;
3184 error:
3185 	isl_basic_set_free(eq);
3186 	isl_qpolynomial_free(qp);
3187 	return NULL;
3188 }
3189 
3190 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
3191  */
isl_qpolynomial_substitute_equalities(__isl_take isl_qpolynomial * qp,__isl_take isl_basic_set * eq)3192 __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
3193 	__isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
3194 {
3195 	if (!qp || !eq)
3196 		goto error;
3197 	if (qp->div->n_row > 0)
3198 		eq = isl_basic_set_add_dims(eq, isl_dim_set, qp->div->n_row);
3199 	return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
3200 error:
3201 	isl_basic_set_free(eq);
3202 	isl_qpolynomial_free(qp);
3203 	return NULL;
3204 }
3205 
3206 /* Look for equalities among the variables shared by context and qp
3207  * and the integer divisions of qp, if any.
3208  * The equalities are then used to eliminate variables and/or integer
3209  * divisions from qp.
3210  */
isl_qpolynomial_gist(__isl_take isl_qpolynomial * qp,__isl_take isl_set * context)3211 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
3212 	__isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
3213 {
3214 	isl_local_space *ls;
3215 	isl_basic_set *aff;
3216 
3217 	ls = isl_qpolynomial_get_domain_local_space(qp);
3218 	context = isl_local_space_lift_set(ls, context);
3219 
3220 	aff = isl_set_affine_hull(context);
3221 	return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
3222 }
3223 
isl_qpolynomial_gist_params(__isl_take isl_qpolynomial * qp,__isl_take isl_set * context)3224 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
3225 	__isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
3226 {
3227 	isl_space *space = isl_qpolynomial_get_domain_space(qp);
3228 	isl_set *dom_context = isl_set_universe(space);
3229 	dom_context = isl_set_intersect_params(dom_context, context);
3230 	return isl_qpolynomial_gist(qp, dom_context);
3231 }
3232 
3233 /* Return a zero isl_qpolynomial in the given space.
3234  *
3235  * This is a helper function for isl_pw_*_as_* that ensures a uniform
3236  * interface over all piecewise types.
3237  */
isl_qpolynomial_zero_in_space(__isl_take isl_space * space)3238 static __isl_give isl_qpolynomial *isl_qpolynomial_zero_in_space(
3239 	__isl_take isl_space *space)
3240 {
3241 	return isl_qpolynomial_zero_on_domain(isl_space_domain(space));
3242 }
3243 
3244 #define isl_qpolynomial_involves_nan isl_qpolynomial_is_nan
3245 
3246 #undef PW
3247 #define PW isl_pw_qpolynomial
3248 #undef BASE
3249 #define BASE qpolynomial
3250 #undef EL_IS_ZERO
3251 #define EL_IS_ZERO is_zero
3252 #undef ZERO
3253 #define ZERO zero
3254 #undef IS_ZERO
3255 #define IS_ZERO is_zero
3256 #undef FIELD
3257 #define FIELD qp
3258 #undef DEFAULT_IS_ZERO
3259 #define DEFAULT_IS_ZERO 1
3260 
3261 #include <isl_pw_templ.c>
3262 #include <isl_pw_un_op_templ.c>
3263 #include <isl_pw_add_disjoint_templ.c>
3264 #include <isl_pw_domain_reverse_templ.c>
3265 #include <isl_pw_eval.c>
3266 #include <isl_pw_fix_templ.c>
3267 #include <isl_pw_from_range_templ.c>
3268 #include <isl_pw_insert_dims_templ.c>
3269 #include <isl_pw_lift_templ.c>
3270 #include <isl_pw_morph_templ.c>
3271 #include <isl_pw_move_dims_templ.c>
3272 #include <isl_pw_neg_templ.c>
3273 #include <isl_pw_opt_templ.c>
3274 #include <isl_pw_split_dims_templ.c>
3275 #include <isl_pw_sub_templ.c>
3276 
3277 #undef BASE
3278 #define BASE pw_qpolynomial
3279 
3280 #include <isl_union_single.c>
3281 #include <isl_union_domain_reverse_templ.c>
3282 #include <isl_union_eval.c>
3283 #include <isl_union_neg.c>
3284 #include <isl_union_sub_templ.c>
3285 
isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial * pwqp)3286 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
3287 {
3288 	if (!pwqp)
3289 		return -1;
3290 
3291 	if (pwqp->n != -1)
3292 		return 0;
3293 
3294 	if (!isl_set_plain_is_universe(pwqp->p[0].set))
3295 		return 0;
3296 
3297 	return isl_qpolynomial_is_one(pwqp->p[0].qp);
3298 }
3299 
isl_pw_qpolynomial_add(__isl_take isl_pw_qpolynomial * pwqp1,__isl_take isl_pw_qpolynomial * pwqp2)3300 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
3301 	__isl_take isl_pw_qpolynomial *pwqp1,
3302 	__isl_take isl_pw_qpolynomial *pwqp2)
3303 {
3304 	return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2);
3305 }
3306 
isl_pw_qpolynomial_mul(__isl_take isl_pw_qpolynomial * pwqp1,__isl_take isl_pw_qpolynomial * pwqp2)3307 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
3308 	__isl_take isl_pw_qpolynomial *pwqp1,
3309 	__isl_take isl_pw_qpolynomial *pwqp2)
3310 {
3311 	int i, j, n;
3312 	struct isl_pw_qpolynomial *res;
3313 
3314 	if (!pwqp1 || !pwqp2)
3315 		goto error;
3316 
3317 	isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim),
3318 			goto error);
3319 
3320 	if (isl_pw_qpolynomial_is_zero(pwqp1)) {
3321 		isl_pw_qpolynomial_free(pwqp2);
3322 		return pwqp1;
3323 	}
3324 
3325 	if (isl_pw_qpolynomial_is_zero(pwqp2)) {
3326 		isl_pw_qpolynomial_free(pwqp1);
3327 		return pwqp2;
3328 	}
3329 
3330 	if (isl_pw_qpolynomial_is_one(pwqp1)) {
3331 		isl_pw_qpolynomial_free(pwqp1);
3332 		return pwqp2;
3333 	}
3334 
3335 	if (isl_pw_qpolynomial_is_one(pwqp2)) {
3336 		isl_pw_qpolynomial_free(pwqp2);
3337 		return pwqp1;
3338 	}
3339 
3340 	n = pwqp1->n * pwqp2->n;
3341 	res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n);
3342 
3343 	for (i = 0; i < pwqp1->n; ++i) {
3344 		for (j = 0; j < pwqp2->n; ++j) {
3345 			struct isl_set *common;
3346 			struct isl_qpolynomial *prod;
3347 			common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
3348 						isl_set_copy(pwqp2->p[j].set));
3349 			if (isl_set_plain_is_empty(common)) {
3350 				isl_set_free(common);
3351 				continue;
3352 			}
3353 
3354 			prod = isl_qpolynomial_mul(
3355 				isl_qpolynomial_copy(pwqp1->p[i].qp),
3356 				isl_qpolynomial_copy(pwqp2->p[j].qp));
3357 
3358 			res = isl_pw_qpolynomial_add_piece(res, common, prod);
3359 		}
3360 	}
3361 
3362 	isl_pw_qpolynomial_free(pwqp1);
3363 	isl_pw_qpolynomial_free(pwqp2);
3364 
3365 	return res;
3366 error:
3367 	isl_pw_qpolynomial_free(pwqp1);
3368 	isl_pw_qpolynomial_free(pwqp2);
3369 	return NULL;
3370 }
3371 
isl_poly_eval(__isl_take isl_poly * poly,__isl_take isl_vec * vec)3372 __isl_give isl_val *isl_poly_eval(__isl_take isl_poly *poly,
3373 	__isl_take isl_vec *vec)
3374 {
3375 	int i;
3376 	isl_bool is_cst;
3377 	isl_poly_rec *rec;
3378 	isl_val *res;
3379 	isl_val *base;
3380 
3381 	is_cst = isl_poly_is_cst(poly);
3382 	if (is_cst < 0)
3383 		goto error;
3384 	if (is_cst) {
3385 		isl_vec_free(vec);
3386 		res = isl_poly_get_constant_val(poly);
3387 		isl_poly_free(poly);
3388 		return res;
3389 	}
3390 
3391 	rec = isl_poly_as_rec(poly);
3392 	if (!rec || !vec)
3393 		goto error;
3394 
3395 	isl_assert(poly->ctx, rec->n >= 1, goto error);
3396 
3397 	base = isl_val_rat_from_isl_int(poly->ctx,
3398 					vec->el[1 + poly->var], vec->el[0]);
3399 
3400 	res = isl_poly_eval(isl_poly_copy(rec->p[rec->n - 1]),
3401 				isl_vec_copy(vec));
3402 
3403 	for (i = rec->n - 2; i >= 0; --i) {
3404 		res = isl_val_mul(res, isl_val_copy(base));
3405 		res = isl_val_add(res, isl_poly_eval(isl_poly_copy(rec->p[i]),
3406 							    isl_vec_copy(vec)));
3407 	}
3408 
3409 	isl_val_free(base);
3410 	isl_poly_free(poly);
3411 	isl_vec_free(vec);
3412 	return res;
3413 error:
3414 	isl_poly_free(poly);
3415 	isl_vec_free(vec);
3416 	return NULL;
3417 }
3418 
3419 /* Evaluate "qp" in the void point "pnt".
3420  * In particular, return the value NaN.
