xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
Comparison__anon96afb8f20111::Comparison36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
is32Bit(EVT VT)61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
earlyUseOperand(MachineOperand Op)74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
SystemZTargetLowering(const TargetMachine & TM,const SystemZSubtarget & STI)80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       setOperationAction(ISD::ABS, VT, Legal);
168 
169       // Expand individual DIV and REMs into DIVREMs.
170       setOperationAction(ISD::SDIV, VT, Expand);
171       setOperationAction(ISD::UDIV, VT, Expand);
172       setOperationAction(ISD::SREM, VT, Expand);
173       setOperationAction(ISD::UREM, VT, Expand);
174       setOperationAction(ISD::SDIVREM, VT, Custom);
175       setOperationAction(ISD::UDIVREM, VT, Custom);
176 
177       // Support addition/subtraction with overflow.
178       setOperationAction(ISD::SADDO, VT, Custom);
179       setOperationAction(ISD::SSUBO, VT, Custom);
180 
181       // Support addition/subtraction with carry.
182       setOperationAction(ISD::UADDO, VT, Custom);
183       setOperationAction(ISD::USUBO, VT, Custom);
184 
185       // Support carry in as value rather than glue.
186       setOperationAction(ISD::ADDCARRY, VT, Custom);
187       setOperationAction(ISD::SUBCARRY, VT, Custom);
188 
189       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
190       // stores, putting a serialization instruction after the stores.
191       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
192       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
193 
194       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
195       // available, or if the operand is constant.
196       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
197 
198       // Use POPCNT on z196 and above.
199       if (Subtarget.hasPopulationCount())
200         setOperationAction(ISD::CTPOP, VT, Custom);
201       else
202         setOperationAction(ISD::CTPOP, VT, Expand);
203 
204       // No special instructions for these.
205       setOperationAction(ISD::CTTZ,            VT, Expand);
206       setOperationAction(ISD::ROTR,            VT, Expand);
207 
208       // Use *MUL_LOHI where possible instead of MULH*.
209       setOperationAction(ISD::MULHS, VT, Expand);
210       setOperationAction(ISD::MULHU, VT, Expand);
211       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
212       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
213 
214       // Only z196 and above have native support for conversions to unsigned.
215       // On z10, promoting to i64 doesn't generate an inexact condition for
216       // values that are outside the i32 range but in the i64 range, so use
217       // the default expansion.
218       if (!Subtarget.hasFPExtension())
219         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
220 
221       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
222       // default to Expand, so need to be modified to Legal where appropriate.
223       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
224       if (Subtarget.hasFPExtension())
225         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
226 
227       // And similarly for STRICT_[SU]INT_TO_FP.
228       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
229       if (Subtarget.hasFPExtension())
230         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
231     }
232   }
233 
234   // Type legalization will convert 8- and 16-bit atomic operations into
235   // forms that operate on i32s (but still keeping the original memory VT).
236   // Lower them into full i32 operations.
237   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
248 
249   // Even though i128 is not a legal type, we still need to custom lower
250   // the atomic operations in order to exploit SystemZ instructions.
251   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
252   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
253 
254   // We can use the CC result of compare-and-swap to implement
255   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
257   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
259 
260   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
261 
262   // Traps are legal, as we will convert them to "j .+2".
263   setOperationAction(ISD::TRAP, MVT::Other, Legal);
264 
265   // z10 has instructions for signed but not unsigned FP conversion.
266   // Handle unsigned 32-bit types as signed 64-bit types.
267   if (!Subtarget.hasFPExtension()) {
268     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
270     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
272   }
273 
274   // We have native support for a 64-bit CTLZ, via FLOGR.
275   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
276   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
277   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
278 
279   // On z15 we have native support for a 64-bit CTPOP.
280   if (Subtarget.hasMiscellaneousExtensions3()) {
281     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
282     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
283   }
284 
285   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
286   setOperationAction(ISD::OR, MVT::i64, Custom);
287 
288   // Expand 128 bit shifts without using a libcall.
289   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
290   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
291   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
292   setLibcallName(RTLIB::SRL_I128, nullptr);
293   setLibcallName(RTLIB::SHL_I128, nullptr);
294   setLibcallName(RTLIB::SRA_I128, nullptr);
295 
296   // We have native instructions for i8, i16 and i32 extensions, but not i1.
297   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
298   for (MVT VT : MVT::integer_valuetypes()) {
299     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
300     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
301     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
302   }
303 
304   // Handle the various types of symbolic address.
305   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
306   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
307   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
308   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
309   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
310 
311   // We need to handle dynamic allocations specially because of the
312   // 160-byte area at the bottom of the stack.
313   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
314   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
315 
316   // Use custom expanders so that we can force the function to use
317   // a frame pointer.
318   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
319   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
320 
321   // Handle prefetches with PFD or PFDRL.
322   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
323 
324   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
325     // Assume by default that all vector operations need to be expanded.
326     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
327       if (getOperationAction(Opcode, VT) == Legal)
328         setOperationAction(Opcode, VT, Expand);
329 
330     // Likewise all truncating stores and extending loads.
331     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
332       setTruncStoreAction(VT, InnerVT, Expand);
333       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
334       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
335       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
336     }
337 
338     if (isTypeLegal(VT)) {
339       // These operations are legal for anything that can be stored in a
340       // vector register, even if there is no native support for the format
341       // as such.  In particular, we can do these for v4f32 even though there
342       // are no specific instructions for that format.
343       setOperationAction(ISD::LOAD, VT, Legal);
344       setOperationAction(ISD::STORE, VT, Legal);
345       setOperationAction(ISD::VSELECT, VT, Legal);
346       setOperationAction(ISD::BITCAST, VT, Legal);
347       setOperationAction(ISD::UNDEF, VT, Legal);
348 
349       // Likewise, except that we need to replace the nodes with something
350       // more specific.
351       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
352       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
353     }
354   }
355 
356   // Handle integer vector types.
357   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
358     if (isTypeLegal(VT)) {
359       // These operations have direct equivalents.
360       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
361       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
362       setOperationAction(ISD::ADD, VT, Legal);
363       setOperationAction(ISD::SUB, VT, Legal);
364       if (VT != MVT::v2i64)
365         setOperationAction(ISD::MUL, VT, Legal);
366       setOperationAction(ISD::ABS, VT, Legal);
367       setOperationAction(ISD::AND, VT, Legal);
368       setOperationAction(ISD::OR, VT, Legal);
369       setOperationAction(ISD::XOR, VT, Legal);
370       if (Subtarget.hasVectorEnhancements1())
371         setOperationAction(ISD::CTPOP, VT, Legal);
372       else
373         setOperationAction(ISD::CTPOP, VT, Custom);
374       setOperationAction(ISD::CTTZ, VT, Legal);
375       setOperationAction(ISD::CTLZ, VT, Legal);
376 
377       // Convert a GPR scalar to a vector by inserting it into element 0.
378       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
379 
380       // Use a series of unpacks for extensions.
381       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
382       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
383 
384       // Detect shifts by a scalar amount and convert them into
385       // V*_BY_SCALAR.
386       setOperationAction(ISD::SHL, VT, Custom);
387       setOperationAction(ISD::SRA, VT, Custom);
388       setOperationAction(ISD::SRL, VT, Custom);
389 
390       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
391       // converted into ROTL.
392       setOperationAction(ISD::ROTL, VT, Expand);
393       setOperationAction(ISD::ROTR, VT, Expand);
394 
395       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
396       // and inverting the result as necessary.
397       setOperationAction(ISD::SETCC, VT, Custom);
398       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
399       if (Subtarget.hasVectorEnhancements1())
400         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
401     }
402   }
403 
404   if (Subtarget.hasVector()) {
405     // There should be no need to check for float types other than v2f64
406     // since <2 x f32> isn't a legal type.
407     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
408     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
409     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
410     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
411     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
412     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
413     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
414     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
415 
416     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
417     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
418     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
419     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
420     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
421     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
422     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
423     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
424   }
425 
426   if (Subtarget.hasVectorEnhancements2()) {
427     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
428     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
429     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
430     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
431     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
432     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
433     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
434     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
435 
436     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
437     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
438     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
439     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
440     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
441     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
442     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
443     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
444   }
445 
446   // Handle floating-point types.
447   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
448        I <= MVT::LAST_FP_VALUETYPE;
449        ++I) {
450     MVT VT = MVT::SimpleValueType(I);
451     if (isTypeLegal(VT)) {
452       // We can use FI for FRINT.
453       setOperationAction(ISD::FRINT, VT, Legal);
454 
455       // We can use the extended form of FI for other rounding operations.
456       if (Subtarget.hasFPExtension()) {
457         setOperationAction(ISD::FNEARBYINT, VT, Legal);
458         setOperationAction(ISD::FFLOOR, VT, Legal);
459         setOperationAction(ISD::FCEIL, VT, Legal);
460         setOperationAction(ISD::FTRUNC, VT, Legal);
461         setOperationAction(ISD::FROUND, VT, Legal);
462       }
463 
464       // No special instructions for these.
465       setOperationAction(ISD::FSIN, VT, Expand);
466       setOperationAction(ISD::FCOS, VT, Expand);
467       setOperationAction(ISD::FSINCOS, VT, Expand);
468       setOperationAction(ISD::FREM, VT, Expand);
469       setOperationAction(ISD::FPOW, VT, Expand);
470 
471       // Handle constrained floating-point operations.
472       setOperationAction(ISD::STRICT_FADD, VT, Legal);
473       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
474       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
475       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
476       setOperationAction(ISD::STRICT_FMA, VT, Legal);
477       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
478       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
479       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
480       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
481       if (Subtarget.hasFPExtension()) {
482         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
483         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
484         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
485         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
486         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
487       }
488     }
489   }
490 
491   // Handle floating-point vector types.
492   if (Subtarget.hasVector()) {
493     // Scalar-to-vector conversion is just a subreg.
494     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
495     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
496 
497     // Some insertions and extractions can be done directly but others
498     // need to go via integers.
499     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
500     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
501     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
502     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
503 
504     // These operations have direct equivalents.
505     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
506     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
507     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
508     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
509     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
510     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
511     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
512     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
513     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
514     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
515     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
516     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
517     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
518     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
519 
520     // Handle constrained floating-point operations.
521     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
527     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
533   }
534 
535   // The vector enhancements facility 1 has instructions for these.
536   if (Subtarget.hasVectorEnhancements1()) {
537     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
538     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
539     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
540     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
541     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
542     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
543     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
544     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
545     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
546     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
547     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
548     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
549     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
550     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
551 
552     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
553     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
554     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
555     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
556 
557     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
558     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
559     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
560     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
561 
562     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
563     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
564     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
565     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
566 
567     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
568     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
569     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
570     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
571 
572     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
573     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
574     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
575     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
576 
577     // Handle constrained floating-point operations.
578     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
584     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
590     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
591                      MVT::v4f32, MVT::v2f64 }) {
592       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
593       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
594       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
595       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
596     }
597   }
598 
599   // We only have fused f128 multiply-addition on vector registers.
600   if (!Subtarget.hasVectorEnhancements1()) {
601     setOperationAction(ISD::FMA, MVT::f128, Expand);
602     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
603   }
604 
605   // We don't have a copysign instruction on vector registers.
606   if (Subtarget.hasVectorEnhancements1())
607     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
608 
609   // Needed so that we don't try to implement f128 constant loads using
610   // a load-and-extend of a f80 constant (in cases where the constant
611   // would fit in an f80).
612   for (MVT VT : MVT::fp_valuetypes())
613     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
614 
615   // We don't have extending load instruction on vector registers.
616   if (Subtarget.hasVectorEnhancements1()) {
617     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
618     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
619   }
620 
621   // Floating-point truncation and stores need to be done separately.
622   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
623   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
624   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
625 
626   // We have 64-bit FPR<->GPR moves, but need special handling for
627   // 32-bit forms.
628   if (!Subtarget.hasVector()) {
629     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
630     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
631   }
632 
633   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
634   // structure, but VAEND is a no-op.
635   setOperationAction(ISD::VASTART, MVT::Other, Custom);
636   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
637   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
638 
639   // Codes for which we want to perform some z-specific combinations.
640   setTargetDAGCombine(ISD::ZERO_EXTEND);
641   setTargetDAGCombine(ISD::SIGN_EXTEND);
642   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
643   setTargetDAGCombine(ISD::LOAD);
644   setTargetDAGCombine(ISD::STORE);
645   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
646   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
647   setTargetDAGCombine(ISD::FP_ROUND);
648   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
649   setTargetDAGCombine(ISD::FP_EXTEND);
650   setTargetDAGCombine(ISD::SINT_TO_FP);
651   setTargetDAGCombine(ISD::UINT_TO_FP);
652   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
653   setTargetDAGCombine(ISD::BSWAP);
654   setTargetDAGCombine(ISD::SDIV);
655   setTargetDAGCombine(ISD::UDIV);
656   setTargetDAGCombine(ISD::SREM);
657   setTargetDAGCombine(ISD::UREM);
658   setTargetDAGCombine(ISD::INTRINSIC_VOID);
659   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
660 
661   // Handle intrinsics.
662   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
663   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
664 
665   // We want to use MVC in preference to even a single load/store pair.
666   MaxStoresPerMemcpy = 0;
667   MaxStoresPerMemcpyOptSize = 0;
668 
669   // The main memset sequence is a byte store followed by an MVC.
670   // Two STC or MV..I stores win over that, but the kind of fused stores
671   // generated by target-independent code don't when the byte value is
672   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
673   // than "STC;MVC".  Handle the choice in target-specific code instead.
674   MaxStoresPerMemset = 0;
675   MaxStoresPerMemsetOptSize = 0;
676 
677   // Default to having -disable-strictnode-mutation on
678   IsStrictFPEnabled = true;
679 }
680 
useSoftFloat() const681 bool SystemZTargetLowering::useSoftFloat() const {
682   return Subtarget.hasSoftFloat();
683 }
684 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const685 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
686                                               LLVMContext &, EVT VT) const {
687   if (!VT.isVector())
688     return MVT::i32;
689   return VT.changeVectorElementTypeToInteger();
690 }
691 
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const692 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
693     const MachineFunction &MF, EVT VT) const {
694   VT = VT.getScalarType();
695 
696   if (!VT.isSimple())
697     return false;
698 
699   switch (VT.getSimpleVT().SimpleTy) {
700   case MVT::f32:
701   case MVT::f64:
702     return true;
703   case MVT::f128:
704     return Subtarget.hasVectorEnhancements1();
705   default:
706     break;
707   }
708 
709   return false;
710 }
711 
712 // Return true if the constant can be generated with a vector instruction,
713 // such as VGM, VGMB or VREPI.
isVectorConstantLegal(const SystemZSubtarget & Subtarget)714 bool SystemZVectorConstantInfo::isVectorConstantLegal(
715     const SystemZSubtarget &Subtarget) {
716   const SystemZInstrInfo *TII =
717       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
718   if (!Subtarget.hasVector() ||
719       (isFP128 && !Subtarget.hasVectorEnhancements1()))
720     return false;
721 
722   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
723   // preferred way of creating all-zero and all-one vectors so give it
724   // priority over other methods below.
725   unsigned Mask = 0;
726   unsigned I = 0;
727   for (; I < SystemZ::VectorBytes; ++I) {
728     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
729     if (Byte == 0xff)
730       Mask |= 1ULL << I;
731     else if (Byte != 0)
732       break;
733   }
734   if (I == SystemZ::VectorBytes) {
735     Opcode = SystemZISD::BYTE_MASK;
736     OpVals.push_back(Mask);
737     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
738     return true;
739   }
740 
741   if (SplatBitSize > 64)
742     return false;
743 
744   auto tryValue = [&](uint64_t Value) -> bool {
745     // Try VECTOR REPLICATE IMMEDIATE
746     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
747     if (isInt<16>(SignedValue)) {
748       OpVals.push_back(((unsigned) SignedValue));
749       Opcode = SystemZISD::REPLICATE;
750       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
751                                SystemZ::VectorBits / SplatBitSize);
752       return true;
753     }
754     // Try VECTOR GENERATE MASK
755     unsigned Start, End;
756     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
757       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
758       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
759       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
760       OpVals.push_back(Start - (64 - SplatBitSize));
761       OpVals.push_back(End - (64 - SplatBitSize));
762       Opcode = SystemZISD::ROTATE_MASK;
763       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
764                                SystemZ::VectorBits / SplatBitSize);
765       return true;
766     }
767     return false;
768   };
769 
770   // First try assuming that any undefined bits above the highest set bit
771   // and below the lowest set bit are 1s.  This increases the likelihood of
772   // being able to use a sign-extended element value in VECTOR REPLICATE
773   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
774   uint64_t SplatBitsZ = SplatBits.getZExtValue();
775   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
776   uint64_t Lower =
777       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
778   uint64_t Upper =
779       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
780   if (tryValue(SplatBitsZ | Upper | Lower))
781     return true;
782 
783   // Now try assuming that any undefined bits between the first and
784   // last defined set bits are set.  This increases the chances of
785   // using a non-wraparound mask.
786   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
787   return tryValue(SplatBitsZ | Middle);
788 }
789 
SystemZVectorConstantInfo(APFloat FPImm)790 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
791   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
792   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
793   SplatBits = FPImm.bitcastToAPInt();
794   unsigned Width = SplatBits.getBitWidth();
795   IntBits <<= (SystemZ::VectorBits - Width);
796 
797   // Find the smallest splat.
798   while (Width > 8) {
799     unsigned HalfSize = Width / 2;
800     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
801     APInt LowValue = SplatBits.trunc(HalfSize);
802 
803     // If the two halves do not match, stop here.
804     if (HighValue != LowValue || 8 > HalfSize)
805       break;
806 
807     SplatBits = HighValue;
808     Width = HalfSize;
809   }
810   SplatUndef = 0;
811   SplatBitSize = Width;
812 }
813 
SystemZVectorConstantInfo(BuildVectorSDNode * BVN)814 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
815   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
816   bool HasAnyUndefs;
817 
818   // Get IntBits by finding the 128 bit splat.
819   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
820                        true);
821 
822   // Get SplatBits by finding the 8 bit or greater splat.
823   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
824                        true);
825 }
826 
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const827 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
828                                          bool ForCodeSize) const {
829   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
830   if (Imm.isZero() || Imm.isNegZero())
831     return true;
832 
833   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
834 }
835 
836 /// Returns true if stack probing through inline assembly is requested.
hasInlineStackProbe(MachineFunction & MF) const837 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
838   // If the function specifically requests inline stack probes, emit them.
839   if (MF.getFunction().hasFnAttribute("probe-stack"))
840     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
841            "inline-asm";
842   return false;
843 }
844 
isLegalICmpImmediate(int64_t Imm) const845 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
846   // We can use CGFI or CLGFI.
847   return isInt<32>(Imm) || isUInt<32>(Imm);
848 }
849 
isLegalAddImmediate(int64_t Imm) const850 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
851   // We can use ALGFI or SLGFI.
852   return isUInt<32>(Imm) || isUInt<32>(-Imm);
853 }
854 
allowsMisalignedMemoryAccesses(EVT VT,unsigned,Align,MachineMemOperand::Flags,bool * Fast) const855 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
856     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
857   // Unaligned accesses should never be slower than the expanded version.
858   // We check specifically for aligned accesses in the few cases where
859   // they are required.
860   if (Fast)
861     *Fast = true;
862   return true;
863 }
864 
865 // Information about the addressing mode for a memory access.
866 struct AddressingMode {
867   // True if a long displacement is supported.
868   bool LongDisplacement;
869 
870   // True if use of index register is supported.
871   bool IndexReg;
872 
AddressingModeAddressingMode873   AddressingMode(bool LongDispl, bool IdxReg) :
874     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
875 };
876 
877 // Return the desired addressing mode for a Load which has only one use (in
878 // the same block) which is a Store.
getLoadStoreAddrMode(bool HasVector,Type * Ty)879 static AddressingMode getLoadStoreAddrMode(bool HasVector,
880                                           Type *Ty) {
881   // With vector support a Load->Store combination may be combined to either
882   // an MVC or vector operations and it seems to work best to allow the
883   // vector addressing mode.
884   if (HasVector)
885     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
886 
887   // Otherwise only the MVC case is special.
888   bool MVC = Ty->isIntegerTy(8);
889   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
890 }
891 
892 // Return the addressing mode which seems most desirable given an LLVM
893 // Instruction pointer.
894 static AddressingMode
supportedAddressingMode(Instruction * I,bool HasVector)895 supportedAddressingMode(Instruction *I, bool HasVector) {
896   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
897     switch (II->getIntrinsicID()) {
898     default: break;
899     case Intrinsic::memset:
900     case Intrinsic::memmove:
901     case Intrinsic::memcpy:
902       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
903     }
904   }
905 
906   if (isa<LoadInst>(I) && I->hasOneUse()) {
907     auto *SingleUser = cast<Instruction>(*I->user_begin());
908     if (SingleUser->getParent() == I->getParent()) {
909       if (isa<ICmpInst>(SingleUser)) {
910         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
911           if (C->getBitWidth() <= 64 &&
912               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
913             // Comparison of memory with 16 bit signed / unsigned immediate
914             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
915       } else if (isa<StoreInst>(SingleUser))
916         // Load->Store
917         return getLoadStoreAddrMode(HasVector, I->getType());
918     }
919   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
920     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
921       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
922         // Load->Store
923         return getLoadStoreAddrMode(HasVector, LoadI->getType());
924   }
925 
926   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
927 
928     // * Use LDE instead of LE/LEY for z13 to avoid partial register
929     //   dependencies (LDE only supports small offsets).
930     // * Utilize the vector registers to hold floating point
931     //   values (vector load / store instructions only support small
932     //   offsets).
933 
934     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
935                          I->getOperand(0)->getType());
936     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
937     bool IsVectorAccess = MemAccessTy->isVectorTy();
938 
939     // A store of an extracted vector element will be combined into a VSTE type
940     // instruction.
941     if (!IsVectorAccess && isa<StoreInst>(I)) {
942       Value *DataOp = I->getOperand(0);
943       if (isa<ExtractElementInst>(DataOp))
944         IsVectorAccess = true;
945     }
946 
947     // A load which gets inserted into a vector element will be combined into a
948     // VLE type instruction.
949     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
950       User *LoadUser = *I->user_begin();
951       if (isa<InsertElementInst>(LoadUser))
952         IsVectorAccess = true;
953     }
954 
955     if (IsFPAccess || IsVectorAccess)
956       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
957   }
958 
959   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
960 }
961 
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const962 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
963        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
964   // Punt on globals for now, although they can be used in limited
965   // RELATIVE LONG cases.
966   if (AM.BaseGV)
967     return false;
968 
969   // Require a 20-bit signed offset.
970   if (!isInt<20>(AM.BaseOffs))
971     return false;
972 
973   AddressingMode SupportedAM(true, true);
974   if (I != nullptr)
975     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
976 
977   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
978     return false;
979 
980   if (!SupportedAM.IndexReg)
981     // No indexing allowed.
982     return AM.Scale == 0;
983   else
984     // Indexing is OK but no scale factor can be applied.
985     return AM.Scale == 0 || AM.Scale == 1;
986 }
987 
isTruncateFree(Type * FromType,Type * ToType) const988 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
989   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
990     return false;
991   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
992   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
993   return FromBits > ToBits;
994 }
995 
isTruncateFree(EVT FromVT,EVT ToVT) const996 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
997   if (!FromVT.isInteger() || !ToVT.isInteger())
998     return false;
999   unsigned FromBits = FromVT.getFixedSizeInBits();
1000   unsigned ToBits = ToVT.getFixedSizeInBits();
1001   return FromBits > ToBits;
1002 }
1003 
1004 //===----------------------------------------------------------------------===//
1005 // Inline asm support
1006 //===----------------------------------------------------------------------===//
1007 
1008 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const1009 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1010   if (Constraint.size() == 1) {
1011     switch (Constraint[0]) {
1012     case 'a': // Address register
1013     case 'd': // Data register (equivalent to 'r')
1014     case 'f': // Floating-point register
1015     case 'h': // High-part register
1016     case 'r': // General-purpose register
1017     case 'v': // Vector register
1018       return C_RegisterClass;
1019 
1020     case 'Q': // Memory with base and unsigned 12-bit displacement
1021     case 'R': // Likewise, plus an index
1022     case 'S': // Memory with base and signed 20-bit displacement
1023     case 'T': // Likewise, plus an index
1024     case 'm': // Equivalent to 'T'.
1025       return C_Memory;
1026 
1027     case 'I': // Unsigned 8-bit constant
1028     case 'J': // Unsigned 12-bit constant
1029     case 'K': // Signed 16-bit constant
1030     case 'L': // Signed 20-bit displacement (on all targets we support)
1031     case 'M': // 0x7fffffff
1032       return C_Immediate;
1033 
1034     default:
1035       break;
1036     }
1037   }
1038   return TargetLowering::getConstraintType(Constraint);
1039 }
1040 
1041 TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const1042 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1043                                const char *constraint) const {
1044   ConstraintWeight weight = CW_Invalid;
1045   Value *CallOperandVal = info.CallOperandVal;
1046   // If we don't have a value, we can't do a match,
1047   // but allow it at the lowest weight.
1048   if (!CallOperandVal)
1049     return CW_Default;
1050   Type *type = CallOperandVal->getType();
1051   // Look at the constraint type.
1052   switch (*constraint) {
1053   default:
1054     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1055     break;
1056 
1057   case 'a': // Address register
1058   case 'd': // Data register (equivalent to 'r')
1059   case 'h': // High-part register
1060   case 'r': // General-purpose register
1061     if (CallOperandVal->getType()->isIntegerTy())
1062       weight = CW_Register;
1063     break;
1064 
1065   case 'f': // Floating-point register
1066     if (type->isFloatingPointTy())
1067       weight = CW_Register;
1068     break;
1069 
1070   case 'v': // Vector register
1071     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1072         Subtarget.hasVector())
1073       weight = CW_Register;
1074     break;
1075 
1076   case 'I': // Unsigned 8-bit constant
1077     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1078       if (isUInt<8>(C->getZExtValue()))
1079         weight = CW_Constant;
1080     break;
1081 
1082   case 'J': // Unsigned 12-bit constant
1083     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1084       if (isUInt<12>(C->getZExtValue()))
1085         weight = CW_Constant;
1086     break;
1087 
1088   case 'K': // Signed 16-bit constant
1089     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1090       if (isInt<16>(C->getSExtValue()))
1091         weight = CW_Constant;
1092     break;
1093 
1094   case 'L': // Signed 20-bit displacement (on all targets we support)
1095     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1096       if (isInt<20>(C->getSExtValue()))
1097         weight = CW_Constant;
1098     break;
1099 
1100   case 'M': // 0x7fffffff
1101     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1102       if (C->getZExtValue() == 0x7fffffff)
1103         weight = CW_Constant;
1104     break;
1105   }
1106   return weight;
1107 }
1108 
1109 // Parse a "{tNNN}" register constraint for which the register type "t"
1110 // has already been verified.  MC is the class associated with "t" and
1111 // Map maps 0-based register numbers to LLVM register numbers.
1112 static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(StringRef Constraint,const TargetRegisterClass * RC,const unsigned * Map,unsigned Size)1113 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1114                     const unsigned *Map, unsigned Size) {
1115   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1116   if (isdigit(Constraint[2])) {
1117     unsigned Index;
1118     bool Failed =
1119         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1120     if (!Failed && Index < Size && Map[Index])
1121       return std::make_pair(Map[Index], RC);
1122   }
1123   return std::make_pair(0U, nullptr);
1124 }
1125 
1126 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const1127 SystemZTargetLowering::getRegForInlineAsmConstraint(
1128     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1129   if (Constraint.size() == 1) {
1130     // GCC Constraint Letters
1131     switch (Constraint[0]) {
1132     default: break;
1133     case 'd': // Data register (equivalent to 'r')
1134     case 'r': // General-purpose register
1135       if (VT == MVT::i64)
1136         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1137       else if (VT == MVT::i128)
1138         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1139       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1140 
1141     case 'a': // Address register
1142       if (VT == MVT::i64)
1143         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1144       else if (VT == MVT::i128)
1145         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1146       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1147 
1148     case 'h': // High-part register (an LLVM extension)
1149       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1150 
1151     case 'f': // Floating-point register
1152       if (!useSoftFloat()) {
1153         if (VT == MVT::f64)
1154           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1155         else if (VT == MVT::f128)
1156           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1157         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1158       }
1159       break;
1160     case 'v': // Vector register
1161       if (Subtarget.hasVector()) {
1162         if (VT == MVT::f32)
1163           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1164         if (VT == MVT::f64)
1165           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1166         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1167       }
1168       break;
1169     }
1170   }
1171   if (Constraint.size() > 0 && Constraint[0] == '{') {
1172     // We need to override the default register parsing for GPRs and FPRs
1173     // because the interpretation depends on VT.  The internal names of
1174     // the registers are also different from the external names
1175     // (F0D and F0S instead of F0, etc.).
1176     if (Constraint[1] == 'r') {
1177       if (VT == MVT::i32)
1178         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1179                                    SystemZMC::GR32Regs, 16);
1180       if (VT == MVT::i128)
1181         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1182                                    SystemZMC::GR128Regs, 16);
1183       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1184                                  SystemZMC::GR64Regs, 16);
1185     }
1186     if (Constraint[1] == 'f') {
1187       if (useSoftFloat())
1188         return std::make_pair(
1189             0u, static_cast<const TargetRegisterClass *>(nullptr));
1190       if (VT == MVT::f32)
1191         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1192                                    SystemZMC::FP32Regs, 16);
1193       if (VT == MVT::f128)
1194         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1195                                    SystemZMC::FP128Regs, 16);
1196       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1197                                  SystemZMC::FP64Regs, 16);
1198     }
1199     if (Constraint[1] == 'v') {
1200       if (!Subtarget.hasVector())
1201         return std::make_pair(
1202             0u, static_cast<const TargetRegisterClass *>(nullptr));
1203       if (VT == MVT::f32)
1204         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1205                                    SystemZMC::VR32Regs, 32);
1206       if (VT == MVT::f64)
1207         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1208                                    SystemZMC::VR64Regs, 32);
1209       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1210                                  SystemZMC::VR128Regs, 32);
1211     }
1212   }
1213   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1214 }
1215 
1216 // FIXME? Maybe this could be a TableGen attribute on some registers and
1217 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const1218 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1219                                                   const MachineFunction &MF) const {
1220 
1221   Register Reg = StringSwitch<Register>(RegName)
1222                    .Case("r15", SystemZ::R15D)
1223                    .Default(0);
1224   if (Reg)
1225     return Reg;
1226   report_fatal_error("Invalid register name global variable");
1227 }
1228 
1229 void SystemZTargetLowering::
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const1230 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1231                              std::vector<SDValue> &Ops,
1232                              SelectionDAG &DAG) const {
1233   // Only support length 1 constraints for now.
1234   if (Constraint.length() == 1) {
1235     switch (Constraint[0]) {
1236     case 'I': // Unsigned 8-bit constant
1237       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1238         if (isUInt<8>(C->getZExtValue()))
1239           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1240                                               Op.getValueType()));
1241       return;
1242 
1243     case 'J': // Unsigned 12-bit constant
1244       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1245         if (isUInt<12>(C->getZExtValue()))
1246           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1247                                               Op.getValueType()));
1248       return;
1249 
1250     case 'K': // Signed 16-bit constant
1251       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1252         if (isInt<16>(C->getSExtValue()))
1253           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1254                                               Op.getValueType()));
1255       return;
1256 
1257     case 'L': // Signed 20-bit displacement (on all targets we support)
1258       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1259         if (isInt<20>(C->getSExtValue()))
1260           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1261                                               Op.getValueType()));
1262       return;
1263 
1264     case 'M': // 0x7fffffff
1265       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1266         if (C->getZExtValue() == 0x7fffffff)
1267           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1268                                               Op.getValueType()));
1269       return;
1270     }
1271   }
1272   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1273 }
1274 
1275 //===----------------------------------------------------------------------===//
1276 // Calling conventions
1277 //===----------------------------------------------------------------------===//
1278 
1279 #include "SystemZGenCallingConv.inc"
1280 
getScratchRegisters(CallingConv::ID) const1281 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1282   CallingConv::ID) const {
1283   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1284                                            SystemZ::R14D, 0 };
1285   return ScratchRegs;
1286 }
1287 
allowTruncateForTailCall(Type * FromType,Type * ToType) const1288 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1289                                                      Type *ToType) const {
1290   return isTruncateFree(FromType, ToType);
1291 }
1292 
mayBeEmittedAsTailCall(const CallInst * CI) const1293 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1294   return CI->isTailCall();
1295 }
1296 
1297 // We do not yet support 128-bit single-element vector types.  If the user
1298 // attempts to use such types as function argument or return type, prefer
1299 // to error out instead of emitting code violating the ABI.
VerifyVectorType(MVT VT,EVT ArgVT)1300 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1301   if (ArgVT.isVector() && !VT.isVector())
1302     report_fatal_error("Unsupported vector argument or return type");
1303 }
1304 
VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> & Ins)1305 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1306   for (unsigned i = 0; i < Ins.size(); ++i)
1307     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1308 }
1309 
VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> & Outs)1310 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1311   for (unsigned i = 0; i < Outs.size(); ++i)
1312     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1313 }
1314 
1315 // Value is a value that has been passed to us in the location described by VA
1316 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1317 // any loads onto Chain.
convertLocVTToValVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Chain,SDValue Value)1318 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1319                                    CCValAssign &VA, SDValue Chain,
1320                                    SDValue Value) {
1321   // If the argument has been promoted from a smaller type, insert an
1322   // assertion to capture this.
1323   if (VA.getLocInfo() == CCValAssign::SExt)
1324     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1325                         DAG.getValueType(VA.getValVT()));
1326   else if (VA.getLocInfo() == CCValAssign::ZExt)
1327     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1328                         DAG.getValueType(VA.getValVT()));
1329 
1330   if (VA.isExtInLoc())
1331     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1332   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1333     // If this is a short vector argument loaded from the stack,
1334     // extend from i64 to full vector size and then bitcast.
