xref: /netbsd-src/sys/arch/evbarm/iq80310/iq80310_timer.c (revision 5dfdc49f47499b953e8cca5be1f6fdc679b3e681)
1 /*	$NetBSD: iq80310_timer.c,v 1.24 2024/07/20 20:36:33 andvar Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Timer/clock support for the Intel IQ80310.
40  *
41  * The IQ80310 has a 22-bit reloadable timer implemented in the CPLD.
42  * We use it to provide a hardclock interrupt.  There is no RTC on
43  * the IQ80310.
44  *
45  * The timer uses the SPCI clock.  The timer uses the 33MHz clock by
46  * reading the SPCI_66EN signal and dividing the clock if necessary.
47  */
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: iq80310_timer.c,v 1.24 2024/07/20 20:36:33 andvar Exp $");
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/atomic.h>
56 #include <sys/time.h>
57 #include <sys/timetc.h>
58 
59 #include <dev/clock_subr.h>
60 
61 #include <sys/bus.h>
62 #include <arm/cpufunc.h>
63 
64 #include <evbarm/iq80310/iq80310reg.h>
65 #include <evbarm/iq80310/iq80310var.h>
66 #include <evbarm/iq80310/obiovar.h>
67 
68 /*
69  * Some IQ80310-based designs have fewer bits in the timer counter.
70  * Deal with them here.
71  */
72 #if defined(IOP310_TEAMASA_NPWR)
73 #define	COUNTER_MASK		0x0007ffff
74 #else /* Default to stock IQ80310 */
75 #define	COUNTER_MASK		0x003fffff
76 #endif /* list of IQ80310-based designs */
77 
78 #define	COUNTS_PER_SEC		33000000	/* 33MHz */
79 #define	COUNTS_PER_USEC		(COUNTS_PER_SEC / 1000000)
80 
81 static void *clock_ih;
82 
83 static uint32_t counts_per_hz;
84 
85 static u_int	iq80310_get_timecount(struct timecounter *);
86 
87 static struct timecounter iq80310_timecounter = {
88 	.tc_get_timecount = iq80310_get_timecount,
89 	.tc_counter_mask = 0xffffffff,
90 	.tc_frequency = COUNTS_PER_SEC,
91 	.tc_name = "iq80310",
92 	.tc_quality = 100,
93 };
94 
95 static volatile uint32_t iq80310_base;
96 
97 int	clockhandler(void *);
98 
99 static inline void
100 timer_enable(uint8_t bit)
101 {
102 
103 	CPLD_WRITE(IQ80310_TIMER_ENABLE,
104 	    CPLD_READ(IQ80310_TIMER_ENABLE) | bit);
105 }
106 
107 static inline void
108 timer_disable(uint8_t bit)
109 {
110 
111 	CPLD_WRITE(IQ80310_TIMER_ENABLE,
112 	    CPLD_READ(IQ80310_TIMER_ENABLE) & ~bit);
113 }
114 
115 static inline uint32_t
116 timer_read(void)
117 {
118 	uint32_t rv;
119 	uint8_t la0, la1, la2, la3;
120 
121 	/*
122 	 * First read latches count.
123 	 *
124 	 * From RedBoot: hardware bug that causes invalid counts to be
125 	 * latched.  The loop appears to work around the problem.
126 	 */
127 	do {
128 		la0 = CPLD_READ(IQ80310_TIMER_LA0);
129 	} while (la0 == 0);
130 	la1 = CPLD_READ(IQ80310_TIMER_LA1);
131 	la2 = CPLD_READ(IQ80310_TIMER_LA2);
132 	la3 = CPLD_READ(IQ80310_TIMER_LA3);
133 
134 	rv  =  ((la0 & 0x40) >> 1) | (la0 & 0x1f);
135 	rv |= (((la1 & 0x40) >> 1) | (la1 & 0x1f)) << 6;
136 	rv |= (((la2 & 0x40) >> 1) | (la2 & 0x1f)) << 12;
137 	rv |= (la3 & 0x0f) << 18;
138 
139 	return (rv);
140 }
141 
142 static inline void
143 timer_write(uint32_t x)
144 {
145 
146 	KASSERT((x & COUNTER_MASK) == x);
147 
148 	CPLD_WRITE(IQ80310_TIMER_LA0, x & 0xff);
149 	CPLD_WRITE(IQ80310_TIMER_LA1, (x >> 8) & 0xff);
150 	CPLD_WRITE(IQ80310_TIMER_LA2, (x >> 16) & 0x3f);
151 }
152 
153 /*
154  * iq80310_calibrate_delay:
155  *
156  *	Calibrate the delay loop.
157  */
158 void
159 iq80310_calibrate_delay(void)
160 {
161 
162 	/*
163 	 * We'll use the CPLD timer for delay(), as well.  We go
164 	 * ahead and start it up now, just don't enable interrupts
165 	 * until cpu_initclocks().