3421  */
eval_void(__isl_take isl_qpolynomial * qp,__isl_take isl_point * pnt)3422 static __isl_give isl_val *eval_void(__isl_take isl_qpolynomial *qp,
3423 	__isl_take isl_point *pnt)
3424 {
3425 	isl_ctx *ctx;
3426 
3427 	ctx = isl_point_get_ctx(pnt);
3428 	isl_qpolynomial_free(qp);
3429 	isl_point_free(pnt);
3430 	return isl_val_nan(ctx);
3431 }
3432 
isl_qpolynomial_eval(__isl_take isl_qpolynomial * qp,__isl_take isl_point * pnt)3433 __isl_give isl_val *isl_qpolynomial_eval(__isl_take isl_qpolynomial *qp,
3434 	__isl_take isl_point *pnt)
3435 {
3436 	isl_bool is_void;
3437 	isl_vec *ext;
3438 	isl_val *v;
3439 
3440 	if (!qp || !pnt)
3441 		goto error;
3442 	isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error);
3443 	is_void = isl_point_is_void(pnt);
3444 	if (is_void < 0)
3445 		goto error;
3446 	if (is_void)
3447 		return eval_void(qp, pnt);
3448 
3449 	ext = isl_local_extend_point_vec(qp->div, isl_vec_copy(pnt->vec));
3450 
3451 	v = isl_poly_eval(isl_qpolynomial_get_poly(qp), ext);
3452 
3453 	isl_qpolynomial_free(qp);
3454 	isl_point_free(pnt);
3455 
3456 	return v;
3457 error:
3458 	isl_qpolynomial_free(qp);
3459 	isl_point_free(pnt);
3460 	return NULL;
3461 }
3462 
isl_poly_cmp(__isl_keep isl_poly_cst * cst1,__isl_keep isl_poly_cst * cst2)3463 int isl_poly_cmp(__isl_keep isl_poly_cst *cst1, __isl_keep isl_poly_cst *cst2)
3464 {
3465 	int cmp;
3466 	isl_int t;
3467 	isl_int_init(t);
3468 	isl_int_mul(t, cst1->n, cst2->d);
3469 	isl_int_submul(t, cst2->n, cst1->d);
3470 	cmp = isl_int_sgn(t);
3471 	isl_int_clear(t);
3472 	return cmp;
3473 }
3474 
isl_qpolynomial_insert_dims(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned first,unsigned n)3475 __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
3476 	__isl_take isl_qpolynomial *qp, enum isl_dim_type type,
3477 	unsigned first, unsigned n)
3478 {
3479 	unsigned total;
3480 	unsigned g_pos;
3481 	int *exp;
3482 	isl_space *space;
3483 
3484 	if (!qp)
3485 		return NULL;
3486 	if (type == isl_dim_out)
3487 		isl_die(qp->div->ctx, isl_error_invalid,
3488 			"cannot insert output/set dimensions",
3489 			goto error);
3490 	if (isl_qpolynomial_check_range(qp, type, first, 0) < 0)
3491 		return isl_qpolynomial_free(qp);
3492 	type = domain_type(type);
3493 	if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
3494 		return qp;
3495 
3496 	qp = isl_qpolynomial_cow(qp);
3497 	if (!qp)
3498 		return NULL;
3499 
3500 	g_pos = pos(qp->dim, type) + first;
3501 
3502 	qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n);
3503 	if (!qp->div)
3504 		goto error;
3505 
3506 	total = qp->div->n_col - 2;
3507 	if (total > g_pos) {
3508 		int i;
3509 		exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
3510 		if (!exp)
3511 			goto error;
3512 		for (i = 0; i < total - g_pos; ++i)
3513 			exp[i] = i + n;
3514 		qp->poly = expand(qp->poly, exp, g_pos);
3515 		free(exp);
3516 		if (!qp->poly)
3517 			goto error;
3518 	}
3519 
3520 	space = isl_qpolynomial_take_domain_space(qp);
3521 	space = isl_space_insert_dims(space, type, first, n);
3522 	qp = isl_qpolynomial_restore_domain_space(qp, space);
3523 
3524 	return qp;
3525 error:
3526 	isl_qpolynomial_free(qp);
3527 	return NULL;
3528 }
3529 
isl_qpolynomial_add_dims(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned n)3530 __isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
3531 	__isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
3532 {
3533 	isl_size pos;
3534 
3535 	pos = isl_qpolynomial_dim(qp, type);
3536 	if (pos < 0)
3537 		return isl_qpolynomial_free(qp);
3538 
3539 	return isl_qpolynomial_insert_dims(qp, type, pos, n);
3540 }
3541 
reordering_move(isl_ctx * ctx,unsigned len,unsigned dst,unsigned src,unsigned n)3542 static int *reordering_move(isl_ctx *ctx,
3543 	unsigned len, unsigned dst, unsigned src, unsigned n)
3544 {
3545 	int i;
3546 	int *reordering;
3547 
3548 	reordering = isl_alloc_array(ctx, int, len);
3549 	if (!reordering)
3550 		return NULL;
3551 
3552 	if (dst <= src) {
3553 		for (i = 0; i < dst; ++i)
3554 			reordering[i] = i;
3555 		for (i = 0; i < n; ++i)
3556 			reordering[src + i] = dst + i;
3557 		for (i = 0; i < src - dst; ++i)
3558 			reordering[dst + i] = dst + n + i;
3559 		for (i = 0; i < len - src - n; ++i)
3560 			reordering[src + n + i] = src + n + i;
3561 	} else {
3562 		for (i = 0; i < src; ++i)
3563 			reordering[i] = i;
3564 		for (i = 0; i < n; ++i)
3565 			reordering[src + i] = dst + i;
3566 		for (i = 0; i < dst - src; ++i)
3567 			reordering[src + n + i] = src + i;
3568 		for (i = 0; i < len - dst - n; ++i)
3569 			reordering[dst + n + i] = dst + n + i;
3570 	}
3571 
3572 	return reordering;
3573 }
3574 
3575 /* Move the "n" variables starting at "src_pos" of "qp" to "dst_pos".
3576  * Only modify the polynomial expression and the local variables of "qp".
3577  * The caller is responsible for modifying the space accordingly.
3578  */
local_poly_move_dims(__isl_take isl_qpolynomial * qp,unsigned dst_pos,unsigned src_pos,unsigned n)3579 static __isl_give isl_qpolynomial *local_poly_move_dims(
3580 	__isl_take isl_qpolynomial *qp,
3581 	unsigned dst_pos, unsigned src_pos, unsigned n)
3582 {
3583 	isl_ctx *ctx;
3584 	isl_size total;
3585 	int *reordering;
3586 	isl_local *local;
3587 	isl_poly *poly;
3588 
3589 	local = isl_qpolynomial_take_local(qp);
3590 	local = isl_local_move_vars(local, dst_pos, src_pos, n);
3591 	qp = isl_qpolynomial_restore_local(qp, local);
3592 	qp = sort_divs(qp);
3593 
3594 	total = isl_qpolynomial_domain_dim(qp, isl_dim_all);
3595 	if (total < 0)
3596 		return isl_qpolynomial_free(qp);
3597 	ctx = isl_qpolynomial_get_ctx(qp);
3598 	reordering = reordering_move(ctx, total, dst_pos, src_pos, n);
3599 	if (!reordering)
3600 		return isl_qpolynomial_free(qp);
3601 
3602 	poly = isl_qpolynomial_take_poly(qp);
3603 	poly = reorder(poly, reordering);
3604 	qp = isl_qpolynomial_restore_poly(qp, poly);
3605 	free(reordering);
3606 
3607 	return qp;
3608 }
3609 
isl_qpolynomial_move_dims(__isl_take isl_qpolynomial * qp,enum isl_dim_type dst_type,unsigned dst_pos,enum isl_dim_type src_type,unsigned src_pos,unsigned n)3610 __isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
3611 	__isl_take isl_qpolynomial *qp,
3612 	enum isl_dim_type dst_type, unsigned dst_pos,
3613 	enum isl_dim_type src_type, unsigned src_pos, unsigned n)
3614 {
3615 	isl_ctx *ctx;
3616 	unsigned g_dst_pos;
3617 	unsigned g_src_pos;
3618 	isl_size src_off, dst_off;
3619 	isl_space *space;
3620 
3621 	if (!qp)
3622 		return NULL;
3623 
3624 	ctx = isl_qpolynomial_get_ctx(qp);
3625 	if (dst_type == isl_dim_out || src_type == isl_dim_out)
3626 		isl_die(ctx, isl_error_invalid,
3627 			"cannot move output/set dimension",
3628 			return isl_qpolynomial_free(qp));
3629 	if (src_type == isl_dim_div || dst_type == isl_dim_div)
3630 		isl_die(ctx, isl_error_invalid, "cannot move local variables",
3631 			return isl_qpolynomial_free(qp));
3632 	if (isl_qpolynomial_check_range(qp, src_type, src_pos, n) < 0)
3633 		return isl_qpolynomial_free(qp);
3634 	if (dst_type == isl_dim_in)
3635 		dst_type = isl_dim_set;
3636 	if (src_type == isl_dim_in)
3637 		src_type = isl_dim_set;
3638 
3639 	if (n == 0 &&
3640 	    !isl_space_is_named_or_nested(qp->dim, src_type) &&
3641 	    !isl_space_is_named_or_nested(qp->dim, dst_type))
3642 		return qp;
3643 
3644 	src_off = isl_qpolynomial_domain_var_offset(qp, src_type);
3645 	dst_off = isl_qpolynomial_domain_var_offset(qp, dst_type);
3646 	if (src_off < 0 || dst_off < 0)
3647 		return isl_qpolynomial_free(qp);
3648 
3649 	g_dst_pos = dst_off + dst_pos;
3650 	g_src_pos = src_off + src_pos;
3651 	if (dst_type > src_type)
3652 		g_dst_pos -= n;
3653 
3654 	qp = local_poly_move_dims(qp, g_dst_pos, g_src_pos, n);
3655 
3656 	space = isl_qpolynomial_take_domain_space(qp);
3657 	space = isl_space_move_dims(space, dst_type, dst_pos,
3658 					src_type, src_pos, n);
3659 	qp = isl_qpolynomial_restore_domain_space(qp, space);
3660 
3661 	return qp;
3662 }
3663 
3664 /* Given a quasi-polynomial on a domain (A -> B),
3665  * interchange A and B in the wrapped domain
3666  * to obtain a quasi-polynomial on the domain (B -> A).