1335     assert(VA.getLocVT() == MVT::i64);
1336     assert(VA.getValVT().isVector());
1337     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1338     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1339   } else
1340     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1341   return Value;
1342 }
1343 
1344 // Value is a value of type VA.getValVT() that we need to copy into
1345 // the location described by VA.  Return a copy of Value converted to
1346 // VA.getValVT().  The caller is responsible for handling indirect values.
convertValVTToLocVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Value)1347 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1348                                    CCValAssign &VA, SDValue Value) {
1349   switch (VA.getLocInfo()) {
1350   case CCValAssign::SExt:
1351     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1352   case CCValAssign::ZExt:
1353     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1354   case CCValAssign::AExt:
1355     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1356   case CCValAssign::BCvt:
1357     // If this is a short vector argument to be stored to the stack,
1358     // bitcast to v2i64 and then extract first element.
1359     assert(VA.getLocVT() == MVT::i64);
1360     assert(VA.getValVT().isVector());
1361     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1362     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1363                        DAG.getConstant(0, DL, MVT::i32));
1364   case CCValAssign::Full:
1365     return Value;
1366   default:
1367     llvm_unreachable("Unhandled getLocInfo()");
1368   }
1369 }
1370 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1371 SDValue SystemZTargetLowering::LowerFormalArguments(
1372     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1373     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1374     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1375   MachineFunction &MF = DAG.getMachineFunction();
1376   MachineFrameInfo &MFI = MF.getFrameInfo();
1377   MachineRegisterInfo &MRI = MF.getRegInfo();
1378   SystemZMachineFunctionInfo *FuncInfo =
1379       MF.getInfo<SystemZMachineFunctionInfo>();
1380   auto *TFL =
1381       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1382   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1383 
1384   // Detect unsupported vector argument types.
1385   if (Subtarget.hasVector())
1386     VerifyVectorTypes(Ins);
1387 
1388   // Assign locations to all of the incoming arguments.
1389   SmallVector<CCValAssign, 16> ArgLocs;
1390   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1391   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1392 
1393   unsigned NumFixedGPRs = 0;
1394   unsigned NumFixedFPRs = 0;
1395   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1396     SDValue ArgValue;
1397     CCValAssign &VA = ArgLocs[I];
1398     EVT LocVT = VA.getLocVT();
1399     if (VA.isRegLoc()) {
1400       // Arguments passed in registers
1401       const TargetRegisterClass *RC;
1402       switch (LocVT.getSimpleVT().SimpleTy) {
1403       default:
1404         // Integers smaller than i64 should be promoted to i64.
1405         llvm_unreachable("Unexpected argument type");
1406       case MVT::i32:
1407         NumFixedGPRs += 1;
1408         RC = &SystemZ::GR32BitRegClass;
1409         break;
1410       case MVT::i64:
1411         NumFixedGPRs += 1;
1412         RC = &SystemZ::GR64BitRegClass;
1413         break;
1414       case MVT::f32:
1415         NumFixedFPRs += 1;
1416         RC = &SystemZ::FP32BitRegClass;
1417         break;
1418       case MVT::f64:
1419         NumFixedFPRs += 1;
1420         RC = &SystemZ::FP64BitRegClass;
1421         break;
1422       case MVT::v16i8:
1423       case MVT::v8i16:
1424       case MVT::v4i32:
1425       case MVT::v2i64:
1426       case MVT::v4f32:
1427       case MVT::v2f64:
1428         RC = &SystemZ::VR128BitRegClass;
1429         break;
1430       }
1431 
1432       Register VReg = MRI.createVirtualRegister(RC);
1433       MRI.addLiveIn(VA.getLocReg(), VReg);
1434       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1435     } else {
1436       assert(VA.isMemLoc() && "Argument not register or memory");
1437 
1438       // Create the frame index object for this incoming parameter.
1439       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1440                                      VA.getLocMemOffset(), true);
1441 
1442       // Create the SelectionDAG nodes corresponding to a load
1443       // from this parameter.  Unpromoted ints and floats are
1444       // passed as right-justified 8-byte values.
1445       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1446       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1447         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1448                           DAG.getIntPtrConstant(4, DL));
1449       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1450                              MachinePointerInfo::getFixedStack(MF, FI));
1451     }
1452 
1453     // Convert the value of the argument register into the value that's
1454     // being passed.
1455     if (VA.getLocInfo() == CCValAssign::Indirect) {
1456       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1457                                    MachinePointerInfo()));
1458       // If the original argument was split (e.g. i128), we need
1459       // to load all parts of it here (using the same address).
1460       unsigned ArgIndex = Ins[I].OrigArgIndex;
1461       assert (Ins[I].PartOffset == 0);
1462       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1463         CCValAssign &PartVA = ArgLocs[I + 1];
1464         unsigned PartOffset = Ins[I + 1].PartOffset;
1465         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1466                                       DAG.getIntPtrConstant(PartOffset, DL));
1467         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1468                                      MachinePointerInfo()));
1469         ++I;
1470       }
1471     } else
1472       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1473   }
1474 
1475   if (IsVarArg) {
1476     // Save the number of non-varargs registers for later use by va_start, etc.
1477     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1478     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1479 
1480     // Likewise the address (in the form of a frame index) of where the
1481     // first stack vararg would be.  The 1-byte size here is arbitrary.
1482     int64_t StackSize = CCInfo.getNextStackOffset();
1483     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1484 
1485     // ...and a similar frame index for the caller-allocated save area
1486     // that will be used to store the incoming registers.
1487     int64_t RegSaveOffset =
1488       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1489     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1490     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1491 
1492     // Store the FPR varargs in the reserved frame slots.  (We store the
1493     // GPRs as part of the prologue.)
1494     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1495       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1496       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1497         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1498         int FI =
1499           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1500         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1501         unsigned VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1502                                      &SystemZ::FP64BitRegClass);
1503         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1504         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1505                                  MachinePointerInfo::getFixedStack(MF, FI));
1506       }
1507       // Join the stores, which are independent of one another.
1508       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1509                           makeArrayRef(&MemOps[NumFixedFPRs],
1510                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1511     }
1512   }
1513 
1514   return Chain;
1515 }
1516 
canUseSiblingCall(const CCState & ArgCCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,SmallVectorImpl<ISD::OutputArg> & Outs)1517 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1518                               SmallVectorImpl<CCValAssign> &ArgLocs,
1519                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1520   // Punt if there are any indirect or stack arguments, or if the call
1521   // needs the callee-saved argument register R6, or if the call uses
1522   // the callee-saved register arguments SwiftSelf and SwiftError.
1523   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1524     CCValAssign &VA = ArgLocs[I];
1525     if (VA.getLocInfo() == CCValAssign::Indirect)
1526       return false;
1527     if (!VA.isRegLoc())
1528       return false;
1529     Register Reg = VA.getLocReg();
1530     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1531       return false;
1532     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1533       return false;
1534   }
1535   return true;
1536 }
1537 
1538 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1539 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1540                                  SmallVectorImpl<SDValue> &InVals) const {
1541   SelectionDAG &DAG = CLI.DAG;
1542   SDLoc &DL = CLI.DL;
1543   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1544   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1545   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1546   SDValue Chain = CLI.Chain;
1547   SDValue Callee = CLI.Callee;
1548   bool &IsTailCall = CLI.IsTailCall;
1549   CallingConv::ID CallConv = CLI.CallConv;
1550   bool IsVarArg = CLI.IsVarArg;
1551   MachineFunction &MF = DAG.getMachineFunction();
1552   EVT PtrVT = getPointerTy(MF.getDataLayout());
1553   LLVMContext &Ctx = *DAG.getContext();
1554 
1555   // Detect unsupported vector argument and return types.
1556   if (Subtarget.hasVector()) {
1557     VerifyVectorTypes(Outs);
1558     VerifyVectorTypes(Ins);
1559   }
1560 
1561   // Analyze the operands of the call, assigning locations to each operand.
1562   SmallVector<CCValAssign, 16> ArgLocs;
1563   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1564   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1565 
1566   // We don't support GuaranteedTailCallOpt, only automatically-detected
1567   // sibling calls.
1568   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1569     IsTailCall = false;
1570 
1571   // Get a count of how many bytes are to be pushed on the stack.
1572   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1573 
1574   // Mark the start of the call.
1575   if (!IsTailCall)
1576     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1577 
1578   // Copy argument values to their designated locations.
1579   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1580   SmallVector<SDValue, 8> MemOpChains;
1581   SDValue StackPtr;
1582   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1583     CCValAssign &VA = ArgLocs[I];
1584     SDValue ArgValue = OutVals[I];
1585 
1586     if (VA.getLocInfo() == CCValAssign::Indirect) {
1587       // Store the argument in a stack slot and pass its address.
1588       unsigned ArgIndex = Outs[I].OrigArgIndex;
1589       EVT SlotVT;
1590       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1591         // Allocate the full stack space for a promoted (and split) argument.
1592         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1593         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1594         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1595         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1596         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1597       } else {
1598         SlotVT = Outs[I].ArgVT;
1599       }
1600       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1601       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1602       MemOpChains.push_back(
1603           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1604                        MachinePointerInfo::getFixedStack(MF, FI)));
1605       // If the original argument was split (e.g. i128), we need
1606       // to store all parts of it here (and pass just one address).
1607       assert (Outs[I].PartOffset == 0);
1608       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1609         SDValue PartValue = OutVals[I + 1];
1610         unsigned PartOffset = Outs[I + 1].PartOffset;
1611         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1612                                       DAG.getIntPtrConstant(PartOffset, DL));
1613         MemOpChains.push_back(
1614             DAG.getStore(Chain, DL, PartValue, Address,
1615                          MachinePointerInfo::getFixedStack(MF, FI)));
1616         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1617                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1618         ++I;
1619       }
1620       ArgValue = SpillSlot;
1621     } else
1622       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1623 
1624     if (VA.isRegLoc())
1625       // Queue up the argument copies and emit them at the end.
1626       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1627     else {
1628       assert(VA.isMemLoc() && "Argument not register or memory");
1629 
1630       // Work out the address of the stack slot.  Unpromoted ints and
1631       // floats are passed as right-justified 8-byte values.
1632       if (!StackPtr.getNode())
1633         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1634       unsigned Offset = SystemZMC::ELFCallFrameSize + VA.getLocMemOffset();
1635       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1636         Offset += 4;
1637       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1638                                     DAG.getIntPtrConstant(Offset, DL));
1639 
1640       // Emit the store.
1641       MemOpChains.push_back(
1642           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1643     }
1644   }
1645 
1646   // Join the stores, which are independent of one another.
1647   if (!MemOpChains.empty())
1648     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1649 
1650   // Accept direct calls by converting symbolic call addresses to the
1651   // associated Target* opcodes.  Force %r1 to be used for indirect
1652   // tail calls.
1653   SDValue Glue;
1654   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1655     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1656     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1657   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1658     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1659     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1660   } else if (IsTailCall) {
1661     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1662     Glue = Chain.getValue(1);
1663     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1664   }
1665 
1666   // Build a sequence of copy-to-reg nodes, chained and glued together.
1667   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1668     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1669                              RegsToPass[I].second, Glue);
1670     Glue = Chain.getValue(1);
1671   }
1672 
1673   // The first call operand is the chain and the second is the target address.
1674   SmallVector<SDValue, 8> Ops;
1675   Ops.push_back(Chain);
1676   Ops.push_back(Callee);
1677 
1678   // Add argument registers to the end of the list so that they are
1679   // known live into the call.
1680   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1681     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1682                                   RegsToPass[I].second.getValueType()));
1683 
1684   // Add a register mask operand representing the call-preserved registers.
1685   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1686   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1687   assert(Mask && "Missing call preserved mask for calling convention");
1688   Ops.push_back(DAG.getRegisterMask(Mask));
1689 
1690   // Glue the call to the argument copies, if any.
1691   if (Glue.getNode())
1692     Ops.push_back(Glue);
1693 
1694   // Emit the call.
1695   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1696   if (IsTailCall)
1697     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1698   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1699   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1700   Glue = Chain.getValue(1);
1701 
1702   // Mark the end of the call, which is glued to the call itself.
1703   Chain = DAG.getCALLSEQ_END(Chain,
1704                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1705                              DAG.getConstant(0, DL, PtrVT, true),
1706                              Glue, DL);
1707   Glue = Chain.getValue(1);
1708 
1709   // Assign locations to each value returned by this call.
1710   SmallVector<CCValAssign, 16> RetLocs;
1711   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1712   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1713 
1714   // Copy all of the result registers out of their specified physreg.
1715   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1716     CCValAssign &VA = RetLocs[I];
1717 
1718     // Copy the value out, gluing the copy to the end of the call sequence.
1719     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1720                                           VA.getLocVT(), Glue);
1721     Chain = RetValue.getValue(1);
1722     Glue = RetValue.getValue(2);
1723 
1724     // Convert the value of the return register into the value that's
1725     // being returned.
1726     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1727   }
1728 
1729   return Chain;
1730 }
1731 
1732 bool SystemZTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1733 CanLowerReturn(CallingConv::ID CallConv,
1734                MachineFunction &MF, bool isVarArg,
1735                const SmallVectorImpl<ISD::OutputArg> &Outs,
1736                LLVMContext &Context) const {
1737   // Detect unsupported vector return types.
1738   if (Subtarget.hasVector())
1739     VerifyVectorTypes(Outs);
1740 
1741   // Special case that we cannot easily detect in RetCC_SystemZ since
1742   // i128 is not a legal type.
1743   for (auto &Out : Outs)
1744     if (Out.ArgVT == MVT::i128)
1745       return false;
1746 
1747   SmallVector<CCValAssign, 16> RetLocs;
1748   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1749   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1750 }
1751 
1752 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1753 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1754                                    bool IsVarArg,
1755                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1756                                    const SmallVectorImpl<SDValue> &OutVals,
1757                                    const SDLoc &DL, SelectionDAG &DAG) const {
1758   MachineFunction &MF = DAG.getMachineFunction();
1759 
1760   // Detect unsupported vector return types.
1761   if (Subtarget.hasVector())
1762     VerifyVectorTypes(Outs);
1763 
1764   // Assign locations to each returned value.
1765   SmallVector<CCValAssign, 16> RetLocs;
1766   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1767   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1768 
1769   // Quick exit for void returns
1770   if (RetLocs.empty())
1771     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1772 
1773   if (CallConv == CallingConv::GHC)
1774     report_fatal_error("GHC functions return void only");
1775 
1776   // Copy the result values into the output registers.
1777   SDValue Glue;
1778   SmallVector<SDValue, 4> RetOps;
1779   RetOps.push_back(Chain);
1780   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1781     CCValAssign &VA = RetLocs[I];
1782     SDValue RetValue = OutVals[I];
1783 
1784     // Make the return register live on exit.
1785     assert(VA.isRegLoc() && "Can only return in registers!");
1786 
1787     // Promote the value as required.
1788     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1789 
1790     // Chain and glue the copies together.
1791     Register Reg = VA.getLocReg();
1792     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1793     Glue = Chain.getValue(1);
1794     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1795   }
1796 
1797   // Update chain and glue.
1798   RetOps[0] = Chain;
1799   if (Glue.getNode())
1800     RetOps.push_back(Glue);
1801 
1802   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1803 }
1804 
1805 // Return true if Op is an intrinsic node with chain that returns the CC value
1806 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1807 // the mask of valid CC values if so.
isIntrinsicWithCCAndChain(SDValue Op,unsigned & Opcode,unsigned & CCValid)1808 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1809                                       unsigned &CCValid) {
1810   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1811   switch (Id) {
1812   case Intrinsic::s390_tbegin:
1813     Opcode = SystemZISD::TBEGIN;
1814     CCValid = SystemZ::CCMASK_TBEGIN;
1815     return true;
1816 
1817   case Intrinsic::s390_tbegin_nofloat:
1818     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1819     CCValid = SystemZ::CCMASK_TBEGIN;
1820     return true;
1821 
1822   case Intrinsic::s390_tend:
1823     Opcode = SystemZISD::TEND;
1824     CCValid = SystemZ::CCMASK_TEND;
1825     return true;
1826 
1827   default:
1828     return false;
1829   }
1830 }
1831 
1832 // Return true if Op is an intrinsic node without chain that returns the
1833 // CC value as its final argument.  Provide the associated SystemZISD
1834 // opcode and the mask of valid CC values if so.
isIntrinsicWithCC(SDValue Op,unsigned & Opcode,unsigned & CCValid)1835 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1836   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1837   switch (Id) {
1838   case Intrinsic::s390_vpkshs:
1839   case Intrinsic::s390_vpksfs:
1840   case Intrinsic::s390_vpksgs:
1841     Opcode = SystemZISD::PACKS_CC;
1842     CCValid = SystemZ::CCMASK_VCMP;
1843     return true;
1844 
1845   case Intrinsic::s390_vpklshs:
1846   case Intrinsic::s390_vpklsfs:
1847   case Intrinsic::s390_vpklsgs:
1848     Opcode = SystemZISD::PACKLS_CC;
1849     CCValid = SystemZ::CCMASK_VCMP;
1850     return true;
1851 
1852   case Intrinsic::s390_vceqbs:
1853   case Intrinsic::s390_vceqhs:
1854   case Intrinsic::s390_vceqfs:
1855   case Intrinsic::s390_vceqgs:
1856     Opcode = SystemZISD::VICMPES;
1857     CCValid = SystemZ::CCMASK_VCMP;
1858     return true;
1859 
1860   case Intrinsic::s390_vchbs:
1861   case Intrinsic::s390_vchhs:
1862   case Intrinsic::s390_vchfs:
1863   case Intrinsic::s390_vchgs:
1864     Opcode = SystemZISD::VICMPHS;
1865     CCValid = SystemZ::CCMASK_VCMP;
1866     return true;
1867 
1868   case Intrinsic::s390_vchlbs:
1869   case Intrinsic::s390_vchlhs:
1870   case Intrinsic::s390_vchlfs:
1871   case Intrinsic::s390_vchlgs:
1872     Opcode = SystemZISD::VICMPHLS;
1873     CCValid = SystemZ::CCMASK_VCMP;
1874     return true;
1875 
1876   case Intrinsic::s390_vtm:
1877     Opcode = SystemZISD::VTM;
1878     CCValid = SystemZ::CCMASK_VCMP;
1879     return true;
1880 
1881   case Intrinsic::s390_vfaebs:
1882   case Intrinsic::s390_vfaehs:
1883   case Intrinsic::s390_vfaefs:
1884     Opcode = SystemZISD::VFAE_CC;
1885     CCValid = SystemZ::CCMASK_ANY;
1886     return true;
1887 
1888   case Intrinsic::s390_vfaezbs:
1889   case Intrinsic::s390_vfaezhs:
1890   case Intrinsic::s390_vfaezfs:
1891     Opcode = SystemZISD::VFAEZ_CC;
1892     CCValid = SystemZ::CCMASK_ANY;
1893     return true;
1894 
1895   case Intrinsic::s390_vfeebs:
1896   case Intrinsic::s390_vfeehs:
1897   case Intrinsic::s390_vfeefs:
1898     Opcode = SystemZISD::VFEE_CC;
1899     CCValid = SystemZ::CCMASK_ANY;
1900     return true;
1901 
1902   case Intrinsic::s390_vfeezbs:
1903   case Intrinsic::s390_vfeezhs:
1904   case Intrinsic::s390_vfeezfs:
1905     Opcode = SystemZISD::VFEEZ_CC;
1906     CCValid = SystemZ::CCMASK_ANY;
1907     return true;
1908 
1909   case Intrinsic::s390_vfenebs:
1910   case Intrinsic::s390_vfenehs:
1911   case Intrinsic::s390_vfenefs:
1912     Opcode = SystemZISD::VFENE_CC;
1913     CCValid = SystemZ::CCMASK_ANY;
1914     return true;
1915 
1916   case Intrinsic::s390_vfenezbs:
1917   case Intrinsic::s390_vfenezhs:
1918   case Intrinsic::s390_vfenezfs:
1919     Opcode = SystemZISD::VFENEZ_CC;
1920     CCValid = SystemZ::CCMASK_ANY;
1921     return true;
1922 
1923   case Intrinsic::s390_vistrbs:
1924   case Intrinsic::s390_vistrhs:
1925   case Intrinsic::s390_vistrfs:
1926     Opcode = SystemZISD::VISTR_CC;
1927     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1928     return true;
1929 
1930   case Intrinsic::s390_vstrcbs:
1931   case Intrinsic::s390_vstrchs:
1932   case Intrinsic::s390_vstrcfs:
1933     Opcode = SystemZISD::VSTRC_CC;
1934     CCValid = SystemZ::CCMASK_ANY;
1935     return true;
1936 
1937   case Intrinsic::s390_vstrczbs:
1938   case Intrinsic::s390_vstrczhs:
1939   case Intrinsic::s390_vstrczfs:
1940     Opcode = SystemZISD::VSTRCZ_CC;
1941     CCValid = SystemZ::CCMASK_ANY;
1942     return true;
1943 
1944   case Intrinsic::s390_vstrsb:
1945   case Intrinsic::s390_vstrsh:
1946   case Intrinsic::s390_vstrsf:
1947     Opcode = SystemZISD::VSTRS_CC;
1948     CCValid = SystemZ::CCMASK_ANY;
1949     return true;
1950 
1951   case Intrinsic::s390_vstrszb:
1952   case Intrinsic::s390_vstrszh:
1953   case Intrinsic::s390_vstrszf:
1954     Opcode = SystemZISD::VSTRSZ_CC;
1955     CCValid = SystemZ::CCMASK_ANY;
1956     return true;
1957 
1958   case Intrinsic::s390_vfcedbs:
1959   case Intrinsic::s390_vfcesbs:
1960     Opcode = SystemZISD::VFCMPES;
1961     CCValid = SystemZ::CCMASK_VCMP;
1962     return true;
1963 
1964   case Intrinsic::s390_vfchdbs:
1965   case Intrinsic::s390_vfchsbs:
1966     Opcode = SystemZISD::VFCMPHS;
1967     CCValid = SystemZ::CCMASK_VCMP;
1968     return true;
1969 
1970   case Intrinsic::s390_vfchedbs:
1971   case Intrinsic::s390_vfchesbs:
1972     Opcode = SystemZISD::VFCMPHES;
1973     CCValid = SystemZ::CCMASK_VCMP;
1974     return true;
1975 
1976   case Intrinsic::s390_vftcidb:
1977   case Intrinsic::s390_vftcisb:
1978     Opcode = SystemZISD::VFTCI;
1979     CCValid = SystemZ::CCMASK_VCMP;
1980     return true;
1981 
1982   case Intrinsic::s390_tdc:
1983     Opcode = SystemZISD::TDC;
1984     CCValid = SystemZ::CCMASK_TDC;
1985     return true;
1986 
1987   default:
1988     return false;
1989   }
1990 }
1991 
1992 // Emit an intrinsic with chain and an explicit CC register result.
emitIntrinsicWithCCAndChain(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1993 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1994                                            unsigned Opcode) {
1995   // Copy all operands except the intrinsic ID.
1996   unsigned NumOps = Op.getNumOperands();
1997   SmallVector<SDValue, 6> Ops;
1998   Ops.reserve(NumOps - 1);
1999   Ops.push_back(Op.getOperand(0));
2000   for (unsigned I = 2; I < NumOps; ++I)
2001     Ops.push_back(Op.getOperand(I));
2002 
2003   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2004   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2005   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2006   SDValue OldChain = SDValue(Op.getNode(), 1);
2007   SDValue NewChain = SDValue(Intr.getNode(), 1);
2008   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2009   return Intr.getNode();
2010 }
2011 
2012 // Emit an intrinsic with an explicit CC register result.
emitIntrinsicWithCC(SelectionDAG & DAG,SDValue Op,unsigned Opcode)2013 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2014                                    unsigned Opcode) {
2015   // Copy all operands except the intrinsic ID.
2016   unsigned NumOps = Op.getNumOperands();
2017   SmallVector<SDValue, 6> Ops;
2018   Ops.reserve(NumOps - 1);
2019   for (unsigned I = 1; I < NumOps; ++I)
2020     Ops.push_back(Op.getOperand(I));
2021 
2022   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2023   return Intr.getNode();
2024 }
2025 
2026 // CC is a comparison that will be implemented using an integer or
2027 // floating-point comparison.  Return the condition code mask for
2028 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2029 // unsigned comparisons and clear for signed ones.  In the floating-point
2030 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
CCMaskForCondCode(ISD::CondCode CC)2031 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2032 #define CONV(X) \
2033   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2034   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2035   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2036 
2037   switch (CC) {
2038   default:
2039     llvm_unreachable("Invalid integer condition!");
2040 
2041   CONV(EQ);
2042   CONV(NE);
2043   CONV(GT);
2044   CONV(GE);
2045   CONV(LT);
2046   CONV(LE);
2047 
2048   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2049   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2050   }
2051 #undef CONV
2052 }
2053 
2054 // If C can be converted to a comparison against zero, adjust the operands
2055 // as necessary.
adjustZeroCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2056 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2057   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2058     return;
2059 
2060   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2061   if (!ConstOp1)
2062     return;
2063 
2064   int64_t Value = ConstOp1->getSExtValue();
2065   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2066       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2067       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2068       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2069     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2070     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2071   }
2072 }
2073 
2074 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2075 // adjust the operands as necessary.
adjustSubwordCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2076 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2077                              Comparison &C) {
2078   // For us to make any changes, it must a comparison between a single-use
2079   // load and a constant.
2080   if (!C.Op0.hasOneUse() ||
2081       C.Op0.getOpcode() != ISD::LOAD ||
2082       C.Op1.getOpcode() != ISD::Constant)
2083     return;
2084 
2085   // We must have an 8- or 16-bit load.
2086   auto *Load = cast<LoadSDNode>(C.Op0);
2087   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2088   if ((NumBits != 8 && NumBits != 16) ||
2089       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2090     return;
2091 
2092   // The load must be an extending one and the constant must be within the
2093   // range of the unextended value.
2094   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2095   uint64_t Value = ConstOp1->getZExtValue();
2096   uint64_t Mask = (1 << NumBits) - 1;
2097   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2098     // Make sure that ConstOp1 is in range of C.Op0.
2099     int64_t SignedValue = ConstOp1->getSExtValue();
2100     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2101       return;
2102     if (C.ICmpType != SystemZICMP::SignedOnly) {
2103       // Unsigned comparison between two sign-extended values is equivalent
2104       // to unsigned comparison between two zero-extended values.
2105       Value &= Mask;
2106     } else if (NumBits == 8) {
2107       // Try to treat the comparison as unsigned, so that we can use CLI.
2108       // Adjust CCMask and Value as necessary.
2109       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2110         // Test whether the high bit of the byte is set.
2111         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2112       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2113         // Test whether the high bit of the byte is clear.
2114         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2115       else
2116         // No instruction exists for this combination.
2117         return;
2118       C.ICmpType = SystemZICMP::UnsignedOnly;
2119     }
2120   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2121     if (Value > Mask)
2122       return;
2123     // If the constant is in range, we can use any comparison.
2124     C.ICmpType = SystemZICMP::Any;
2125   } else
2126     return;
2127 
2128   // Make sure that the first operand is an i32 of the right extension type.
2129   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2130                               ISD::SEXTLOAD :
2131                               ISD::ZEXTLOAD);
2132   if (C.Op0.getValueType() != MVT::i32 ||
2133       Load->getExtensionType() != ExtType) {
2134     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2135                            Load->getBasePtr(), Load->getPointerInfo(),
2136                            Load->getMemoryVT(), Load->getAlignment(),
2137                            Load->getMemOperand()->getFlags());
2138     // Update the chain uses.
2139     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2140   }
2141 
2142   // Make sure that the second operand is an i32 with the right value.
2143   if (C.Op1.getValueType() != MVT::i32 ||
2144       Value != ConstOp1->getZExtValue())
2145     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2146 }
2147 
2148 // Return true if Op is either an unextended load, or a load suitable
2149 // for integer register-memory comparisons of type ICmpType.
isNaturalMemoryOperand(SDValue Op,unsigned ICmpType)2150 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2151   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2152   if (Load) {
2153     // There are no instructions to compare a register with a memory byte.
2154     if (Load->getMemoryVT() == MVT::i8)
2155       return false;
2156     // Otherwise decide on extension type.
2157     switch (Load->getExtensionType()) {
2158     case ISD::NON_EXTLOAD:
2159       return true;
2160     case ISD::SEXTLOAD:
2161       return ICmpType != SystemZICMP::UnsignedOnly;
2162     case ISD::ZEXTLOAD:
2163       return ICmpType != SystemZICMP::SignedOnly;
2164     default:
2165       break;
2166     }
2167   }
2168   return false;
2169 }
2170 
2171 // Return true if it is better to swap the operands of C.
shouldSwapCmpOperands(const Comparison & C)2172 static bool shouldSwapCmpOperands(const Comparison &C) {
2173   // Leave f128 comparisons alone, since they have no memory forms.
2174   if (C.Op0.getValueType() == MVT::f128)
2175     return false;
2176 
2177   // Always keep a floating-point constant second, since comparisons with
2178   // zero can use LOAD TEST and comparisons with other constants make a
2179   // natural memory operand.
2180   if (isa<ConstantFPSDNode>(C.Op1))
2181     return false;
2182 
2183   // Never swap comparisons with zero since there are many ways to optimize
2184   // those later.
2185   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2186   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2187     return false;
2188 
2189   // Also keep natural memory operands second if the loaded value is
2190   // only used here.  Several comparisons have memory forms.
2191   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2192     return false;
2193 
2194   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2195   // In that case we generally prefer the memory to be second.
2196   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2197     // The only exceptions are when the second operand is a constant and
2198     // we can use things like CHHSI.
2199     if (!ConstOp1)
2200       return true;
2201     // The unsigned memory-immediate instructions can handle 16-bit
2202     // unsigned integers.
2203     if (C.ICmpType != SystemZICMP::SignedOnly &&
2204         isUInt<16>(ConstOp1->getZExtValue()))
2205       return false;
2206     // The signed memory-immediate instructions can handle 16-bit
2207     // signed integers.
2208     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2209         isInt<16>(ConstOp1->getSExtValue()))
2210       return false;
2211     return true;
2212   }
2213 
2214   // Try to promote the use of CGFR and CLGFR.
2215   unsigned Opcode0 = C.Op0.getOpcode();
2216   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2217     return true;
2218   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2219     return true;
2220   if (C.ICmpType != SystemZICMP::SignedOnly &&
2221       Opcode0 == ISD::AND &&
2222       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2223       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2224     return true;
2225 
2226   return false;
2227 }
2228 
2229 // Check whether C tests for equality between X and Y and whether X - Y
2230 // or Y - X is also computed.  In that case it's better to compare the
2231 // result of the subtraction against zero.
adjustForSubtraction(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2232 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2233                                  Comparison &C) {
2234   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2235       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2236     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2237       SDNode *N = *I;
2238       if (N->getOpcode() == ISD::SUB &&
2239           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2240            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2241         C.Op0 = SDValue(N, 0);
2242         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2243         return;
2244       }
2245     }
2246   }
2247 }
2248 
2249 // Check whether C compares a floating-point value with zero and if that
2250 // floating-point value is also negated.  In this case we can use the
2251 // negation to set CC, so avoiding separate LOAD AND TEST and
2252 // LOAD (NEGATIVE/COMPLEMENT) instructions.
adjustForFNeg(Comparison & C)2253 static void adjustForFNeg(Comparison &C) {
2254   // This optimization is invalid for strict comparisons, since FNEG
2255   // does not raise any exceptions.
2256   if (C.Chain)
2257     return;
2258   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2259   if (C1 && C1->isZero()) {
2260     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2261       SDNode *N = *I;
2262       if (N->getOpcode() == ISD::FNEG) {
2263         C.Op0 = SDValue(N, 0);
2264         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2265         return;
2266       }
2267     }
2268   }
2269 }
2270 
2271 // Check whether C compares (shl X, 32) with 0 and whether X is
2272 // also sign-extended.  In that case it is better to test the result
2273 // of the sign extension using LTGFR.
2274 //
2275 // This case is important because InstCombine transforms a comparison
2276 // with (sext (trunc X)) into a comparison with (shl X, 32).
adjustForLTGFR(Comparison & C)2277 static void adjustForLTGFR(Comparison &C) {
2278   // Check for a comparison between (shl X, 32) and 0.
2279   if (C.Op0.getOpcode() == ISD::SHL &&
2280       C.Op0.getValueType() == MVT::i64 &&
2281       C.Op1.getOpcode() == ISD::Constant &&
2282       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2283     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2284     if (C1 && C1->getZExtValue() == 32) {
2285       SDValue ShlOp0 = C.Op0.getOperand(0);
2286       // See whether X has any SIGN_EXTEND_INREG uses.
2287       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2288         SDNode *N = *I;
2289         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2290             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2291           C.Op0 = SDValue(N, 0);
2292           return;
2293         }
2294       }
2295     }
2296   }
2297 }
2298 
2299 // If C compares the truncation of an extending load, try to compare
2300 // the untruncated value instead.  This exposes more opportunities to
2301 // reuse CC.
adjustICmpTruncate(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2302 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2303                                Comparison &C) {
2304   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2305       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2306       C.Op1.getOpcode() == ISD::Constant &&
2307       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2308     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2309     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2310         C.Op0.getValueSizeInBits().getFixedSize()) {
2311       unsigned Type = L->getExtensionType();
2312       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2313           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2314         C.Op0 = C.Op0.getOperand(0);
2315         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2316       }
2317     }
2318   }
2319 }
2320 
2321 // Return true if shift operation N has an in-range constant shift value.
