xref: /netbsd-src/sys/arch/arm/arm32/arm32_kvminit.c (revision e65a0eaa66f2baacfbf4ae60f2f7b641eb98db8d)
1 /*	$NetBSD: arm32_kvminit.c,v 1.69 2022/04/02 11:16:07 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
5  * Written by Hiroyuki Bessho for Genetec Corporation.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of Genetec Corporation may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Copyright (c) 2001 Wasabi Systems, Inc.
32  * All rights reserved.
33  *
34  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed for the NetBSD Project by
47  *	Wasabi Systems, Inc.
48  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49  *    or promote products derived from this software without specific prior
50  *    written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62  * POSSIBILITY OF SUCH DAMAGE.
63  *
64  * Copyright (c) 1997,1998 Mark Brinicombe.
65  * Copyright (c) 1997,1998 Causality Limited.
66  * All rights reserved.
67  *
68  * Redistribution and use in source and binary forms, with or without
69  * modification, are permitted provided that the following conditions
70  * are met:
71  * 1. Redistributions of source code must retain the above copyright
72  *    notice, this list of conditions and the following disclaimer.
73  * 2. Redistributions in binary form must reproduce the above copyright
74  *    notice, this list of conditions and the following disclaimer in the
75  *    documentation and/or other materials provided with the distribution.
76  * 3. All advertising materials mentioning features or use of this software
77  *    must display the following acknowledgement:
78  *	This product includes software developed by Mark Brinicombe
79  *	for the NetBSD Project.
80  * 4. The name of the company nor the name of the author may be used to
81  *    endorse or promote products derived from this software without specific
82  *    prior written permission.
83  *
84  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94  * SUCH DAMAGE.
95  *
96  * Copyright (c) 2007 Microsoft
97  * All rights reserved.
98  *
99  * Redistribution and use in source and binary forms, with or without
100  * modification, are permitted provided that the following conditions
101  * are met:
102  * 1. Redistributions of source code must retain the above copyright
103  *    notice, this list of conditions and the following disclaimer.
104  * 2. Redistributions in binary form must reproduce the above copyright
105  *    notice, this list of conditions and the following disclaimer in the
106  *    documentation and/or other materials provided with the distribution.
107  * 3. All advertising materials mentioning features or use of this software
108  *    must display the following acknowledgement:
109  *	This product includes software developed by Microsoft
110  *
111  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121  * SUCH DAMAGE.
122  */
123 
124 #include "opt_arm_debug.h"
125 #include "opt_arm_start.h"
126 #include "opt_efi.h"
127 #include "opt_fdt.h"
128 #include "opt_multiprocessor.h"
129 
130 #include <sys/cdefs.h>
131 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.69 2022/04/02 11:16:07 skrll Exp $");
132 
133 #include <sys/param.h>
134 
135 #include <sys/asan.h>
136 #include <sys/bus.h>
137 #include <sys/device.h>
138 #include <sys/kernel.h>
139 #include <sys/reboot.h>
140 
141 #include <dev/cons.h>
142 
143 #include <uvm/uvm_extern.h>
144 
145 #include <arm/arm32/machdep.h>
146 #include <arm/bootconfig.h>
147 #include <arm/db_machdep.h>
148 #include <arm/locore.h>
149 #include <arm/undefined.h>
150 
151 #if defined(FDT)
152 #include <arch/evbarm/fdt/platform.h>
153 #include <arm/fdt/arm_fdtvar.h>
154 #include <dev/fdt/fdt_memory.h>
155 #endif
156 
157 #ifdef MULTIPROCESSOR
158 #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
159 #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
160 #endif
161 #endif
162 
163 #ifdef VERBOSE_INIT_ARM
164 #define VPRINTF(...)	printf(__VA_ARGS__)
165 #else
166 #define VPRINTF(...)	__nothing
167 #endif
168 
169 #if defined(__HAVE_GENERIC_START)
170 #if defined(KERNEL_BASE_VOFFSET)
171 #error KERNEL_BASE_VOFFSET should not be defined with __HAVE_GENERIC_START
172 #endif
173 #endif
174 
175 #if defined(EFI_RUNTIME)
176 #if !defined(ARM_MMU_EXTENDED)
177 #error EFI_RUNTIME is only supported with ARM_MMU_EXTENDED
178 #endif
179 #endif
180 
181 struct bootmem_info bootmem_info;
182 
183 extern void *msgbufaddr;
184 paddr_t msgbufphys;
185 paddr_t physical_start;
186 paddr_t physical_end;
187 
188 extern char etext[];
189 extern char __data_start[], _edata[];
190 extern char __bss_start[], __bss_end__[];