3667  */
isl_qpolynomial_domain_reverse(__isl_take isl_qpolynomial * qp)3668 __isl_give isl_qpolynomial *isl_qpolynomial_domain_reverse(
3669 	__isl_take isl_qpolynomial *qp)
3670 {
3671 	isl_space *space;
3672 	isl_size n_in, n_out, offset;
3673 
3674 	space = isl_qpolynomial_peek_domain_space(qp);
3675 	offset = isl_space_offset(space, isl_dim_set);
3676 	n_in = isl_space_wrapped_dim(space, isl_dim_set, isl_dim_in);
3677 	n_out = isl_space_wrapped_dim(space, isl_dim_set, isl_dim_out);
3678 	if (offset < 0 || n_in < 0 || n_out < 0)
3679 		return isl_qpolynomial_free(qp);
3680 
3681 	qp = local_poly_move_dims(qp, offset, offset + n_in, n_out);
3682 
3683 	space = isl_qpolynomial_take_domain_space(qp);
3684 	space = isl_space_wrapped_reverse(space);
3685 	qp = isl_qpolynomial_restore_domain_space(qp, space);
3686 
3687 	return qp;
3688 }
3689 
isl_qpolynomial_from_affine(__isl_take isl_space * space,isl_int * f,isl_int denom)3690 __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(
3691 	__isl_take isl_space *space, isl_int *f, isl_int denom)
3692 {
3693 	isl_size d;
3694 	isl_poly *poly;
3695 
3696 	space = isl_space_domain(space);
3697 	if (!space)
3698 		return NULL;
3699 
3700 	d = isl_space_dim(space, isl_dim_all);
3701 	poly = d < 0 ? NULL : isl_poly_from_affine(space->ctx, f, denom, 1 + d);
3702 
3703 	return isl_qpolynomial_alloc(space, 0, poly);
3704 }
3705 
isl_qpolynomial_from_aff(__isl_take isl_aff * aff)3706 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff)
3707 {
3708 	isl_ctx *ctx;
3709 	isl_poly *poly;
3710 	isl_qpolynomial *qp;
3711 
3712 	if (!aff)
3713 		return NULL;
3714 
3715 	ctx = isl_aff_get_ctx(aff);
3716 	poly = isl_poly_from_affine(ctx, aff->v->el + 1, aff->v->el[0],
3717 				    aff->v->size - 1);
3718 
3719 	qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff),
3720 				    aff->ls->div->n_row, poly);
3721 	if (!qp)
3722 		goto error;
3723 
3724 	isl_mat_free(qp->div);
3725 	qp->div = isl_mat_copy(aff->ls->div);
3726 	qp->div = isl_mat_cow(qp->div);
3727 	if (!qp->div)
3728 		goto error;
3729 
3730 	isl_aff_free(aff);
3731 	qp = reduce_divs(qp);
3732 	qp = remove_redundant_divs(qp);
3733 	return qp;
3734 error:
3735 	isl_aff_free(aff);
3736 	return isl_qpolynomial_free(qp);
3737 }
3738 
isl_pw_qpolynomial_from_pw_aff(__isl_take isl_pw_aff * pwaff)3739 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3740 	__isl_take isl_pw_aff *pwaff)
3741 {
3742 	int i;
3743 	isl_pw_qpolynomial *pwqp;
3744 
3745 	if (!pwaff)
3746 		return NULL;
3747 
3748 	pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff),
3749 						pwaff->n);
3750 
3751 	for (i = 0; i < pwaff->n; ++i) {
3752 		isl_set *dom;
3753 		isl_qpolynomial *qp;
3754 
3755 		dom = isl_set_copy(pwaff->p[i].set);
3756 		qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff));
3757 		pwqp = isl_pw_qpolynomial_add_piece(pwqp,  dom, qp);
3758 	}
3759 
3760 	isl_pw_aff_free(pwaff);
3761 	return pwqp;
3762 }
3763 
isl_qpolynomial_from_constraint(__isl_take isl_constraint * c,enum isl_dim_type type,unsigned pos)3764 __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
3765 	__isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
3766 {
3767 	isl_aff *aff;
3768 
3769 	aff = isl_constraint_get_bound(c, type, pos);
3770 	isl_constraint_free(c);
3771 	return isl_qpolynomial_from_aff(aff);
3772 }
3773 
3774 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3775  * in "qp" by subs[i].
3776  */
isl_qpolynomial_substitute(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned first,unsigned n,__isl_keep isl_qpolynomial ** subs)3777 __isl_give isl_qpolynomial *isl_qpolynomial_substitute(
3778 	__isl_take isl_qpolynomial *qp,
3779 	enum isl_dim_type type, unsigned first, unsigned n,
3780 	__isl_keep isl_qpolynomial **subs)
3781 {
3782 	int i;
3783 	isl_poly *poly;
3784 	isl_poly **polys;
3785 
3786 	if (n == 0)
3787 		return qp;
3788 
3789 	if (!qp)
3790 		return NULL;
3791 
3792 	if (type == isl_dim_out)
3793 		isl_die(qp->dim->ctx, isl_error_invalid,
3794 			"cannot substitute output/set dimension",
3795 			goto error);
3796 	if (isl_qpolynomial_check_range(qp, type, first, n) < 0)
3797 		return isl_qpolynomial_free(qp);
3798 	type = domain_type(type);
3799 
3800 	for (i = 0; i < n; ++i)
3801 		if (!subs[i])
3802 			goto error;
3803 
3804 	for (i = 0; i < n; ++i)
3805 		if (isl_qpolynomial_check_equal_space(qp, subs[i]) < 0)
3806 			goto error;
3807 
3808 	isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
3809 	for (i = 0; i < n; ++i)
3810 		isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
3811 
3812 	first += pos(qp->dim, type);
3813 
3814 	polys = isl_alloc_array(qp->dim->ctx, struct isl_poly *, n);
3815 	if (!polys)
3816 		goto error;
3817 	for (i = 0; i < n; ++i)
3818 		polys[i] = subs[i]->poly;
3819 
3820 	poly = isl_qpolynomial_take_poly(qp);
3821 	poly = isl_poly_subs(poly, first, n, polys);
3822 	qp = isl_qpolynomial_restore_poly(qp, poly);
3823 
3824 	free(polys);
3825 
3826 	return qp;
3827 error:
3828 	isl_qpolynomial_free(qp);
3829 	return NULL;
3830 }
3831 
3832 /* Extend "bset" with extra set dimensions for each integer division
3833  * in "qp" and then call "fn" with the extended bset and the polynomial
3834  * that results from replacing each of the integer divisions by the
3835  * corresponding extra set dimension.
3836  */
isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial * qp,__isl_keep isl_basic_set * bset,isl_stat (* fn)(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,void * user),void * user)3837 isl_stat isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
3838 	__isl_keep isl_basic_set *bset,
3839 	isl_stat (*fn)(__isl_take isl_basic_set *bset,
3840 		  __isl_take isl_qpolynomial *poly, void *user), void *user)
3841 {
3842 	isl_space *space;
3843 	isl_local_space *ls;
3844 	isl_poly *poly;
3845 	isl_qpolynomial *polynomial;
3846 
3847 	if (!qp || !bset)
3848 		return isl_stat_error;
3849 	if (qp->div->n_row == 0)
3850 		return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
3851 			  user);
3852 
3853 	space = isl_space_copy(qp->dim);
3854 	space = isl_space_add_dims(space, isl_dim_set, qp->div->n_row);
3855 	poly = isl_qpolynomial_get_poly(qp);
3856 	polynomial = isl_qpolynomial_alloc(space, 0, poly);
3857 	bset = isl_basic_set_copy(bset);
3858 	ls = isl_qpolynomial_get_domain_local_space(qp);
3859 	bset = isl_local_space_lift_basic_set(ls, bset);
3860 
3861 	return fn(bset, polynomial, user);
3862 }
3863 
3864 /* Return total degree in variables first (inclusive) up to last (exclusive).
3865  */
isl_poly_degree(__isl_keep isl_poly * poly,int first,int last)3866 int isl_poly_degree(__isl_keep isl_poly *poly, int first, int last)
3867 {
3868 	int deg = -1;
3869 	int i;
3870 	isl_bool is_zero, is_cst;
3871 	isl_poly_rec *rec;
3872 
3873 	is_zero = isl_poly_is_zero(poly);
3874 	if (is_zero < 0)
3875 		return -2;
3876 	if (is_zero)
3877 		return -1;
3878 	is_cst = isl_poly_is_cst(poly);
3879 	if (is_cst < 0)
3880 		return -2;
3881 	if (is_cst || poly->var < first)
3882 		return 0;
3883 
3884 	rec = isl_poly_as_rec(poly);
3885 	if (!rec)
3886 		return -2;
3887 
3888 	for (i = 0; i < rec->n; ++i) {
3889 		int d;
3890 
3891 		is_zero = isl_poly_is_zero(rec->p[i]);
3892 		if (is_zero < 0)
3893 			return -2;
3894 		if (is_zero)
3895 			continue;
3896 		d = isl_poly_degree(rec->p[i], first, last);
3897 		if (poly->var < last)
3898 			d += i;
3899 		if (d > deg)
3900 			deg = d;
3901 	}
3902 
3903 	return deg;
3904 }
3905 
3906 /* Return total degree in set variables.
3907  */
isl_qpolynomial_degree(__isl_keep isl_qpolynomial * poly)3908 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
3909 {
3910 	isl_size ovar;
3911 	isl_size nvar;
3912 
3913 	if (!poly)
3914 		return -2;
3915 
3916 	ovar = isl_space_offset(poly->dim, isl_dim_set);
3917 	nvar = isl_space_dim(poly->dim, isl_dim_set);
3918 	if (ovar < 0 || nvar < 0)
3919 		return -2;
3920 	return isl_poly_degree(poly->poly, ovar, ovar + nvar);
3921 }
3922 
isl_poly_coeff(__isl_keep isl_poly * poly,unsigned pos,int deg)3923 __isl_give isl_poly *isl_poly_coeff(__isl_keep isl_poly *poly,
3924 	unsigned pos, int deg)
3925 {
3926 	int i;
3927 	isl_bool is_cst;
3928 	isl_poly_rec *rec;
3929 
3930 	is_cst = isl_poly_is_cst(poly);
3931 	if (is_cst < 0)
3932 		return NULL;
3933 	if (is_cst || poly->var < pos) {
3934 		if (deg == 0)
3935 			return isl_poly_copy(poly);
3936 		else
3937 			return isl_poly_zero(poly->ctx);
3938 	}
3939 
3940 	rec = isl_poly_as_rec(poly);
3941 	if (!rec)
3942 		return NULL;
3943 
3944 	if (poly->var == pos) {
3945 		if (deg < rec->n)
3946 			return isl_poly_copy(rec->p[deg]);
3947 		else
3948 			return isl_poly_zero(poly->ctx);
3949 	}
3950 
3951 	poly = isl_poly_copy(poly);
3952 	poly = isl_poly_cow(poly);
3953 	rec = isl_poly_as_rec(poly);
3954 	if (!rec)
3955 		goto error;
3956 
3957 	for (i = 0; i < rec->n; ++i) {
3958 		isl_poly *t;
3959 		t = isl_poly_coeff(rec->p[i], pos, deg);
3960 		if (!t)
3961 			goto error;
3962 		isl_poly_free(rec->p[i]);
3963 		rec->p[i] = t;
3964 	}
3965 
3966 	return poly;
3967 error:
3968 	isl_poly_free(poly);
3969 	return NULL;
3970 }
3971 
3972 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3973  */
isl_qpolynomial_coeff(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type,unsigned t_pos,int deg)3974 __isl_give isl_qpolynomial *isl_qpolynomial_coeff(
3975 	__isl_keep isl_qpolynomial *qp,
3976 	enum isl_dim_type type, unsigned t_pos, int deg)
3977 {
3978 	unsigned g_pos;
3979 	isl_poly *poly;
3980 	isl_qpolynomial *c;
3981 
3982 	if (!qp)
3983 		return NULL;
3984 
3985 	if (type == isl_dim_out)
3986 		isl_die(qp->div->ctx, isl_error_invalid,
3987 			"output/set dimension does not have a coefficient",
3988 			return NULL);
3989 	if (isl_qpolynomial_check_range(qp, type, t_pos, 1) < 0)
3990 		return NULL;
3991 	type = domain_type(type);
3992 
3993 	g_pos = pos(qp->dim, type) + t_pos;
3994 	poly = isl_poly_coeff(qp->poly, g_pos, deg);
3995 
3996 	c = isl_qpolynomial_alloc(isl_space_copy(qp->dim),
3997 				qp->div->n_row, poly);
3998 	if (!c)
3999 		return NULL;
4000 	isl_mat_free(c->div);
4001 	c->div = isl_qpolynomial_get_local(qp);
4002 	if (!c->div)
4003 		goto error;
4004 	return c;
4005 error:
4006 	isl_qpolynomial_free(c);
4007 	return NULL;
4008 }
4009 
4010 /* Homogenize the polynomial in the variables first (inclusive) up to
4011  * last (exclusive) by inserting powers of variable first.