2322 // Store it in ShiftVal if so.
isSimpleShift(SDValue N,unsigned & ShiftVal)2323 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2324   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2325   if (!Shift)
2326     return false;
2327 
2328   uint64_t Amount = Shift->getZExtValue();
2329   if (Amount >= N.getValueSizeInBits())
2330     return false;
2331 
2332   ShiftVal = Amount;
2333   return true;
2334 }
2335 
2336 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2337 // instruction and whether the CC value is descriptive enough to handle
2338 // a comparison of type Opcode between the AND result and CmpVal.
2339 // CCMask says which comparison result is being tested and BitSize is
2340 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2341 // return the corresponding CC mask, otherwise return 0.
getTestUnderMaskCond(unsigned BitSize,unsigned CCMask,uint64_t Mask,uint64_t CmpVal,unsigned ICmpType)2342 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2343                                      uint64_t Mask, uint64_t CmpVal,
2344                                      unsigned ICmpType) {
2345   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2346 
2347   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2348   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2349       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2350     return 0;
2351 
2352   // Work out the masks for the lowest and highest bits.
2353   unsigned HighShift = 63 - countLeadingZeros(Mask);
2354   uint64_t High = uint64_t(1) << HighShift;
2355   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2356 
2357   // Signed ordered comparisons are effectively unsigned if the sign
2358   // bit is dropped.
2359   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2360 
2361   // Check for equality comparisons with 0, or the equivalent.
2362   if (CmpVal == 0) {
2363     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2364       return SystemZ::CCMASK_TM_ALL_0;
2365     if (CCMask == SystemZ::CCMASK_CMP_NE)
2366       return SystemZ::CCMASK_TM_SOME_1;
2367   }
2368   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2369     if (CCMask == SystemZ::CCMASK_CMP_LT)
2370       return SystemZ::CCMASK_TM_ALL_0;
2371     if (CCMask == SystemZ::CCMASK_CMP_GE)
2372       return SystemZ::CCMASK_TM_SOME_1;
2373   }
2374   if (EffectivelyUnsigned && CmpVal < Low) {
2375     if (CCMask == SystemZ::CCMASK_CMP_LE)
2376       return SystemZ::CCMASK_TM_ALL_0;
2377     if (CCMask == SystemZ::CCMASK_CMP_GT)
2378       return SystemZ::CCMASK_TM_SOME_1;
2379   }
2380 
2381   // Check for equality comparisons with the mask, or the equivalent.
2382   if (CmpVal == Mask) {
2383     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2384       return SystemZ::CCMASK_TM_ALL_1;
2385     if (CCMask == SystemZ::CCMASK_CMP_NE)
2386       return SystemZ::CCMASK_TM_SOME_0;
2387   }
2388   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2389     if (CCMask == SystemZ::CCMASK_CMP_GT)
2390       return SystemZ::CCMASK_TM_ALL_1;
2391     if (CCMask == SystemZ::CCMASK_CMP_LE)
2392       return SystemZ::CCMASK_TM_SOME_0;
2393   }
2394   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2395     if (CCMask == SystemZ::CCMASK_CMP_GE)
2396       return SystemZ::CCMASK_TM_ALL_1;
2397     if (CCMask == SystemZ::CCMASK_CMP_LT)
2398       return SystemZ::CCMASK_TM_SOME_0;
2399   }
2400 
2401   // Check for ordered comparisons with the top bit.
2402   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2403     if (CCMask == SystemZ::CCMASK_CMP_LE)
2404       return SystemZ::CCMASK_TM_MSB_0;
2405     if (CCMask == SystemZ::CCMASK_CMP_GT)
2406       return SystemZ::CCMASK_TM_MSB_1;
2407   }
2408   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2409     if (CCMask == SystemZ::CCMASK_CMP_LT)
2410       return SystemZ::CCMASK_TM_MSB_0;
2411     if (CCMask == SystemZ::CCMASK_CMP_GE)
2412       return SystemZ::CCMASK_TM_MSB_1;
2413   }
2414 
2415   // If there are just two bits, we can do equality checks for Low and High
2416   // as well.
2417   if (Mask == Low + High) {
2418     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2419       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2420     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2421       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2422     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2423       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2424     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2425       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2426   }
2427 
2428   // Looks like we've exhausted our options.
2429   return 0;
2430 }
2431 
2432 // See whether C can be implemented as a TEST UNDER MASK instruction.
2433 // Update the arguments with the TM version if so.
adjustForTestUnderMask(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2434 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2435                                    Comparison &C) {
2436   // Check that we have a comparison with a constant.
2437   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2438   if (!ConstOp1)
2439     return;
2440   uint64_t CmpVal = ConstOp1->getZExtValue();
2441 
2442   // Check whether the nonconstant input is an AND with a constant mask.
2443   Comparison NewC(C);
2444   uint64_t MaskVal;
2445   ConstantSDNode *Mask = nullptr;
2446   if (C.Op0.getOpcode() == ISD::AND) {
2447     NewC.Op0 = C.Op0.getOperand(0);
2448     NewC.Op1 = C.Op0.getOperand(1);
2449     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2450     if (!Mask)
2451       return;
2452     MaskVal = Mask->getZExtValue();
2453   } else {
2454     // There is no instruction to compare with a 64-bit immediate
2455     // so use TMHH instead if possible.  We need an unsigned ordered
2456     // comparison with an i64 immediate.
2457     if (NewC.Op0.getValueType() != MVT::i64 ||
2458         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2459         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2460         NewC.ICmpType == SystemZICMP::SignedOnly)
2461       return;
2462     // Convert LE and GT comparisons into LT and GE.
2463     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2464         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2465       if (CmpVal == uint64_t(-1))
2466         return;
2467       CmpVal += 1;
2468       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2469     }
2470     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2471     // be masked off without changing the result.
2472     MaskVal = -(CmpVal & -CmpVal);
2473     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2474   }
2475   if (!MaskVal)
2476     return;
2477 
2478   // Check whether the combination of mask, comparison value and comparison
2479   // type are suitable.
2480   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2481   unsigned NewCCMask, ShiftVal;
2482   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2483       NewC.Op0.getOpcode() == ISD::SHL &&
2484       isSimpleShift(NewC.Op0, ShiftVal) &&
2485       (MaskVal >> ShiftVal != 0) &&
2486       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2487       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2488                                         MaskVal >> ShiftVal,
2489                                         CmpVal >> ShiftVal,
2490                                         SystemZICMP::Any))) {
2491     NewC.Op0 = NewC.Op0.getOperand(0);
2492     MaskVal >>= ShiftVal;
2493   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2494              NewC.Op0.getOpcode() == ISD::SRL &&
2495              isSimpleShift(NewC.Op0, ShiftVal) &&
2496              (MaskVal << ShiftVal != 0) &&
2497              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2498              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2499                                                MaskVal << ShiftVal,
2500                                                CmpVal << ShiftVal,
2501                                                SystemZICMP::UnsignedOnly))) {
2502     NewC.Op0 = NewC.Op0.getOperand(0);
2503     MaskVal <<= ShiftVal;
2504   } else {
2505     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2506                                      NewC.ICmpType);
2507     if (!NewCCMask)
2508       return;
2509   }
2510 
2511   // Go ahead and make the change.
2512   C.Opcode = SystemZISD::TM;
2513   C.Op0 = NewC.Op0;
2514   if (Mask && Mask->getZExtValue() == MaskVal)
2515     C.Op1 = SDValue(Mask, 0);
2516   else
2517     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2518   C.CCValid = SystemZ::CCMASK_TM;
2519   C.CCMask = NewCCMask;
2520 }
2521 
2522 // See whether the comparison argument contains a redundant AND
2523 // and remove it if so.  This sometimes happens due to the generic
2524 // BRCOND expansion.
adjustForRedundantAnd(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2525 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2526                                   Comparison &C) {
2527   if (C.Op0.getOpcode() != ISD::AND)
2528     return;
2529   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2530   if (!Mask)
2531     return;
2532   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2533   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2534     return;
2535 
2536   C.Op0 = C.Op0.getOperand(0);
2537 }
2538 
2539 // Return a Comparison that tests the condition-code result of intrinsic
2540 // node Call against constant integer CC using comparison code Cond.
2541 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2542 // and CCValid is the set of possible condition-code results.
getIntrinsicCmp(SelectionDAG & DAG,unsigned Opcode,SDValue Call,unsigned CCValid,uint64_t CC,ISD::CondCode Cond)2543 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2544                                   SDValue Call, unsigned CCValid, uint64_t CC,
2545                                   ISD::CondCode Cond) {
2546   Comparison C(Call, SDValue(), SDValue());
2547   C.Opcode = Opcode;
2548   C.CCValid = CCValid;
2549   if (Cond == ISD::SETEQ)
2550     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2551     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2552   else if (Cond == ISD::SETNE)
2553     // ...and the inverse of that.
2554     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2555   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2556     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2557     // always true for CC>3.
2558     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2559   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2560     // ...and the inverse of that.
2561     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2562   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2563     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2564     // always true for CC>3.
2565     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2566   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2567     // ...and the inverse of that.
2568     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2569   else
2570     llvm_unreachable("Unexpected integer comparison type");
2571   C.CCMask &= CCValid;
2572   return C;
2573 }
2574 
2575 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
getCmp(SelectionDAG & DAG,SDValue CmpOp0,SDValue CmpOp1,ISD::CondCode Cond,const SDLoc & DL,SDValue Chain=SDValue (),bool IsSignaling=false)2576 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2577                          ISD::CondCode Cond, const SDLoc &DL,
2578                          SDValue Chain = SDValue(),
2579                          bool IsSignaling = false) {
2580   if (CmpOp1.getOpcode() == ISD::Constant) {
2581     assert(!Chain);
2582     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2583     unsigned Opcode, CCValid;
2584     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2585         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2586         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2587       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2588     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2589         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2590         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2591       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2592   }
2593   Comparison C(CmpOp0, CmpOp1, Chain);
2594   C.CCMask = CCMaskForCondCode(Cond);
2595   if (C.Op0.getValueType().isFloatingPoint()) {
2596     C.CCValid = SystemZ::CCMASK_FCMP;
2597     if (!C.Chain)
2598       C.Opcode = SystemZISD::FCMP;
2599     else if (!IsSignaling)
2600       C.Opcode = SystemZISD::STRICT_FCMP;
2601     else
2602       C.Opcode = SystemZISD::STRICT_FCMPS;
2603     adjustForFNeg(C);
2604   } else {
2605     assert(!C.Chain);
2606     C.CCValid = SystemZ::CCMASK_ICMP;
2607     C.Opcode = SystemZISD::ICMP;
2608     // Choose the type of comparison.  Equality and inequality tests can
2609     // use either signed or unsigned comparisons.  The choice also doesn't
2610     // matter if both sign bits are known to be clear.  In those cases we
2611     // want to give the main isel code the freedom to choose whichever
2612     // form fits best.
2613     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2614         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2615         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2616       C.ICmpType = SystemZICMP::Any;
2617     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2618       C.ICmpType = SystemZICMP::UnsignedOnly;
2619     else
2620       C.ICmpType = SystemZICMP::SignedOnly;
2621     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2622     adjustForRedundantAnd(DAG, DL, C);
2623     adjustZeroCmp(DAG, DL, C);
2624     adjustSubwordCmp(DAG, DL, C);
2625     adjustForSubtraction(DAG, DL, C);
2626     adjustForLTGFR(C);
2627     adjustICmpTruncate(DAG, DL, C);
2628   }
2629 
2630   if (shouldSwapCmpOperands(C)) {
2631     std::swap(C.Op0, C.Op1);
2632     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2633   }
2634 
2635   adjustForTestUnderMask(DAG, DL, C);
2636   return C;
2637 }
2638 
2639 // Emit the comparison instruction described by C.
emitCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2640 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2641   if (!C.Op1.getNode()) {
2642     SDNode *Node;
2643     switch (C.Op0.getOpcode()) {
2644     case ISD::INTRINSIC_W_CHAIN:
2645       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2646       return SDValue(Node, 0);
2647     case ISD::INTRINSIC_WO_CHAIN:
2648       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2649       return SDValue(Node, Node->getNumValues() - 1);
2650     default:
2651       llvm_unreachable("Invalid comparison operands");
2652     }
2653   }
2654   if (C.Opcode == SystemZISD::ICMP)
2655     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2656                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2657   if (C.Opcode == SystemZISD::TM) {
2658     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2659                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2660     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2661                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2662   }
2663   if (C.Chain) {
2664     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2665     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2666   }
2667   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2668 }
2669 
2670 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2671 // 64 bits.  Extend is the extension type to use.  Store the high part
2672 // in Hi and the low part in Lo.
lowerMUL_LOHI32(SelectionDAG & DAG,const SDLoc & DL,unsigned Extend,SDValue Op0,SDValue Op1,SDValue & Hi,SDValue & Lo)2673 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2674                             SDValue Op0, SDValue Op1, SDValue &Hi,
2675                             SDValue &Lo) {
2676   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2677   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2678   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2679   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2680                    DAG.getConstant(32, DL, MVT::i64));
2681   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2682   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2683 }
2684 
2685 // Lower a binary operation that produces two VT results, one in each
2686 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2687 // and Opcode performs the GR128 operation.  Store the even register result
2688 // in Even and the odd register result in Odd.
lowerGR128Binary(SelectionDAG & DAG,const SDLoc & DL,EVT VT,unsigned Opcode,SDValue Op0,SDValue Op1,SDValue & Even,SDValue & Odd)2689 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2690                              unsigned Opcode, SDValue Op0, SDValue Op1,
2691                              SDValue &Even, SDValue &Odd) {
2692   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2693   bool Is32Bit = is32Bit(VT);
2694   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2695   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2696 }
2697 
2698 // Return an i32 value that is 1 if the CC value produced by CCReg is
2699 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2700 // in CCValid, so other values can be ignored.
emitSETCC(SelectionDAG & DAG,const SDLoc & DL,SDValue CCReg,unsigned CCValid,unsigned CCMask)2701 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2702                          unsigned CCValid, unsigned CCMask) {
2703   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2704                    DAG.getConstant(0, DL, MVT::i32),
2705                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2706                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2707   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2708 }
2709 
2710 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2711 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2712 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2713 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2714 // floating-point comparisons.
2715 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
getVectorComparison(ISD::CondCode CC,CmpMode Mode)2716 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2717   switch (CC) {
2718   case ISD::SETOEQ:
2719   case ISD::SETEQ:
2720     switch (Mode) {
2721     case CmpMode::Int:         return SystemZISD::VICMPE;
2722     case CmpMode::FP:          return SystemZISD::VFCMPE;
2723     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2724     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2725     }
2726     llvm_unreachable("Bad mode");
2727 
2728   case ISD::SETOGE:
2729   case ISD::SETGE:
2730     switch (Mode) {
2731     case CmpMode::Int:         return 0;
2732     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2733     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2734     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2735     }
2736     llvm_unreachable("Bad mode");
2737 
2738   case ISD::SETOGT:
2739   case ISD::SETGT:
2740     switch (Mode) {
2741     case CmpMode::Int:         return SystemZISD::VICMPH;
2742     case CmpMode::FP:          return SystemZISD::VFCMPH;
2743     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2744     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2745     }
2746     llvm_unreachable("Bad mode");
2747 
2748   case ISD::SETUGT:
2749     switch (Mode) {
2750     case CmpMode::Int:         return SystemZISD::VICMPHL;
2751     case CmpMode::FP:          return 0;
2752     case CmpMode::StrictFP:    return 0;
2753     case CmpMode::SignalingFP: return 0;
2754     }
2755     llvm_unreachable("Bad mode");
2756 
2757   default:
2758     return 0;
2759   }
2760 }
2761 
2762 // Return the SystemZISD vector comparison operation for CC or its inverse,
2763 // or 0 if neither can be done directly.  Indicate in Invert whether the
2764 // result is for the inverse of CC.  Mode is as above.
getVectorComparisonOrInvert(ISD::CondCode CC,CmpMode Mode,bool & Invert)2765 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2766                                             bool &Invert) {
2767   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2768     Invert = false;
2769     return Opcode;
2770   }
2771 
2772   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2773   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2774     Invert = true;
2775     return Opcode;
2776   }
2777 
2778   return 0;
2779 }
2780 
2781 // Return a v2f64 that contains the extended form of elements Start and Start+1
2782 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
expandV4F32ToV2F64(SelectionDAG & DAG,int Start,const SDLoc & DL,SDValue Op,SDValue Chain)2783 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2784                                   SDValue Op, SDValue Chain) {
2785   int Mask[] = { Start, -1, Start + 1, -1 };
2786   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2787   if (Chain) {
2788     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2789     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2790   }
2791   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2792 }
2793 
2794 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2795 // producing a result of type VT.  If Chain is nonnull, return the strict form.
getVectorCmp(SelectionDAG & DAG,unsigned Opcode,const SDLoc & DL,EVT VT,SDValue CmpOp0,SDValue CmpOp1,SDValue Chain) const2796 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2797                                             const SDLoc &DL, EVT VT,
2798                                             SDValue CmpOp0,
2799                                             SDValue CmpOp1,
2800                                             SDValue Chain) const {
2801   // There is no hardware support for v4f32 (unless we have the vector
2802   // enhancements facility 1), so extend the vector into two v2f64s
2803   // and compare those.
2804   if (CmpOp0.getValueType() == MVT::v4f32 &&
2805       !Subtarget.hasVectorEnhancements1()) {
2806     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2807     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2808     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2809     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2810     if (Chain) {
2811       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2812       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2813       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2814       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2815       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2816                             H1.getValue(1), L1.getValue(1),
2817                             HRes.getValue(1), LRes.getValue(1) };
2818       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2819       SDValue Ops[2] = { Res, NewChain };
2820       return DAG.getMergeValues(Ops, DL);
2821     }
2822     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2823     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2824     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2825   }
2826   if (Chain) {
2827     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2828     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2829   }
2830   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2831 }
2832 
2833 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2834 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2835 // floating-point comparison.  If in addition IsSignaling is true, we have
2836 // a strict signaling floating-point comparison.
lowerVectorSETCC(SelectionDAG & DAG,const SDLoc & DL,EVT VT,ISD::CondCode CC,SDValue CmpOp0,SDValue CmpOp1,SDValue Chain,bool IsSignaling) const2837 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2838                                                 const SDLoc &DL, EVT VT,
2839                                                 ISD::CondCode CC,
2840                                                 SDValue CmpOp0,
2841                                                 SDValue CmpOp1,
2842                                                 SDValue Chain,
2843                                                 bool IsSignaling) const {
2844   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2845   assert (!Chain || IsFP);
2846   assert (!IsSignaling || Chain);
2847   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2848                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2849   bool Invert = false;
2850   SDValue Cmp;
2851   switch (CC) {
2852     // Handle tests for order using (or (ogt y x) (oge x y)).
2853   case ISD::SETUO:
2854     Invert = true;
2855     LLVM_FALLTHROUGH;
2856   case ISD::SETO: {
2857     assert(IsFP && "Unexpected integer comparison");
2858     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2859                               DL, VT, CmpOp1, CmpOp0, Chain);
2860     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2861                               DL, VT, CmpOp0, CmpOp1, Chain);
2862     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2863     if (Chain)
2864       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2865                           LT.getValue(1), GE.getValue(1));
2866     break;
2867   }
2868 
2869     // Handle <> tests using (or (ogt y x) (ogt x y)).
2870   case ISD::SETUEQ:
2871     Invert = true;
2872     LLVM_FALLTHROUGH;
2873   case ISD::SETONE: {
2874     assert(IsFP && "Unexpected integer comparison");
2875     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2876                               DL, VT, CmpOp1, CmpOp0, Chain);
2877     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2878                               DL, VT, CmpOp0, CmpOp1, Chain);
2879     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2880     if (Chain)
2881       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2882                           LT.getValue(1), GT.getValue(1));
2883     break;
2884   }
2885 
2886     // Otherwise a single comparison is enough.  It doesn't really
2887     // matter whether we try the inversion or the swap first, since
2888     // there are no cases where both work.
2889   default:
2890     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2891       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2892     else {
2893       CC = ISD::getSetCCSwappedOperands(CC);
2894       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2895         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2896       else
2897         llvm_unreachable("Unhandled comparison");
2898     }
2899     if (Chain)
2900       Chain = Cmp.getValue(1);
2901     break;
2902   }
2903   if (Invert) {
2904     SDValue Mask =
2905       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2906     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2907   }
2908   if (Chain && Chain.getNode() != Cmp.getNode()) {
2909     SDValue Ops[2] = { Cmp, Chain };
2910     Cmp = DAG.getMergeValues(Ops, DL);
2911   }
2912   return Cmp;
2913 }
2914 
lowerSETCC(SDValue Op,SelectionDAG & DAG) const2915 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2916                                           SelectionDAG &DAG) const {
2917   SDValue CmpOp0   = Op.getOperand(0);
2918   SDValue CmpOp1   = Op.getOperand(1);
2919   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2920   SDLoc DL(Op);
2921   EVT VT = Op.getValueType();
2922   if (VT.isVector())
2923     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2924 
2925   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2926   SDValue CCReg = emitCmp(DAG, DL, C);
2927   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2928 }
2929 
lowerSTRICT_FSETCC(SDValue Op,SelectionDAG & DAG,bool IsSignaling) const2930 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2931                                                   SelectionDAG &DAG,
2932                                                   bool IsSignaling) const {
2933   SDValue Chain    = Op.getOperand(0);
2934   SDValue CmpOp0   = Op.getOperand(1);
2935   SDValue CmpOp1   = Op.getOperand(2);
2936   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2937   SDLoc DL(Op);
2938   EVT VT = Op.getNode()->getValueType(0);
2939   if (VT.isVector()) {
2940     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2941                                    Chain, IsSignaling);
2942     return Res.getValue(Op.getResNo());
2943   }
2944 
2945   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2946   SDValue CCReg = emitCmp(DAG, DL, C);
2947   CCReg->setFlags(Op->getFlags());
2948   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2949   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2950   return DAG.getMergeValues(Ops, DL);
2951 }
2952 
lowerBR_CC(SDValue Op,SelectionDAG & DAG) const2953 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2954   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2955   SDValue CmpOp0   = Op.getOperand(2);
2956   SDValue CmpOp1   = Op.getOperand(3);
2957   SDValue Dest     = Op.getOperand(4);
2958   SDLoc DL(Op);
2959 
2960   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2961   SDValue CCReg = emitCmp(DAG, DL, C);
2962   return DAG.getNode(
2963       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2964       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2965       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2966 }
2967 
2968 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2969 // allowing Pos and Neg to be wider than CmpOp.
isAbsolute(SDValue CmpOp,SDValue Pos,SDValue Neg)2970 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2971   return (Neg.getOpcode() == ISD::SUB &&
2972           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2973           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2974           Neg.getOperand(1) == Pos &&
2975           (Pos == CmpOp ||
2976            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2977             Pos.getOperand(0) == CmpOp)));
2978 }
2979 
2980 // Return the absolute or negative absolute of Op; IsNegative decides which.
getAbsolute(SelectionDAG & DAG,const SDLoc & DL,SDValue Op,bool IsNegative)2981 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2982                            bool IsNegative) {
2983   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
2984   if (IsNegative)
2985     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2986                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2987   return Op;
2988 }
2989 
lowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const2990 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2991                                               SelectionDAG &DAG) const {
2992   SDValue CmpOp0   = Op.getOperand(0);
2993   SDValue CmpOp1   = Op.getOperand(1);
2994   SDValue TrueOp   = Op.getOperand(2);
2995   SDValue FalseOp  = Op.getOperand(3);
2996   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2997   SDLoc DL(Op);
2998 
2999   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3000 
3001   // Check for absolute and negative-absolute selections, including those
3002   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3003   // This check supplements the one in DAGCombiner.
3004   if (C.Opcode == SystemZISD::ICMP &&
3005       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3006       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3007       C.Op1.getOpcode() == ISD::Constant &&
3008       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3009     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3010       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3011     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3012       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3013   }
3014 
3015   SDValue CCReg = emitCmp(DAG, DL, C);
3016   SDValue Ops[] = {TrueOp, FalseOp,
3017                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3018                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3019 
3020   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3021 }
3022 
lowerGlobalAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const3023 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3024                                                   SelectionDAG &DAG) const {
3025   SDLoc DL(Node);
3026   const GlobalValue *GV = Node->getGlobal();
3027   int64_t Offset = Node->getOffset();
3028   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3029   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3030 
3031   SDValue Result;
3032   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3033     if (isInt<32>(Offset)) {
3034       // Assign anchors at 1<<12 byte boundaries.
3035       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3036       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3037       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3038 
3039       // The offset can be folded into the address if it is aligned to a
3040       // halfword.
3041       Offset -= Anchor;
3042       if (Offset != 0 && (Offset & 1) == 0) {
3043         SDValue Full =
3044           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3045         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3046         Offset = 0;
3047       }
3048     } else {
3049       // Conservatively load a constant offset greater than 32 bits into a
3050       // register below.
3051       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3052       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3053     }
3054   } else {
3055     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3056     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3057     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3058                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3059   }
3060 
3061   // If there was a non-zero offset that we didn't fold, create an explicit
3062   // addition for it.
3063   if (Offset != 0)
3064     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3065                          DAG.getConstant(Offset, DL, PtrVT));
3066 
3067   return Result;
3068 }
3069 
lowerTLSGetOffset(GlobalAddressSDNode * Node,SelectionDAG & DAG,unsigned Opcode,SDValue GOTOffset) const3070 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3071                                                  SelectionDAG &DAG,
3072                                                  unsigned Opcode,
3073                                                  SDValue GOTOffset) const {
3074   SDLoc DL(Node);
3075   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3076   SDValue Chain = DAG.getEntryNode();
3077   SDValue Glue;
3078 
3079   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3080       CallingConv::GHC)
3081     report_fatal_error("In GHC calling convention TLS is not supported");
3082 
3083   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3084   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3085   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3086   Glue = Chain.getValue(1);
3087   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3088   Glue = Chain.getValue(1);
3089 
3090   // The first call operand is the chain and the second is the TLS symbol.
3091   SmallVector<SDValue, 8> Ops;
3092   Ops.push_back(Chain);
3093   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3094                                            Node->getValueType(0),
3095                                            0, 0));
3096 
3097   // Add argument registers to the end of the list so that they are
3098   // known live into the call.
3099   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3100   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3101 
3102   // Add a register mask operand representing the call-preserved registers.
3103   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3104   const uint32_t *Mask =
3105       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3106   assert(Mask && "Missing call preserved mask for calling convention");
3107   Ops.push_back(DAG.getRegisterMask(Mask));
3108 
3109   // Glue the call to the argument copies.
3110   Ops.push_back(Glue);
3111 
3112   // Emit the call.
3113   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3114   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3115   Glue = Chain.getValue(1);
3116 
3117   // Copy the return value from %r2.
3118   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3119 }
3120 
lowerThreadPointer(const SDLoc & DL,SelectionDAG & DAG) const3121 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3122                                                   SelectionDAG &DAG) const {
3123   SDValue Chain = DAG.getEntryNode();
3124   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3125 
3126   // The high part of the thread pointer is in access register 0.
3127   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3128   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3129 
3130   // The low part of the thread pointer is in access register 1.
3131   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3132   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3133 
3134   // Merge them into a single 64-bit address.
3135   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3136                                     DAG.getConstant(32, DL, PtrVT));
3137   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3138 }
3139 
lowerGlobalTLSAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const3140 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3141                                                      SelectionDAG &DAG) const {
3142   if (DAG.getTarget().useEmulatedTLS())
3143     return LowerToTLSEmulatedModel(Node, DAG);
3144   SDLoc DL(Node);
3145   const GlobalValue *GV = Node->getGlobal();
3146   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3147   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3148 
3149   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3150       CallingConv::GHC)
3151     report_fatal_error("In GHC calling convention TLS is not supported");
3152 
3153   SDValue TP = lowerThreadPointer(DL, DAG);
3154 
3155   // Get the offset of GA from the thread pointer, based on the TLS model.
3156   SDValue Offset;
3157   switch (model) {
3158     case TLSModel::GeneralDynamic: {
3159       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3160       SystemZConstantPoolValue *CPV =
3161         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3162 
3163       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3164       Offset = DAG.getLoad(
3165           PtrVT, DL, DAG.getEntryNode(), Offset,
3166           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3167 
3168       // Call __tls_get_offset to retrieve the offset.
3169       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3170       break;
3171     }
3172 
3173     case TLSModel::LocalDynamic: {
3174       // Load the GOT offset of the module ID.
3175       SystemZConstantPoolValue *CPV =
3176         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3177 
3178       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3179       Offset = DAG.getLoad(
3180           PtrVT, DL, DAG.getEntryNode(), Offset,
3181           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3182 
3183       // Call __tls_get_offset to retrieve the module base offset.
3184       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3185 
3186       // Note: The SystemZLDCleanupPass will remove redundant computations
3187       // of the module base offset.  Count total number of local-dynamic
3188       // accesses to trigger execution of that pass.
3189       SystemZMachineFunctionInfo* MFI =
3190         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3191       MFI->incNumLocalDynamicTLSAccesses();
3192 
3193       // Add the per-symbol offset.
3194       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3195 
3196       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3197       DTPOffset = DAG.getLoad(
3198           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3199           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3200 
3201       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3202       break;
3203     }
3204 
3205     case TLSModel::InitialExec: {
3206       // Load the offset from the GOT.
3207       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3208                                           SystemZII::MO_INDNTPOFF);
3209       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3210       Offset =
3211           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3212                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3213       break;
3214     }
3215 
3216     case TLSModel::LocalExec: {
3217       // Force the offset into the constant pool and load it from there.
3218       SystemZConstantPoolValue *CPV =
3219         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3220 
3221       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3222       Offset = DAG.getLoad(
3223           PtrVT, DL, DAG.getEntryNode(), Offset,
3224           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3225       break;
3226     }
3227   }
3228 
3229   // Add the base and offset together.
3230   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3231 }
3232 
lowerBlockAddress(BlockAddressSDNode * Node,SelectionDAG & DAG) const3233 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3234                                                  SelectionDAG &DAG) const {
3235   SDLoc DL(Node);
3236   const BlockAddress *BA = Node->getBlockAddress();
3237   int64_t Offset = Node->getOffset();
3238   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3239 
3240   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3241   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3242   return Result;
3243 }
3244 
lowerJumpTable(JumpTableSDNode * JT,SelectionDAG & DAG) const3245 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3246                                               SelectionDAG &DAG) const {
3247   SDLoc DL(JT);
3248   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3249   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3250 
3251   // Use LARL to load the address of the table.
3252   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3253 }
3254 
lowerConstantPool(ConstantPoolSDNode * CP,SelectionDAG & DAG) const3255 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3256                                                  SelectionDAG &DAG) const {
3257   SDLoc DL(CP);
3258   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3259 
3260   SDValue Result;
3261   if (CP->isMachineConstantPoolEntry())
3262     Result =
3263         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3264   else
3265     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3266                                        CP->getOffset());
3267 
3268   // Use LARL to load the address of the constant pool entry.
3269   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3270 }
3271 
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const3272 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3273                                               SelectionDAG &DAG) const {
3274   auto *TFL =
3275       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3276   MachineFunction &MF = DAG.getMachineFunction();
3277   MachineFrameInfo &MFI = MF.getFrameInfo();
3278   MFI.setFrameAddressIsTaken(true);
3279 
3280   SDLoc DL(Op);
3281   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3282   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3283 
3284   // By definition, the frame address is the address of the back chain.  (In
3285   // the case of packed stack without backchain, return the address where the
3286   // backchain would have been stored. This will either be an unused space or
3287   // contain a saved register).
3288   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3289   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3290 
3291   // FIXME The frontend should detect this case.
3292   if (Depth > 0) {
3293     report_fatal_error("Unsupported stack frame traversal count");
3294   }
3295 
3296   return BackChain;
3297 }
3298 
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const3299 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3300                                                SelectionDAG &DAG) const {
3301   MachineFunction &MF = DAG.getMachineFunction();
3302   MachineFrameInfo &MFI = MF.getFrameInfo();
3303   MFI.setReturnAddressIsTaken(true);
3304 
3305   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3306     return SDValue();
3307 
3308   SDLoc DL(Op);
3309   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3310   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3311 
3312   // FIXME The frontend should detect this case.
3313   if (Depth > 0) {
3314     report_fatal_error("Unsupported stack frame traversal count");
3315   }
3316 
3317   // Return R14D, which has the return address. Mark it an implicit live-in.
3318   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3319   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3320 }
3321 
lowerBITCAST(SDValue Op,SelectionDAG & DAG) const3322 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3323                                             SelectionDAG &DAG) const {
3324   SDLoc DL(Op);
3325   SDValue In = Op.getOperand(0);
3326   EVT InVT = In.getValueType();
3327   EVT ResVT = Op.getValueType();
3328 
3329   // Convert loads directly.  This is normally done by DAGCombiner,
3330   // but we need this case for bitcasts that are created during lowering
3331   // and which are then lowered themselves.
3332   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3333     if (ISD::isNormalLoad(LoadN)) {
3334       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3335                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3336       // Update the chain uses.
3337       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3338       return NewLoad;
3339     }
3340 
3341   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3342     SDValue In64;
3343     if (Subtarget.hasHighWord()) {
3344       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3345                                        MVT::i64);
3346       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3347                                        MVT::i64, SDValue(U64, 0), In);
3348     } else {
3349       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3350       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3351                          DAG.getConstant(32, DL, MVT::i64));
3352     }
3353     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3354     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3355                                       DL, MVT::f32, Out64);
3356   }
3357   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3358     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3359     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3360                                              MVT::f64, SDValue(U64, 0), In);
3361     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3362     if (Subtarget.hasHighWord())
3363       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3364                                         MVT::i32, Out64);
3365     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3366                                 DAG.getConstant(32, DL, MVT::i64));
3367     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3368   }
3369   llvm_unreachable("Unexpected bitcast combination");
3370 }
3371 
lowerVASTART(SDValue Op,SelectionDAG & DAG) const3372 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3373                                             SelectionDAG &DAG) const {
3374   MachineFunction &MF = DAG.getMachineFunction();
3375   SystemZMachineFunctionInfo *FuncInfo =
3376     MF.getInfo<SystemZMachineFunctionInfo>();
3377   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3378 
3379   SDValue Chain   = Op.getOperand(0);
3380   SDValue Addr    = Op.getOperand(1);
3381   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3382   SDLoc DL(Op);
3383 
3384   // The initial values of each field.