166 	 *
167 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
168 	 * in cpu_initclocks().
169 	 */
170 	counts_per_hz = COUNTS_PER_SEC / 100;
171 
172 	timer_disable(TIMER_ENABLE_INTEN);
173 	timer_disable(TIMER_ENABLE_EN);
174 
175 	timer_write(counts_per_hz);
176 
177 	timer_enable(TIMER_ENABLE_EN);
178 }
179 
180 /*
181  * cpu_initclocks:
182  *
183  *	Initialize the clock and get them going.
184  */
185 void
186 cpu_initclocks(void)
187 {
188 	u_int oldirqstate;
189 
190 	if (hz < 50 || COUNTS_PER_SEC % hz) {
191 		printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
192 		hz = 100;
193 	}
194 
195 	/*
196 	 * We only have one timer available; stathz and profhz are
197 	 * always left as 0 (the upper-layer clock code deals with
198 	 * this situation).
199 	 */
200 	if (stathz != 0)
201 		printf("Cannot get %d Hz statclock\n", stathz);
202 	stathz = 0;
203 
204 	if (profhz != 0)
205 		printf("Cannot get %d Hz profclock\n", profhz);
206 	profhz = 0;
207 
208 	/* Report the clock frequency. */
209 	printf("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
210 
211 	/* Hook up the clock interrupt handler. */
212 	clock_ih = iq80310_intr_establish(XINT3_IRQ(XINT3_TIMER), IPL_CLOCK,
213 	    clockhandler, NULL);
214 	if (clock_ih == NULL)
215 		panic("cpu_initclocks: unable to register timer interrupt");
216 
217 	/* Set up the new clock parameters. */
218 	oldirqstate = disable_interrupts(I32_bit);
219 
220 	timer_disable(TIMER_ENABLE_EN);
221 
222 	counts_per_hz = COUNTS_PER_SEC / hz;
223 	timer_write(counts_per_hz);
224 
225 	timer_enable(TIMER_ENABLE_INTEN);
226 	timer_enable(TIMER_ENABLE_EN);
227 
228 	restore_interrupts(oldirqstate);
229 
230 	tc_init(&iq80310_timecounter);
231 }
232 
233 /*
234  * setstatclockrate:
235  *
236  *	Set the rate of the statistics clock.
237  *
238  *	We assume that hz is either stathz or profhz, and that neither
239  *	will change after being set by cpu_initclocks().  We could
240  *	recalculate the intervals here, but that would be a pain.
241  */
242 void
243 setstatclockrate(int newhz)
244 {
245 
246 	/*
247 	 * Nothing to do, here; we can't change the statclock
248 	 * rate on the IQ80310.
249 	 */
250 }
251 
252 static u_int
253 iq80310_get_timecount(struct timecounter *tc)
254 {
255 	u_int oldirqstate, base, counter;
256 
257 	oldirqstate = disable_interrupts(I32_bit);
258 	base = iq80310_base;
259 	counter = timer_read();
260 	restore_interrupts(oldirqstate);
261 
262 	return base + counter;
263 }
264 
265 /*
266  * delay:
267  *
268  *	Delay for at least N microseconds.
269  */
270 void
271 delay(u_int n)
272 {
273 	uint32_t cur, last, delta, usecs;
274 
275 	/*
276 	 * This works by polling the timer and counting the
277 	 * number of microseconds that go by.
278 	 */
279 	last = timer_read();
280 	delta = usecs = 0;
281 
282 	while (n > usecs) {
283 		cur = timer_read();
284 
285 		/* Check to see if the timer has wrapped around. */
286 		if (cur < last)
287 			delta += ((counts_per_hz - last) + cur);
288 		else
289 			delta += (cur - last);
290 
291 		last = cur;
292 
293 		if (delta >= COUNTS_PER_USEC) {
294 			usecs += delta / COUNTS_PER_USEC;
295 			delta %= COUNTS_PER_USEC;
296 		}
297 	}
298 }
299 
300 /*
301  * clockhandler:
302  *
303  *	Handle the hardclock interrupt.
304  */
305 int
306 clockhandler(void *arg)
307 {
308 	struct clockframe *frame = arg;
309 
310 	timer_disable(TIMER_ENABLE_INTEN);
311 	timer_enable(TIMER_ENABLE_INTEN);
312 
313 	atomic_add_32(&iq80310_base, counts_per_hz);
314 
315 	hardclock(frame);
316 
317 	/*
318 	 * Don't run the snake on IOP310-based systems that
319 	 * don't have the 7-segment display.
320 	 */
321 #if !defined(IOP310_TEAMASA_NPWR)
322 	{
323 		static int snakefreq;
324 
325 		if ((snakefreq++ & 15) == 0)
326 			iq80310_7seg_snake();
327 	}
328 #endif
329 
330 	return (1);
331 }
332