4012  * Variable first is assumed not to appear in the input.
4013  */
isl_poly_homogenize(__isl_take isl_poly * poly,int deg,int target,int first,int last)4014 __isl_give isl_poly *isl_poly_homogenize(__isl_take isl_poly *poly, int deg,
4015 	int target, int first, int last)
4016 {
4017 	int i;
4018 	isl_bool is_zero, is_cst;
4019 	isl_poly_rec *rec;
4020 
4021 	is_zero = isl_poly_is_zero(poly);
4022 	if (is_zero < 0)
4023 		return isl_poly_free(poly);
4024 	if (is_zero)
4025 		return poly;
4026 	if (deg == target)
4027 		return poly;
4028 	is_cst = isl_poly_is_cst(poly);
4029 	if (is_cst < 0)
4030 		return isl_poly_free(poly);
4031 	if (is_cst || poly->var < first) {
4032 		isl_poly *hom;
4033 
4034 		hom = isl_poly_var_pow(poly->ctx, first, target - deg);
4035 		if (!hom)
4036 			goto error;
4037 		rec = isl_poly_as_rec(hom);
4038 		rec->p[target - deg] = isl_poly_mul(rec->p[target - deg], poly);
4039 
4040 		return hom;
4041 	}
4042 
4043 	poly = isl_poly_cow(poly);
4044 	rec = isl_poly_as_rec(poly);
4045 	if (!rec)
4046 		goto error;
4047 
4048 	for (i = 0; i < rec->n; ++i) {
4049 		is_zero = isl_poly_is_zero(rec->p[i]);
4050 		if (is_zero < 0)
4051 			return isl_poly_free(poly);
4052 		if (is_zero)
4053 			continue;
4054 		rec->p[i] = isl_poly_homogenize(rec->p[i],
4055 				poly->var < last ? deg + i : i, target,
4056 				first, last);
4057 		if (!rec->p[i])
4058 			goto error;
4059 	}
4060 
4061 	return poly;
4062 error:
4063 	isl_poly_free(poly);
4064 	return NULL;
4065 }
4066 
4067 /* Homogenize the polynomial in the set variables by introducing
4068  * powers of an extra set variable at position 0.
4069  */
isl_qpolynomial_homogenize(__isl_take isl_qpolynomial * poly)4070 __isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
4071 	__isl_take isl_qpolynomial *poly)
4072 {
4073 	isl_size ovar;
4074 	isl_size nvar;
4075 	int deg = isl_qpolynomial_degree(poly);
4076 
4077 	if (deg < -1)
4078 		goto error;
4079 
4080 	poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1);
4081 	poly = isl_qpolynomial_cow(poly);
4082 	if (!poly)
4083 		goto error;
4084 
4085 	ovar = isl_space_offset(poly->dim, isl_dim_set);
4086 	nvar = isl_space_dim(poly->dim, isl_dim_set);
4087 	if (ovar < 0 || nvar < 0)
4088 		return isl_qpolynomial_free(poly);
4089 	poly->poly = isl_poly_homogenize(poly->poly, 0, deg, ovar, ovar + nvar);
4090 	if (!poly->poly)
4091 		goto error;
4092 
4093 	return poly;
4094 error:
4095 	isl_qpolynomial_free(poly);
4096 	return NULL;
4097 }
4098 
isl_term_alloc(__isl_take isl_space * space,__isl_take isl_mat * div)4099 __isl_give isl_term *isl_term_alloc(__isl_take isl_space *space,
4100 	__isl_take isl_mat *div)
4101 {
4102 	isl_term *term;
4103 	isl_size d;
4104 	int n;
4105 
4106 	d = isl_space_dim(space, isl_dim_all);
4107 	if (d < 0 || !div)
4108 		goto error;
4109 
4110 	n = d + div->n_row;
4111 
4112 	term = isl_calloc(space->ctx, struct isl_term,
4113 			sizeof(struct isl_term) + (n - 1) * sizeof(int));
4114 	if (!term)
4115 		goto error;
4116 
4117 	term->ref = 1;
4118 	term->dim = space;
4119 	term->div = div;
4120 	isl_int_init(term->n);
4121 	isl_int_init(term->d);
4122 
4123 	return term;
4124 error:
4125 	isl_space_free(space);
4126 	isl_mat_free(div);
4127 	return NULL;
4128 }
4129 
isl_term_copy(__isl_keep isl_term * term)4130 __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
4131 {
4132 	if (!term)
4133 		return NULL;
4134 
4135 	term->ref++;
4136 	return term;
4137 }
4138 
isl_term_dup(__isl_keep isl_term * term)4139 __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
4140 {
4141 	int i;
4142 	isl_term *dup;
4143 	isl_size total;
4144 
4145 	total = isl_term_dim(term, isl_dim_all);
4146 	if (total < 0)
4147 		return NULL;
4148 
4149 	dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div));
4150 	if (!dup)
4151 		return NULL;
4152 
4153 	isl_int_set(dup->n, term->n);
4154 	isl_int_set(dup->d, term->d);
4155 
4156 	for (i = 0; i < total; ++i)
4157 		dup->pow[i] = term->pow[i];
4158 
4159 	return dup;
4160 }
4161 
isl_term_cow(__isl_take isl_term * term)4162 __isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
4163 {
4164 	if (!term)
4165 		return NULL;
4166 
4167 	if (term->ref == 1)
4168 		return term;
4169 	term->ref--;
4170 	return isl_term_dup(term);
4171 }
4172 
isl_term_free(__isl_take isl_term * term)4173 __isl_null isl_term *isl_term_free(__isl_take isl_term *term)
4174 {
4175 	if (!term)
4176 		return NULL;
4177 
4178 	if (--term->ref > 0)
4179 		return NULL;
4180 
4181 	isl_space_free(term->dim);
4182 	isl_mat_free(term->div);
4183 	isl_int_clear(term->n);
4184 	isl_int_clear(term->d);
4185 	free(term);
4186 
4187 	return NULL;
4188 }
4189 
isl_term_dim(__isl_keep isl_term * term,enum isl_dim_type type)4190 isl_size isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
4191 {
4192 	isl_size dim;
4193 
4194 	if (!term)
4195 		return isl_size_error;
4196 
4197 	switch (type) {
4198 	case isl_dim_param:
4199 	case isl_dim_in:
4200 	case isl_dim_out:	return isl_space_dim(term->dim, type);
4201 	case isl_dim_div:	return term->div->n_row;
4202 	case isl_dim_all:	dim = isl_space_dim(term->dim, isl_dim_all);
4203 				if (dim < 0)
4204 					return isl_size_error;
4205 				return dim + term->div->n_row;
4206 	default:		return isl_size_error;
4207 	}
4208 }
4209 
4210 /* Return the space of "term".
4211  */
isl_term_peek_space(__isl_keep isl_term * term)4212 static __isl_keep isl_space *isl_term_peek_space(__isl_keep isl_term *term)
4213 {
4214 	return term ? term->dim : NULL;
4215 }
4216 
4217 /* Return the offset of the first variable of type "type" within
4218  * the variables of "term".
4219  */
isl_term_offset(__isl_keep isl_term * term,enum isl_dim_type type)4220 static isl_size isl_term_offset(__isl_keep isl_term *term,
4221 	enum isl_dim_type type)
4222 {
4223 	isl_space *space;
4224 
4225 	space = isl_term_peek_space(term);
4226 	if (!space)
4227 		return isl_size_error;
4228 
4229 	switch (type) {
4230 	case isl_dim_param:
4231 	case isl_dim_set:	return isl_space_offset(space, type);
4232 	case isl_dim_div:	return isl_space_dim(space, isl_dim_all);
4233 	default:
4234 		isl_die(isl_term_get_ctx(term), isl_error_invalid,
4235 			"invalid dimension type", return isl_size_error);
4236 	}
4237 }
4238 
isl_term_get_ctx(__isl_keep isl_term * term)4239 isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
4240 {
4241 	return term ? term->dim->ctx : NULL;
4242 }
4243 
isl_term_get_num(__isl_keep isl_term * term,isl_int * n)4244 void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
4245 {
4246 	if (!term)
4247 		return;
4248 	isl_int_set(*n, term->n);
4249 }
4250 
4251 /* Return the coefficient of the term "term".