3385   const unsigned NumFields = 4;
3386   SDValue Fields[NumFields] = {
3387     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3388     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3389     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3390     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3391   };
3392 
3393   // Store each field into its respective slot.
3394   SDValue MemOps[NumFields];
3395   unsigned Offset = 0;
3396   for (unsigned I = 0; I < NumFields; ++I) {
3397     SDValue FieldAddr = Addr;
3398     if (Offset != 0)
3399       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3400                               DAG.getIntPtrConstant(Offset, DL));
3401     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3402                              MachinePointerInfo(SV, Offset));
3403     Offset += 8;
3404   }
3405   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3406 }
3407 
lowerVACOPY(SDValue Op,SelectionDAG & DAG) const3408 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3409                                            SelectionDAG &DAG) const {
3410   SDValue Chain      = Op.getOperand(0);
3411   SDValue DstPtr     = Op.getOperand(1);
3412   SDValue SrcPtr     = Op.getOperand(2);
3413   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3414   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3415   SDLoc DL(Op);
3416 
3417   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3418                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3419                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3420                        MachinePointerInfo(SrcSV));
3421 }
3422 
3423 SDValue SystemZTargetLowering::
lowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const3424 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3425   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3426   MachineFunction &MF = DAG.getMachineFunction();
3427   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3428   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3429 
3430   SDValue Chain = Op.getOperand(0);
3431   SDValue Size  = Op.getOperand(1);
3432   SDValue Align = Op.getOperand(2);
3433   SDLoc DL(Op);
3434 
3435   // If user has set the no alignment function attribute, ignore
3436   // alloca alignments.
3437   uint64_t AlignVal =
3438       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3439 
3440   uint64_t StackAlign = TFI->getStackAlignment();
3441   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3442   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3443 
3444   Register SPReg = getStackPointerRegisterToSaveRestore();
3445   SDValue NeededSpace = Size;
3446 
3447   // Get a reference to the stack pointer.
3448   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3449 
3450   // If we need a backchain, save it now.
3451   SDValue Backchain;
3452   if (StoreBackchain)
3453     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3454                             MachinePointerInfo());
3455 
3456   // Add extra space for alignment if needed.
3457   if (ExtraAlignSpace)
3458     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3459                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3460 
3461   // Get the new stack pointer value.
3462   SDValue NewSP;
3463   if (hasInlineStackProbe(MF)) {
3464     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3465                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3466     Chain = NewSP.getValue(1);
3467   }
3468   else {
3469     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3470     // Copy the new stack pointer back.
3471     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3472   }
3473 
3474   // The allocated data lives above the 160 bytes allocated for the standard
3475   // frame, plus any outgoing stack arguments.  We don't know how much that
3476   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3477   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3478   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3479 
3480   // Dynamically realign if needed.
3481   if (RequiredAlign > StackAlign) {
3482     Result =
3483       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3484                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3485     Result =
3486       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3487                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3488   }
3489 
3490   if (StoreBackchain)
3491     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3492                          MachinePointerInfo());
3493 
3494   SDValue Ops[2] = { Result, Chain };
3495   return DAG.getMergeValues(Ops, DL);
3496 }
3497 
lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const3498 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3499     SDValue Op, SelectionDAG &DAG) const {
3500   SDLoc DL(Op);
3501 
3502   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3503 }
3504 
lowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const3505 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3506                                               SelectionDAG &DAG) const {
3507   EVT VT = Op.getValueType();
3508   SDLoc DL(Op);
3509   SDValue Ops[2];
3510   if (is32Bit(VT))
3511     // Just do a normal 64-bit multiplication and extract the results.
3512     // We define this so that it can be used for constant division.
3513     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3514                     Op.getOperand(1), Ops[1], Ops[0]);
3515   else if (Subtarget.hasMiscellaneousExtensions2())
3516     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3517     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3518     // return the low half first, so the results are in reverse order.
3519     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3520                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3521   else {
3522     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3523     //
3524     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3525     //
3526     // but using the fact that the upper halves are either all zeros
3527     // or all ones:
3528     //
3529     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3530     //
3531     // and grouping the right terms together since they are quicker than the
3532     // multiplication:
3533     //
3534     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3535     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3536     SDValue LL = Op.getOperand(0);
3537     SDValue RL = Op.getOperand(1);
3538     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3539     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3540     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3541     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3542     // return the low half first, so the results are in reverse order.
3543     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3544                      LL, RL, Ops[1], Ops[0]);
3545     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3546     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3547     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3548     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3549   }
3550   return DAG.getMergeValues(Ops, DL);
3551 }
3552 
lowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const3553 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3554                                               SelectionDAG &DAG) const {
3555   EVT VT = Op.getValueType();
3556   SDLoc DL(Op);
3557   SDValue Ops[2];
3558   if (is32Bit(VT))
3559     // Just do a normal 64-bit multiplication and extract the results.
3560     // We define this so that it can be used for constant division.
3561     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3562                     Op.getOperand(1), Ops[1], Ops[0]);
3563   else
3564     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3565     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3566     // return the low half first, so the results are in reverse order.
3567     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3568                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3569   return DAG.getMergeValues(Ops, DL);
3570 }
3571 
lowerSDIVREM(SDValue Op,SelectionDAG & DAG) const3572 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3573                                             SelectionDAG &DAG) const {
3574   SDValue Op0 = Op.getOperand(0);
3575   SDValue Op1 = Op.getOperand(1);
3576   EVT VT = Op.getValueType();
3577   SDLoc DL(Op);
3578 
3579   // We use DSGF for 32-bit division.  This means the first operand must
3580   // always be 64-bit, and the second operand should be 32-bit whenever
3581   // that is possible, to improve performance.
3582   if (is32Bit(VT))
3583     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3584   else if (DAG.ComputeNumSignBits(Op1) > 32)
3585     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3586 
3587   // DSG(F) returns the remainder in the even register and the
3588   // quotient in the odd register.
3589   SDValue Ops[2];
3590   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3591   return DAG.getMergeValues(Ops, DL);
3592 }
3593 
lowerUDIVREM(SDValue Op,SelectionDAG & DAG) const3594 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3595                                             SelectionDAG &DAG) const {
3596   EVT VT = Op.getValueType();
3597   SDLoc DL(Op);
3598 
3599   // DL(G) returns the remainder in the even register and the
3600   // quotient in the odd register.
3601   SDValue Ops[2];
3602   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3603                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3604   return DAG.getMergeValues(Ops, DL);
3605 }
3606 
lowerOR(SDValue Op,SelectionDAG & DAG) const3607 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3608   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3609 
3610   // Get the known-zero masks for each operand.
3611   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3612   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3613                         DAG.computeKnownBits(Ops[1])};
3614 
3615   // See if the upper 32 bits of one operand and the lower 32 bits of the
3616   // other are known zero.  They are the low and high operands respectively.
3617   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3618                        Known[1].Zero.getZExtValue() };
3619   unsigned High, Low;
3620   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3621     High = 1, Low = 0;
3622   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3623     High = 0, Low = 1;
3624   else
3625     return Op;
3626 
3627   SDValue LowOp = Ops[Low];
3628   SDValue HighOp = Ops[High];
3629 
3630   // If the high part is a constant, we're better off using IILH.
3631   if (HighOp.getOpcode() == ISD::Constant)
3632     return Op;
3633 
3634   // If the low part is a constant that is outside the range of LHI,
3635   // then we're better off using IILF.
3636   if (LowOp.getOpcode() == ISD::Constant) {
3637     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3638     if (!isInt<16>(Value))
3639       return Op;
3640   }
3641 
3642   // Check whether the high part is an AND that doesn't change the
3643   // high 32 bits and just masks out low bits.  We can skip it if so.
3644   if (HighOp.getOpcode() == ISD::AND &&
3645       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3646     SDValue HighOp0 = HighOp.getOperand(0);
3647     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3648     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3649       HighOp = HighOp0;
3650   }
3651 
3652   // Take advantage of the fact that all GR32 operations only change the
3653   // low 32 bits by truncating Low to an i32 and inserting it directly
3654   // using a subreg.  The interesting cases are those where the truncation
3655   // can be folded.
3656   SDLoc DL(Op);
3657   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3658   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3659                                    MVT::i64, HighOp, Low32);
3660 }
3661 
3662 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
lowerXALUO(SDValue Op,SelectionDAG & DAG) const3663 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3664                                           SelectionDAG &DAG) const {
3665   SDNode *N = Op.getNode();
3666   SDValue LHS = N->getOperand(0);
3667   SDValue RHS = N->getOperand(1);
3668   SDLoc DL(N);
3669   unsigned BaseOp = 0;
3670   unsigned CCValid = 0;
3671   unsigned CCMask = 0;
3672 
3673   switch (Op.getOpcode()) {
3674   default: llvm_unreachable("Unknown instruction!");
3675   case ISD::SADDO:
3676     BaseOp = SystemZISD::SADDO;
3677     CCValid = SystemZ::CCMASK_ARITH;
3678     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3679     break;
3680   case ISD::SSUBO:
3681     BaseOp = SystemZISD::SSUBO;
3682     CCValid = SystemZ::CCMASK_ARITH;
3683     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3684     break;
3685   case ISD::UADDO:
3686     BaseOp = SystemZISD::UADDO;
3687     CCValid = SystemZ::CCMASK_LOGICAL;
3688     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3689     break;
3690   case ISD::USUBO:
3691     BaseOp = SystemZISD::USUBO;
3692     CCValid = SystemZ::CCMASK_LOGICAL;
3693     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3694     break;
3695   }
3696 
3697   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3698   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3699 
3700   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3701   if (N->getValueType(1) == MVT::i1)
3702     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3703 
3704   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3705 }
3706 
isAddCarryChain(SDValue Carry)3707 static bool isAddCarryChain(SDValue Carry) {
3708   while (Carry.getOpcode() == ISD::ADDCARRY)
3709     Carry = Carry.getOperand(2);
3710   return Carry.getOpcode() == ISD::UADDO;
3711 }
3712 
isSubBorrowChain(SDValue Carry)3713 static bool isSubBorrowChain(SDValue Carry) {
3714   while (Carry.getOpcode() == ISD::SUBCARRY)
3715     Carry = Carry.getOperand(2);
3716   return Carry.getOpcode() == ISD::USUBO;
3717 }
3718 
3719 // Lower ADDCARRY/SUBCARRY nodes.
lowerADDSUBCARRY(SDValue Op,SelectionDAG & DAG) const3720 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3721                                                 SelectionDAG &DAG) const {
3722 
3723   SDNode *N = Op.getNode();
3724   MVT VT = N->getSimpleValueType(0);
3725 
3726   // Let legalize expand this if it isn't a legal type yet.
3727   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3728     return SDValue();
3729 
3730   SDValue LHS = N->getOperand(0);
3731   SDValue RHS = N->getOperand(1);
3732   SDValue Carry = Op.getOperand(2);
3733   SDLoc DL(N);
3734   unsigned BaseOp = 0;
3735   unsigned CCValid = 0;
3736   unsigned CCMask = 0;
3737 
3738   switch (Op.getOpcode()) {
3739   default: llvm_unreachable("Unknown instruction!");
3740   case ISD::ADDCARRY:
3741     if (!isAddCarryChain(Carry))
3742       return SDValue();
3743 
3744     BaseOp = SystemZISD::ADDCARRY;
3745     CCValid = SystemZ::CCMASK_LOGICAL;
3746     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3747     break;
3748   case ISD::SUBCARRY:
3749     if (!isSubBorrowChain(Carry))
3750       return SDValue();
3751 
3752     BaseOp = SystemZISD::SUBCARRY;
3753     CCValid = SystemZ::CCMASK_LOGICAL;
3754     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3755     break;
3756   }
3757 
3758   // Set the condition code from the carry flag.
3759   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3760                       DAG.getConstant(CCValid, DL, MVT::i32),
3761                       DAG.getConstant(CCMask, DL, MVT::i32));
3762 
3763   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3764   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3765 
3766   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3767   if (N->getValueType(1) == MVT::i1)
3768     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3769 
3770   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3771 }
3772 
lowerCTPOP(SDValue Op,SelectionDAG & DAG) const3773 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3774                                           SelectionDAG &DAG) const {
3775   EVT VT = Op.getValueType();
3776   SDLoc DL(Op);
3777   Op = Op.getOperand(0);
3778 
3779   // Handle vector types via VPOPCT.
3780   if (VT.isVector()) {
3781     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3782     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3783     switch (VT.getScalarSizeInBits()) {
3784     case 8:
3785       break;
3786     case 16: {
3787       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3788       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3789       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3790       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3791       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3792       break;
3793     }
3794     case 32: {
3795       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3796                                             DAG.getConstant(0, DL, MVT::i32));
3797       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3798       break;
3799     }
3800     case 64: {
3801       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3802                                             DAG.getConstant(0, DL, MVT::i32));
3803       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3804       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3805       break;
3806     }
3807     default:
3808       llvm_unreachable("Unexpected type");
3809     }
3810     return Op;
3811   }
3812 
3813   // Get the known-zero mask for the operand.
3814   KnownBits Known = DAG.computeKnownBits(Op);
3815   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3816   if (NumSignificantBits == 0)
3817     return DAG.getConstant(0, DL, VT);
3818 
3819   // Skip known-zero high parts of the operand.
3820   int64_t OrigBitSize = VT.getSizeInBits();
3821   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3822   BitSize = std::min(BitSize, OrigBitSize);
3823 
3824   // The POPCNT instruction counts the number of bits in each byte.
3825   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3826   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3827   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3828 
3829   // Add up per-byte counts in a binary tree.  All bits of Op at
3830   // position larger than BitSize remain zero throughout.
3831   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3832     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3833     if (BitSize != OrigBitSize)
3834       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3835                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3836     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3837   }
3838 
3839   // Extract overall result from high byte.
3840   if (BitSize > 8)
3841     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3842                      DAG.getConstant(BitSize - 8, DL, VT));
3843 
3844   return Op;
3845 }
3846 
lowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const3847 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3848                                                  SelectionDAG &DAG) const {
3849   SDLoc DL(Op);
3850   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3851     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3852   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3853     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3854 
3855   // The only fence that needs an instruction is a sequentially-consistent
3856   // cross-thread fence.
3857   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3858       FenceSSID == SyncScope::System) {
3859     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3860                                       Op.getOperand(0)),
3861                    0);
3862   }
3863 
3864   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3865   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3866 }
3867 
3868 // Op is an atomic load.  Lower it into a normal volatile load.
lowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const3869 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3870                                                 SelectionDAG &DAG) const {
3871   auto *Node = cast<AtomicSDNode>(Op.getNode());
3872   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3873                         Node->getChain(), Node->getBasePtr(),
3874                         Node->getMemoryVT(), Node->getMemOperand());
3875 }
3876 
3877 // Op is an atomic store.  Lower it into a normal volatile store.
lowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const3878 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3879                                                  SelectionDAG &DAG) const {
3880   auto *Node = cast<AtomicSDNode>(Op.getNode());
3881   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3882                                     Node->getBasePtr(), Node->getMemoryVT(),
3883                                     Node->getMemOperand());
3884   // We have to enforce sequential consistency by performing a
3885   // serialization operation after the store.
3886   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3887     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3888                                        MVT::Other, Chain), 0);
3889   return Chain;
3890 }
3891 
3892 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3893 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
lowerATOMIC_LOAD_OP(SDValue Op,SelectionDAG & DAG,unsigned Opcode) const3894 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3895                                                    SelectionDAG &DAG,
3896                                                    unsigned Opcode) const {
3897   auto *Node = cast<AtomicSDNode>(Op.getNode());
3898 
3899   // 32-bit operations need no code outside the main loop.
3900   EVT NarrowVT = Node->getMemoryVT();
3901   EVT WideVT = MVT::i32;
3902   if (NarrowVT == WideVT)
3903     return Op;
3904 
3905   int64_t BitSize = NarrowVT.getSizeInBits();
3906   SDValue ChainIn = Node->getChain();
3907   SDValue Addr = Node->getBasePtr();
3908   SDValue Src2 = Node->getVal();
3909   MachineMemOperand *MMO = Node->getMemOperand();
3910   SDLoc DL(Node);
3911   EVT PtrVT = Addr.getValueType();
3912 
3913   // Convert atomic subtracts of constants into additions.
3914   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3915     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3916       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3917       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3918     }
3919 
3920   // Get the address of the containing word.
3921   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3922                                     DAG.getConstant(-4, DL, PtrVT));
3923 
3924   // Get the number of bits that the word must be rotated left in order
3925   // to bring the field to the top bits of a GR32.
3926   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3927                                  DAG.getConstant(3, DL, PtrVT));
3928   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3929 
3930   // Get the complementing shift amount, for rotating a field in the top
3931   // bits back to its proper position.
3932   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3933                                     DAG.getConstant(0, DL, WideVT), BitShift);
3934 
3935   // Extend the source operand to 32 bits and prepare it for the inner loop.
3936   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3937   // operations require the source to be shifted in advance.  (This shift
3938   // can be folded if the source is constant.)  For AND and NAND, the lower
3939   // bits must be set, while for other opcodes they should be left clear.
3940   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3941     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3942                        DAG.getConstant(32 - BitSize, DL, WideVT));
3943   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3944       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3945     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3946                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3947 
3948   // Construct the ATOMIC_LOADW_* node.
3949   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3950   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3951                     DAG.getConstant(BitSize, DL, WideVT) };
3952   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3953                                              NarrowVT, MMO);
3954 
3955   // Rotate the result of the final CS so that the field is in the lower
3956   // bits of a GR32, then truncate it.
3957   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3958                                     DAG.getConstant(BitSize, DL, WideVT));
3959   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3960 
3961   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3962   return DAG.getMergeValues(RetOps, DL);
3963 }
3964 
3965 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3966 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3967 // operations into additions.
lowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const3968 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3969                                                     SelectionDAG &DAG) const {
3970   auto *Node = cast<AtomicSDNode>(Op.getNode());
3971   EVT MemVT = Node->getMemoryVT();
3972   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3973     // A full-width operation.
3974     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3975     SDValue Src2 = Node->getVal();
3976     SDValue NegSrc2;
3977     SDLoc DL(Src2);
3978 
3979     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3980       // Use an addition if the operand is constant and either LAA(G) is
3981       // available or the negative value is in the range of A(G)FHI.
3982       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3983       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3984         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3985     } else if (Subtarget.hasInterlockedAccess1())
3986       // Use LAA(G) if available.
3987       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3988                             Src2);
3989 
3990     if (NegSrc2.getNode())
3991       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3992                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3993                            Node->getMemOperand());
3994 
3995     // Use the node as-is.
3996     return Op;
3997   }
3998 
3999   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4000 }
4001 
4002 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
lowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const4003 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4004                                                     SelectionDAG &DAG) const {
4005   auto *Node = cast<AtomicSDNode>(Op.getNode());
4006   SDValue ChainIn = Node->getOperand(0);
4007   SDValue Addr = Node->getOperand(1);
4008   SDValue CmpVal = Node->getOperand(2);
4009   SDValue SwapVal = Node->getOperand(3);
4010   MachineMemOperand *MMO = Node->getMemOperand();
4011   SDLoc DL(Node);
4012 
4013   // We have native support for 32-bit and 64-bit compare and swap, but we
4014   // still need to expand extracting the "success" result from the CC.
4015   EVT NarrowVT = Node->getMemoryVT();
4016   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4017   if (NarrowVT == WideVT) {
4018     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4019     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4020     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4021                                                DL, Tys, Ops, NarrowVT, MMO);
4022     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4023                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4024 
4025     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4026     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4027     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4028     return SDValue();
4029   }
4030 
4031   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4032   // via a fullword ATOMIC_CMP_SWAPW operation.
4033   int64_t BitSize = NarrowVT.getSizeInBits();
4034   EVT PtrVT = Addr.getValueType();
4035 
4036   // Get the address of the containing word.
4037   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4038                                     DAG.getConstant(-4, DL, PtrVT));
4039 
4040   // Get the number of bits that the word must be rotated left in order
4041   // to bring the field to the top bits of a GR32.
4042   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4043                                  DAG.getConstant(3, DL, PtrVT));
4044   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4045 
4046   // Get the complementing shift amount, for rotating a field in the top
4047   // bits back to its proper position.
4048   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4049                                     DAG.getConstant(0, DL, WideVT), BitShift);
4050 
4051   // Construct the ATOMIC_CMP_SWAPW node.
4052   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4053   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4054                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4055   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4056                                              VTList, Ops, NarrowVT, MMO);
4057   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4058                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4059 
4060   // emitAtomicCmpSwapW() will zero extend the result (original value).
4061   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4062                                 DAG.getValueType(NarrowVT));
4063   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4064   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4065   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4066   return SDValue();
4067 }
4068 
4069 MachineMemOperand::Flags
getTargetMMOFlags(const Instruction & I) const4070 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4071   // Because of how we convert atomic_load and atomic_store to normal loads and
4072   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4073   // since DAGCombine hasn't been updated to account for atomic, but non
4074   // volatile loads.  (See D57601)
4075   if (auto *SI = dyn_cast<StoreInst>(&I))
4076     if (SI->isAtomic())
4077       return MachineMemOperand::MOVolatile;
4078   if (auto *LI = dyn_cast<LoadInst>(&I))
4079     if (LI->isAtomic())
4080       return MachineMemOperand::MOVolatile;
4081   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4082     if (AI->isAtomic())
4083       return MachineMemOperand::MOVolatile;
4084   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4085     if (AI->isAtomic())
4086       return MachineMemOperand::MOVolatile;
4087   return MachineMemOperand::MONone;
4088 }
4089 
lowerSTACKSAVE(SDValue Op,SelectionDAG & DAG) const4090 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4091                                               SelectionDAG &DAG) const {
4092   MachineFunction &MF = DAG.getMachineFunction();
4093   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4094   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4095     report_fatal_error("Variable-sized stack allocations are not supported "
4096                        "in GHC calling convention");
4097   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4098                             SystemZ::R15D, Op.getValueType());
4099 }
4100 
lowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const4101 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4102                                                  SelectionDAG &DAG) const {
4103   MachineFunction &MF = DAG.getMachineFunction();
4104   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4105   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4106 
4107   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4108     report_fatal_error("Variable-sized stack allocations are not supported "
4109                        "in GHC calling convention");
4110 
4111   SDValue Chain = Op.getOperand(0);
4112   SDValue NewSP = Op.getOperand(1);
4113   SDValue Backchain;
4114   SDLoc DL(Op);
4115 
4116   if (StoreBackchain) {
4117     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4118     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4119                             MachinePointerInfo());
4120   }
4121 
4122   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4123 
4124   if (StoreBackchain)
4125     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4126                          MachinePointerInfo());
4127 
4128   return Chain;
4129 }
4130 
lowerPREFETCH(SDValue Op,SelectionDAG & DAG) const4131 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4132                                              SelectionDAG &DAG) const {
4133   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4134   if (!IsData)
4135     // Just preserve the chain.
4136     return Op.getOperand(0);
4137 
4138   SDLoc DL(Op);
4139   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4140   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4141   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4142   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4143                    Op.getOperand(1)};
4144   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4145                                  Node->getVTList(), Ops,
4146                                  Node->getMemoryVT(), Node->getMemOperand());
4147 }
4148 
4149 // Convert condition code in CCReg to an i32 value.
getCCResult(SelectionDAG & DAG,SDValue CCReg)4150 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4151   SDLoc DL(CCReg);
4152   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4153   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4154                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4155 }
4156 
4157 SDValue
lowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const4158 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4159                                               SelectionDAG &DAG) const {
4160   unsigned Opcode, CCValid;
4161   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4162     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4163     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4164     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4165     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4166     return SDValue();
4167   }
4168 
4169   return SDValue();
4170 }
4171 
4172 SDValue
lowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const4173 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4174                                                SelectionDAG &DAG) const {
4175   unsigned Opcode, CCValid;
4176   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4177     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4178     if (Op->getNumValues() == 1)
4179       return getCCResult(DAG, SDValue(Node, 0));
4180     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4181     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4182                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4183   }
4184 
4185   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4186   switch (Id) {
4187   case Intrinsic::thread_pointer:
4188     return lowerThreadPointer(SDLoc(Op), DAG);
4189 
4190   case Intrinsic::s390_vpdi:
4191     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4192                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4193 
4194   case Intrinsic::s390_vperm:
4195     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4196                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4197 
4198   case Intrinsic::s390_vuphb:
4199   case Intrinsic::s390_vuphh:
4200   case Intrinsic::s390_vuphf:
4201     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4202                        Op.getOperand(1));
4203 
4204   case Intrinsic::s390_vuplhb:
4205   case Intrinsic::s390_vuplhh:
4206   case Intrinsic::s390_vuplhf:
4207     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4208                        Op.getOperand(1));
4209 
4210   case Intrinsic::s390_vuplb:
4211   case Intrinsic::s390_vuplhw:
4212   case Intrinsic::s390_vuplf:
4213     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4214                        Op.getOperand(1));
4215 
4216   case Intrinsic::s390_vupllb:
4217   case Intrinsic::s390_vupllh:
4218   case Intrinsic::s390_vupllf:
4219     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4220                        Op.getOperand(1));
4221 
4222   case Intrinsic::s390_vsumb:
4223   case Intrinsic::s390_vsumh:
4224   case Intrinsic::s390_vsumgh:
4225   case Intrinsic::s390_vsumgf:
4226   case Intrinsic::s390_vsumqf:
4227   case Intrinsic::s390_vsumqg:
4228     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4229                        Op.getOperand(1), Op.getOperand(2));
4230   }
4231 
4232   return SDValue();
4233 }
4234 
4235 namespace {
4236 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4237 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4238 // Operand is the constant third operand, otherwise it is the number of
4239 // bytes in each element of the result.
4240 struct Permute {
4241   unsigned Opcode;
4242   unsigned Operand;
4243   unsigned char Bytes[SystemZ::VectorBytes];
4244 };
4245 }
4246 
4247 static const Permute PermuteForms[] = {
4248   // VMRHG
4249   { SystemZISD::MERGE_HIGH, 8,
4250     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4251   // VMRHF
4252   { SystemZISD::MERGE_HIGH, 4,
4253     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4254   // VMRHH
4255   { SystemZISD::MERGE_HIGH, 2,
4256     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4257   // VMRHB
4258   { SystemZISD::MERGE_HIGH, 1,
4259     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4260   // VMRLG
4261   { SystemZISD::MERGE_LOW, 8,
4262     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4263   // VMRLF
4264   { SystemZISD::MERGE_LOW, 4,
4265     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4266   // VMRLH
4267   { SystemZISD::MERGE_LOW, 2,
4268     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4269   // VMRLB
4270   { SystemZISD::MERGE_LOW, 1,
4271     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4272   // VPKG
4273   { SystemZISD::PACK, 4,
4274     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4275   // VPKF
4276   { SystemZISD::PACK, 2,
4277     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4278   // VPKH
4279   { SystemZISD::PACK, 1,
4280     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4281   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4282   { SystemZISD::PERMUTE_DWORDS, 4,
4283     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4284   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4285   { SystemZISD::PERMUTE_DWORDS, 1,
4286     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4287 };
4288 
4289 // Called after matching a vector shuffle against a particular pattern.
4290 // Both the original shuffle and the pattern have two vector operands.
4291 // OpNos[0] is the operand of the original shuffle that should be used for
4292 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4293 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4294 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4295 // for operands 0 and 1 of the pattern.
chooseShuffleOpNos(int * OpNos,unsigned & OpNo0,unsigned & OpNo1)4296 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4297   if (OpNos[0] < 0) {
4298     if (OpNos[1] < 0)
4299       return false;
4300     OpNo0 = OpNo1 = OpNos[1];
4301   } else if (OpNos[1] < 0) {
4302     OpNo0 = OpNo1 = OpNos[0];
4303   } else {
4304     OpNo0 = OpNos[0];
4305     OpNo1 = OpNos[1];
4306   }
4307   return true;
4308 }
4309 
4310 // Bytes is a VPERM-like permute vector, except that -1 is used for
4311 // undefined bytes.  Return true if the VPERM can be implemented using P.
4312 // When returning true set OpNo0 to the VPERM operand that should be
4313 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4314 //
4315 // For example, if swapping the VPERM operands allows P to match, OpNo0
4316 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4317 // operand, but rewriting it to use two duplicated operands allows it to
4318 // match P, then OpNo0 and OpNo1 will be the same.
matchPermute(const SmallVectorImpl<int> & Bytes,const Permute & P,unsigned & OpNo0,unsigned & OpNo1)4319 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4320                          unsigned &OpNo0, unsigned &OpNo1) {
4321   int OpNos[] = { -1, -1 };
4322   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4323     int Elt = Bytes[I];
4324     if (Elt >= 0) {
4325       // Make sure that the two permute vectors use the same suboperand
4326       // byte number.  Only the operand numbers (the high bits) are
4327       // allowed to differ.
4328       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4329         return false;
4330       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4331       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4332       // Make sure that the operand mappings are consistent with previous
4333       // elements.
4334       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4335         return false;
4336       OpNos[ModelOpNo] = RealOpNo;
4337     }
4338   }
4339   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4340 }
4341 
4342 // As above, but search for a matching permute.
matchPermute(const SmallVectorImpl<int> & Bytes,unsigned & OpNo0,unsigned & OpNo1)4343 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4344                                    unsigned &OpNo0, unsigned &OpNo1) {
4345   for (auto &P : PermuteForms)
4346     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4347       return &P;
4348   return nullptr;
4349 }
4350 
4351 // Bytes is a VPERM-like permute vector, except that -1 is used for
4352 // undefined bytes.  This permute is an operand of an outer permute.
4353 // See whether redistributing the -1 bytes gives a shuffle that can be
4354 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4355 // that, when applied to the result of P, gives the original permute in Bytes.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,const Permute & P,SmallVectorImpl<int> & Transform)4356 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4357                                const Permute &P,
4358                                SmallVectorImpl<int> &Transform) {
4359   unsigned To = 0;
4360   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4361     int Elt = Bytes[From];
4362     if (Elt < 0)
4363       // Byte number From of the result is undefined.
4364       Transform[From] = -1;
4365     else {
4366       while (P.Bytes[To] != Elt) {
4367         To += 1;
4368         if (To == SystemZ::VectorBytes)
4369           return false;
4370       }
4371       Transform[From] = To;
4372     }
4373   }
4374   return true;
4375 }
4376 
4377 // As above, but search for a matching permute.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,SmallVectorImpl<int> & Transform)4378 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4379                                          SmallVectorImpl<int> &Transform) {
4380   for (auto &P : PermuteForms)
4381     if (matchDoublePermute(Bytes, P, Transform))
4382       return &P;
4383   return nullptr;
4384 }
4385 
4386 // Convert the mask of the given shuffle op into a byte-level mask,
4387 // as if it had type vNi8.
getVPermMask(SDValue ShuffleOp,SmallVectorImpl<int> & Bytes)4388 static bool getVPermMask(SDValue ShuffleOp,
4389                          SmallVectorImpl<int> &Bytes) {
4390   EVT VT = ShuffleOp.getValueType();
4391   unsigned NumElements = VT.getVectorNumElements();
4392   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4393 
4394   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4395     Bytes.resize(NumElements * BytesPerElement, -1);
4396     for (unsigned I = 0; I < NumElements; ++I) {
4397       int Index = VSN->getMaskElt(I);
4398       if (Index >= 0)
4399         for (unsigned J = 0; J < BytesPerElement; ++J)
4400           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4401     }
4402     return true;
4403   }
4404   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4405       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4406     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4407     Bytes.resize(NumElements * BytesPerElement, -1);
4408     for (unsigned I = 0; I < NumElements; ++I)
4409       for (unsigned J = 0; J < BytesPerElement; ++J)
4410         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4411     return true;
4412   }
4413   return false;
4414 }
4415 
4416 // Bytes is a VPERM-like permute vector, except that -1 is used for
4417 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4418 // the result come from a contiguous sequence of bytes from one input.
4419 // Set Base to the selector for the first byte if so.
getShuffleInput(const SmallVectorImpl<int> & Bytes,unsigned Start,unsigned BytesPerElement,int & Base)4420 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4421                             unsigned BytesPerElement, int &Base) {
4422   Base = -1;
4423   for (unsigned I = 0; I < BytesPerElement; ++I) {
4424     if (Bytes[Start + I] >= 0) {
4425       unsigned Elem = Bytes[Start + I];
4426       if (Base < 0) {
4427         Base = Elem - I;
4428         // Make sure the bytes would come from one input operand.
4429         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4430           return false;
4431       } else if (unsigned(Base) != Elem - I)
4432         return false;
4433     }
4434   }
4435   return true;
4436 }
4437 
4438 // Bytes is a VPERM-like permute vector, except that -1 is used for
4439 // undefined bytes.  Return true if it can be performed using VSLDB.
4440 // When returning true, set StartIndex to the shift amount and OpNo0
4441 // and OpNo1 to the VPERM operands that should be used as the first
4442 // and second shift operand respectively.
isShlDoublePermute(const SmallVectorImpl<int> & Bytes,unsigned & StartIndex,unsigned & OpNo0,unsigned & OpNo1)4443 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4444                                unsigned &StartIndex, unsigned &OpNo0,
4445                                unsigned &OpNo1) {
4446   int OpNos[] = { -1, -1 };
4447   int Shift = -1;
4448   for (unsigned I = 0; I < 16; ++I) {
4449     int Index = Bytes[I];
4450     if (Index >= 0) {
4451       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4452       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4453       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4454       if (Shift < 0)
4455         Shift = ExpectedShift;
4456       else if (Shift != ExpectedShift)
4457         return false;
4458       // Make sure that the operand mappings are consistent with previous
4459       // elements.