4252  */
isl_term_get_coefficient_val(__isl_keep isl_term * term)4253 __isl_give isl_val *isl_term_get_coefficient_val(__isl_keep isl_term *term)
4254 {
4255 	if (!term)
4256 		return NULL;
4257 
4258 	return isl_val_rat_from_isl_int(isl_term_get_ctx(term),
4259 					term->n, term->d);
4260 }
4261 
4262 #undef TYPE
4263 #define TYPE	isl_term
4264 static
4265 #include "check_type_range_templ.c"
4266 
isl_term_get_exp(__isl_keep isl_term * term,enum isl_dim_type type,unsigned pos)4267 isl_size isl_term_get_exp(__isl_keep isl_term *term,
4268 	enum isl_dim_type type, unsigned pos)
4269 {
4270 	isl_size offset;
4271 
4272 	if (isl_term_check_range(term, type, pos, 1) < 0)
4273 		return isl_size_error;
4274 	offset = isl_term_offset(term, type);
4275 	if (offset < 0)
4276 		return isl_size_error;
4277 
4278 	return term->pow[offset + pos];
4279 }
4280 
isl_term_get_div(__isl_keep isl_term * term,unsigned pos)4281 __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
4282 {
4283 	isl_local_space *ls;
4284 	isl_aff *aff;
4285 
4286 	if (isl_term_check_range(term, isl_dim_div, pos, 1) < 0)
4287 		return NULL;
4288 
4289 	ls = isl_local_space_alloc_div(isl_space_copy(term->dim),
4290 					isl_mat_copy(term->div));
4291 	aff = isl_aff_alloc(ls);
4292 	if (!aff)
4293 		return NULL;
4294 
4295 	isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size);
4296 
4297 	aff = isl_aff_normalize(aff);
4298 
4299 	return aff;
4300 }
4301 
isl_poly_foreach_term(__isl_keep isl_poly * poly,isl_stat (* fn)(__isl_take isl_term * term,void * user),__isl_take isl_term * term,void * user)4302 __isl_give isl_term *isl_poly_foreach_term(__isl_keep isl_poly *poly,
4303 	isl_stat (*fn)(__isl_take isl_term *term, void *user),
4304 	__isl_take isl_term *term, void *user)
4305 {
4306 	int i;
4307 	isl_bool is_zero, is_bad, is_cst;
4308 	isl_poly_rec *rec;
4309 
4310 	is_zero = isl_poly_is_zero(poly);
4311 	if (is_zero < 0 || !term)
4312 		goto error;
4313 
4314 	if (is_zero)
4315 		return term;
4316 
4317 	is_cst = isl_poly_is_cst(poly);
4318 	is_bad = isl_poly_is_nan(poly);
4319 	if (is_bad >= 0 && !is_bad)
4320 		is_bad = isl_poly_is_infty(poly);
4321 	if (is_bad >= 0 && !is_bad)
4322 		is_bad = isl_poly_is_neginfty(poly);
4323 	if (is_cst < 0 || is_bad < 0)
4324 		return isl_term_free(term);
4325 	if (is_bad)
4326 		isl_die(isl_term_get_ctx(term), isl_error_invalid,
4327 			"cannot handle NaN/infty polynomial",
4328 			return isl_term_free(term));
4329 
4330 	if (is_cst) {
4331 		isl_poly_cst *cst;
4332 		cst = isl_poly_as_cst(poly);
4333 		if (!cst)
4334 			goto error;
4335 		term = isl_term_cow(term);
4336 		if (!term)
4337 			goto error;
4338 		isl_int_set(term->n, cst->n);
4339 		isl_int_set(term->d, cst->d);
4340 		if (fn(isl_term_copy(term), user) < 0)
4341 			goto error;
4342 		return term;
4343 	}
4344 
4345 	rec = isl_poly_as_rec(poly);
4346 	if (!rec)
4347 		goto error;
4348 
4349 	for (i = 0; i < rec->n; ++i) {
4350 		term = isl_term_cow(term);
4351 		if (!term)
4352 			goto error;
4353 		term->pow[poly->var] = i;
4354 		term = isl_poly_foreach_term(rec->p[i], fn, term, user);
4355 		if (!term)
4356 			goto error;
4357 	}
4358 	term = isl_term_cow(term);
4359 	if (!term)
4360 		return NULL;
4361 	term->pow[poly->var] = 0;
4362 
4363 	return term;
4364 error:
4365 	isl_term_free(term);
4366 	return NULL;
4367 }
4368 
isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial * qp,isl_stat (* fn)(__isl_take isl_term * term,void * user),void * user)4369 isl_stat isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
4370 	isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user)
4371 {
4372 	isl_local *local;
4373 	isl_term *term;
4374 
4375 	if (!qp)
4376 		return isl_stat_error;
4377 
4378 	local = isl_qpolynomial_get_local(qp);
4379 	term = isl_term_alloc(isl_space_copy(qp->dim), local);
4380 	if (!term)
4381 		return isl_stat_error;
4382 
4383 	term = isl_poly_foreach_term(qp->poly, fn, term, user);
4384 
4385 	isl_term_free(term);
4386 
4387 	return term ? isl_stat_ok : isl_stat_error;
4388 }
4389 
isl_qpolynomial_from_term(__isl_take isl_term * term)4390 __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
4391 {
4392 	isl_poly *poly;
4393 	isl_qpolynomial *qp;
4394 	int i;
4395 	isl_size n;
4396 
4397 	n = isl_term_dim(term, isl_dim_all);
4398 	if (n < 0)
4399 		term = isl_term_free(term);
4400 	if (!term)
4401 		return NULL;
4402 
4403 	poly = isl_poly_rat_cst(term->dim->ctx, term->n, term->d);
4404 	for (i = 0; i < n; ++i) {
4405 		if (!term->pow[i])
4406 			continue;
4407 		poly = isl_poly_mul(poly,
4408 			    isl_poly_var_pow(term->dim->ctx, i, term->pow[i]));
4409 	}
4410 
4411 	qp = isl_qpolynomial_alloc(isl_space_copy(term->dim),
4412 				    term->div->n_row, poly);
4413 	if (!qp)
4414 		goto error;
4415 	isl_mat_free(qp->div);
4416 	qp->div = isl_mat_copy(term->div);
4417 	if (!qp->div)
4418 		goto error;
4419 
4420 	isl_term_free(term);
4421 	return qp;
4422 error:
4423 	isl_qpolynomial_free(qp);
4424 	isl_term_free(term);
4425 	return NULL;
4426 }
4427 
isl_qpolynomial_lift(__isl_take isl_qpolynomial * qp,__isl_take isl_space * space)4428 __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
4429 	__isl_take isl_space *space)
4430 {
4431 	int i;
4432 	int extra;
4433 	isl_size total, d_set, d_qp;
4434 
4435 	if (!qp || !space)
4436 		goto error;
4437 
4438 	if (isl_space_is_equal(qp->dim, space)) {
4439 		isl_space_free(space);
4440 		return qp;
4441 	}
4442 
4443 	qp = isl_qpolynomial_cow(qp);
4444 	if (!qp)
4445 		goto error;
4446 
4447 	d_set = isl_space_dim(space, isl_dim_set);
4448 	d_qp = isl_qpolynomial_domain_dim(qp, isl_dim_set);
4449 	extra = d_set - d_qp;
4450 	total = isl_space_dim(qp->dim, isl_dim_all);
4451 	if (d_set < 0 || d_qp < 0 || total < 0)
4452 		goto error;
4453 	if (qp->div->n_row) {
4454 		int *exp;
4455 
4456 		exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
4457 		if (!exp)
4458 			goto error;
4459 		for (i = 0; i < qp->div->n_row; ++i)
4460 			exp[i] = extra + i;
4461 		qp->poly = expand(qp->poly, exp, total);
4462 		free(exp);
4463 		if (!qp->poly)
4464 			goto error;
4465 	}
4466 	qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
4467 	if (!qp->div)
4468 		goto error;
4469 	for (i = 0; i < qp->div->n_row; ++i)
4470 		isl_seq_clr(qp->div->row[i] + 2 + total, extra);
4471 
4472 	isl_space_free(isl_qpolynomial_take_domain_space(qp));
4473 	qp = isl_qpolynomial_restore_domain_space(qp, space);
4474 
4475 	return qp;
4476 error:
4477 	isl_space_free(space);
4478 	isl_qpolynomial_free(qp);
4479 	return NULL;
4480 }
4481 
4482 /* For each parameter or variable that does not appear in qp,
4483  * first eliminate the variable from all constraints and then set it to zero.
4484  */
fix_inactive(__isl_take isl_set * set,__isl_keep isl_qpolynomial * qp)4485 static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
4486 	__isl_keep isl_qpolynomial *qp)
4487 {
4488 	int *active = NULL;
4489 	int i;
4490 	isl_size d;
4491 	isl_size nparam;
4492 	isl_size nvar;
4493 
4494 	d = isl_set_dim(set, isl_dim_all);
4495 	if (d < 0 || !qp)
4496 		goto error;
4497 
4498 	active = isl_calloc_array(set->ctx, int, d);
4499 	if (set_active(qp, active) < 0)
4500 		goto error;
4501 
4502 	for (i = 0; i < d; ++i)
4503 		if (!active[i])
4504 			break;
4505 
4506 	if (i == d) {
4507 		free(active);
4508 		return set;
4509 	}
4510 
4511 	nparam = isl_set_dim(set, isl_dim_param);
4512 	nvar = isl_set_dim(set, isl_dim_set);
4513 	if (nparam < 0 || nvar < 0)
4514 		goto error;
4515 	for (i = 0; i < nparam; ++i) {
4516 		if (active[i])
4517 			continue;
4518 		set = isl_set_eliminate(set, isl_dim_param, i, 1);
4519 		set = isl_set_fix_si(set, isl_dim_param, i, 0);
4520 	}
4521 	for (i = 0; i < nvar; ++i) {
4522 		if (active[nparam + i])
4523 			continue;
4524 		set = isl_set_eliminate(set, isl_dim_set, i, 1);
4525 		set = isl_set_fix_si(set, isl_dim_set, i, 0);
4526 	}
4527 
4528 	free(active);
4529 
4530 	return set;
4531 error:
4532 	free(active);
4533 	isl_set_free(set);
4534 	return NULL;
4535 }
4536 
4537 struct isl_opt_data {
4538 	isl_qpolynomial *qp;
4539 	int first;
4540 	isl_val *opt;
4541 	int max;
4542 };
4543 
opt_fn(__isl_take isl_point * pnt,void * user)4544 static isl_stat opt_fn(__isl_take isl_point *pnt, void *user)
4545 {
4546 	struct isl_opt_data *data = (struct isl_opt_data *)user;
4547 	isl_val *val;
4548 
4549 	val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
4550 	if (data->first) {
4551 		data->first = 0;
4552 		data->opt = val;
4553 	} else if (data->max) {
4554 		data->opt = isl_val_max(data->opt, val);
4555 	} else {
4556 		data->opt = isl_val_min(data->opt, val);
4557 	}
4558 
4559 	return isl_stat_ok;
4560 }
4561 
isl_qpolynomial_opt_on_domain(__isl_take isl_qpolynomial * qp,__isl_take isl_set * set,int max)4562 __isl_give isl_val *isl_qpolynomial_opt_on_domain(
4563 	__isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
4564 {
4565 	struct isl_opt_data data = { NULL, 1, NULL, max };
4566 	isl_bool is_cst;
4567 
4568 	if (!set || !qp)
4569 		goto error;
4570 
4571 	is_cst = isl_poly_is_cst(qp->poly);
4572 	if (is_cst < 0)
4573 		goto error;
4574 	if (is_cst) {
4575 		isl_set_free(set);
4576 		data.opt = isl_qpolynomial_get_constant_val(qp);
4577 		isl_qpolynomial_free(qp);
4578 		return data.opt;
4579 	}
4580 
4581 	set = fix_inactive(set, qp);
4582 
4583 	data.qp = qp;
4584 	if (isl_set_foreach_point(set, opt_fn, &data) < 0)
4585 		goto error;
4586 
4587 	if (data.first)
4588 		data.opt = isl_val_zero(isl_set_get_ctx(set));
4589 
4590 	isl_set_free(set);
4591 	isl_qpolynomial_free(qp);
4592 	return data.opt;
4593 error:
4594 	isl_set_free(set);
4595 	isl_qpolynomial_free(qp);
4596 	isl_val_free(data.opt);
4597 	return NULL;
4598 }
4599 
isl_qpolynomial_morph_domain(__isl_take isl_qpolynomial * qp,__isl_take isl_morph * morph)4600 __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain(
4601 	__isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph)
4602 {
4603 	int i;
4604 	int n_sub;
4605 	isl_ctx *ctx;
4606 	isl_space *space;
4607 	isl_poly **subs;
4608 	isl_mat *mat, *diag;
4609 
4610 	qp = isl_qpolynomial_cow(qp);
4611 
4612 	space = isl_qpolynomial_peek_domain_space(qp);
4613 	if (isl_morph_check_applies(morph, space) < 0)
4614 		goto error;
4615 
4616 	ctx = isl_qpolynomial_get_ctx(qp);
4617 	n_sub = morph->inv->n_row - 1;
4618 	if (morph->inv->n_row != morph->inv->n_col)
4619 		n_sub += qp->div->n_row;
4620 	subs = isl_calloc_array(ctx, struct isl_poly *, n_sub);
4621 	if (n_sub && !subs)
4622 		goto error;
4623 
4624 	for (i = 0; 1 + i < morph->inv->n_row; ++i)
4625 		subs[i] = isl_poly_from_affine(ctx, morph->inv->row[1 + i],
4626 					morph->inv->row[0][0], morph->inv->n_col);
4627 	if (morph->inv->n_row != morph->inv->n_col)
4628 		for (i = 0; i < qp->div->n_row; ++i)
4629 			subs[morph->inv->n_row - 1 + i] =
4630 			    isl_poly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
4631 
4632 	qp->poly = isl_poly_subs(qp->poly, 0, n_sub, subs);
4633 
4634 	for (i = 0; i < n_sub; ++i)
4635 		isl_poly_free(subs[i]);
4636 	free(subs);
4637 
4638 	diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]);
4639 	mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv));
4640 	diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]);
4641 	mat = isl_mat_diagonal(mat, diag);
4642 	qp->div = isl_mat_product(qp->div, mat);
4643 
4644 	if (!qp->poly || !qp->div)
4645 		goto error;
4646 
4647 	isl_space_free(isl_qpolynomial_take_domain_space(qp));
4648 	space = isl_space_copy(morph->ran->dim);
4649 	qp = isl_qpolynomial_restore_domain_space(qp, space);
4650 
4651 	isl_morph_free(morph);
4652 
4653 	return qp;
4654 error:
4655 	isl_qpolynomial_free(qp);
4656 	isl_morph_free(morph);
4657 	return NULL;
4658 }
4659 
isl_union_pw_qpolynomial_mul(__isl_take isl_union_pw_qpolynomial * upwqp1,__isl_take isl_union_pw_qpolynomial * upwqp2)4660 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
4661 	__isl_take isl_union_pw_qpolynomial *upwqp1,
4662 	__isl_take isl_union_pw_qpolynomial *upwqp2)
4663 {
4664 	return isl_union_pw_qpolynomial_match_bin_op(upwqp1, upwqp2,
4665 						&isl_pw_qpolynomial_mul);
4666 }
4667 
4668 /* Reorder the dimension of "qp" according to the given reordering.