4460       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4461         return false;
4462       OpNos[ModelOpNo] = RealOpNo;
4463     }
4464   }
4465   StartIndex = Shift;
4466   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4467 }
4468 
4469 // Create a node that performs P on operands Op0 and Op1, casting the
4470 // operands to the appropriate type.  The type of the result is determined by P.
getPermuteNode(SelectionDAG & DAG,const SDLoc & DL,const Permute & P,SDValue Op0,SDValue Op1)4471 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4472                               const Permute &P, SDValue Op0, SDValue Op1) {
4473   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4474   // elements of a PACK are twice as wide as the outputs.
4475   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4476                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4477                       P.Operand);
4478   // Cast both operands to the appropriate type.
4479   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4480                               SystemZ::VectorBytes / InBytes);
4481   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4482   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4483   SDValue Op;
4484   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4485     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4486     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4487   } else if (P.Opcode == SystemZISD::PACK) {
4488     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4489                                  SystemZ::VectorBytes / P.Operand);
4490     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4491   } else {
4492     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4493   }
4494   return Op;
4495 }
4496 
isZeroVector(SDValue N)4497 static bool isZeroVector(SDValue N) {
4498   if (N->getOpcode() == ISD::BITCAST)
4499     N = N->getOperand(0);
4500   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4501     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4502       return Op->getZExtValue() == 0;
4503   return ISD::isBuildVectorAllZeros(N.getNode());
4504 }
4505 
4506 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
findZeroVectorIdx(SDValue * Ops,unsigned Num)4507 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4508   for (unsigned I = 0; I < Num ; I++)
4509     if (isZeroVector(Ops[I]))
4510       return I;
4511   return UINT32_MAX;
4512 }
4513 
4514 // Bytes is a VPERM-like permute vector, except that -1 is used for
4515 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4516 // VSLDB or VPERM.
getGeneralPermuteNode(SelectionDAG & DAG,const SDLoc & DL,SDValue * Ops,const SmallVectorImpl<int> & Bytes)4517 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4518                                      SDValue *Ops,
4519                                      const SmallVectorImpl<int> &Bytes) {
4520   for (unsigned I = 0; I < 2; ++I)
4521     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4522 
4523   // First see whether VSLDB can be used.
4524   unsigned StartIndex, OpNo0, OpNo1;
4525   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4526     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4527                        Ops[OpNo1],
4528                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4529 
4530   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4531   // eliminate a zero vector by reusing any zero index in the permute vector.
4532   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4533   if (ZeroVecIdx != UINT32_MAX) {
4534     bool MaskFirst = true;
4535     int ZeroIdx = -1;
4536     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4537       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4538       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4539       if (OpNo == ZeroVecIdx && I == 0) {
4540         // If the first byte is zero, use mask as first operand.
4541         ZeroIdx = 0;
4542         break;
4543       }
4544       if (OpNo != ZeroVecIdx && Byte == 0) {
4545         // If mask contains a zero, use it by placing that vector first.
4546         ZeroIdx = I + SystemZ::VectorBytes;
4547         MaskFirst = false;
4548         break;
4549       }
4550     }
4551     if (ZeroIdx != -1) {
4552       SDValue IndexNodes[SystemZ::VectorBytes];
4553       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4554         if (Bytes[I] >= 0) {
4555           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4556           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4557           if (OpNo == ZeroVecIdx)
4558             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4559           else {
4560             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4561             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4562           }
4563         } else
4564           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4565       }
4566       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4567       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4568       if (MaskFirst)
4569         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4570                            Mask);
4571       else
4572         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4573                            Mask);
4574     }
4575   }
4576 
4577   SDValue IndexNodes[SystemZ::VectorBytes];
4578   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4579     if (Bytes[I] >= 0)
4580       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4581     else
4582       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4583   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4584   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4585                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4586 }
4587 
4588 namespace {
4589 // Describes a general N-operand vector shuffle.
4590 struct GeneralShuffle {
GeneralShuffle__anon96afb8f20411::GeneralShuffle4591   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4592   void addUndef();
4593   bool add(SDValue, unsigned);
4594   SDValue getNode(SelectionDAG &, const SDLoc &);
4595   void tryPrepareForUnpack();
unpackWasPrepared__anon96afb8f20411::GeneralShuffle4596   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4597   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4598 
4599   // The operands of the shuffle.
4600   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4601 
4602   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4603   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4604   // Bytes[I] / SystemZ::VectorBytes.
4605   SmallVector<int, SystemZ::VectorBytes> Bytes;
4606 
4607   // The type of the shuffle result.
4608   EVT VT;
4609 
4610   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4611   unsigned UnpackFromEltSize;
4612 };
4613 }
4614 
4615 // Add an extra undefined element to the shuffle.
addUndef()4616 void GeneralShuffle::addUndef() {
4617   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4618   for (unsigned I = 0; I < BytesPerElement; ++I)
4619     Bytes.push_back(-1);
4620 }
4621 
4622 // Add an extra element to the shuffle, taking it from element Elem of Op.
4623 // A null Op indicates a vector input whose value will be calculated later;
4624 // there is at most one such input per shuffle and it always has the same
4625 // type as the result. Aborts and returns false if the source vector elements
4626 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4627 // LLVM they become implicitly extended, but this is rare and not optimized.
add(SDValue Op,unsigned Elem)4628 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4629   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4630 
4631   // The source vector can have wider elements than the result,
4632   // either through an explicit TRUNCATE or because of type legalization.
4633   // We want the least significant part.
4634   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4635   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4636 
4637   // Return false if the source elements are smaller than their destination
4638   // elements.
4639   if (FromBytesPerElement < BytesPerElement)
4640     return false;
4641 
4642   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4643                    (FromBytesPerElement - BytesPerElement));
4644 
4645   // Look through things like shuffles and bitcasts.
4646   while (Op.getNode()) {
4647     if (Op.getOpcode() == ISD::BITCAST)
4648       Op = Op.getOperand(0);
4649     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4650       // See whether the bytes we need come from a contiguous part of one
4651       // operand.
4652       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4653       if (!getVPermMask(Op, OpBytes))
4654         break;
4655       int NewByte;
4656       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4657         break;
4658       if (NewByte < 0) {
4659         addUndef();
4660         return true;
4661       }
4662       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4663       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4664     } else if (Op.isUndef()) {
4665       addUndef();
4666       return true;
4667     } else
4668       break;
4669   }
4670 
4671   // Make sure that the source of the extraction is in Ops.
4672   unsigned OpNo = 0;
4673   for (; OpNo < Ops.size(); ++OpNo)
4674     if (Ops[OpNo] == Op)
4675       break;
4676   if (OpNo == Ops.size())
4677     Ops.push_back(Op);
4678 
4679   // Add the element to Bytes.
4680   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4681   for (unsigned I = 0; I < BytesPerElement; ++I)
4682     Bytes.push_back(Base + I);
4683 
4684   return true;
4685 }
4686 
4687 // Return SDNodes for the completed shuffle.
getNode(SelectionDAG & DAG,const SDLoc & DL)4688 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4689   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4690 
4691   if (Ops.size() == 0)
4692     return DAG.getUNDEF(VT);
4693 
4694   // Use a single unpack if possible as the last operation.
4695   tryPrepareForUnpack();
4696 
4697   // Make sure that there are at least two shuffle operands.
4698   if (Ops.size() == 1)
4699     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4700 
4701   // Create a tree of shuffles, deferring root node until after the loop.
4702   // Try to redistribute the undefined elements of non-root nodes so that
4703   // the non-root shuffles match something like a pack or merge, then adjust
4704   // the parent node's permute vector to compensate for the new order.
4705   // Among other things, this copes with vectors like <2 x i16> that were
4706   // padded with undefined elements during type legalization.
4707   //
4708   // In the best case this redistribution will lead to the whole tree
4709   // using packs and merges.  It should rarely be a loss in other cases.
4710   unsigned Stride = 1;
4711   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4712     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4713       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4714 
4715       // Create a mask for just these two operands.
4716       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4717       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4718         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4719         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4720         if (OpNo == I)
4721           NewBytes[J] = Byte;
4722         else if (OpNo == I + Stride)
4723           NewBytes[J] = SystemZ::VectorBytes + Byte;
4724         else
4725           NewBytes[J] = -1;
4726       }
4727       // See if it would be better to reorganize NewMask to avoid using VPERM.
4728       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4729       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4730         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4731         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4732         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4733           if (NewBytes[J] >= 0) {
4734             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4735                    "Invalid double permute");
4736             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4737           } else
4738             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4739         }
4740       } else {
4741         // Just use NewBytes on the operands.
4742         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4743         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4744           if (NewBytes[J] >= 0)
4745             Bytes[J] = I * SystemZ::VectorBytes + J;
4746       }
4747     }
4748   }
4749 
4750   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4751   if (Stride > 1) {
4752     Ops[1] = Ops[Stride];
4753     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4754       if (Bytes[I] >= int(SystemZ::VectorBytes))
4755         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4756   }
4757 
4758   // Look for an instruction that can do the permute without resorting
4759   // to VPERM.
4760   unsigned OpNo0, OpNo1;
4761   SDValue Op;
4762   if (unpackWasPrepared() && Ops[1].isUndef())
4763     Op = Ops[0];
4764   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4765     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4766   else
4767     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4768 
4769   Op = insertUnpackIfPrepared(DAG, DL, Op);
4770 
4771   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4772 }
4773 
4774 #ifndef NDEBUG
dumpBytes(const SmallVectorImpl<int> & Bytes,std::string Msg)4775 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4776   dbgs() << Msg.c_str() << " { ";
4777   for (unsigned i = 0; i < Bytes.size(); i++)
4778     dbgs() << Bytes[i] << " ";
4779   dbgs() << "}\n";
4780 }
4781 #endif
4782 
4783 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4784 // after all else by removing the zero vector and the effect of the unpack on
4785 // Bytes.
tryPrepareForUnpack()4786 void GeneralShuffle::tryPrepareForUnpack() {
4787   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4788   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4789     return;
4790 
4791   // Only do this if removing the zero vector reduces the depth, otherwise
4792   // the critical path will increase with the final unpack.
4793   if (Ops.size() > 2 &&
4794       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4795     return;
4796 
4797   // Find an unpack that would allow removing the zero vector from Ops.
4798   UnpackFromEltSize = 1;
4799   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4800     bool MatchUnpack = true;
4801     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4802     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4803       unsigned ToEltSize = UnpackFromEltSize * 2;
4804       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4805       if (!IsZextByte)
4806         SrcBytes.push_back(Bytes[Elt]);
4807       if (Bytes[Elt] != -1) {
4808         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4809         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4810           MatchUnpack = false;
4811           break;
4812         }
4813       }
4814     }
4815     if (MatchUnpack) {
4816       if (Ops.size() == 2) {
4817         // Don't use unpack if a single source operand needs rearrangement.
4818         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4819           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4820             UnpackFromEltSize = UINT_MAX;
4821             return;
4822           }
4823       }
4824       break;
4825     }
4826   }
4827   if (UnpackFromEltSize > 4)
4828     return;
4829 
4830   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4831              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4832              << ".\n";
4833              dumpBytes(Bytes, "Original Bytes vector:"););
4834 
4835   // Apply the unpack in reverse to the Bytes array.
4836   unsigned B = 0;
4837   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4838     Elt += UnpackFromEltSize;
4839     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4840       Bytes[B] = Bytes[Elt];
4841   }
4842   while (B < SystemZ::VectorBytes)
4843     Bytes[B++] = -1;
4844 
4845   // Remove the zero vector from Ops
4846   Ops.erase(&Ops[ZeroVecOpNo]);
4847   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4848     if (Bytes[I] >= 0) {
4849       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4850       if (OpNo > ZeroVecOpNo)
4851         Bytes[I] -= SystemZ::VectorBytes;
4852     }
4853 
4854   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4855              dbgs() << "\n";);
4856 }
4857 
insertUnpackIfPrepared(SelectionDAG & DAG,const SDLoc & DL,SDValue Op)4858 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4859                                                const SDLoc &DL,
4860                                                SDValue Op) {
4861   if (!unpackWasPrepared())
4862     return Op;
4863   unsigned InBits = UnpackFromEltSize * 8;
4864   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4865                                 SystemZ::VectorBits / InBits);
4866   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4867   unsigned OutBits = InBits * 2;
4868   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4869                                SystemZ::VectorBits / OutBits);
4870   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4871 }
4872 
4873 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
isScalarToVector(SDValue Op)4874 static bool isScalarToVector(SDValue Op) {
4875   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4876     if (!Op.getOperand(I).isUndef())
4877       return false;
4878   return true;
4879 }
4880 
4881 // Return a vector of type VT that contains Value in the first element.
4882 // The other elements don't matter.
buildScalarToVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Value)4883 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4884                                    SDValue Value) {
4885   // If we have a constant, replicate it to all elements and let the
4886   // BUILD_VECTOR lowering take care of it.
4887   if (Value.getOpcode() == ISD::Constant ||
4888       Value.getOpcode() == ISD::ConstantFP) {
4889     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4890     return DAG.getBuildVector(VT, DL, Ops);
4891   }
4892   if (Value.isUndef())
4893     return DAG.getUNDEF(VT);
4894   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4895 }
4896 
4897 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4898 // element 1.  Used for cases in which replication is cheap.
buildMergeScalars(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Op0,SDValue Op1)4899 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4900                                  SDValue Op0, SDValue Op1) {
4901   if (Op0.isUndef()) {
4902     if (Op1.isUndef())
4903       return DAG.getUNDEF(VT);
4904     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4905   }
4906   if (Op1.isUndef())
4907     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4908   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4909                      buildScalarToVector(DAG, DL, VT, Op0),
4910                      buildScalarToVector(DAG, DL, VT, Op1));
4911 }
4912 
4913 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4914 // vector for them.
joinDwords(SelectionDAG & DAG,const SDLoc & DL,SDValue Op0,SDValue Op1)4915 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4916                           SDValue Op1) {
4917   if (Op0.isUndef() && Op1.isUndef())
4918     return DAG.getUNDEF(MVT::v2i64);
4919   // If one of the two inputs is undefined then replicate the other one,
4920   // in order to avoid using another register unnecessarily.
4921   if (Op0.isUndef())
4922     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4923   else if (Op1.isUndef())
4924     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4925   else {
4926     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4927     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4928   }
4929   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4930 }
4931 
4932 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4933 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4934 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4935 // would benefit from this representation and return it if so.
tryBuildVectorShuffle(SelectionDAG & DAG,BuildVectorSDNode * BVN)4936 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4937                                      BuildVectorSDNode *BVN) {
4938   EVT VT = BVN->getValueType(0);
4939   unsigned NumElements = VT.getVectorNumElements();
4940 
4941   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4942   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4943   // need a BUILD_VECTOR, add an additional placeholder operand for that
4944   // BUILD_VECTOR and store its operands in ResidueOps.
4945   GeneralShuffle GS(VT);
4946   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4947   bool FoundOne = false;
4948   for (unsigned I = 0; I < NumElements; ++I) {
4949     SDValue Op = BVN->getOperand(I);
4950     if (Op.getOpcode() == ISD::TRUNCATE)
4951       Op = Op.getOperand(0);
4952     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4953         Op.getOperand(1).getOpcode() == ISD::Constant) {
4954       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4955       if (!GS.add(Op.getOperand(0), Elem))
4956         return SDValue();
4957       FoundOne = true;
4958     } else if (Op.isUndef()) {
4959       GS.addUndef();
4960     } else {
4961       if (!GS.add(SDValue(), ResidueOps.size()))
4962         return SDValue();
4963       ResidueOps.push_back(BVN->getOperand(I));
4964     }
4965   }
4966 
4967   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4968   if (!FoundOne)
4969     return SDValue();
4970 
4971   // Create the BUILD_VECTOR for the remaining elements, if any.
4972   if (!ResidueOps.empty()) {
4973     while (ResidueOps.size() < NumElements)
4974       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4975     for (auto &Op : GS.Ops) {
4976       if (!Op.getNode()) {
4977         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4978         break;
4979       }
4980     }
4981   }
4982   return GS.getNode(DAG, SDLoc(BVN));
4983 }
4984 
isVectorElementLoad(SDValue Op) const4985 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4986   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4987     return true;
4988   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4989     return true;
4990   return false;
4991 }
4992 
4993 // Combine GPR scalar values Elems into a vector of type VT.
4994 SDValue
buildVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SmallVectorImpl<SDValue> & Elems) const4995 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4996                                    SmallVectorImpl<SDValue> &Elems) const {
4997   // See whether there is a single replicated value.
4998   SDValue Single;
4999   unsigned int NumElements = Elems.size();
5000   unsigned int Count = 0;
5001   for (auto Elem : Elems) {
5002     if (!Elem.isUndef()) {
5003       if (!Single.getNode())
5004         Single = Elem;
5005       else if (Elem != Single) {
5006         Single = SDValue();
5007         break;
5008       }
5009       Count += 1;
5010     }
5011   }
5012   // There are three cases here:
5013   //
5014   // - if the only defined element is a loaded one, the best sequence
5015   //   is a replicating load.
5016   //
5017   // - otherwise, if the only defined element is an i64 value, we will
5018   //   end up with the same VLVGP sequence regardless of whether we short-cut
5019   //   for replication or fall through to the later code.
5020   //
5021   // - otherwise, if the only defined element is an i32 or smaller value,
5022   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5023   //   This is only a win if the single defined element is used more than once.
5024   //   In other cases we're better off using a single VLVGx.
5025   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5026     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5027 
5028   // If all elements are loads, use VLREP/VLEs (below).
5029   bool AllLoads = true;
5030   for (auto Elem : Elems)
5031     if (!isVectorElementLoad(Elem)) {
5032       AllLoads = false;
5033       break;
5034     }
5035 
5036   // The best way of building a v2i64 from two i64s is to use VLVGP.
5037   if (VT == MVT::v2i64 && !AllLoads)
5038     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5039 
5040   // Use a 64-bit merge high to combine two doubles.
5041   if (VT == MVT::v2f64 && !AllLoads)
5042     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5043 
5044   // Build v4f32 values directly from the FPRs:
5045   //
5046   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5047   //         V              V         VMRHF
5048   //      <ABxx>         <CDxx>
5049   //                V                 VMRHG
5050   //              <ABCD>
5051   if (VT == MVT::v4f32 && !AllLoads) {
5052     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5053     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5054     // Avoid unnecessary undefs by reusing the other operand.
5055     if (Op01.isUndef())
5056       Op01 = Op23;
5057     else if (Op23.isUndef())
5058       Op23 = Op01;
5059     // Merging identical replications is a no-op.
5060     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5061       return Op01;
5062     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5063     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5064     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5065                              DL, MVT::v2i64, Op01, Op23);
5066     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5067   }
5068 
5069   // Collect the constant terms.
5070   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5071   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5072 
5073   unsigned NumConstants = 0;
5074   for (unsigned I = 0; I < NumElements; ++I) {
5075     SDValue Elem = Elems[I];
5076     if (Elem.getOpcode() == ISD::Constant ||
5077         Elem.getOpcode() == ISD::ConstantFP) {
5078       NumConstants += 1;
5079       Constants[I] = Elem;
5080       Done[I] = true;
5081     }
5082   }
5083   // If there was at least one constant, fill in the other elements of
5084   // Constants with undefs to get a full vector constant and use that
5085   // as the starting point.
5086   SDValue Result;
5087   SDValue ReplicatedVal;
5088   if (NumConstants > 0) {
5089     for (unsigned I = 0; I < NumElements; ++I)
5090       if (!Constants[I].getNode())
5091         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5092     Result = DAG.getBuildVector(VT, DL, Constants);
5093   } else {
5094     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5095     // avoid a false dependency on any previous contents of the vector
5096     // register.
5097 
5098     // Use a VLREP if at least one element is a load. Make sure to replicate
5099     // the load with the most elements having its value.
5100     std::map<const SDNode*, unsigned> UseCounts;
5101     SDNode *LoadMaxUses = nullptr;
5102     for (unsigned I = 0; I < NumElements; ++I)
5103       if (isVectorElementLoad(Elems[I])) {
5104         SDNode *Ld = Elems[I].getNode();
5105         UseCounts[Ld]++;
5106         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5107           LoadMaxUses = Ld;
5108       }
5109     if (LoadMaxUses != nullptr) {
5110       ReplicatedVal = SDValue(LoadMaxUses, 0);
5111       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5112     } else {
5113       // Try to use VLVGP.
5114       unsigned I1 = NumElements / 2 - 1;
5115       unsigned I2 = NumElements - 1;
5116       bool Def1 = !Elems[I1].isUndef();
5117       bool Def2 = !Elems[I2].isUndef();
5118       if (Def1 || Def2) {
5119         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5120         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5121         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5122                              joinDwords(DAG, DL, Elem1, Elem2));
5123         Done[I1] = true;
5124         Done[I2] = true;
5125       } else
5126         Result = DAG.getUNDEF(VT);
5127     }
5128   }
5129 
5130   // Use VLVGx to insert the other elements.
5131   for (unsigned I = 0; I < NumElements; ++I)
5132     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5133       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5134                            DAG.getConstant(I, DL, MVT::i32));
5135   return Result;
5136 }
5137 
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const5138 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5139                                                  SelectionDAG &DAG) const {
5140   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5141   SDLoc DL(Op);
5142   EVT VT = Op.getValueType();
5143 
5144   if (BVN->isConstant()) {
5145     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5146       return Op;
5147 
5148     // Fall back to loading it from memory.
5149     return SDValue();
5150   }
5151 
5152   // See if we should use shuffles to construct the vector from other vectors.
5153   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5154     return Res;
5155 
5156   // Detect SCALAR_TO_VECTOR conversions.
5157   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5158     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5159 
5160   // Otherwise use buildVector to build the vector up from GPRs.
5161   unsigned NumElements = Op.getNumOperands();
5162   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5163   for (unsigned I = 0; I < NumElements; ++I)
5164     Ops[I] = Op.getOperand(I);
5165   return buildVector(DAG, DL, VT, Ops);
5166 }
5167 
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const5168 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5169                                                    SelectionDAG &DAG) const {
5170   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5171   SDLoc DL(Op);
5172   EVT VT = Op.getValueType();
5173   unsigned NumElements = VT.getVectorNumElements();
5174 
5175   if (VSN->isSplat()) {
5176     SDValue Op0 = Op.getOperand(0);
5177     unsigned Index = VSN->getSplatIndex();
5178     assert(Index < VT.getVectorNumElements() &&
5179            "Splat index should be defined and in first operand");
5180     // See whether the value we're splatting is directly available as a scalar.
5181     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5182         Op0.getOpcode() == ISD::BUILD_VECTOR)
5183       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5184     // Otherwise keep it as a vector-to-vector operation.
5185     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5186                        DAG.getTargetConstant(Index, DL, MVT::i32));
5187   }
5188 
5189   GeneralShuffle GS(VT);
5190   for (unsigned I = 0; I < NumElements; ++I) {
5191     int Elt = VSN->getMaskElt(I);
5192     if (Elt < 0)
5193       GS.addUndef();
5194     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5195                      unsigned(Elt) % NumElements))
5196       return SDValue();
5197   }
5198   return GS.getNode(DAG, SDLoc(VSN));
5199 }
5200 
lowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const5201 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5202                                                      SelectionDAG &DAG) const {
5203   SDLoc DL(Op);
5204   // Just insert the scalar into element 0 of an undefined vector.
5205   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5206                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5207                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5208 }
5209 
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const5210 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5211                                                       SelectionDAG &DAG) const {
5212   // Handle insertions of floating-point values.
5213   SDLoc DL(Op);
5214   SDValue Op0 = Op.getOperand(0);
5215   SDValue Op1 = Op.getOperand(1);
5216   SDValue Op2 = Op.getOperand(2);
5217   EVT VT = Op.getValueType();
5218 
5219   // Insertions into constant indices of a v2f64 can be done using VPDI.
5220   // However, if the inserted value is a bitcast or a constant then it's
5221   // better to use GPRs, as below.
5222   if (VT == MVT::v2f64 &&
5223       Op1.getOpcode() != ISD::BITCAST &&
5224       Op1.getOpcode() != ISD::ConstantFP &&
5225       Op2.getOpcode() == ISD::Constant) {
5226     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5227     unsigned Mask = VT.getVectorNumElements() - 1;
5228     if (Index <= Mask)
5229       return Op;
5230   }
5231 
5232   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5233   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5234   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5235   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5236                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5237                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5238   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5239 }
5240 
5241 SDValue
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const5242 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5243                                                SelectionDAG &DAG) const {
5244   // Handle extractions of floating-point values.
5245   SDLoc DL(Op);
5246   SDValue Op0 = Op.getOperand(0);
5247   SDValue Op1 = Op.getOperand(1);
5248   EVT VT = Op.getValueType();
5249   EVT VecVT = Op0.getValueType();
5250 
5251   // Extractions of constant indices can be done directly.
5252   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5253     uint64_t Index = CIndexN->getZExtValue();
5254     unsigned Mask = VecVT.getVectorNumElements() - 1;
5255     if (Index <= Mask)
5256       return Op;
5257   }
5258 
5259   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5260   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5261   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5262   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5263                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5264   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5265 }
5266 
5267 SDValue SystemZTargetLowering::
lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op,SelectionDAG & DAG) const5268 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5269   SDValue PackedOp = Op.getOperand(0);
5270   EVT OutVT = Op.getValueType();
5271   EVT InVT = PackedOp.getValueType();
5272   unsigned ToBits = OutVT.getScalarSizeInBits();
5273   unsigned FromBits = InVT.getScalarSizeInBits();
5274   do {
5275     FromBits *= 2;
5276     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5277                                  SystemZ::VectorBits / FromBits);
5278     PackedOp =
5279       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5280   } while (FromBits != ToBits);
5281   return PackedOp;
5282 }
5283 
5284 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5285 SDValue SystemZTargetLowering::
lowerZERO_EXTEND_VECTOR_INREG(SDValue Op,SelectionDAG & DAG) const5286 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5287   SDValue PackedOp = Op.getOperand(0);
5288   SDLoc DL(Op);
5289   EVT OutVT = Op.getValueType();
5290   EVT InVT = PackedOp.getValueType();
5291   unsigned InNumElts = InVT.getVectorNumElements();
5292   unsigned OutNumElts = OutVT.getVectorNumElements();
5293   unsigned NumInPerOut = InNumElts / OutNumElts;
5294 
5295   SDValue ZeroVec =
5296     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5297 
5298   SmallVector<int, 16> Mask(InNumElts);
5299   unsigned ZeroVecElt = InNumElts;
5300   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5301     unsigned MaskElt = PackedElt * NumInPerOut;
5302     unsigned End = MaskElt + NumInPerOut - 1;
5303     for (; MaskElt < End; MaskElt++)
5304       Mask[MaskElt] = ZeroVecElt++;
5305     Mask[MaskElt] = PackedElt;
5306   }
5307   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5308   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5309 }
5310 
lowerShift(SDValue Op,SelectionDAG & DAG,unsigned ByScalar) const5311 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5312                                           unsigned ByScalar) const {
5313   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5314   SDValue Op0 = Op.getOperand(0);
5315   SDValue Op1 = Op.getOperand(1);
5316   SDLoc DL(Op);
5317   EVT VT = Op.getValueType();
5318   unsigned ElemBitSize = VT.getScalarSizeInBits();
5319 
5320   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5321   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5322     APInt SplatBits, SplatUndef;
5323     unsigned SplatBitSize;
5324     bool HasAnyUndefs;
5325     // Check for constant splats.  Use ElemBitSize as the minimum element
5326     // width and reject splats that need wider elements.
5327     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5328                              ElemBitSize, true) &&
5329         SplatBitSize == ElemBitSize) {
5330       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5331                                       DL, MVT::i32);
5332       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5333     }
5334     // Check for variable splats.
5335     BitVector UndefElements;
5336     SDValue Splat = BVN->getSplatValue(&UndefElements);
5337     if (Splat) {
5338       // Since i32 is the smallest legal type, we either need a no-op
5339       // or a truncation.
5340       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5341       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5342     }
5343   }
5344 
5345   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5346   // and the shift amount is directly available in a GPR.
5347   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5348     if (VSN->isSplat()) {
5349       SDValue VSNOp0 = VSN->getOperand(0);
5350       unsigned Index = VSN->getSplatIndex();
5351       assert(Index < VT.getVectorNumElements() &&
5352              "Splat index should be defined and in first operand");
5353       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5354           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5355         // Since i32 is the smallest legal type, we either need a no-op
5356         // or a truncation.
5357         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5358                                     VSNOp0.getOperand(Index));
5359         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5360       }
5361     }
5362   }
5363 
5364   // Otherwise just treat the current form as legal.
5365   return Op;
5366 }
5367 
LowerOperation(SDValue Op,SelectionDAG & DAG) const5368 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5369                                               SelectionDAG &DAG) const {
5370   switch (Op.getOpcode()) {
5371   case ISD::FRAMEADDR:
5372     return lowerFRAMEADDR(Op, DAG);
5373   case ISD::RETURNADDR:
5374     return lowerRETURNADDR(Op, DAG);
5375   case ISD::BR_CC:
5376     return lowerBR_CC(Op, DAG);
5377   case ISD::SELECT_CC:
5378     return lowerSELECT_CC(Op, DAG);
5379   case ISD::SETCC:
5380     return lowerSETCC(Op, DAG);
5381   case ISD::STRICT_FSETCC:
5382     return lowerSTRICT_FSETCC(Op, DAG, false);
5383   case ISD::STRICT_FSETCCS:
5384     return lowerSTRICT_FSETCC(Op, DAG, true);
5385   case ISD::GlobalAddress:
5386     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5387   case ISD::GlobalTLSAddress:
5388     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5389   case ISD::BlockAddress:
5390     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5391   case ISD::JumpTable:
5392     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5393   case ISD::ConstantPool:
5394     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5395   case ISD::BITCAST:
5396     return lowerBITCAST(Op, DAG);
5397   case ISD::VASTART:
5398     return lowerVASTART(Op, DAG);
5399   case ISD::VACOPY:
5400     return lowerVACOPY(Op, DAG);
5401   case ISD::DYNAMIC_STACKALLOC:
5402     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5403   case ISD::GET_DYNAMIC_AREA_OFFSET:
5404     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5405   case ISD::SMUL_LOHI:
5406     return lowerSMUL_LOHI(Op, DAG);
5407   case ISD::UMUL_LOHI:
5408     return lowerUMUL_LOHI(Op, DAG);
5409   case ISD::SDIVREM:
5410     return lowerSDIVREM(Op, DAG);
5411   case ISD::UDIVREM:
5412     return lowerUDIVREM(Op, DAG);
5413   case ISD::SADDO:
5414   case ISD::SSUBO:
5415   case ISD::UADDO:
5416   case ISD::USUBO:
5417     return lowerXALUO(Op, DAG);
5418   case ISD::ADDCARRY:
5419   case ISD::SUBCARRY:
5420     return lowerADDSUBCARRY(Op, DAG);
5421   case ISD::OR:
5422     return lowerOR(Op, DAG);
5423   case ISD::CTPOP:
5424     return lowerCTPOP(Op, DAG);
5425   case ISD::ATOMIC_FENCE:
5426     return lowerATOMIC_FENCE(Op, DAG);
5427   case ISD::ATOMIC_SWAP:
5428     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5429   case ISD::ATOMIC_STORE:
5430     return lowerATOMIC_STORE(Op, DAG);
5431   case ISD::ATOMIC_LOAD:
5432     return lowerATOMIC_LOAD(Op, DAG);
5433   case ISD::ATOMIC_LOAD_ADD:
5434     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5435   case ISD::ATOMIC_LOAD_SUB:
5436     return lowerATOMIC_LOAD_SUB(Op, DAG);
5437   case ISD::ATOMIC_LOAD_AND:
5438     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5439   case ISD::ATOMIC_LOAD_OR:
5440     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5441   case ISD::ATOMIC_LOAD_XOR:
5442     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5443   case ISD::ATOMIC_LOAD_NAND:
5444     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5445   case ISD::ATOMIC_LOAD_MIN:
5446     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5447   case ISD::ATOMIC_LOAD_MAX:
5448     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5449   case ISD::ATOMIC_LOAD_UMIN:
5450     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5451   case ISD::ATOMIC_LOAD_UMAX:
5452     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5453   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5454     return lowerATOMIC_CMP_SWAP(Op, DAG);
5455   case ISD::STACKSAVE:
5456     return lowerSTACKSAVE(Op, DAG);
5457   case ISD::STACKRESTORE:
5458     return lowerSTACKRESTORE(Op, DAG);
5459   case ISD::PREFETCH:
5460     return lowerPREFETCH(Op, DAG);
5461   case ISD::INTRINSIC_W_CHAIN:
5462     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5463   case ISD::INTRINSIC_WO_CHAIN:
5464     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5465   case ISD::BUILD_VECTOR:
5466     return lowerBUILD_VECTOR(Op, DAG);
5467   case ISD::VECTOR_SHUFFLE:
5468     return lowerVECTOR_SHUFFLE(Op, DAG);
5469   case ISD::SCALAR_TO_VECTOR:
5470     return lowerSCALAR_TO_VECTOR(Op, DAG);
5471   case ISD::INSERT_VECTOR_ELT:
5472     return lowerINSERT_VECTOR_ELT(Op, DAG);
5473   case ISD::EXTRACT_VECTOR_ELT:
5474     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5475   case ISD::SIGN_EXTEND_VECTOR_INREG:
5476     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5477   case ISD::ZERO_EXTEND_VECTOR_INREG:
5478     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5479   case ISD::SHL:
5480     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5481   case ISD::SRL:
5482     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5483   case ISD::SRA:
5484     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5485   default:
5486     llvm_unreachable("Unexpected node to lower");
5487   }
5488 }
5489 
5490 // Lower operations with invalid operand or result types (currently used
5491 // only for 128-bit integer types).