4669  */
isl_qpolynomial_realign_domain(__isl_take isl_qpolynomial * qp,__isl_take isl_reordering * r)4670 __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain(
4671 	__isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
4672 {
4673 	isl_space *space;
4674 	isl_poly *poly;
4675 	isl_local *local;
4676 
4677 	if (!qp)
4678 		goto error;
4679 
4680 	r = isl_reordering_extend(r, qp->div->n_row);
4681 	if (!r)
4682 		goto error;
4683 
4684 	local = isl_qpolynomial_take_local(qp);
4685 	local = isl_local_reorder(local, isl_reordering_copy(r));
4686 	qp = isl_qpolynomial_restore_local(qp, local);
4687 
4688 	poly = isl_qpolynomial_take_poly(qp);
4689 	poly = reorder(poly, r->pos);
4690 	qp = isl_qpolynomial_restore_poly(qp, poly);
4691 
4692 	space = isl_reordering_get_space(r);
4693 	qp = isl_qpolynomial_reset_domain_space(qp, space);
4694 
4695 	isl_reordering_free(r);
4696 	return qp;
4697 error:
4698 	isl_qpolynomial_free(qp);
4699 	isl_reordering_free(r);
4700 	return NULL;
4701 }
4702 
isl_qpolynomial_align_params(__isl_take isl_qpolynomial * qp,__isl_take isl_space * model)4703 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4704 	__isl_take isl_qpolynomial *qp, __isl_take isl_space *model)
4705 {
4706 	isl_space *domain_space;
4707 	isl_bool equal_params;
4708 
4709 	domain_space = isl_qpolynomial_peek_domain_space(qp);
4710 	equal_params = isl_space_has_equal_params(domain_space, model);
4711 	if (equal_params < 0)
4712 		goto error;
4713 	if (!equal_params) {
4714 		isl_reordering *exp;
4715 
4716 		exp = isl_parameter_alignment_reordering(domain_space, model);
4717 		qp = isl_qpolynomial_realign_domain(qp, exp);
4718 	}
4719 
4720 	isl_space_free(model);
4721 	return qp;
4722 error:
4723 	isl_space_free(model);
4724 	isl_qpolynomial_free(qp);
4725 	return NULL;
4726 }
4727 
4728 struct isl_split_periods_data {
4729 	int max_periods;
4730 	isl_pw_qpolynomial *res;
4731 };
4732 
4733 /* Create a slice where the integer division "div" has the fixed value "v".
4734  * In particular, if "div" refers to floor(f/m), then create a slice
4735  *
4736  *	m v <= f <= m v + (m - 1)
4737  *
4738  * or
4739  *
4740  *	f - m v >= 0
4741  *	-f + m v + (m - 1) >= 0
4742  */
set_div_slice(__isl_take isl_space * space,__isl_keep isl_qpolynomial * qp,int div,isl_int v)4743 static __isl_give isl_set *set_div_slice(__isl_take isl_space *space,
4744 	__isl_keep isl_qpolynomial *qp, int div, isl_int v)
4745 {
4746 	isl_size total;
4747 	isl_basic_set *bset = NULL;
4748 	int k;
4749 
4750 	total = isl_space_dim(space, isl_dim_all);
4751 	if (total < 0 || !qp)
4752 		goto error;
4753 
4754 	bset = isl_basic_set_alloc_space(isl_space_copy(space), 0, 0, 2);
4755 
4756 	k = isl_basic_set_alloc_inequality(bset);
4757 	if (k < 0)
4758 		goto error;
4759 	isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4760 	isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
4761 
4762 	k = isl_basic_set_alloc_inequality(bset);
4763 	if (k < 0)
4764 		goto error;
4765 	isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4766 	isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
4767 	isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
4768 	isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4769 
4770 	isl_space_free(space);
4771 	return isl_set_from_basic_set(bset);
4772 error:
4773 	isl_basic_set_free(bset);
4774 	isl_space_free(space);
4775 	return NULL;
4776 }
4777 
4778 static isl_stat split_periods(__isl_take isl_set *set,
4779 	__isl_take isl_qpolynomial *qp, void *user);
4780 
4781 /* Create a slice of the domain "set" such that integer division "div"
4782  * has the fixed value "v" and add the results to data->res,
4783  * replacing the integer division by "v" in "qp".
4784  */
set_div(__isl_take isl_set * set,__isl_take isl_qpolynomial * qp,int div,isl_int v,struct isl_split_periods_data * data)4785 static isl_stat set_div(__isl_take isl_set *set,
4786 	__isl_take isl_qpolynomial *qp, int div, isl_int v,
4787 	struct isl_split_periods_data *data)
4788 {
4789 	int i;
4790 	isl_size div_pos;
4791 	isl_set *slice;
4792 	isl_poly *cst;
4793 
4794 	slice = set_div_slice(isl_set_get_space(set), qp, div, v);
4795 	set = isl_set_intersect(set, slice);
4796 
4797 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
4798 	if (div_pos < 0)
4799 		goto error;
4800 
4801 	for (i = div + 1; i < qp->div->n_row; ++i) {
4802 		if (isl_int_is_zero(qp->div->row[i][2 + div_pos + div]))
4803 			continue;
4804 		isl_int_addmul(qp->div->row[i][1],
4805 				qp->div->row[i][2 + div_pos + div], v);
4806 		isl_int_set_si(qp->div->row[i][2 + div_pos + div], 0);
4807 	}
4808 
4809 	cst = isl_poly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
4810 	qp = substitute_div(qp, div, cst);
4811 
4812 	return split_periods(set, qp, data);
4813 error:
4814 	isl_set_free(set);
4815 	isl_qpolynomial_free(qp);
4816 	return isl_stat_error;
4817 }
4818 
4819 /* Split the domain "set" such that integer division "div"
4820  * has a fixed value (ranging from "min" to "max") on each slice
4821  * and add the results to data->res.
4822  */
split_div(__isl_take isl_set * set,__isl_take isl_qpolynomial * qp,int div,isl_int min,isl_int max,struct isl_split_periods_data * data)4823 static isl_stat split_div(__isl_take isl_set *set,
4824 	__isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
4825 	struct isl_split_periods_data *data)
4826 {
4827 	for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
4828 		isl_set *set_i = isl_set_copy(set);
4829 		isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
4830 
4831 		if (set_div(set_i, qp_i, div, min, data) < 0)
4832 			goto error;
4833 	}
4834 	isl_set_free(set);
4835 	isl_qpolynomial_free(qp);
4836 	return isl_stat_ok;
4837 error:
4838 	isl_set_free(set);
4839 	isl_qpolynomial_free(qp);
4840 	return isl_stat_error;
4841 }
4842 
4843 /* If "qp" refers to any integer division
4844  * that can only attain "max_periods" distinct values on "set"
4845  * then split the domain along those distinct values.
4846  * Add the results (or the original if no splitting occurs)
4847  * to data->res.
4848  */
split_periods(__isl_take isl_set * set,__isl_take isl_qpolynomial * qp,void * user)4849 static isl_stat split_periods(__isl_take isl_set *set,
4850 	__isl_take isl_qpolynomial *qp, void *user)
4851 {
4852 	int i;
4853 	isl_pw_qpolynomial *pwqp;
4854 	struct isl_split_periods_data *data;
4855 	isl_int min, max;
4856 	isl_size div_pos;
4857 	isl_stat r = isl_stat_ok;
4858 
4859 	data = (struct isl_split_periods_data *)user;
4860 
4861 	if (!set || !qp)
4862 		goto error;
4863 
4864 	if (qp->div->n_row == 0) {
4865 		pwqp = isl_pw_qpolynomial_alloc(set, qp);
4866 		data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4867 		return isl_stat_ok;
4868 	}
4869 
4870 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
4871 	if (div_pos < 0)
4872 		goto error;
4873 
4874 	isl_int_init(min);
4875 	isl_int_init(max);
4876 	for (i = 0; i < qp->div->n_row; ++i) {
4877 		enum isl_lp_result lp_res;
4878 
4879 		if (isl_seq_first_non_zero(qp->div->row[i] + 2 + div_pos,
4880 						qp->div->n_row) != -1)
4881 			continue;
4882 
4883 		lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
4884 					  set->ctx->one, &min, NULL, NULL);
4885 		if (lp_res == isl_lp_error)
4886 			goto error2;
4887 		if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4888 			continue;
4889 		isl_int_fdiv_q(min, min, qp->div->row[i][0]);
4890 
4891 		lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
4892 					  set->ctx->one, &max, NULL, NULL);
4893 		if (lp_res == isl_lp_error)
4894 			goto error2;
4895 		if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4896 			continue;
4897 		isl_int_fdiv_q(max, max, qp->div->row[i][0]);
4898 
4899 		isl_int_sub(max, max, min);
4900 		if (isl_int_cmp_si(max, data->max_periods) < 0) {
4901 			isl_int_add(max, max, min);
4902 			break;
4903 		}
4904 	}
4905 
4906 	if (i < qp->div->n_row) {
4907 		r = split_div(set, qp, i, min, max, data);
4908 	} else {
4909 		pwqp = isl_pw_qpolynomial_alloc(set, qp);
4910 		data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4911 	}
4912 
4913 	isl_int_clear(max);
4914 	isl_int_clear(min);
4915 
4916 	return r;
4917 error2:
4918 	isl_int_clear(max);
4919 	isl_int_clear(min);
4920 error:
4921 	isl_set_free(set);
4922 	isl_qpolynomial_free(qp);
4923 	return isl_stat_error;
4924 }
4925 
4926 /* If any quasi-polynomial in pwqp refers to any integer division
4927  * that can only attain "max_periods" distinct values on its domain
4928  * then split the domain along those distinct values.
4929  */
isl_pw_qpolynomial_split_periods(__isl_take isl_pw_qpolynomial * pwqp,int max_periods)4930 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
4931 	__isl_take isl_pw_qpolynomial *pwqp, int max_periods)
4932 {
4933 	struct isl_split_periods_data data;
4934 
4935 	data.max_periods = max_periods;
4936 	data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4937 
4938 	if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
4939 		goto error;
4940 
4941 	isl_pw_qpolynomial_free(pwqp);
4942 
4943 	return data.res;
4944 error:
4945 	isl_pw_qpolynomial_free(data.res);
4946 	isl_pw_qpolynomial_free(pwqp);
4947 	return NULL;
4948 }
4949 
4950 /* Construct a piecewise quasipolynomial that is constant on the given
4951  * domain.  In particular, it is
4952  *	0	if cst == 0
4953  *	1	if cst == 1
4954  *  infinity	if cst == -1
4955  *
4956  * If cst == -1, then explicitly check whether the domain is empty and,
4957  * if so, return 0 instead.
4958  */
constant_on_domain(__isl_take isl_basic_set * bset,int cst)4959 static __isl_give isl_pw_qpolynomial *constant_on_domain(
4960 	__isl_take isl_basic_set *bset, int cst)
4961 {
4962 	isl_space *space;
4963 	isl_qpolynomial *qp;
4964 
4965 	if (cst < 0 && isl_basic_set_is_empty(bset) == isl_bool_true)
4966 		cst = 0;
4967 	if (!bset)
4968 		return NULL;
4969 
4970 	bset = isl_basic_set_params(bset);
4971 	space = isl_basic_set_get_space(bset);
4972 	if (cst < 0)
4973 		qp = isl_qpolynomial_infty_on_domain(space);
4974 	else if (cst == 0)
4975 		qp = isl_qpolynomial_zero_on_domain(space);
4976 	else
4977 		qp = isl_qpolynomial_one_on_domain(space);
4978 	return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
4979 }
4980 
4981 /* Internal data structure for multiplicative_call_factor_pw_qpolynomial.
4982  * "fn" is the function that is called on each factor.
4983  * "pwpq" collects the results.
4984  */
4985 struct isl_multiplicative_call_data_pw_qpolynomial {
4986 	__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset);
4987 	isl_pw_qpolynomial *pwqp;
4988 };
4989 
4990 /* Call "fn" on "bset" and return the result,
4991  * but first check if "bset" has any redundant constraints or
4992  * implicit equality constraints.
4993  * If so, there may be further opportunities for detecting factors or
4994  * removing equality constraints, so recursively call
4995  * the top-level isl_basic_set_multiplicative_call.
4996  */
multiplicative_call_base(__isl_take isl_basic_set * bset,__isl_give isl_pw_qpolynomial * (* fn)(__isl_take isl_basic_set * bset))4997 static __isl_give isl_pw_qpolynomial *multiplicative_call_base(
4998 	__isl_take isl_basic_set *bset,
4999 	__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
5000 {
5001 	isl_size n1, n2, n_eq;
5002 
5003 	n1 = isl_basic_set_n_constraint(bset);
5004 	if (n1 < 0)
5005 		bset = isl_basic_set_free(bset);
5006 	bset = isl_basic_set_remove_redundancies(bset);
5007 	bset = isl_basic_set_detect_equalities(bset);
5008 	n2 = isl_basic_set_n_constraint(bset);
5009 	n_eq = isl_basic_set_n_equality(bset);
5010 	if (n2 < 0 || n_eq < 0)
5011 		bset = isl_basic_set_free(bset);
5012 	else if (n2 < n1 || n_eq > 0)
5013 		return isl_basic_set_multiplicative_call(bset, fn);
5014 	return fn(bset);
5015 }
5016 
5017 /* isl_factorizer_every_factor_basic_set callback that applies
5018  * data->fn to the factor "bset" and multiplies in the result
5019  * in data->pwqp.
5020  */
multiplicative_call_factor_pw_qpolynomial(__isl_keep isl_basic_set * bset,void * user)5021 static isl_bool multiplicative_call_factor_pw_qpolynomial(
5022 	__isl_keep isl_basic_set *bset, void *user)
5023 {
5024 	struct isl_multiplicative_call_data_pw_qpolynomial *data = user;
5025 	isl_pw_qpolynomial *res;
5026 
5027 	bset = isl_basic_set_copy(bset);
5028 	res = multiplicative_call_base(bset, data->fn);
5029 	data->pwqp = isl_pw_qpolynomial_mul(data->pwqp, res);
5030 	if (!data->pwqp)
5031 		return isl_bool_error;
5032 
5033 	return isl_bool_true;
5034 }
5035 
5036 /* Factor bset, call fn on each of the factors and return the product.
5037  *
5038  * If no factors can be found, simply call fn on the input.
5039  * Otherwise, construct the factors based on the factorizer,
5040  * call fn on each factor and compute the product.
5041  */
compressed_multiplicative_call(__isl_take isl_basic_set * bset,__isl_give isl_pw_qpolynomial * (* fn)(__isl_take isl_basic_set * bset))5042 static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
5043 	__isl_take isl_basic_set *bset,
5044 	__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
5045 {
5046 	struct isl_multiplicative_call_data_pw_qpolynomial data = { fn };
5047 	isl_space *space;
5048 	isl_set *set;
5049 	isl_factorizer *f;
5050 	isl_qpolynomial *qp;
5051 	isl_bool every;
5052 
5053 	f = isl_basic_set_factorizer(bset);
5054 	if (!f)
5055 		goto error;
5056 	if (f->n_group == 0) {
5057 		isl_factorizer_free(f);
5058 		return multiplicative_call_base(bset, fn);
5059 	}
5060 
5061 	space = isl_basic_set_get_space(bset);
5062 	space = isl_space_params(space);
5063 	set = isl_set_universe(isl_space_copy(space));
5064 	qp = isl_qpolynomial_one_on_domain(space);
5065 	data.pwqp = isl_pw_qpolynomial_alloc(set, qp);
5066 
5067 	every = isl_factorizer_every_factor_basic_set(f,
5068 			&multiplicative_call_factor_pw_qpolynomial, &data);
5069 	if (every < 0)
5070 		data.pwqp = isl_pw_qpolynomial_free(data.pwqp);
5071 
5072 	isl_basic_set_free(bset);
5073 	isl_factorizer_free(f);
5074 
5075 	return data.pwqp;
5076 error:
5077 	isl_basic_set_free(bset);
5078 	return NULL;
5079 }
5080 
5081 /* Factor bset, call fn on each of the factors and return the product.
5082  * The function is assumed to evaluate to zero on empty domains,
5083  * to one on zero-dimensional domains and to infinity on unbounded domains
5084  * and will not be called explicitly on zero-dimensional or unbounded domains.
5085  *
5086  * We first check for some special cases and remove all equalities.
5087  * Then we hand over control to compressed_multiplicative_call.
5088  */
isl_basic_set_multiplicative_call(__isl_take isl_basic_set * bset,__isl_give isl_pw_qpolynomial * (* fn)(__isl_take isl_basic_set * bset))5089 __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
5090 	__isl_take isl_basic_set *bset,
5091 	__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
5092 {
5093 	isl_bool bounded;
5094 	isl_size dim;
5095 	isl_morph *morph;
5096 	isl_pw_qpolynomial *pwqp;
5097 
5098 	if (!bset)
5099 		return NULL;
5100 
5101 	if (isl_basic_set_plain_is_empty(bset))
5102 		return constant_on_domain(bset, 0);
5103 
5104 	dim = isl_basic_set_dim(bset, isl_dim_set);
5105 	if (dim < 0)
5106 		goto error;
5107 	if (dim == 0)
5108 		return constant_on_domain(bset, 1);
5109 
5110 	bounded = isl_basic_set_is_bounded(bset);
5111 	if (bounded < 0)
5112 		goto error;
5113 	if (!bounded)
5114 		return constant_on_domain(bset, -1);
5115 
5116 	if (bset->n_eq == 0)
5117 		return compressed_multiplicative_call(bset, fn);
5118 
5119 	morph = isl_basic_set_full_compression(bset);
5120 	bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
5121 
5122 	pwqp = compressed_multiplicative_call(bset, fn);
5123 
5124 	morph = isl_morph_dom_params(morph);
5125 	morph = isl_morph_ran_params(morph);
5126 	morph = isl_morph_inverse(morph);
5127 
5128 	pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph);
5129 
5130 	return pwqp;
5131 error:
5132 	isl_basic_set_free(bset);
5133 	return NULL;
5134 }
5135 
5136 /* Drop all floors in "qp", turning each integer division [a/m] into
5137  * a rational division a/m.  If "down" is set, then the integer division
5138  * is replaced by (a-(m-1))/m instead.