5492 
lowerI128ToGR128(SelectionDAG & DAG,SDValue In)5493 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5494   SDLoc DL(In);
5495   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5496                            DAG.getIntPtrConstant(0, DL));
5497   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5498                            DAG.getIntPtrConstant(1, DL));
5499   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5500                                     MVT::Untyped, Hi, Lo);
5501   return SDValue(Pair, 0);
5502 }
5503 
lowerGR128ToI128(SelectionDAG & DAG,SDValue In)5504 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5505   SDLoc DL(In);
5506   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5507                                           DL, MVT::i64, In);
5508   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5509                                           DL, MVT::i64, In);
5510   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5511 }
5512 
5513 void
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const5514 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5515                                              SmallVectorImpl<SDValue> &Results,
5516                                              SelectionDAG &DAG) const {
5517   switch (N->getOpcode()) {
5518   case ISD::ATOMIC_LOAD: {
5519     SDLoc DL(N);
5520     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5521     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5522     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5523     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5524                                           DL, Tys, Ops, MVT::i128, MMO);
5525     Results.push_back(lowerGR128ToI128(DAG, Res));
5526     Results.push_back(Res.getValue(1));
5527     break;
5528   }
5529   case ISD::ATOMIC_STORE: {
5530     SDLoc DL(N);
5531     SDVTList Tys = DAG.getVTList(MVT::Other);
5532     SDValue Ops[] = { N->getOperand(0),
5533                       lowerI128ToGR128(DAG, N->getOperand(2)),
5534                       N->getOperand(1) };
5535     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5536     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5537                                           DL, Tys, Ops, MVT::i128, MMO);
5538     // We have to enforce sequential consistency by performing a
5539     // serialization operation after the store.
5540     if (cast<AtomicSDNode>(N)->getOrdering() ==
5541         AtomicOrdering::SequentiallyConsistent)
5542       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5543                                        MVT::Other, Res), 0);
5544     Results.push_back(Res);
5545     break;
5546   }
5547   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5548     SDLoc DL(N);
5549     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5550     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5551                       lowerI128ToGR128(DAG, N->getOperand(2)),
5552                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5553     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5554     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5555                                           DL, Tys, Ops, MVT::i128, MMO);
5556     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5557                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5558     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5559     Results.push_back(lowerGR128ToI128(DAG, Res));
5560     Results.push_back(Success);
5561     Results.push_back(Res.getValue(2));
5562     break;
5563   }
5564   default:
5565     llvm_unreachable("Unexpected node to lower");
5566   }
5567 }
5568 
5569 void
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const5570 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5571                                           SmallVectorImpl<SDValue> &Results,
5572                                           SelectionDAG &DAG) const {
5573   return LowerOperationWrapper(N, Results, DAG);
5574 }
5575 
getTargetNodeName(unsigned Opcode) const5576 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5577 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5578   switch ((SystemZISD::NodeType)Opcode) {
5579     case SystemZISD::FIRST_NUMBER: break;
5580     OPCODE(RET_FLAG);
5581     OPCODE(CALL);
5582     OPCODE(SIBCALL);
5583     OPCODE(TLS_GDCALL);
5584     OPCODE(TLS_LDCALL);
5585     OPCODE(PCREL_WRAPPER);
5586     OPCODE(PCREL_OFFSET);
5587     OPCODE(ICMP);
5588     OPCODE(FCMP);
5589     OPCODE(STRICT_FCMP);
5590     OPCODE(STRICT_FCMPS);
5591     OPCODE(TM);
5592     OPCODE(BR_CCMASK);
5593     OPCODE(SELECT_CCMASK);
5594     OPCODE(ADJDYNALLOC);
5595     OPCODE(PROBED_ALLOCA);
5596     OPCODE(POPCNT);
5597     OPCODE(SMUL_LOHI);
5598     OPCODE(UMUL_LOHI);
5599     OPCODE(SDIVREM);
5600     OPCODE(UDIVREM);
5601     OPCODE(SADDO);
5602     OPCODE(SSUBO);
5603     OPCODE(UADDO);
5604     OPCODE(USUBO);
5605     OPCODE(ADDCARRY);
5606     OPCODE(SUBCARRY);
5607     OPCODE(GET_CCMASK);
5608     OPCODE(MVC);
5609     OPCODE(MVC_LOOP);
5610     OPCODE(NC);
5611     OPCODE(NC_LOOP);
5612     OPCODE(OC);
5613     OPCODE(OC_LOOP);
5614     OPCODE(XC);
5615     OPCODE(XC_LOOP);
5616     OPCODE(CLC);
5617     OPCODE(CLC_LOOP);
5618     OPCODE(STPCPY);
5619     OPCODE(STRCMP);
5620     OPCODE(SEARCH_STRING);
5621     OPCODE(IPM);
5622     OPCODE(MEMBARRIER);
5623     OPCODE(TBEGIN);
5624     OPCODE(TBEGIN_NOFLOAT);
5625     OPCODE(TEND);
5626     OPCODE(BYTE_MASK);
5627     OPCODE(ROTATE_MASK);
5628     OPCODE(REPLICATE);
5629     OPCODE(JOIN_DWORDS);
5630     OPCODE(SPLAT);
5631     OPCODE(MERGE_HIGH);
5632     OPCODE(MERGE_LOW);
5633     OPCODE(SHL_DOUBLE);
5634     OPCODE(PERMUTE_DWORDS);
5635     OPCODE(PERMUTE);
5636     OPCODE(PACK);
5637     OPCODE(PACKS_CC);
5638     OPCODE(PACKLS_CC);
5639     OPCODE(UNPACK_HIGH);
5640     OPCODE(UNPACKL_HIGH);
5641     OPCODE(UNPACK_LOW);
5642     OPCODE(UNPACKL_LOW);
5643     OPCODE(VSHL_BY_SCALAR);
5644     OPCODE(VSRL_BY_SCALAR);
5645     OPCODE(VSRA_BY_SCALAR);
5646     OPCODE(VSUM);
5647     OPCODE(VICMPE);
5648     OPCODE(VICMPH);
5649     OPCODE(VICMPHL);
5650     OPCODE(VICMPES);
5651     OPCODE(VICMPHS);
5652     OPCODE(VICMPHLS);
5653     OPCODE(VFCMPE);
5654     OPCODE(STRICT_VFCMPE);
5655     OPCODE(STRICT_VFCMPES);
5656     OPCODE(VFCMPH);
5657     OPCODE(STRICT_VFCMPH);
5658     OPCODE(STRICT_VFCMPHS);
5659     OPCODE(VFCMPHE);
5660     OPCODE(STRICT_VFCMPHE);
5661     OPCODE(STRICT_VFCMPHES);
5662     OPCODE(VFCMPES);
5663     OPCODE(VFCMPHS);
5664     OPCODE(VFCMPHES);
5665     OPCODE(VFTCI);
5666     OPCODE(VEXTEND);
5667     OPCODE(STRICT_VEXTEND);
5668     OPCODE(VROUND);
5669     OPCODE(STRICT_VROUND);
5670     OPCODE(VTM);
5671     OPCODE(VFAE_CC);
5672     OPCODE(VFAEZ_CC);
5673     OPCODE(VFEE_CC);
5674     OPCODE(VFEEZ_CC);
5675     OPCODE(VFENE_CC);
5676     OPCODE(VFENEZ_CC);
5677     OPCODE(VISTR_CC);
5678     OPCODE(VSTRC_CC);
5679     OPCODE(VSTRCZ_CC);
5680     OPCODE(VSTRS_CC);
5681     OPCODE(VSTRSZ_CC);
5682     OPCODE(TDC);
5683     OPCODE(ATOMIC_SWAPW);
5684     OPCODE(ATOMIC_LOADW_ADD);
5685     OPCODE(ATOMIC_LOADW_SUB);
5686     OPCODE(ATOMIC_LOADW_AND);
5687     OPCODE(ATOMIC_LOADW_OR);
5688     OPCODE(ATOMIC_LOADW_XOR);
5689     OPCODE(ATOMIC_LOADW_NAND);
5690     OPCODE(ATOMIC_LOADW_MIN);
5691     OPCODE(ATOMIC_LOADW_MAX);
5692     OPCODE(ATOMIC_LOADW_UMIN);
5693     OPCODE(ATOMIC_LOADW_UMAX);
5694     OPCODE(ATOMIC_CMP_SWAPW);
5695     OPCODE(ATOMIC_CMP_SWAP);
5696     OPCODE(ATOMIC_LOAD_128);
5697     OPCODE(ATOMIC_STORE_128);
5698     OPCODE(ATOMIC_CMP_SWAP_128);
5699     OPCODE(LRV);
5700     OPCODE(STRV);
5701     OPCODE(VLER);
5702     OPCODE(VSTER);
5703     OPCODE(PREFETCH);
5704   }
5705   return nullptr;
5706 #undef OPCODE
5707 }
5708 
5709 // Return true if VT is a vector whose elements are a whole number of bytes
5710 // in width. Also check for presence of vector support.
canTreatAsByteVector(EVT VT) const5711 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5712   if (!Subtarget.hasVector())
5713     return false;
5714 
5715   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5716 }
5717 
5718 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5719 // producing a result of type ResVT.  Op is a possibly bitcast version
5720 // of the input vector and Index is the index (based on type VecVT) that
5721 // should be extracted.  Return the new extraction if a simplification
5722 // was possible or if Force is true.
combineExtract(const SDLoc & DL,EVT ResVT,EVT VecVT,SDValue Op,unsigned Index,DAGCombinerInfo & DCI,bool Force) const5723 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5724                                               EVT VecVT, SDValue Op,
5725                                               unsigned Index,
5726                                               DAGCombinerInfo &DCI,
5727                                               bool Force) const {
5728   SelectionDAG &DAG = DCI.DAG;
5729 
5730   // The number of bytes being extracted.
5731   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5732 
5733   for (;;) {
5734     unsigned Opcode = Op.getOpcode();
5735     if (Opcode == ISD::BITCAST)
5736       // Look through bitcasts.
5737       Op = Op.getOperand(0);
5738     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5739              canTreatAsByteVector(Op.getValueType())) {
5740       // Get a VPERM-like permute mask and see whether the bytes covered
5741       // by the extracted element are a contiguous sequence from one
5742       // source operand.
5743       SmallVector<int, SystemZ::VectorBytes> Bytes;
5744       if (!getVPermMask(Op, Bytes))
5745         break;
5746       int First;
5747       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5748                            BytesPerElement, First))
5749         break;
5750       if (First < 0)
5751         return DAG.getUNDEF(ResVT);
5752       // Make sure the contiguous sequence starts at a multiple of the
5753       // original element size.
5754       unsigned Byte = unsigned(First) % Bytes.size();
5755       if (Byte % BytesPerElement != 0)
5756         break;
5757       // We can get the extracted value directly from an input.
5758       Index = Byte / BytesPerElement;
5759       Op = Op.getOperand(unsigned(First) / Bytes.size());
5760       Force = true;
5761     } else if (Opcode == ISD::BUILD_VECTOR &&
5762                canTreatAsByteVector(Op.getValueType())) {
5763       // We can only optimize this case if the BUILD_VECTOR elements are
5764       // at least as wide as the extracted value.
5765       EVT OpVT = Op.getValueType();
5766       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5767       if (OpBytesPerElement < BytesPerElement)
5768         break;
5769       // Make sure that the least-significant bit of the extracted value
5770       // is the least significant bit of an input.
5771       unsigned End = (Index + 1) * BytesPerElement;
5772       if (End % OpBytesPerElement != 0)
5773         break;
5774       // We're extracting the low part of one operand of the BUILD_VECTOR.
5775       Op = Op.getOperand(End / OpBytesPerElement - 1);
5776       if (!Op.getValueType().isInteger()) {
5777         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5778         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5779         DCI.AddToWorklist(Op.getNode());
5780       }
5781       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5782       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5783       if (VT != ResVT) {
5784         DCI.AddToWorklist(Op.getNode());
5785         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5786       }
5787       return Op;
5788     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5789                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5790                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5791                canTreatAsByteVector(Op.getValueType()) &&
5792                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5793       // Make sure that only the unextended bits are significant.
5794       EVT ExtVT = Op.getValueType();
5795       EVT OpVT = Op.getOperand(0).getValueType();
5796       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5797       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5798       unsigned Byte = Index * BytesPerElement;
5799       unsigned SubByte = Byte % ExtBytesPerElement;
5800       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5801       if (SubByte < MinSubByte ||
5802           SubByte + BytesPerElement > ExtBytesPerElement)
5803         break;
5804       // Get the byte offset of the unextended element
5805       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5806       // ...then add the byte offset relative to that element.
5807       Byte += SubByte - MinSubByte;
5808       if (Byte % BytesPerElement != 0)
5809         break;
5810       Op = Op.getOperand(0);
5811       Index = Byte / BytesPerElement;
5812       Force = true;
5813     } else
5814       break;
5815   }
5816   if (Force) {
5817     if (Op.getValueType() != VecVT) {
5818       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5819       DCI.AddToWorklist(Op.getNode());
5820     }
5821     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5822                        DAG.getConstant(Index, DL, MVT::i32));
5823   }
5824   return SDValue();
5825 }
5826 
5827 // Optimize vector operations in scalar value Op on the basis that Op
5828 // is truncated to TruncVT.
combineTruncateExtract(const SDLoc & DL,EVT TruncVT,SDValue Op,DAGCombinerInfo & DCI) const5829 SDValue SystemZTargetLowering::combineTruncateExtract(
5830     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5831   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5832   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5833   // of type TruncVT.
5834   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5835       TruncVT.getSizeInBits() % 8 == 0) {
5836     SDValue Vec = Op.getOperand(0);
5837     EVT VecVT = Vec.getValueType();
5838     if (canTreatAsByteVector(VecVT)) {
5839       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5840         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5841         unsigned TruncBytes = TruncVT.getStoreSize();
5842         if (BytesPerElement % TruncBytes == 0) {
5843           // Calculate the value of Y' in the above description.  We are
5844           // splitting the original elements into Scale equal-sized pieces
5845           // and for truncation purposes want the last (least-significant)
5846           // of these pieces for IndexN.  This is easiest to do by calculating
5847           // the start index of the following element and then subtracting 1.
5848           unsigned Scale = BytesPerElement / TruncBytes;
5849           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5850 
5851           // Defer the creation of the bitcast from X to combineExtract,
5852           // which might be able to optimize the extraction.
5853           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5854                                    VecVT.getStoreSize() / TruncBytes);
5855           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5856           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5857         }
5858       }
5859     }
5860   }
5861   return SDValue();
5862 }
5863 
combineZERO_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const5864 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5865     SDNode *N, DAGCombinerInfo &DCI) const {
5866   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5867   SelectionDAG &DAG = DCI.DAG;
5868   SDValue N0 = N->getOperand(0);
5869   EVT VT = N->getValueType(0);
5870   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5871     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5872     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5873     if (TrueOp && FalseOp) {
5874       SDLoc DL(N0);
5875       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5876                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5877                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5878       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5879       // If N0 has multiple uses, change other uses as well.
5880       if (!N0.hasOneUse()) {
5881         SDValue TruncSelect =
5882           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5883         DCI.CombineTo(N0.getNode(), TruncSelect);
5884       }
5885       return NewSelect;
5886     }
5887   }
5888   return SDValue();
5889 }
5890 
combineSIGN_EXTEND_INREG(SDNode * N,DAGCombinerInfo & DCI) const5891 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5892     SDNode *N, DAGCombinerInfo &DCI) const {
5893   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5894   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5895   // into (select_cc LHS, RHS, -1, 0, COND)
5896   SelectionDAG &DAG = DCI.DAG;
5897   SDValue N0 = N->getOperand(0);
5898   EVT VT = N->getValueType(0);
5899   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5900   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5901     N0 = N0.getOperand(0);
5902   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5903     SDLoc DL(N0);
5904     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5905                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5906                       N0.getOperand(2) };
5907     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5908   }
5909   return SDValue();
5910 }
5911 
combineSIGN_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const5912 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5913     SDNode *N, DAGCombinerInfo &DCI) const {
5914   // Convert (sext (ashr (shl X, C1), C2)) to
5915   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5916   // cheap as narrower ones.
5917   SelectionDAG &DAG = DCI.DAG;
5918   SDValue N0 = N->getOperand(0);
5919   EVT VT = N->getValueType(0);
5920   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5921     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5922     SDValue Inner = N0.getOperand(0);
5923     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5924       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5925         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5926         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5927         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5928         EVT ShiftVT = N0.getOperand(1).getValueType();
5929         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5930                                   Inner.getOperand(0));
5931         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5932                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5933                                                   ShiftVT));
5934         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5935                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5936       }
5937     }
5938   }
5939   return SDValue();
5940 }
5941 
combineMERGE(SDNode * N,DAGCombinerInfo & DCI) const5942 SDValue SystemZTargetLowering::combineMERGE(
5943     SDNode *N, DAGCombinerInfo &DCI) const {
5944   SelectionDAG &DAG = DCI.DAG;
5945   unsigned Opcode = N->getOpcode();
5946   SDValue Op0 = N->getOperand(0);
5947   SDValue Op1 = N->getOperand(1);
5948   if (Op0.getOpcode() == ISD::BITCAST)
5949     Op0 = Op0.getOperand(0);
5950   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5951     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5952     // for v4f32.
5953     if (Op1 == N->getOperand(0))
5954       return Op1;
5955     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5956     EVT VT = Op1.getValueType();
5957     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5958     if (ElemBytes <= 4) {
5959       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5960                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5961       EVT InVT = VT.changeVectorElementTypeToInteger();
5962       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5963                                    SystemZ::VectorBytes / ElemBytes / 2);
5964       if (VT != InVT) {
5965         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5966         DCI.AddToWorklist(Op1.getNode());
5967       }
5968       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5969       DCI.AddToWorklist(Op.getNode());
5970       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5971     }
5972   }
5973   return SDValue();
5974 }
5975 
combineLOAD(SDNode * N,DAGCombinerInfo & DCI) const5976 SDValue SystemZTargetLowering::combineLOAD(
5977     SDNode *N, DAGCombinerInfo &DCI) const {
5978   SelectionDAG &DAG = DCI.DAG;
5979   EVT LdVT = N->getValueType(0);
5980   if (LdVT.isVector() || LdVT.isInteger())
5981     return SDValue();
5982   // Transform a scalar load that is REPLICATEd as well as having other
5983   // use(s) to the form where the other use(s) use the first element of the
5984   // REPLICATE instead of the load. Otherwise instruction selection will not
5985   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5986   // point loads.
5987 
5988   SDValue Replicate;
5989   SmallVector<SDNode*, 8> OtherUses;
5990   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5991        UI != UE; ++UI) {
5992     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5993       if (Replicate)
5994         return SDValue(); // Should never happen
5995       Replicate = SDValue(*UI, 0);
5996     }
5997     else if (UI.getUse().getResNo() == 0)
5998       OtherUses.push_back(*UI);
5999   }
6000   if (!Replicate || OtherUses.empty())
6001     return SDValue();
6002 
6003   SDLoc DL(N);
6004   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6005                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6006   // Update uses of the loaded Value while preserving old chains.
6007   for (SDNode *U : OtherUses) {
6008     SmallVector<SDValue, 8> Ops;
6009     for (SDValue Op : U->ops())
6010       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6011     DAG.UpdateNodeOperands(U, Ops);
6012   }
6013   return SDValue(N, 0);
6014 }
6015 
canLoadStoreByteSwapped(EVT VT) const6016 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6017   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6018     return true;
6019   if (Subtarget.hasVectorEnhancements2())
6020     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6021       return true;
6022   return false;
6023 }
6024 
isVectorElementSwap(ArrayRef<int> M,EVT VT)6025 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6026   if (!VT.isVector() || !VT.isSimple() ||
6027       VT.getSizeInBits() != 128 ||
6028       VT.getScalarSizeInBits() % 8 != 0)
6029     return false;
6030 
6031   unsigned NumElts = VT.getVectorNumElements();
6032   for (unsigned i = 0; i < NumElts; ++i) {
6033     if (M[i] < 0) continue; // ignore UNDEF indices
6034     if ((unsigned) M[i] != NumElts - 1 - i)
6035       return false;
6036   }
6037 
6038   return true;
6039 }
6040 
combineSTORE(SDNode * N,DAGCombinerInfo & DCI) const6041 SDValue SystemZTargetLowering::combineSTORE(
6042     SDNode *N, DAGCombinerInfo &DCI) const {
6043   SelectionDAG &DAG = DCI.DAG;
6044   auto *SN = cast<StoreSDNode>(N);
6045   auto &Op1 = N->getOperand(1);
6046   EVT MemVT = SN->getMemoryVT();
6047   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6048   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6049   // If X has wider elements then convert it to:
6050   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6051   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6052     if (SDValue Value =
6053             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6054       DCI.AddToWorklist(Value.getNode());
6055 
6056       // Rewrite the store with the new form of stored value.
6057       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6058                                SN->getBasePtr(), SN->getMemoryVT(),
6059                                SN->getMemOperand());
6060     }
6061   }
6062   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6063   if (!SN->isTruncatingStore() &&
6064       Op1.getOpcode() == ISD::BSWAP &&
6065       Op1.getNode()->hasOneUse() &&
6066       canLoadStoreByteSwapped(Op1.getValueType())) {
6067 
6068       SDValue BSwapOp = Op1.getOperand(0);
6069 
6070       if (BSwapOp.getValueType() == MVT::i16)
6071         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6072 
6073       SDValue Ops[] = {
6074         N->getOperand(0), BSwapOp, N->getOperand(2)
6075       };
6076 
6077       return
6078         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6079                                 Ops, MemVT, SN->getMemOperand());
6080     }
6081   // Combine STORE (element-swap) into VSTER
6082   if (!SN->isTruncatingStore() &&
6083       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6084       Op1.getNode()->hasOneUse() &&
6085       Subtarget.hasVectorEnhancements2()) {
6086     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6087     ArrayRef<int> ShuffleMask = SVN->getMask();
6088     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6089       SDValue Ops[] = {
6090         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6091       };
6092 
6093       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6094                                      DAG.getVTList(MVT::Other),
6095                                      Ops, MemVT, SN->getMemOperand());
6096     }
6097   }
6098 
6099   return SDValue();
6100 }
6101 
combineVECTOR_SHUFFLE(SDNode * N,DAGCombinerInfo & DCI) const6102 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6103     SDNode *N, DAGCombinerInfo &DCI) const {
6104   SelectionDAG &DAG = DCI.DAG;
6105   // Combine element-swap (LOAD) into VLER
6106   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6107       N->getOperand(0).hasOneUse() &&
6108       Subtarget.hasVectorEnhancements2()) {
6109     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6110     ArrayRef<int> ShuffleMask = SVN->getMask();
6111     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6112       SDValue Load = N->getOperand(0);
6113       LoadSDNode *LD = cast<LoadSDNode>(Load);
6114 
6115       // Create the element-swapping load.
6116       SDValue Ops[] = {
6117         LD->getChain(),    // Chain
6118         LD->getBasePtr()   // Ptr
6119       };
6120       SDValue ESLoad =
6121         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6122                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6123                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6124 
6125       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6126       // by the load dead.
6127       DCI.CombineTo(N, ESLoad);
6128 
6129       // Next, combine the load away, we give it a bogus result value but a real
6130       // chain result.  The result value is dead because the shuffle is dead.
6131       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6132 
6133       // Return N so it doesn't get rechecked!
6134       return SDValue(N, 0);
6135     }
6136   }
6137 
6138   return SDValue();
6139 }
6140 
combineEXTRACT_VECTOR_ELT(SDNode * N,DAGCombinerInfo & DCI) const6141 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6142     SDNode *N, DAGCombinerInfo &DCI) const {
6143   SelectionDAG &DAG = DCI.DAG;
6144 
6145   if (!Subtarget.hasVector())
6146     return SDValue();
6147 
6148   // Look through bitcasts that retain the number of vector elements.
6149   SDValue Op = N->getOperand(0);
6150   if (Op.getOpcode() == ISD::BITCAST &&
6151       Op.getValueType().isVector() &&
6152       Op.getOperand(0).getValueType().isVector() &&
6153       Op.getValueType().getVectorNumElements() ==
6154       Op.getOperand(0).getValueType().getVectorNumElements())
6155     Op = Op.getOperand(0);
6156 
6157   // Pull BSWAP out of a vector extraction.
6158   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6159     EVT VecVT = Op.getValueType();
6160     EVT EltVT = VecVT.getVectorElementType();
6161     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6162                      Op.getOperand(0), N->getOperand(1));
6163     DCI.AddToWorklist(Op.getNode());
6164     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6165     if (EltVT != N->getValueType(0)) {
6166       DCI.AddToWorklist(Op.getNode());
6167       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6168     }
6169     return Op;
6170   }
6171 
6172   // Try to simplify a vector extraction.
6173   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6174     SDValue Op0 = N->getOperand(0);
6175     EVT VecVT = Op0.getValueType();
6176     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6177                           IndexN->getZExtValue(), DCI, false);
6178   }
6179   return SDValue();
6180 }
6181 
combineJOIN_DWORDS(SDNode * N,DAGCombinerInfo & DCI) const6182 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6183     SDNode *N, DAGCombinerInfo &DCI) const {
6184   SelectionDAG &DAG = DCI.DAG;
6185   // (join_dwords X, X) == (replicate X)
6186   if (N->getOperand(0) == N->getOperand(1))
6187     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6188                        N->getOperand(0));
6189   return SDValue();
6190 }
6191 
MergeInputChains(SDNode * N1,SDNode * N2)6192 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6193   SDValue Chain1 = N1->getOperand(0);
6194   SDValue Chain2 = N2->getOperand(0);
6195 
6196   // Trivial case: both nodes take the same chain.
6197   if (Chain1 == Chain2)
6198     return Chain1;
6199 
6200   // FIXME - we could handle more complex cases via TokenFactor,
6201   // assuming we can verify that this would not create a cycle.
6202   return SDValue();
6203 }
6204 
combineFP_ROUND(SDNode * N,DAGCombinerInfo & DCI) const6205 SDValue SystemZTargetLowering::combineFP_ROUND(
6206     SDNode *N, DAGCombinerInfo &DCI) const {
6207 
6208   if (!Subtarget.hasVector())
6209     return SDValue();
6210 
6211   // (fpround (extract_vector_elt X 0))
6212   // (fpround (extract_vector_elt X 1)) ->
6213   // (extract_vector_elt (VROUND X) 0)
6214   // (extract_vector_elt (VROUND X) 2)
6215   //
6216   // This is a special case since the target doesn't really support v2f32s.
6217   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6218   SelectionDAG &DAG = DCI.DAG;
6219   SDValue Op0 = N->getOperand(OpNo);
6220   if (N->getValueType(0) == MVT::f32 &&
6221       Op0.hasOneUse() &&
6222       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6223       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6224       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6225       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6226     SDValue Vec = Op0.getOperand(0);
6227     for (auto *U : Vec->uses()) {
6228       if (U != Op0.getNode() &&
6229           U->hasOneUse() &&
6230           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6231           U->getOperand(0) == Vec &&
6232           U->getOperand(1).getOpcode() == ISD::Constant &&
6233           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6234         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6235         if (OtherRound.getOpcode() == N->getOpcode() &&
6236             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6237             OtherRound.getValueType() == MVT::f32) {
6238           SDValue VRound, Chain;
6239           if (N->isStrictFPOpcode()) {
6240             Chain = MergeInputChains(N, OtherRound.getNode());
6241             if (!Chain)
6242               continue;
6243             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6244                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6245             Chain = VRound.getValue(1);
6246           } else
6247             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6248                                  MVT::v4f32, Vec);
6249           DCI.AddToWorklist(VRound.getNode());
6250           SDValue Extract1 =
6251             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6252                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6253           DCI.AddToWorklist(Extract1.getNode());
6254           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6255           if (Chain)
6256             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6257           SDValue Extract0 =
6258             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6259                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6260           if (Chain)
6261             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6262                                N->getVTList(), Extract0, Chain);
6263           return Extract0;
6264         }
6265       }
6266     }
6267   }
6268   return SDValue();
6269 }
6270 
combineFP_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const6271 SDValue SystemZTargetLowering::combineFP_EXTEND(
6272     SDNode *N, DAGCombinerInfo &DCI) const {
6273 
6274   if (!Subtarget.hasVector())
6275     return SDValue();
6276 
6277   // (fpextend (extract_vector_elt X 0))
6278   // (fpextend (extract_vector_elt X 2)) ->
6279   // (extract_vector_elt (VEXTEND X) 0)
6280   // (extract_vector_elt (VEXTEND X) 1)
6281   //
6282   // This is a special case since the target doesn't really support v2f32s.
6283   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6284   SelectionDAG &DAG = DCI.DAG;
6285   SDValue Op0 = N->getOperand(OpNo);
6286   if (N->getValueType(0) == MVT::f64 &&
6287       Op0.hasOneUse() &&
6288       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6289       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6290       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6291       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6292     SDValue Vec = Op0.getOperand(0);
6293     for (auto *U : Vec->uses()) {
6294       if (U != Op0.getNode() &&
6295           U->hasOneUse() &&
6296           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6297           U->getOperand(0) == Vec &&
6298           U->getOperand(1).getOpcode() == ISD::Constant &&
6299           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6300         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6301         if (OtherExtend.getOpcode() == N->getOpcode() &&
6302             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6303             OtherExtend.getValueType() == MVT::f64) {
6304           SDValue VExtend, Chain;
6305           if (N->isStrictFPOpcode()) {
6306             Chain = MergeInputChains(N, OtherExtend.getNode());
6307             if (!Chain)
6308               continue;
6309             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6310                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6311             Chain = VExtend.getValue(1);
6312           } else
6313             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6314                                   MVT::v2f64, Vec);
6315           DCI.AddToWorklist(VExtend.getNode());
6316           SDValue Extract1 =
6317             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6318                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6319           DCI.AddToWorklist(Extract1.getNode());
6320           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6321           if (Chain)
6322             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6323           SDValue Extract0 =
6324             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6325                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6326           if (Chain)
6327             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6328                                N->getVTList(), Extract0, Chain);
6329           return Extract0;
6330         }
6331       }
6332     }
6333   }
6334   return SDValue();
6335 }
6336 
combineINT_TO_FP(SDNode * N,DAGCombinerInfo & DCI) const6337 SDValue SystemZTargetLowering::combineINT_TO_FP(
6338     SDNode *N, DAGCombinerInfo &DCI) const {
6339   if (DCI.Level != BeforeLegalizeTypes)
6340     return SDValue();
6341   unsigned Opcode = N->getOpcode();
6342   EVT OutVT = N->getValueType(0);
6343   SelectionDAG &DAG = DCI.DAG;
6344   SDValue Op = N->getOperand(0);
6345   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6346   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6347 
6348   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6349   // v2f64 = uint_to_fp v2i16
6350   // =>
6351   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6352   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6353     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6354                                  OutVT.getVectorNumElements());
6355     unsigned ExtOpcode =
6356       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6357     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6358     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6359   }
6360   return SDValue();
6361 }
6362 
combineBSWAP(SDNode * N,DAGCombinerInfo & DCI) const6363 SDValue SystemZTargetLowering::combineBSWAP(
6364     SDNode *N, DAGCombinerInfo &DCI) const {
6365   SelectionDAG &DAG = DCI.DAG;
6366   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6367   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6368       N->getOperand(0).hasOneUse() &&
6369       canLoadStoreByteSwapped(N->getValueType(0))) {
6370       SDValue Load = N->getOperand(0);
6371       LoadSDNode *LD = cast<LoadSDNode>(Load);
6372 
6373       // Create the byte-swapping load.
6374       SDValue Ops[] = {
6375         LD->getChain(),    // Chain
6376         LD->getBasePtr()   // Ptr
6377       };
6378       EVT LoadVT = N->getValueType(0);
6379       if (LoadVT == MVT::i16)
6380         LoadVT = MVT::i32;
6381       SDValue BSLoad =
6382         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6383                                 DAG.getVTList(LoadVT, MVT::Other),
6384                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6385 
6386       // If this is an i16 load, insert the truncate.
6387       SDValue ResVal = BSLoad;
6388       if (N->getValueType(0) == MVT::i16)
6389         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6390 
6391       // First, combine the bswap away.  This makes the value produced by the
6392       // load dead.
6393       DCI.CombineTo(N, ResVal);
6394 
6395       // Next, combine the load away, we give it a bogus result value but a real
6396       // chain result.  The result value is dead because the bswap is dead.
6397       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6398 
6399       // Return N so it doesn't get rechecked!
6400       return SDValue(N, 0);
6401     }
6402 
6403   // Look through bitcasts that retain the number of vector elements.
6404   SDValue Op = N->getOperand(0);
6405   if (Op.getOpcode() == ISD::BITCAST &&
6406       Op.getValueType().isVector() &&
6407       Op.getOperand(0).getValueType().isVector() &&
6408       Op.getValueType().getVectorNumElements() ==
6409       Op.getOperand(0).getValueType().getVectorNumElements())
6410     Op = Op.getOperand(0);
6411 
6412   // Push BSWAP into a vector insertion if at least one side then simplifies.