5139  */
qp_drop_floors(__isl_take isl_qpolynomial * qp,int down)5140 static __isl_give isl_qpolynomial *qp_drop_floors(
5141 	__isl_take isl_qpolynomial *qp, int down)
5142 {
5143 	int i;
5144 	isl_poly *s;
5145 
5146 	if (!qp)
5147 		return NULL;
5148 	if (qp->div->n_row == 0)
5149 		return qp;
5150 
5151 	qp = isl_qpolynomial_cow(qp);
5152 	if (!qp)
5153 		return NULL;
5154 
5155 	for (i = qp->div->n_row - 1; i >= 0; --i) {
5156 		if (down) {
5157 			isl_int_sub(qp->div->row[i][1],
5158 				    qp->div->row[i][1], qp->div->row[i][0]);
5159 			isl_int_add_ui(qp->div->row[i][1],
5160 				       qp->div->row[i][1], 1);
5161 		}
5162 		s = isl_poly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
5163 					qp->div->row[i][0], qp->div->n_col - 1);
5164 		qp = substitute_div(qp, i, s);
5165 		if (!qp)
5166 			return NULL;
5167 	}
5168 
5169 	return qp;
5170 }
5171 
5172 /* Drop all floors in "pwqp", turning each integer division [a/m] into
5173  * a rational division a/m.
5174  */
pwqp_drop_floors(__isl_take isl_pw_qpolynomial * pwqp)5175 static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
5176 	__isl_take isl_pw_qpolynomial *pwqp)
5177 {
5178 	int i;
5179 
5180 	if (!pwqp)
5181 		return NULL;
5182 
5183 	if (isl_pw_qpolynomial_is_zero(pwqp))
5184 		return pwqp;
5185 
5186 	pwqp = isl_pw_qpolynomial_cow(pwqp);
5187 	if (!pwqp)
5188 		return NULL;
5189 
5190 	for (i = 0; i < pwqp->n; ++i) {
5191 		pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
5192 		if (!pwqp->p[i].qp)
5193 			goto error;
5194 	}
5195 
5196 	return pwqp;
5197 error:
5198 	isl_pw_qpolynomial_free(pwqp);
5199 	return NULL;
5200 }
5201 
5202 /* Adjust all the integer divisions in "qp" such that they are at least
5203  * one over the given orthant (identified by "signs").  This ensures
5204  * that they will still be non-negative even after subtracting (m-1)/m.
5205  *
5206  * In particular, f is replaced by f' + v, changing f = [a/m]
5207  * to f' = [(a - m v)/m].
5208  * If the constant term k in a is smaller than m,
5209  * the constant term of v is set to floor(k/m) - 1.
5210  * For any other term, if the coefficient c and the variable x have
5211  * the same sign, then no changes are needed.
5212  * Otherwise, if the variable is positive (and c is negative),
5213  * then the coefficient of x in v is set to floor(c/m).
5214  * If the variable is negative (and c is positive),
5215  * then the coefficient of x in v is set to ceil(c/m).
5216  */
make_divs_pos(__isl_take isl_qpolynomial * qp,int * signs)5217 static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
5218 	int *signs)
5219 {
5220 	int i, j;
5221 	isl_size div_pos;
5222 	isl_vec *v = NULL;
5223 	isl_poly *s;
5224 
5225 	qp = isl_qpolynomial_cow(qp);
5226 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
5227 	if (div_pos < 0)
5228 		return isl_qpolynomial_free(qp);
5229 	qp->div = isl_mat_cow(qp->div);
5230 	if (!qp->div)
5231 		goto error;
5232 
5233 	v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
5234 
5235 	for (i = 0; i < qp->div->n_row; ++i) {
5236 		isl_int *row = qp->div->row[i];
5237 		v = isl_vec_clr(v);
5238 		if (!v)
5239 			goto error;
5240 		if (isl_int_lt(row[1], row[0])) {
5241 			isl_int_fdiv_q(v->el[0], row[1], row[0]);
5242 			isl_int_sub_ui(v->el[0], v->el[0], 1);
5243 			isl_int_submul(row[1], row[0], v->el[0]);
5244 		}
5245 		for (j = 0; j < div_pos; ++j) {
5246 			if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
5247 				continue;
5248 			if (signs[j] < 0)
5249 				isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
5250 			else
5251 				isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
5252 			isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
5253 		}
5254 		for (j = 0; j < i; ++j) {
5255 			if (isl_int_sgn(row[2 + div_pos + j]) >= 0)
5256 				continue;
5257 			isl_int_fdiv_q(v->el[1 + div_pos + j],
5258 					row[2 + div_pos + j], row[0]);
5259 			isl_int_submul(row[2 + div_pos + j],
5260 					row[0], v->el[1 + div_pos + j]);
5261 		}
5262 		for (j = i + 1; j < qp->div->n_row; ++j) {
5263 			if (isl_int_is_zero(qp->div->row[j][2 + div_pos + i]))
5264 				continue;
5265 			isl_seq_combine(qp->div->row[j] + 1,
5266 				qp->div->ctx->one, qp->div->row[j] + 1,
5267 				qp->div->row[j][2 + div_pos + i], v->el,
5268 				v->size);
5269 		}
5270 		isl_int_set_si(v->el[1 + div_pos + i], 1);
5271 		s = isl_poly_from_affine(qp->dim->ctx, v->el,
5272 					qp->div->ctx->one, v->size);
5273 		qp->poly = isl_poly_subs(qp->poly, div_pos + i, 1, &s);
5274 		isl_poly_free(s);
5275 		if (!qp->poly)
5276 			goto error;
5277 	}
5278 
5279 	isl_vec_free(v);
5280 	return qp;
5281 error:
5282 	isl_vec_free(v);
5283 	isl_qpolynomial_free(qp);
5284 	return NULL;
5285 }
5286 
5287 struct isl_to_poly_data {
5288 	int sign;
5289 	isl_pw_qpolynomial *res;
5290 	isl_qpolynomial *qp;
5291 };
5292 
5293 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
5294  * We first make all integer divisions positive and then split the
5295  * quasipolynomials into terms with sign data->sign (the direction
5296  * of the requested approximation) and terms with the opposite sign.
5297  * In the first set of terms, each integer division [a/m] is
5298  * overapproximated by a/m, while in the second it is underapproximated
5299  * by (a-(m-1))/m.
5300  */
to_polynomial_on_orthant(__isl_take isl_set * orthant,int * signs,void * user)5301 static isl_stat to_polynomial_on_orthant(__isl_take isl_set *orthant,
5302 	int *signs, void *user)
5303 {
5304 	struct isl_to_poly_data *data = user;
5305 	isl_pw_qpolynomial *t;
5306 	isl_qpolynomial *qp, *up, *down;
5307 
5308 	qp = isl_qpolynomial_copy(data->qp);
5309 	qp = make_divs_pos(qp, signs);
5310 
5311 	up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
5312 	up = qp_drop_floors(up, 0);
5313 	down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
5314 	down = qp_drop_floors(down, 1);
5315 
5316 	isl_qpolynomial_free(qp);
5317 	qp = isl_qpolynomial_add(up, down);
5318 
5319 	t = isl_pw_qpolynomial_alloc(orthant, qp);
5320 	data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
5321 
5322 	return isl_stat_ok;
5323 }
5324 
5325 /* Approximate each quasipolynomial by a polynomial.  If "sign" is positive,
5326  * the polynomial will be an overapproximation.  If "sign" is negative,
5327  * it will be an underapproximation.  If "sign" is zero, the approximation
5328  * will lie somewhere in between.
5329  *
5330  * In particular, is sign == 0, we simply drop the floors, turning
5331  * the integer divisions into rational divisions.
5332  * Otherwise, we split the domains into orthants, make all integer divisions
5333  * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
5334  * depending on the requested sign and the sign of the term in which
5335  * the integer division appears.
5336  */
isl_pw_qpolynomial_to_polynomial(__isl_take isl_pw_qpolynomial * pwqp,int sign)5337 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
5338 	__isl_take isl_pw_qpolynomial *pwqp, int sign)
5339 {
5340 	int i;
5341 	struct isl_to_poly_data data;
5342 
5343 	if (sign == 0)
5344 		return pwqp_drop_floors(pwqp);
5345 
5346 	if (!pwqp)
5347 		return NULL;
5348 
5349 	data.sign = sign;
5350 	data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
5351 
5352 	for (i = 0; i < pwqp->n; ++i) {
5353 		if (pwqp->p[i].qp->div->n_row == 0) {
5354 			isl_pw_qpolynomial *t;
5355 			t = isl_pw_qpolynomial_alloc(
5356 					isl_set_copy(pwqp->p[i].set),
5357 					isl_qpolynomial_copy(pwqp->p[i].qp));
5358 			data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
5359 			continue;
5360 		}
5361 		data.qp = pwqp->p[i].qp;
5362 		if (isl_set_foreach_orthant(pwqp->p[i].set,
5363 					&to_polynomial_on_orthant, &data) < 0)
5364 			goto error;
5365 	}
5366 
5367 	isl_pw_qpolynomial_free(pwqp);
5368 
5369 	return data.res;
5370 error:
5371 	isl_pw_qpolynomial_free(pwqp);
5372 	isl_pw_qpolynomial_free(data.res);
5373 	return NULL;
5374 }
5375 
poly_entry(__isl_take isl_pw_qpolynomial * pwqp,void * user)5376 static __isl_give isl_pw_qpolynomial *poly_entry(
5377 	__isl_take isl_pw_qpolynomial *pwqp, void *user)
5378 {
5379 	int *sign = user;
5380 
5381 	return isl_pw_qpolynomial_to_polynomial(pwqp, *sign);
5382 }
5383 
isl_union_pw_qpolynomial_to_polynomial(__isl_take isl_union_pw_qpolynomial * upwqp,int sign)5384 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
5385 	__isl_take isl_union_pw_qpolynomial *upwqp, int sign)
5386 {
5387 	return isl_union_pw_qpolynomial_transform_inplace(upwqp,
5388 				   &poly_entry, &sign);
5389 }
5390 
isl_basic_map_from_qpolynomial(__isl_take isl_qpolynomial * qp)5391 __isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
5392 	__isl_take isl_qpolynomial *qp)
5393 {
5394 	isl_local_space *ls;
5395 	isl_vec *vec;
5396 	isl_aff *aff;
5397 	isl_basic_map *bmap;
5398 	isl_bool is_affine;
5399 
5400 	if (!qp)
5401 		return NULL;
5402 	is_affine = isl_poly_is_affine(qp->poly);
5403 	if (is_affine < 0)
5404 		goto error;
5405 	if (!is_affine)
5406 		isl_die(qp->dim->ctx, isl_error_invalid,
5407 			"input quasi-polynomial not affine", goto error);
5408 	ls = isl_qpolynomial_get_domain_local_space(qp);
5409 	vec = isl_qpolynomial_extract_affine(qp);
5410 	aff = isl_aff_alloc_vec(ls, vec);
5411 	bmap = isl_basic_map_from_aff(aff);
5412 	isl_qpolynomial_free(qp);
5413 	return bmap;
5414 error:
5415 	isl_qpolynomial_free(qp);
5416 	return NULL;
5417 }
5418