6413   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6414     SDValue Vec = Op.getOperand(0);
6415     SDValue Elt = Op.getOperand(1);
6416     SDValue Idx = Op.getOperand(2);
6417 
6418     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6419         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6420         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6421         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6422         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6423          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6424       EVT VecVT = N->getValueType(0);
6425       EVT EltVT = N->getValueType(0).getVectorElementType();
6426       if (VecVT != Vec.getValueType()) {
6427         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6428         DCI.AddToWorklist(Vec.getNode());
6429       }
6430       if (EltVT != Elt.getValueType()) {
6431         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6432         DCI.AddToWorklist(Elt.getNode());
6433       }
6434       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6435       DCI.AddToWorklist(Vec.getNode());
6436       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6437       DCI.AddToWorklist(Elt.getNode());
6438       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6439                          Vec, Elt, Idx);
6440     }
6441   }
6442 
6443   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6444   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6445   if (SV && Op.hasOneUse()) {
6446     SDValue Op0 = Op.getOperand(0);
6447     SDValue Op1 = Op.getOperand(1);
6448 
6449     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6450         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6451         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6452         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6453       EVT VecVT = N->getValueType(0);
6454       if (VecVT != Op0.getValueType()) {
6455         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6456         DCI.AddToWorklist(Op0.getNode());
6457       }
6458       if (VecVT != Op1.getValueType()) {
6459         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6460         DCI.AddToWorklist(Op1.getNode());
6461       }
6462       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6463       DCI.AddToWorklist(Op0.getNode());
6464       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6465       DCI.AddToWorklist(Op1.getNode());
6466       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6467     }
6468   }
6469 
6470   return SDValue();
6471 }
6472 
combineCCMask(SDValue & CCReg,int & CCValid,int & CCMask)6473 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6474   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6475   // set by the CCReg instruction using the CCValid / CCMask masks,
6476   // If the CCReg instruction is itself a ICMP testing the condition
6477   // code set by some other instruction, see whether we can directly
6478   // use that condition code.
6479 
6480   // Verify that we have an ICMP against some constant.
6481   if (CCValid != SystemZ::CCMASK_ICMP)
6482     return false;
6483   auto *ICmp = CCReg.getNode();
6484   if (ICmp->getOpcode() != SystemZISD::ICMP)
6485     return false;
6486   auto *CompareLHS = ICmp->getOperand(0).getNode();
6487   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6488   if (!CompareRHS)
6489     return false;
6490 
6491   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6492   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6493     // Verify that we have an appropriate mask for a EQ or NE comparison.
6494     bool Invert = false;
6495     if (CCMask == SystemZ::CCMASK_CMP_NE)
6496       Invert = !Invert;
6497     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6498       return false;
6499 
6500     // Verify that the ICMP compares against one of select values.
6501     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6502     if (!TrueVal)
6503       return false;
6504     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6505     if (!FalseVal)
6506       return false;
6507     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6508       Invert = !Invert;
6509     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6510       return false;
6511 
6512     // Compute the effective CC mask for the new branch or select.
6513     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6514     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6515     if (!NewCCValid || !NewCCMask)
6516       return false;
6517     CCValid = NewCCValid->getZExtValue();
6518     CCMask = NewCCMask->getZExtValue();
6519     if (Invert)
6520       CCMask ^= CCValid;
6521 
6522     // Return the updated CCReg link.
6523     CCReg = CompareLHS->getOperand(4);
6524     return true;
6525   }
6526 
6527   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6528   if (CompareLHS->getOpcode() == ISD::SRA) {
6529     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6530     if (!SRACount || SRACount->getZExtValue() != 30)
6531       return false;
6532     auto *SHL = CompareLHS->getOperand(0).getNode();
6533     if (SHL->getOpcode() != ISD::SHL)
6534       return false;
6535     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6536     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6537       return false;
6538     auto *IPM = SHL->getOperand(0).getNode();
6539     if (IPM->getOpcode() != SystemZISD::IPM)
6540       return false;
6541 
6542     // Avoid introducing CC spills (because SRA would clobber CC).
6543     if (!CompareLHS->hasOneUse())
6544       return false;
6545     // Verify that the ICMP compares against zero.
6546     if (CompareRHS->getZExtValue() != 0)
6547       return false;
6548 
6549     // Compute the effective CC mask for the new branch or select.
6550     CCMask = SystemZ::reverseCCMask(CCMask);
6551 
6552     // Return the updated CCReg link.
6553     CCReg = IPM->getOperand(0);
6554     return true;
6555   }
6556 
6557   return false;
6558 }
6559 
combineBR_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const6560 SDValue SystemZTargetLowering::combineBR_CCMASK(
6561     SDNode *N, DAGCombinerInfo &DCI) const {
6562   SelectionDAG &DAG = DCI.DAG;
6563 
6564   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6565   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6566   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6567   if (!CCValid || !CCMask)
6568     return SDValue();
6569 
6570   int CCValidVal = CCValid->getZExtValue();
6571   int CCMaskVal = CCMask->getZExtValue();
6572   SDValue Chain = N->getOperand(0);
6573   SDValue CCReg = N->getOperand(4);
6574 
6575   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6576     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6577                        Chain,
6578                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6579                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6580                        N->getOperand(3), CCReg);
6581   return SDValue();
6582 }
6583 
combineSELECT_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const6584 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6585     SDNode *N, DAGCombinerInfo &DCI) const {
6586   SelectionDAG &DAG = DCI.DAG;
6587 
6588   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6589   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6590   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6591   if (!CCValid || !CCMask)
6592     return SDValue();
6593 
6594   int CCValidVal = CCValid->getZExtValue();
6595   int CCMaskVal = CCMask->getZExtValue();
6596   SDValue CCReg = N->getOperand(4);
6597 
6598   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6599     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6600                        N->getOperand(0), N->getOperand(1),
6601                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6602                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6603                        CCReg);
6604   return SDValue();
6605 }
6606 
6607 
combineGET_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const6608 SDValue SystemZTargetLowering::combineGET_CCMASK(
6609     SDNode *N, DAGCombinerInfo &DCI) const {
6610 
6611   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6612   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6613   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6614   if (!CCValid || !CCMask)
6615     return SDValue();
6616   int CCValidVal = CCValid->getZExtValue();
6617   int CCMaskVal = CCMask->getZExtValue();
6618 
6619   SDValue Select = N->getOperand(0);
6620   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6621     return SDValue();
6622 
6623   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6624   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6625   if (!SelectCCValid || !SelectCCMask)
6626     return SDValue();
6627   int SelectCCValidVal = SelectCCValid->getZExtValue();
6628   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6629 
6630   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6631   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6632   if (!TrueVal || !FalseVal)
6633     return SDValue();
6634   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6635     ;
6636   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6637     SelectCCMaskVal ^= SelectCCValidVal;
6638   else
6639     return SDValue();
6640 
6641   if (SelectCCValidVal & ~CCValidVal)
6642     return SDValue();
6643   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6644     return SDValue();
6645 
6646   return Select->getOperand(4);
6647 }
6648 
combineIntDIVREM(SDNode * N,DAGCombinerInfo & DCI) const6649 SDValue SystemZTargetLowering::combineIntDIVREM(
6650     SDNode *N, DAGCombinerInfo &DCI) const {
6651   SelectionDAG &DAG = DCI.DAG;
6652   EVT VT = N->getValueType(0);
6653   // In the case where the divisor is a vector of constants a cheaper
6654   // sequence of instructions can replace the divide. BuildSDIV is called to
6655   // do this during DAG combining, but it only succeeds when it can build a
6656   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6657   // since it is not Legal but Custom it can only happen before
6658   // legalization. Therefore we must scalarize this early before Combine
6659   // 1. For widened vectors, this is already the result of type legalization.
6660   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6661       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6662     return DAG.UnrollVectorOp(N);
6663   return SDValue();
6664 }
6665 
combineINTRINSIC(SDNode * N,DAGCombinerInfo & DCI) const6666 SDValue SystemZTargetLowering::combineINTRINSIC(
6667     SDNode *N, DAGCombinerInfo &DCI) const {
6668   SelectionDAG &DAG = DCI.DAG;
6669 
6670   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6671   switch (Id) {
6672   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6673   // or larger is simply a vector load.
6674   case Intrinsic::s390_vll:
6675   case Intrinsic::s390_vlrl:
6676     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6677       if (C->getZExtValue() >= 15)
6678         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6679                            N->getOperand(3), MachinePointerInfo());
6680     break;
6681   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6682   case Intrinsic::s390_vstl:
6683   case Intrinsic::s390_vstrl:
6684     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6685       if (C->getZExtValue() >= 15)
6686         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6687                             N->getOperand(4), MachinePointerInfo());
6688     break;
6689   }
6690 
6691   return SDValue();
6692 }
6693 
unwrapAddress(SDValue N) const6694 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6695   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6696     return N->getOperand(0);
6697   return N;
6698 }
6699 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const6700 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6701                                                  DAGCombinerInfo &DCI) const {
6702   switch(N->getOpcode()) {
6703   default: break;
6704   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6705   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6706   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6707   case SystemZISD::MERGE_HIGH:
6708   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6709   case ISD::LOAD:               return combineLOAD(N, DCI);
6710   case ISD::STORE:              return combineSTORE(N, DCI);
6711   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6712   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6713   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6714   case ISD::STRICT_FP_ROUND:
6715   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6716   case ISD::STRICT_FP_EXTEND:
6717   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6718   case ISD::SINT_TO_FP:
6719   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6720   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6721   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6722   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6723   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6724   case ISD::SDIV:
6725   case ISD::UDIV:
6726   case ISD::SREM:
6727   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6728   case ISD::INTRINSIC_W_CHAIN:
6729   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6730   }
6731 
6732   return SDValue();
6733 }
6734 
6735 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6736 // are for Op.
getDemandedSrcElements(SDValue Op,const APInt & DemandedElts,unsigned OpNo)6737 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6738                                     unsigned OpNo) {
6739   EVT VT = Op.getValueType();
6740   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6741   APInt SrcDemE;
6742   unsigned Opcode = Op.getOpcode();
6743   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6744     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6745     switch (Id) {
6746     case Intrinsic::s390_vpksh:   // PACKS
6747     case Intrinsic::s390_vpksf:
6748     case Intrinsic::s390_vpksg:
6749     case Intrinsic::s390_vpkshs:  // PACKS_CC
6750     case Intrinsic::s390_vpksfs:
6751     case Intrinsic::s390_vpksgs:
6752     case Intrinsic::s390_vpklsh:  // PACKLS
6753     case Intrinsic::s390_vpklsf:
6754     case Intrinsic::s390_vpklsg:
6755     case Intrinsic::s390_vpklshs: // PACKLS_CC
6756     case Intrinsic::s390_vpklsfs:
6757     case Intrinsic::s390_vpklsgs:
6758       // VECTOR PACK truncates the elements of two source vectors into one.
6759       SrcDemE = DemandedElts;
6760       if (OpNo == 2)
6761         SrcDemE.lshrInPlace(NumElts / 2);
6762       SrcDemE = SrcDemE.trunc(NumElts / 2);
6763       break;
6764       // VECTOR UNPACK extends half the elements of the source vector.
6765     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6766     case Intrinsic::s390_vuphh:
6767     case Intrinsic::s390_vuphf:
6768     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6769     case Intrinsic::s390_vuplhh:
6770     case Intrinsic::s390_vuplhf:
6771       SrcDemE = APInt(NumElts * 2, 0);
6772       SrcDemE.insertBits(DemandedElts, 0);
6773       break;
6774     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6775     case Intrinsic::s390_vuplhw:
6776     case Intrinsic::s390_vuplf:
6777     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6778     case Intrinsic::s390_vupllh:
6779     case Intrinsic::s390_vupllf:
6780       SrcDemE = APInt(NumElts * 2, 0);
6781       SrcDemE.insertBits(DemandedElts, NumElts);
6782       break;
6783     case Intrinsic::s390_vpdi: {
6784       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6785       SrcDemE = APInt(NumElts, 0);
6786       if (!DemandedElts[OpNo - 1])
6787         break;
6788       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6789       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6790       // Demand input element 0 or 1, given by the mask bit value.
6791       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6792       break;
6793     }
6794     case Intrinsic::s390_vsldb: {
6795       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6796       assert(VT == MVT::v16i8 && "Unexpected type.");
6797       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6798       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6799       unsigned NumSrc0Els = 16 - FirstIdx;
6800       SrcDemE = APInt(NumElts, 0);
6801       if (OpNo == 1) {
6802         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6803         SrcDemE.insertBits(DemEls, FirstIdx);
6804       } else {
6805         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6806         SrcDemE.insertBits(DemEls, 0);
6807       }
6808       break;
6809     }
6810     case Intrinsic::s390_vperm:
6811       SrcDemE = APInt(NumElts, 1);
6812       break;
6813     default:
6814       llvm_unreachable("Unhandled intrinsic.");
6815       break;
6816     }
6817   } else {
6818     switch (Opcode) {
6819     case SystemZISD::JOIN_DWORDS:
6820       // Scalar operand.
6821       SrcDemE = APInt(1, 1);
6822       break;
6823     case SystemZISD::SELECT_CCMASK:
6824       SrcDemE = DemandedElts;
6825       break;
6826     default:
6827       llvm_unreachable("Unhandled opcode.");
6828       break;
6829     }
6830   }
6831   return SrcDemE;
6832 }
6833 
computeKnownBitsBinOp(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth,unsigned OpNo)6834 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6835                                   const APInt &DemandedElts,
6836                                   const SelectionDAG &DAG, unsigned Depth,
6837                                   unsigned OpNo) {
6838   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6839   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6840   KnownBits LHSKnown =
6841       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6842   KnownBits RHSKnown =
6843       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6844   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
6845 }
6846 
6847 void
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const6848 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6849                                                      KnownBits &Known,
6850                                                      const APInt &DemandedElts,
6851                                                      const SelectionDAG &DAG,
6852                                                      unsigned Depth) const {
6853   Known.resetAll();
6854 
6855   // Intrinsic CC result is returned in the two low bits.
6856   unsigned tmp0, tmp1; // not used
6857   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6858     Known.Zero.setBitsFrom(2);
6859     return;
6860   }
6861   EVT VT = Op.getValueType();
6862   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6863     return;
6864   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6865           "KnownBits does not match VT in bitwidth");
6866   assert ((!VT.isVector() ||
6867            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6868           "DemandedElts does not match VT number of elements");
6869   unsigned BitWidth = Known.getBitWidth();
6870   unsigned Opcode = Op.getOpcode();
6871   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6872     bool IsLogical = false;
6873     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6874     switch (Id) {
6875     case Intrinsic::s390_vpksh:   // PACKS
6876     case Intrinsic::s390_vpksf:
6877     case Intrinsic::s390_vpksg:
6878     case Intrinsic::s390_vpkshs:  // PACKS_CC
6879     case Intrinsic::s390_vpksfs:
6880     case Intrinsic::s390_vpksgs:
6881     case Intrinsic::s390_vpklsh:  // PACKLS
6882     case Intrinsic::s390_vpklsf:
6883     case Intrinsic::s390_vpklsg:
6884     case Intrinsic::s390_vpklshs: // PACKLS_CC
6885     case Intrinsic::s390_vpklsfs:
6886     case Intrinsic::s390_vpklsgs:
6887     case Intrinsic::s390_vpdi:
6888     case Intrinsic::s390_vsldb:
6889     case Intrinsic::s390_vperm:
6890       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6891       break;
6892     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6893     case Intrinsic::s390_vuplhh:
6894     case Intrinsic::s390_vuplhf:
6895     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6896     case Intrinsic::s390_vupllh:
6897     case Intrinsic::s390_vupllf:
6898       IsLogical = true;
6899       LLVM_FALLTHROUGH;
6900     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6901     case Intrinsic::s390_vuphh:
6902     case Intrinsic::s390_vuphf:
6903     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6904     case Intrinsic::s390_vuplhw:
6905     case Intrinsic::s390_vuplf: {
6906       SDValue SrcOp = Op.getOperand(1);
6907       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6908       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6909       if (IsLogical) {
6910         Known = Known.zext(BitWidth);
6911       } else
6912         Known = Known.sext(BitWidth);
6913       break;
6914     }
6915     default:
6916       break;
6917     }
6918   } else {
6919     switch (Opcode) {
6920     case SystemZISD::JOIN_DWORDS:
6921     case SystemZISD::SELECT_CCMASK:
6922       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6923       break;
6924     case SystemZISD::REPLICATE: {
6925       SDValue SrcOp = Op.getOperand(0);
6926       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6927       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6928         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6929       break;
6930     }
6931     default:
6932       break;
6933     }
6934   }
6935 
6936   // Known has the width of the source operand(s). Adjust if needed to match
6937   // the passed bitwidth.
6938   if (Known.getBitWidth() != BitWidth)
6939     Known = Known.anyextOrTrunc(BitWidth);
6940 }
6941 
computeNumSignBitsBinOp(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth,unsigned OpNo)6942 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6943                                         const SelectionDAG &DAG, unsigned Depth,
6944                                         unsigned OpNo) {
6945   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6946   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6947   if (LHS == 1) return 1; // Early out.
6948   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6949   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6950   if (RHS == 1) return 1; // Early out.
6951   unsigned Common = std::min(LHS, RHS);
6952   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6953   EVT VT = Op.getValueType();
6954   unsigned VTBits = VT.getScalarSizeInBits();
6955   if (SrcBitWidth > VTBits) { // PACK
6956     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6957     if (Common > SrcExtraBits)
6958       return (Common - SrcExtraBits);
6959     return 1;
6960   }
6961   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6962   return Common;
6963 }
6964 
6965 unsigned
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const6966 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6967     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6968     unsigned Depth) const {
6969   if (Op.getResNo() != 0)
6970     return 1;
6971   unsigned Opcode = Op.getOpcode();
6972   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6973     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6974     switch (Id) {
6975     case Intrinsic::s390_vpksh:   // PACKS
6976     case Intrinsic::s390_vpksf:
6977     case Intrinsic::s390_vpksg:
6978     case Intrinsic::s390_vpkshs:  // PACKS_CC
6979     case Intrinsic::s390_vpksfs:
6980     case Intrinsic::s390_vpksgs:
6981     case Intrinsic::s390_vpklsh:  // PACKLS
6982     case Intrinsic::s390_vpklsf:
6983     case Intrinsic::s390_vpklsg:
6984     case Intrinsic::s390_vpklshs: // PACKLS_CC
6985     case Intrinsic::s390_vpklsfs:
6986     case Intrinsic::s390_vpklsgs:
6987     case Intrinsic::s390_vpdi:
6988     case Intrinsic::s390_vsldb:
6989     case Intrinsic::s390_vperm:
6990       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6991     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6992     case Intrinsic::s390_vuphh:
6993     case Intrinsic::s390_vuphf:
6994     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6995     case Intrinsic::s390_vuplhw:
6996     case Intrinsic::s390_vuplf: {
6997       SDValue PackedOp = Op.getOperand(1);
6998       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6999       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7000       EVT VT = Op.getValueType();
7001       unsigned VTBits = VT.getScalarSizeInBits();
7002       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7003       return Tmp;
7004     }
7005     default:
7006       break;
7007     }
7008   } else {
7009     switch (Opcode) {
7010     case SystemZISD::SELECT_CCMASK:
7011       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7012     default:
7013       break;
7014     }
7015   }
7016 
7017   return 1;
7018 }
7019 
7020 unsigned
getStackProbeSize(MachineFunction & MF) const7021 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7022   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7023   unsigned StackAlign = TFI->getStackAlignment();
7024   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7025          "Unexpected stack alignment");
7026   // The default stack probe size is 4096 if the function has no
7027   // stack-probe-size attribute.
7028   unsigned StackProbeSize = 4096;
7029   const Function &Fn = MF.getFunction();
7030   if (Fn.hasFnAttribute("stack-probe-size"))
7031     Fn.getFnAttribute("stack-probe-size")
7032         .getValueAsString()
7033         .getAsInteger(0, StackProbeSize);
7034   // Round down to the stack alignment.
7035   StackProbeSize &= ~(StackAlign - 1);
7036   return StackProbeSize ? StackProbeSize : StackAlign;
7037 }
7038 
7039 //===----------------------------------------------------------------------===//
7040 // Custom insertion
7041 //===----------------------------------------------------------------------===//
7042 
7043 // Force base value Base into a register before MI.  Return the register.
forceReg(MachineInstr & MI,MachineOperand & Base,const SystemZInstrInfo * TII)7044 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7045                          const SystemZInstrInfo *TII) {
7046   if (Base.isReg())
7047     return Base.getReg();
7048 
7049   MachineBasicBlock *MBB = MI.getParent();
7050   MachineFunction &MF = *MBB->getParent();
7051   MachineRegisterInfo &MRI = MF.getRegInfo();
7052 
7053   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7054   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7055       .add(Base)
7056       .addImm(0)
7057       .addReg(0);
7058   return Reg;
7059 }
7060 
7061 // The CC operand of MI might be missing a kill marker because there
7062 // were multiple uses of CC, and ISel didn't know which to mark.
7063 // Figure out whether MI should have had a kill marker.
checkCCKill(MachineInstr & MI,MachineBasicBlock * MBB)7064 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7065   // Scan forward through BB for a use/def of CC.
7066   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7067   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7068     const MachineInstr& mi = *miI;
7069     if (mi.readsRegister(SystemZ::CC))
7070       return false;
7071     if (mi.definesRegister(SystemZ::CC))
7072       break; // Should have kill-flag - update below.
7073   }
7074 
7075   // If we hit the end of the block, check whether CC is live into a
7076   // successor.
7077   if (miI == MBB->end()) {
7078     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
7079       if ((*SI)->isLiveIn(SystemZ::CC))
7080         return false;
7081   }
7082 
7083   return true;
7084 }
7085 
7086 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7087 // together with other Select pseudo-opcodes into a single basic-block with
7088 // a conditional jump around it.
isSelectPseudo(MachineInstr & MI)7089 static bool isSelectPseudo(MachineInstr &MI) {
7090   switch (MI.getOpcode()) {
7091   case SystemZ::Select32:
7092   case SystemZ::Select64:
7093   case SystemZ::SelectF32:
7094   case SystemZ::SelectF64:
7095   case SystemZ::SelectF128:
7096   case SystemZ::SelectVR32:
7097   case SystemZ::SelectVR64:
7098   case SystemZ::SelectVR128:
7099     return true;
7100 
7101   default:
7102     return false;
7103   }
7104 }
7105 
7106 // Helper function, which inserts PHI functions into SinkMBB:
7107 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7108 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
createPHIsForSelects(SmallVector<MachineInstr *,8> & Selects,MachineBasicBlock * TrueMBB,MachineBasicBlock * FalseMBB,MachineBasicBlock * SinkMBB)7109 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7110                                  MachineBasicBlock *TrueMBB,
7111                                  MachineBasicBlock *FalseMBB,
7112                                  MachineBasicBlock *SinkMBB) {
7113   MachineFunction *MF = TrueMBB->getParent();
7114   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7115 
7116   MachineInstr *FirstMI = Selects.front();
7117   unsigned CCValid = FirstMI->getOperand(3).getImm();
7118   unsigned CCMask = FirstMI->getOperand(4).getImm();
7119 
7120   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7121 
7122   // As we are creating the PHIs, we have to be careful if there is more than
7123   // one.  Later Selects may reference the results of earlier Selects, but later
7124   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7125   // That also means that PHI construction must work forward from earlier to
7126   // later, and that the code must maintain a mapping from earlier PHI's
7127   // destination registers, and the registers that went into the PHI.
7128   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7129 
7130   for (auto MI : Selects) {
7131     Register DestReg = MI->getOperand(0).getReg();
7132     Register TrueReg = MI->getOperand(1).getReg();
7133     Register FalseReg = MI->getOperand(2).getReg();
7134 
7135     // If this Select we are generating is the opposite condition from
7136     // the jump we generated, then we have to swap the operands for the
7137     // PHI that is going to be generated.
7138     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7139       std::swap(TrueReg, FalseReg);
7140 
7141     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7142       TrueReg = RegRewriteTable[TrueReg].first;
7143 
7144     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7145       FalseReg = RegRewriteTable[FalseReg].second;
7146 
7147     DebugLoc DL = MI->getDebugLoc();
7148     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7149       .addReg(TrueReg).addMBB(TrueMBB)
7150       .addReg(FalseReg).addMBB(FalseMBB);
7151 
7152     // Add this PHI to the rewrite table.
7153     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7154   }
7155 
7156   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7157 }
7158 
7159 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7160 MachineBasicBlock *
emitSelect(MachineInstr & MI,MachineBasicBlock * MBB) const7161 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7162                                   MachineBasicBlock *MBB) const {
7163   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7164   const SystemZInstrInfo *TII =
7165       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7166 
7167   unsigned CCValid = MI.getOperand(3).getImm();
7168   unsigned CCMask = MI.getOperand(4).getImm();
7169 
7170   // If we have a sequence of Select* pseudo instructions using the
7171   // same condition code value, we want to expand all of them into
7172   // a single pair of basic blocks using the same condition.
7173   SmallVector<MachineInstr*, 8> Selects;
7174   SmallVector<MachineInstr*, 8> DbgValues;
7175   Selects.push_back(&MI);
7176   unsigned Count = 0;
7177   for (MachineBasicBlock::iterator NextMIIt =
7178          std::next(MachineBasicBlock::iterator(MI));
7179        NextMIIt != MBB->end(); ++NextMIIt) {
7180     if (isSelectPseudo(*NextMIIt)) {
7181       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7182              "Bad CCValid operands since CC was not redefined.");
7183       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7184           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7185         Selects.push_back(&*NextMIIt);
7186         continue;
7187       }
7188       break;
7189     }
7190     if (NextMIIt->definesRegister(SystemZ::CC) ||
7191         NextMIIt->usesCustomInsertionHook())
7192       break;
7193     bool User = false;
7194     for (auto SelMI : Selects)
7195       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7196         User = true;
7197         break;
7198       }
7199     if (NextMIIt->isDebugInstr()) {
7200       if (User) {
7201         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7202         DbgValues.push_back(&*NextMIIt);
7203       }
7204     }
7205     else if (User || ++Count > 20)
7206       break;
7207   }
7208 
7209   MachineInstr *LastMI = Selects.back();
7210   bool CCKilled =
7211       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7212   MachineBasicBlock *StartMBB = MBB;
7213   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7214   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7215 
7216   // Unless CC was killed in the last Select instruction, mark it as
7217   // live-in to both FalseMBB and JoinMBB.
7218   if (!CCKilled) {
7219     FalseMBB->addLiveIn(SystemZ::CC);
7220     JoinMBB->addLiveIn(SystemZ::CC);
7221   }
7222 
7223   //  StartMBB:
7224   //   BRC CCMask, JoinMBB
7225   //   # fallthrough to FalseMBB
7226   MBB = StartMBB;
7227   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7228     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7229   MBB->addSuccessor(JoinMBB);
7230   MBB->addSuccessor(FalseMBB);
7231 
7232   //  FalseMBB:
7233   //   # fallthrough to JoinMBB
7234   MBB = FalseMBB;
7235   MBB->addSuccessor(JoinMBB);
7236 
7237   //  JoinMBB:
7238   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7239   //  ...
7240   MBB = JoinMBB;
7241   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7242   for (auto SelMI : Selects)
7243     SelMI->eraseFromParent();
7244 
7245   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7246   for (auto DbgMI : DbgValues)
7247     MBB->splice(InsertPos, StartMBB, DbgMI);
7248 
7249   return JoinMBB;
7250 }
7251 
7252 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7253 // StoreOpcode is the store to use and Invert says whether the store should
7254 // happen when the condition is false rather than true.  If a STORE ON
7255 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
emitCondStore(MachineInstr & MI,MachineBasicBlock * MBB,unsigned StoreOpcode,unsigned STOCOpcode,bool Invert) const7256 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7257                                                         MachineBasicBlock *MBB,
7258                                                         unsigned StoreOpcode,
7259                                                         unsigned STOCOpcode,
7260                                                         bool Invert) const {
7261   const SystemZInstrInfo *TII =
7262       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7263 
7264   Register SrcReg = MI.getOperand(0).getReg();
7265   MachineOperand Base = MI.getOperand(1);
7266   int64_t Disp = MI.getOperand(2).getImm();
7267   Register IndexReg = MI.getOperand(3).getReg();
7268   unsigned CCValid = MI.getOperand(4).getImm();
7269   unsigned CCMask = MI.getOperand(5).getImm();
7270   DebugLoc DL = MI.getDebugLoc();
7271 
7272   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7273 
7274   // ISel pattern matching also adds a load memory operand of the same
7275   // address, so take special care to find the storing memory operand.
7276   MachineMemOperand *MMO = nullptr;
7277   for (auto *I : MI.memoperands())
7278     if (I->isStore()) {
7279       MMO = I;
7280       break;
7281     }
7282 
7283   // Use STOCOpcode if possible.  We could use different store patterns in
7284   // order to avoid matching the index register, but the performance trade-offs
7285   // might be more complicated in that case.
7286   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7287     if (Invert)
7288       CCMask ^= CCValid;
7289 
7290     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7291       .addReg(SrcReg)
7292       .add(Base)
7293       .addImm(Disp)
7294       .addImm(CCValid)
7295       .addImm(CCMask)
7296       .addMemOperand(MMO);
7297 
7298     MI.eraseFromParent();
7299     return MBB;
7300   }
7301 
7302   // Get the condition needed to branch around the store.
7303   if (!Invert)
7304     CCMask ^= CCValid;
7305 
7306   MachineBasicBlock *StartMBB = MBB;
7307   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7308   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7309 
7310   // Unless CC was killed in the CondStore instruction, mark it as
7311   // live-in to both FalseMBB and JoinMBB.
7312   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7313     FalseMBB->addLiveIn(SystemZ::CC);
7314     JoinMBB->addLiveIn(SystemZ::CC);
7315   }
7316 
7317   //  StartMBB:
7318   //   BRC CCMask, JoinMBB
7319   //   # fallthrough to FalseMBB
7320   MBB = StartMBB;
7321   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7322     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7323   MBB->addSuccessor(JoinMBB);
7324   MBB->addSuccessor(FalseMBB);
7325 
7326   //  FalseMBB:
7327   //   store %SrcReg, %Disp(%Index,%Base)
7328   //   # fallthrough to JoinMBB
7329   MBB = FalseMBB;
7330   BuildMI(MBB, DL, TII->get(StoreOpcode))
7331       .addReg(SrcReg)
7332       .add(Base)
7333       .addImm(Disp)
7334       .addReg(IndexReg)
7335       .addMemOperand(MMO);
7336   MBB->addSuccessor(JoinMBB);
7337 
7338   MI.eraseFromParent();
7339   return JoinMBB;
7340 }
7341 
7342 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7343 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7344 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7345 // BitSize is the width of the field in bits, or 0 if this is a partword
7346 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7347 // is one of the operands.  Invert says whether the field should be
7348 // inverted after performing BinOpcode (e.g. for NAND).
emitAtomicLoadBinary(MachineInstr & MI,MachineBasicBlock * MBB,unsigned BinOpcode,unsigned BitSize,bool Invert) const7349 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7350     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7351     unsigned BitSize, bool Invert) const {
7352   MachineFunction &MF = *MBB->getParent();
7353   const SystemZInstrInfo *TII =
7354       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7355   MachineRegisterInfo &MRI = MF.getRegInfo();
7356   bool IsSubWord = (BitSize < 32);
7357 
7358   // Extract the operands.  Base can be a register or a frame index.
7359   // Src2 can be a register or immediate.
7360   Register Dest = MI.getOperand(0).getReg();
7361   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7362   int64_t Disp = MI.getOperand(2).getImm();
7363   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7364   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7365   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7366   DebugLoc DL = MI.getDebugLoc();
7367   if (IsSubWord)
7368     BitSize = MI.getOperand(6).getImm();
7369 
7370   // Subword operations use 32-bit registers.
7371   const TargetRegisterClass *RC = (BitSize <= 32 ?
7372                                    &SystemZ::GR32BitRegClass :
7373                                    &SystemZ::GR64BitRegClass);
7374   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7375   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7376 
7377   // Get the right opcodes for the displacement.
7378   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7379   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7380   assert(LOpcode && CSOpcode && "Displacement out of range");
7381 
7382   // Create virtual registers for temporary results.
7383   Register OrigVal       = MRI.createVirtualRegister(RC);
7384   Register OldVal        = MRI.createVirtualRegister(RC);
7385   Register NewVal        = (BinOpcode || IsSubWord ?
7386                             MRI.createVirtualRegister(RC) : Src2.getReg());
7387   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7388   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7389 
7390   // Insert a basic block for the main loop.
7391   MachineBasicBlock *StartMBB = MBB;
7392   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7393   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7394 
7395   //  StartMBB:
7396   //   ...
7397   //   %OrigVal = L Disp(%Base)
7398   //   # fall through to LoopMMB
7399   MBB = StartMBB;
7400   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7401   MBB->addSuccessor(LoopMBB);
7402 
7403   //  LoopMBB:
7404   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7405   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7406   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7407   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7408   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7409   //   JNE LoopMBB
7410   //   # fall through to DoneMMB
7411   MBB = LoopMBB;
7412   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7413     .addReg(OrigVal).addMBB(StartMBB)
7414     .addReg(Dest).addMBB(LoopMBB);
7415   if (IsSubWord)
7416     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7417       .addReg(OldVal).addReg(BitShift).addImm(0);
7418   if (Invert) {
7419     // Perform the operation normally and then invert every bit of the field.
7420     Register Tmp = MRI.createVirtualRegister(RC);
7421     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7422     if (BitSize <= 32)
7423       // XILF with the upper BitSize bits set.
7424       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7425         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7426     else {
7427       // Use LCGR and add -1 to the result, which is more compact than
7428       // an XILF, XILH pair.
7429       Register Tmp2 = MRI.createVirtualRegister(RC);
7430       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7431       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7432         .addReg(Tmp2).addImm(-1);
7433     }
7434   } else if (BinOpcode)
7435     // A simply binary operation.
7436     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7437         .addReg(RotatedOldVal)
7438         .add(Src2);
7439   else if (IsSubWord)
7440     // Use RISBG to rotate Src2 into position and use it to replace the
7441     // field in RotatedOldVal.
7442     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7443       .addReg(RotatedOldVal).addReg(Src2.getReg())
7444       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7445   if (IsSubWord)
7446     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7447       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7448   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7449       .addReg(OldVal)
7450       .addReg(NewVal)
7451       .add(Base)
7452       .addImm(Disp);
7453   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7454     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7455   MBB->addSuccessor(LoopMBB);
7456   MBB->addSuccessor(DoneMBB);
7457 
7458   MI.eraseFromParent();
7459   return DoneMBB;
7460 }
7461 
7462 // Implement EmitInstrWithCustomInserter for pseudo
7463 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7464 // instruction that should be used to compare the current field with the
7465 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7466 // for when the current field should be kept.  BitSize is the width of
7467 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
emitAtomicLoadMinMax(MachineInstr & MI,MachineBasicBlock * MBB,unsigned CompareOpcode,unsigned KeepOldMask,unsigned BitSize) const7468 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7469     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7470     unsigned KeepOldMask, unsigned BitSize) const {
7471   MachineFunction &MF = *MBB->getParent();
7472   const SystemZInstrInfo *TII =
7473       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7474   MachineRegisterInfo &MRI = MF.getRegInfo();
7475   bool IsSubWord = (BitSize < 32);
7476 
7477   // Extract the operands.  Base can be a register or a frame index.
7478   Register Dest = MI.getOperand(0).getReg();
7479   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7480   int64_t Disp = MI.getOperand(2).getImm();
7481   Register Src2 = MI.getOperand(3).getReg();
7482   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7483   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7484   DebugLoc DL = MI.getDebugLoc();
7485   if (IsSubWord)
7486     BitSize = MI.getOperand(6).getImm();
7487 
7488   // Subword operations use 32-bit registers.
7489   const TargetRegisterClass *RC = (BitSize <= 32 ?
7490                                    &SystemZ::GR32BitRegClass :
7491                                    &SystemZ::GR64BitRegClass);
7492   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7493   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7494 
7495   // Get the right opcodes for the displacement.
7496   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7497   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7498   assert(LOpcode && CSOpcode && "Displacement out of range");
7499 
7500   // Create virtual registers for temporary results.
7501   Register OrigVal       = MRI.createVirtualRegister(RC);
7502   Register OldVal        = MRI.createVirtualRegister(RC);
7503   Register NewVal        = MRI.createVirtualRegister(RC);
7504   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7505   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7506   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7507 
7508   // Insert 3 basic blocks for the loop.
7509   MachineBasicBlock *StartMBB  = MBB;
7510   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7511   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7512   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7513   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7514 
7515   //  StartMBB:
7516   //   ...
7517   //   %OrigVal     = L Disp(%Base)
7518   //   # fall through to LoopMMB
7519   MBB = StartMBB;
7520   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7521   MBB->addSuccessor(LoopMBB);
7522 
7523   //  LoopMBB:
7524   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7525   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7526   //   CompareOpcode %RotatedOldVal, %Src2
7527   //   BRC KeepOldMask, UpdateMBB
7528   MBB = LoopMBB;
7529   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7530     .addReg(OrigVal).addMBB(StartMBB)
7531     .addReg(Dest).addMBB(UpdateMBB);
7532   if (IsSubWord)
7533     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7534       .addReg(OldVal).addReg(BitShift).addImm(0);
7535   BuildMI(MBB, DL, TII->get(CompareOpcode))
7536     .addReg(RotatedOldVal).addReg(Src2);
7537   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7538     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7539   MBB->addSuccessor(UpdateMBB);
7540   MBB->addSuccessor(UseAltMBB);
7541 
7542   //  UseAltMBB:
7543   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7544   //   # fall through to UpdateMMB
7545   MBB = UseAltMBB;
7546   if (IsSubWord)
7547     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7548       .addReg(RotatedOldVal).addReg(Src2)
7549       .addImm(32).addImm(31 + BitSize).addImm(0);
7550   MBB->addSuccessor(UpdateMBB);
7551 
7552   //  UpdateMBB:
7553   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7554   //                        [ %RotatedAltVal, UseAltMBB ]
7555   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7556   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7557   //   JNE LoopMBB
7558   //   # fall through to DoneMMB
7559   MBB = UpdateMBB;
7560   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7561     .addReg(RotatedOldVal).addMBB(LoopMBB)
7562     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7563   if (IsSubWord)
7564     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7565       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7566   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7567       .addReg(OldVal)
7568       .addReg(NewVal)
7569       .add(Base)
7570       .addImm(Disp);
7571   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7572     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7573   MBB->addSuccessor(LoopMBB);
7574   MBB->addSuccessor(DoneMBB);
7575 
7576   MI.eraseFromParent();
7577   return DoneMBB;
7578 }
7579 
7580 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7581 // instruction MI.
7582 MachineBasicBlock *
emitAtomicCmpSwapW(MachineInstr & MI,MachineBasicBlock * MBB) const7583 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7584                                           MachineBasicBlock *MBB) const {
7585   MachineFunction &MF = *MBB->getParent();
7586   const SystemZInstrInfo *TII =
7587       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7588   MachineRegisterInfo &MRI = MF.getRegInfo();
7589 
7590   // Extract the operands.  Base can be a register or a frame index.
7591   Register Dest = MI.getOperand(0).getReg();
7592   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7593   int64_t Disp = MI.getOperand(2).getImm();
7594   Register CmpVal = MI.getOperand(3).getReg();
7595   Register OrigSwapVal = MI.getOperand(4).getReg();
7596   Register BitShift = MI.getOperand(5).getReg();
7597   Register NegBitShift = MI.getOperand(6).getReg();
7598   int64_t BitSize = MI.getOperand(7).getImm();
7599   DebugLoc DL = MI.getDebugLoc();
7600 
7601   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7602 
7603   // Get the right opcodes for the displacement and zero-extension.
7604   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7605   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7606   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
7607   assert(LOpcode && CSOpcode && "Displacement out of range");
7608 
7609   // Create virtual registers for temporary results.
7610   Register OrigOldVal = MRI.createVirtualRegister(RC);
7611   Register OldVal = MRI.createVirtualRegister(RC);
7612   Register SwapVal = MRI.createVirtualRegister(RC);
7613   Register StoreVal = MRI.createVirtualRegister(RC);
7614   Register OldValRot = MRI.createVirtualRegister(RC);
7615   Register RetryOldVal = MRI.createVirtualRegister(RC);
7616   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7617 
7618   // Insert 2 basic blocks for the loop.
7619   MachineBasicBlock *StartMBB = MBB;
7620   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7621   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7622   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7623 
7624   //  StartMBB:
7625   //   ...
7626   //   %OrigOldVal     = L Disp(%Base)
7627   //   # fall through to LoopMMB
7628   MBB = StartMBB;
7629   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7630       .add(Base)
7631       .addImm(Disp)
7632       .addReg(0);
7633   MBB->addSuccessor(LoopMBB);
7634 
7635   //  LoopMBB:
7636   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7637   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7638   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
7639   //                      ^^ The low BitSize bits contain the field
7640   //                         of interest.
7641   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
7642   //                      ^^ Replace the upper 32-BitSize bits of the
7643   //                         swap value with those that we loaded and rotated.
7644   //   %Dest = LL[CH] %OldValRot
7645   //   CR %Dest, %CmpVal
7646   //   JNE DoneMBB
7647   //   # Fall through to SetMBB
7648   MBB = LoopMBB;
7649   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7650     .addReg(OrigOldVal).addMBB(StartMBB)
7651     .addReg(RetryOldVal).addMBB(SetMBB);
7652   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7653     .addReg(OrigSwapVal).addMBB(StartMBB)
7654     .addReg(RetrySwapVal).addMBB(SetMBB);
7655   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
7656     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7657   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7658     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
7659   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
7660     .addReg(OldValRot);
7661   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7662     .addReg(Dest).addReg(CmpVal);
7663   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7664     .addImm(SystemZ::CCMASK_ICMP)
7665     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7666   MBB->addSuccessor(DoneMBB);
7667   MBB->addSuccessor(SetMBB);
7668 
7669   //  SetMBB:
7670   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7671   //                      ^^ Rotate the new field to its proper position.
7672   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
7673   //   JNE LoopMBB
7674   //   # fall through to ExitMMB
7675   MBB = SetMBB;
7676   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7677     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7678   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7679       .addReg(OldVal)
7680       .addReg(StoreVal)
7681       .add(Base)
7682       .addImm(Disp);
7683   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7684     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7685   MBB->addSuccessor(LoopMBB);
7686   MBB->addSuccessor(DoneMBB);
7687 
7688   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7689   // to the block after the loop.  At this point, CC may have been defined
7690   // either by the CR in LoopMBB or by the CS in SetMBB.
7691   if (!MI.registerDefIsDead(SystemZ::CC))
7692     DoneMBB->addLiveIn(SystemZ::CC);
7693 
7694   MI.eraseFromParent();
7695   return DoneMBB;
7696 }
7697 
7698 // Emit a move from two GR64s to a GR128.
7699 MachineBasicBlock *
emitPair128(MachineInstr & MI,MachineBasicBlock * MBB) const7700 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7701                                    MachineBasicBlock *MBB) const {
7702   MachineFunction &MF = *MBB->getParent();
7703   const SystemZInstrInfo *TII =
7704       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7705   MachineRegisterInfo &MRI = MF.getRegInfo();
7706   DebugLoc DL = MI.getDebugLoc();
7707 
7708   Register Dest = MI.getOperand(0).getReg();
7709   Register Hi = MI.getOperand(1).getReg();
7710   Register Lo = MI.getOperand(2).getReg();
7711   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7712   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7713 
7714   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7715   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7716     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7717   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7718     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7719 
7720   MI.eraseFromParent();
7721   return MBB;
7722 }
7723 
7724 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7725 // if the high register of the GR128 value must be cleared or false if
7726 // it's "don't care".
emitExt128(MachineInstr & MI,MachineBasicBlock * MBB,bool ClearEven) const7727 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7728                                                      MachineBasicBlock *MBB,
7729                                                      bool ClearEven) const {
7730   MachineFunction &MF = *MBB->getParent();
7731   const SystemZInstrInfo *TII =
7732       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7733   MachineRegisterInfo &MRI = MF.getRegInfo();
7734   DebugLoc DL = MI.getDebugLoc();
7735 
7736   Register Dest = MI.getOperand(0).getReg();
7737   Register Src = MI.getOperand(1).getReg();
7738   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7739 
7740   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7741   if (ClearEven) {
7742     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7743     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7744 
7745     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7746       .addImm(0);
7747     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7748       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7749     In128 = NewIn128;
7750   }
7751   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7752     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7753 
7754   MI.eraseFromParent();
7755   return MBB;
7756 }
7757 
emitMemMemWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const7758 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7759     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7760   MachineFunction &MF = *MBB->getParent();
7761   const SystemZInstrInfo *TII =
7762       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7763   MachineRegisterInfo &MRI = MF.getRegInfo();
7764   DebugLoc DL = MI.getDebugLoc();
7765 
7766   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7767   uint64_t DestDisp = MI.getOperand(1).getImm();
7768   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7769   uint64_t SrcDisp = MI.getOperand(3).getImm();
7770   uint64_t Length = MI.getOperand(4).getImm();
7771 
7772   // When generating more than one CLC, all but the last will need to
7773   // branch to the end when a difference is found.
7774   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7775                                SystemZ::splitBlockAfter(MI, MBB) : nullptr);
7776 
7777   // Check for the loop form, in which operand 5 is the trip count.
7778   if (MI.getNumExplicitOperands() > 5) {
7779     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7780 
7781     Register StartCountReg = MI.getOperand(5).getReg();
7782     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7783     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7784                               forceReg(MI, DestBase, TII));
7785 
7786     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7787     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7788     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7789                             MRI.createVirtualRegister(RC));
7790     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7791     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7792                             MRI.createVirtualRegister(RC));
7793 
7794     RC = &SystemZ::GR64BitRegClass;
7795     Register ThisCountReg = MRI.createVirtualRegister(RC);
7796     Register NextCountReg = MRI.createVirtualRegister(RC);
7797 
7798     MachineBasicBlock *StartMBB = MBB;
7799     MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7800     MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7801     MachineBasicBlock *NextMBB =
7802         (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7803 
7804     //  StartMBB:
7805     //   # fall through to LoopMMB
7806     MBB->addSuccessor(LoopMBB);
7807 
7808     //  LoopMBB:
7809     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7810     //                      [ %NextDestReg, NextMBB ]
7811     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7812     //                     [ %NextSrcReg, NextMBB ]
7813     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7814     //                       [ %NextCountReg, NextMBB ]
7815     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7816     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7817     //   ( JLH EndMBB )
7818     //
7819     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7820     MBB = LoopMBB;
7821 
7822     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7823       .addReg(StartDestReg).addMBB(StartMBB)
7824       .addReg(NextDestReg).addMBB(NextMBB);
7825     if (!HaveSingleBase)
7826       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7827         .addReg(StartSrcReg).addMBB(StartMBB)
7828         .addReg(NextSrcReg).addMBB(NextMBB);
7829     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7830       .addReg(StartCountReg).addMBB(StartMBB)
7831       .addReg(NextCountReg).addMBB(NextMBB);
7832     if (Opcode == SystemZ::MVC)
7833       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7834         .addImm(SystemZ::PFD_WRITE)
7835         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7836     BuildMI(MBB, DL, TII->get(Opcode))
7837       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7838       .addReg(ThisSrcReg).addImm(SrcDisp);
7839     if (EndMBB) {
7840       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7841         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7842         .addMBB(EndMBB);
7843       MBB->addSuccessor(EndMBB);
7844       MBB->addSuccessor(NextMBB);
7845     }
7846 
7847     // NextMBB:
7848     //   %NextDestReg = LA 256(%ThisDestReg)
7849     //   %NextSrcReg = LA 256(%ThisSrcReg)
7850     //   %NextCountReg = AGHI %ThisCountReg, -1
7851     //   CGHI %NextCountReg, 0
7852     //   JLH LoopMBB
7853     //   # fall through to DoneMMB
7854     //
7855     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7856     MBB = NextMBB;
7857 
7858     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7859       .addReg(ThisDestReg).addImm(256).addReg(0);
7860     if (!HaveSingleBase)
7861       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7862         .addReg(ThisSrcReg).addImm(256).addReg(0);
7863     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7864       .addReg(ThisCountReg).addImm(-1);
7865     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7866       .addReg(NextCountReg).addImm(0);
7867     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7868       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7869       .addMBB(LoopMBB);
7870     MBB->addSuccessor(LoopMBB);
7871     MBB->addSuccessor(DoneMBB);
7872 
7873     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7874     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7875     Length &= 255;
7876     if (EndMBB && !Length)
7877       // If the loop handled the whole CLC range, DoneMBB will be empty with
7878       // CC live-through into EndMBB, so add it as live-in.
7879       DoneMBB->addLiveIn(SystemZ::CC);
7880     MBB = DoneMBB;
7881   }
7882   // Handle any remaining bytes with straight-line code.
7883   while (Length > 0) {
7884     uint64_t ThisLength = std::min(Length, uint64_t(256));
7885     // The previous iteration might have created out-of-range displacements.
7886     // Apply them using LAY if so.
7887     if (!isUInt<12>(DestDisp)) {
7888       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7889       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7890           .add(DestBase)
7891           .addImm(DestDisp)
7892           .addReg(0);
7893       DestBase = MachineOperand::CreateReg(Reg, false);
7894       DestDisp = 0;
7895     }
7896     if (!isUInt<12>(SrcDisp)) {
7897       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7898       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7899           .add(SrcBase)
7900           .addImm(SrcDisp)
7901           .addReg(0);
7902       SrcBase = MachineOperand::CreateReg(Reg, false);
7903       SrcDisp = 0;
7904     }
7905     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7906         .add(DestBase)
7907         .addImm(DestDisp)
7908         .addImm(ThisLength)
7909         .add(SrcBase)
7910         .addImm(SrcDisp)
7911         .setMemRefs(MI.memoperands());
7912     DestDisp += ThisLength;
7913     SrcDisp += ThisLength;
7914     Length -= ThisLength;
7915     // If there's another CLC to go, branch to the end if a difference
7916     // was found.
7917     if (EndMBB && Length > 0) {
7918       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
7919       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7920         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7921         .addMBB(EndMBB);
7922       MBB->addSuccessor(EndMBB);
7923       MBB->addSuccessor(NextMBB);
7924       MBB = NextMBB;
7925     }
7926   }
7927   if (EndMBB) {
7928     MBB->addSuccessor(EndMBB);
7929     MBB = EndMBB;
7930     MBB->addLiveIn(SystemZ::CC);
7931   }
7932 
7933   MI.eraseFromParent();
7934   return MBB;
7935 }
7936 
7937 // Decompose string pseudo-instruction MI into a loop that continually performs
7938 // Opcode until CC != 3.
emitStringWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const7939 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7940     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7941   MachineFunction &MF = *MBB->getParent();
7942   const SystemZInstrInfo *TII =
7943       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7944   MachineRegisterInfo &MRI = MF.getRegInfo();
7945   DebugLoc DL = MI.getDebugLoc();
7946 
7947   uint64_t End1Reg = MI.getOperand(0).getReg();
7948   uint64_t Start1Reg = MI.getOperand(1).getReg();
7949   uint64_t Start2Reg = MI.getOperand(2).getReg();
7950   uint64_t CharReg = MI.getOperand(3).getReg();
7951 
7952   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7953   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7954   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7955   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7956 
7957   MachineBasicBlock *StartMBB = MBB;
7958   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7959   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7960 
7961   //  StartMBB:
7962   //   # fall through to LoopMMB
7963   MBB->addSuccessor(LoopMBB);
7964 
7965   //  LoopMBB:
7966   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7967   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7968   //   R0L = %CharReg
7969   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7970   //   JO LoopMBB
7971   //   # fall through to DoneMMB
7972   //
7973   // The load of R0L can be hoisted by post-RA LICM.
7974   MBB = LoopMBB;
7975 
7976   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7977     .addReg(Start1Reg).addMBB(StartMBB)
7978     .addReg(End1Reg).addMBB(LoopMBB);
7979   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7980     .addReg(Start2Reg).addMBB(StartMBB)
7981     .addReg(End2Reg).addMBB(LoopMBB);
7982   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7983   BuildMI(MBB, DL, TII->get(Opcode))
7984     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7985     .addReg(This1Reg).addReg(This2Reg);
7986   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7987     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7988   MBB->addSuccessor(LoopMBB);
7989   MBB->addSuccessor(DoneMBB);
7990 
7991   DoneMBB->addLiveIn(SystemZ::CC);
7992 
7993   MI.eraseFromParent();
7994   return DoneMBB;
7995 }
7996 
7997 // Update TBEGIN instruction with final opcode and register clobbers.
emitTransactionBegin(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode,bool NoFloat) const7998 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7999     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8000     bool NoFloat) const {
8001   MachineFunction &MF = *MBB->getParent();
8002   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8003   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8004 
8005   // Update opcode.
8006   MI.setDesc(TII->get(Opcode));
8007 
8008   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8009   // Make sure to add the corresponding GRSM bits if they are missing.
8010   uint64_t Control = MI.getOperand(2).getImm();
8011   static const unsigned GPRControlBit[16] = {
8012     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8013     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8014   };
8015   Control |= GPRControlBit[15];
8016   if (TFI->hasFP(MF))
8017     Control |= GPRControlBit[11];
8018   MI.getOperand(2).setImm(Control);
8019 
8020   // Add GPR clobbers.
8021   for (int I = 0; I < 16; I++) {
8022     if ((Control & GPRControlBit[I]) == 0) {
8023       unsigned Reg = SystemZMC::GR64Regs[I];
8024       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8025     }
8026   }
8027 
8028   // Add FPR/VR clobbers.
8029   if (!NoFloat && (Control & 4) != 0) {
8030     if (Subtarget.hasVector()) {
8031       for (int I = 0; I < 32; I++) {
8032         unsigned Reg = SystemZMC::VR128Regs[I];
8033         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8034       }
8035     } else {
8036       for (int I = 0; I < 16; I++) {
8037         unsigned Reg = SystemZMC::FP64Regs[I];
8038         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8039       }
8040     }
8041   }
8042 
8043   return MBB;
8044 }
8045 
emitLoadAndTestCmp0(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const8046 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8047     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8048   MachineFunction &MF = *MBB->getParent();
8049   MachineRegisterInfo *MRI = &MF.getRegInfo();
8050   const SystemZInstrInfo *TII =
8051       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8052   DebugLoc DL = MI.getDebugLoc();
8053 
8054   Register SrcReg = MI.getOperand(0).getReg();
8055 
8056   // Create new virtual register of the same class as source.
8057   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8058   Register DstReg = MRI->createVirtualRegister(RC);
8059 
8060   // Replace pseudo with a normal load-and-test that models the def as
8061   // well.
8062   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8063     .addReg(SrcReg)
8064     .setMIFlags(MI.getFlags());
8065   MI.eraseFromParent();
8066 
8067   return MBB;
8068 }
8069 
emitProbedAlloca(MachineInstr & MI,MachineBasicBlock * MBB) const8070 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8071     MachineInstr &MI, MachineBasicBlock *MBB) const {
8072   MachineFunction &MF = *MBB->getParent();
8073   MachineRegisterInfo *MRI = &MF.getRegInfo();
8074   const SystemZInstrInfo *TII =
8075       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8076   DebugLoc DL = MI.getDebugLoc();
8077   const unsigned ProbeSize = getStackProbeSize(MF);
8078   Register DstReg = MI.getOperand(0).getReg();
8079   Register SizeReg = MI.getOperand(2).getReg();
8080 
8081   MachineBasicBlock *StartMBB = MBB;
8082   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8083   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8084   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8085   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8086   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8087 
8088   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8089     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8090 
8091   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8092   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8093 
8094   //  LoopTestMBB
8095   //  BRC TailTestMBB
8096   //  # fallthrough to LoopBodyMBB
8097   StartMBB->addSuccessor(LoopTestMBB);
8098   MBB = LoopTestMBB;
8099   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8100     .addReg(SizeReg)
8101     .addMBB(StartMBB)
8102     .addReg(IncReg)
8103     .addMBB(LoopBodyMBB);
8104   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8105     .addReg(PHIReg)
8106     .addImm(ProbeSize);
8107   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8108     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8109     .addMBB(TailTestMBB);
8110   MBB->addSuccessor(LoopBodyMBB);
8111   MBB->addSuccessor(TailTestMBB);
8112 
8113   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8114   //  J LoopTestMBB
8115   MBB = LoopBodyMBB;
8116   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8117     .addReg(PHIReg)
8118     .addImm(ProbeSize);
8119   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8120     .addReg(SystemZ::R15D)
8121     .addImm(ProbeSize);
8122   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8123     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8124     .setMemRefs(VolLdMMO);
8125   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8126   MBB->addSuccessor(LoopTestMBB);
8127 
8128   //  TailTestMBB
8129   //  BRC DoneMBB
8130   //  # fallthrough to TailMBB
8131   MBB = TailTestMBB;
8132   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8133     .addReg(PHIReg)
8134     .addImm(0);
8135   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8136     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8137     .addMBB(DoneMBB);
8138   MBB->addSuccessor(TailMBB);
8139   MBB->addSuccessor(DoneMBB);
8140 
8141   //  TailMBB
8142   //  # fallthrough to DoneMBB
8143   MBB = TailMBB;
8144   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8145     .addReg(SystemZ::R15D)
8146     .addReg(PHIReg);
8147   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8148     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8149     .setMemRefs(VolLdMMO);
8150   MBB->addSuccessor(DoneMBB);
8151 
8152   //  DoneMBB
8153   MBB = DoneMBB;
8154   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8155     .addReg(SystemZ::R15D);
8156 
8157   MI.eraseFromParent();
8158   return DoneMBB;
8159 }
8160 
8161 SDValue SystemZTargetLowering::
getBackchainAddress(SDValue SP,SelectionDAG & DAG) const8162 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8163   MachineFunction &MF = DAG.getMachineFunction();
8164   auto *TFL =
8165       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
8166   SDLoc DL(SP);
8167   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8168                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8169 }
8170 
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const8171 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8172     MachineInstr &MI, MachineBasicBlock *MBB) const {
8173   switch (MI.getOpcode()) {
8174   case SystemZ::Select32:
8175   case SystemZ::Select64:
8176   case SystemZ::SelectF32:
8177   case SystemZ::SelectF64:
8178   case SystemZ::SelectF128:
8179   case SystemZ::SelectVR32:
8180   case SystemZ::SelectVR64:
8181   case SystemZ::SelectVR128:
8182     return emitSelect(MI, MBB);
8183 
8184   case SystemZ::CondStore8Mux:
8185     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8186   case SystemZ::CondStore8MuxInv:
8187     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8188   case SystemZ::CondStore16Mux:
8189     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8190   case SystemZ::CondStore16MuxInv:
8191     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8192   case SystemZ::CondStore32Mux:
8193     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8194   case SystemZ::CondStore32MuxInv:
8195     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8196   case SystemZ::CondStore8:
8197     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8198   case SystemZ::CondStore8Inv:
8199     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8200   case SystemZ::CondStore16:
8201     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8202   case SystemZ::CondStore16Inv:
8203     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8204   case SystemZ::CondStore32:
8205     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8206   case SystemZ::CondStore32Inv:
8207     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8208   case SystemZ::CondStore64:
8209     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8210   case SystemZ::CondStore64Inv:
8211     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8212   case SystemZ::CondStoreF32:
8213     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8214   case SystemZ::CondStoreF32Inv:
8215     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8216   case SystemZ::CondStoreF64:
8217     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8218   case SystemZ::CondStoreF64Inv:
8219     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8220 
8221   case SystemZ::PAIR128:
8222     return emitPair128(MI, MBB);
8223   case SystemZ::AEXT128:
8224     return emitExt128(MI, MBB, false);
8225   case SystemZ::ZEXT128:
8226     return emitExt128(MI, MBB, true);
8227 
8228   case SystemZ::ATOMIC_SWAPW:
8229     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8230   case SystemZ::ATOMIC_SWAP_32:
8231     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8232   case SystemZ::ATOMIC_SWAP_64:
8233     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8234 
8235   case SystemZ::ATOMIC_LOADW_AR:
8236     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8237   case SystemZ::ATOMIC_LOADW_AFI:
8238     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8239   case SystemZ::ATOMIC_LOAD_AR:
8240     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8241   case SystemZ::ATOMIC_LOAD_AHI:
8242     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8243   case SystemZ::ATOMIC_LOAD_AFI:
8244     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8245   case SystemZ::ATOMIC_LOAD_AGR:
8246     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8247   case SystemZ::ATOMIC_LOAD_AGHI:
8248     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8249   case SystemZ::ATOMIC_LOAD_AGFI:
8250     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8251 
8252   case SystemZ::ATOMIC_LOADW_SR:
8253     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8254   case SystemZ::ATOMIC_LOAD_SR:
8255     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8256   case SystemZ::ATOMIC_LOAD_SGR:
8257     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8258 
8259   case SystemZ::ATOMIC_LOADW_NR:
8260     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8261   case SystemZ::ATOMIC_LOADW_NILH:
8262     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8263   case SystemZ::ATOMIC_LOAD_NR:
8264     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8265   case SystemZ::ATOMIC_LOAD_NILL:
8266     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8267   case SystemZ::ATOMIC_LOAD_NILH:
8268     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8269   case SystemZ::ATOMIC_LOAD_NILF:
8270     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8271   case SystemZ::ATOMIC_LOAD_NGR:
8272     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8273   case SystemZ::ATOMIC_LOAD_NILL64:
8274     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8275   case SystemZ::ATOMIC_LOAD_NILH64:
8276     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8277   case SystemZ::ATOMIC_LOAD_NIHL64:
8278     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8279   case SystemZ::ATOMIC_LOAD_NIHH64:
8280     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8281   case SystemZ::ATOMIC_LOAD_NILF64:
8282     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8283   case SystemZ::ATOMIC_LOAD_NIHF64:
8284     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8285 
8286   case SystemZ::ATOMIC_LOADW_OR:
8287     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8288   case SystemZ::ATOMIC_LOADW_OILH:
8289     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8290   case SystemZ::ATOMIC_LOAD_OR:
8291     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8292   case SystemZ::ATOMIC_LOAD_OILL:
8293     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8294   case SystemZ::ATOMIC_LOAD_OILH:
8295     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8296   case SystemZ::ATOMIC_LOAD_OILF:
8297     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8298   case SystemZ::ATOMIC_LOAD_OGR:
8299     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8300   case SystemZ::ATOMIC_LOAD_OILL64:
8301     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8302   case SystemZ::ATOMIC_LOAD_OILH64:
8303     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8304   case SystemZ::ATOMIC_LOAD_OIHL64:
8305     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8306   case SystemZ::ATOMIC_LOAD_OIHH64:
8307     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8308   case SystemZ::ATOMIC_LOAD_OILF64:
8309     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8310   case SystemZ::ATOMIC_LOAD_OIHF64:
8311     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8312 
8313   case SystemZ::ATOMIC_LOADW_XR:
8314     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8315   case SystemZ::ATOMIC_LOADW_XILF:
8316     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8317   case SystemZ::ATOMIC_LOAD_XR:
8318     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8319   case SystemZ::ATOMIC_LOAD_XILF:
8320     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8321   case SystemZ::ATOMIC_LOAD_XGR:
8322     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8323   case SystemZ::ATOMIC_LOAD_XILF64:
8324     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8325   case SystemZ::ATOMIC_LOAD_XIHF64:
8326     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8327 
8328   case SystemZ::ATOMIC_LOADW_NRi:
8329     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8330   case SystemZ::ATOMIC_LOADW_NILHi:
8331     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8332   case SystemZ::ATOMIC_LOAD_NRi:
8333     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8334   case SystemZ::ATOMIC_LOAD_NILLi:
8335     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8336   case SystemZ::ATOMIC_LOAD_NILHi:
8337     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8338   case SystemZ::ATOMIC_LOAD_NILFi:
8339     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8340   case SystemZ::ATOMIC_LOAD_NGRi:
8341     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8342   case SystemZ::ATOMIC_LOAD_NILL64i:
8343     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8344   case SystemZ::ATOMIC_LOAD_NILH64i:
8345     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8346   case SystemZ::ATOMIC_LOAD_NIHL64i:
8347     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8348   case SystemZ::ATOMIC_LOAD_NIHH64i:
8349     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8350   case SystemZ::ATOMIC_LOAD_NILF64i:
8351     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8352   case SystemZ::ATOMIC_LOAD_NIHF64i:
8353     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8354 
8355   case SystemZ::ATOMIC_LOADW_MIN:
8356     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8357                                 SystemZ::CCMASK_CMP_LE, 0);
8358   case SystemZ::ATOMIC_LOAD_MIN_32:
8359     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8360                                 SystemZ::CCMASK_CMP_LE, 32);
8361   case SystemZ::ATOMIC_LOAD_MIN_64:
8362     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8363                                 SystemZ::CCMASK_CMP_LE, 64);
8364 
8365   case SystemZ::ATOMIC_LOADW_MAX:
8366     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8367                                 SystemZ::CCMASK_CMP_GE, 0);
8368   case SystemZ::ATOMIC_LOAD_MAX_32:
8369     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8370                                 SystemZ::CCMASK_CMP_GE, 32);
8371   case SystemZ::ATOMIC_LOAD_MAX_64:
8372     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8373                                 SystemZ::CCMASK_CMP_GE, 64);
8374 
8375   case SystemZ::ATOMIC_LOADW_UMIN:
8376     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8377                                 SystemZ::CCMASK_CMP_LE, 0);
8378   case SystemZ::ATOMIC_LOAD_UMIN_32:
8379     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8380                                 SystemZ::CCMASK_CMP_LE, 32);
8381   case SystemZ::ATOMIC_LOAD_UMIN_64:
8382     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8383                                 SystemZ::CCMASK_CMP_LE, 64);
8384 
8385   case SystemZ::ATOMIC_LOADW_UMAX:
8386     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8387                                 SystemZ::CCMASK_CMP_GE, 0);
8388   case SystemZ::ATOMIC_LOAD_UMAX_32:
8389     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8390                                 SystemZ::CCMASK_CMP_GE, 32);
8391   case SystemZ::ATOMIC_LOAD_UMAX_64:
8392     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8393                                 SystemZ::CCMASK_CMP_GE, 64);
8394 
8395   case SystemZ::ATOMIC_CMP_SWAPW:
8396     return emitAtomicCmpSwapW(MI, MBB);
8397   case SystemZ::MVCSequence:
8398   case SystemZ::MVCLoop:
8399     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8400   case SystemZ::NCSequence:
8401   case SystemZ::NCLoop:
8402     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8403   case SystemZ::OCSequence:
8404   case SystemZ::OCLoop:
8405     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8406   case SystemZ::XCSequence:
8407   case SystemZ::XCLoop:
8408     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8409   case SystemZ::CLCSequence:
8410   case SystemZ::CLCLoop:
8411     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8412   case SystemZ::CLSTLoop:
8413     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8414   case SystemZ::MVSTLoop:
8415     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8416   case SystemZ::SRSTLoop:
8417     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8418   case SystemZ::TBEGIN:
8419     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8420   case SystemZ::TBEGIN_nofloat:
8421     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8422   case SystemZ::TBEGINC:
8423     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8424   case SystemZ::LTEBRCompare_VecPseudo:
8425     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8426   case SystemZ::LTDBRCompare_VecPseudo:
8427     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8428   case SystemZ::LTXBRCompare_VecPseudo:
8429     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8430 
8431   case SystemZ::PROBED_ALLOCA:
8432     return emitProbedAlloca(MI, MBB);
8433 
8434   case TargetOpcode::STACKMAP:
8435   case TargetOpcode::PATCHPOINT:
8436     return emitPatchPoint(MI, MBB);
8437 
8438   default:
8439     llvm_unreachable("Unexpected instr type to insert");
8440   }
8441 }
8442 
8443 // This is only used by the isel schedulers, and is needed only to prevent
8444 // compiler from crashing when list-ilp is used.
8445 const TargetRegisterClass *
getRepRegClassFor(MVT VT) const8446 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8447   if (VT == MVT::Untyped)
8448     return &SystemZ::ADDR128BitRegClass;
8449   return TargetLowering::getRepRegClassFor(VT);
8450 }
8451