191 extern char _end[];
192 
193 /* Page tables for mapping kernel VM */
194 #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
195 
196 #ifdef KASAN
197 vaddr_t kasan_kernelstart;
198 vaddr_t kasan_kernelsize;
199 
200 #define	KERNEL_L2PT_KASAN_NUM	howmany(VM_KERNEL_KASAN_SIZE, L2_S_SEGSIZE)
201 bool kasan_l2pts_created  __attribute__((__section__(".data"))) = false;
202 pv_addr_t kasan_l2pt[KERNEL_L2PT_KASAN_NUM];
203 #else
204 #define KERNEL_L2PT_KASAN_NUM	0
205 #endif
206 
207 u_long kern_vtopdiff __attribute__((__section__(".data")));
208 
209 void
arm32_bootmem_init(paddr_t memstart,psize_t memsize,vsize_t kernelstart)210 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
211 {
212 	struct bootmem_info * const bmi = &bootmem_info;
213 	pv_addr_t *pv = bmi->bmi_freeblocks;
214 
215 	/*
216 	 * FDT/generic start fills in kern_vtopdiff early
217 	 */
218 #if defined(__HAVE_GENERIC_START)
219 	extern char KERNEL_BASE_virt[];
220 	extern char const __stop__init_memory[];
221 
222 	VPRINTF("%s: kern_vtopdiff=%#lx\n", __func__, kern_vtopdiff);
223 
224 	vaddr_t kstartva = trunc_page((vaddr_t)KERNEL_BASE_virt);
225 	vaddr_t kendva = round_page((vaddr_t)__stop__init_memory);
226 
227 	kernelstart = KERN_VTOPHYS(kstartva);
228 
229 	VPRINTF("%s: kstartva=%#lx, kernelstart=%#lx\n", __func__, kstartva, kernelstart);
230 #else
231 	vaddr_t kendva = round_page((vaddr_t)_end);
232 
233 #if defined(KERNEL_BASE_VOFFSET)
234 	kern_vtopdiff = KERNEL_BASE_VOFFSET;
235 #else
236 	KASSERT(memstart == kernelstart);
237 	kern_vtopdiff = KERNEL_BASE + memstart;
238 #endif
239 #endif
240 	paddr_t kernelend = KERN_VTOPHYS(kendva);
241 
242 	VPRINTF("%s: memstart=%#lx, memsize=%#lx\n", __func__,
243 	    memstart, memsize);
244 	VPRINTF("%s: kernelstart=%#lx, kernelend=%#lx\n", __func__,
245 	    kernelstart, kernelend);
246 
247 	physical_start = bmi->bmi_start = memstart;
248 	physical_end = bmi->bmi_end = memstart + memsize;
249 #ifndef ARM_HAS_LPAE
250 	if (physical_end == 0) {
251 		physical_end = -PAGE_SIZE;
252 		memsize -= PAGE_SIZE;
253 		bmi->bmi_end -= PAGE_SIZE;
254 		VPRINTF("%s: memsize shrunk by a page to avoid ending at 4GB\n",
255 		    __func__);
256 	}
257 #endif
258 	physmem = memsize / PAGE_SIZE;
259 
260 	/*
261 	 * Let's record where the kernel lives.
262 	 */
263 
264 	bmi->bmi_kernelstart = kernelstart;
265 	bmi->bmi_kernelend = kernelend;
266 
267 #if defined(FDT)
268 	fdt_memory_remove_range(bmi->bmi_kernelstart,
269 	    bmi->bmi_kernelend - bmi->bmi_kernelstart);
270 #endif
271 
272 	VPRINTF("%s: kernel phys start %#lx end %#lx\n", __func__, kernelstart,
273 	    kernelend);
274 
275 #if 0
276 	// XXX Makes RPI abort
277 	KASSERT((kernelstart & (L2_S_SEGSIZE - 1)) == 0);
278 #endif
279 	/*
280 	 * Now the rest of the free memory must be after the kernel.
281 	 */
282 	pv->pv_pa = bmi->bmi_kernelend;
283 	pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
284 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
285 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
286 	VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
287 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
288 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
289 	pv++;
290 
291 	/*
292 	 * Add a free block for any memory before the kernel.
293 	 */
294 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
295 		pv->pv_pa = bmi->bmi_start;
296 		pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
297 		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
298 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
299 		VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
300 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
301 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
302 		pv++;
303 	}
304 
305 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
306 
307 	SLIST_INIT(&bmi->bmi_freechunks);
308 	SLIST_INIT(&bmi->bmi_chunks);
309 }
310 
311 static bool
concat_pvaddr(pv_addr_t * acc_pv,pv_addr_t * pv)312 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
313 {
314 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
315 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
316 	    && acc_pv->pv_prot == pv->pv_prot
317 	    && acc_pv->pv_cache == pv->pv_cache) {
318 #if 0
319 		VPRINTF("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
320 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size,
321 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size);
322 #endif
323 		acc_pv->pv_size += pv->pv_size;
324 		return true;
325 	}
326 
327 	return false;
328 }
329 
330 static void
add_pages(struct bootmem_info * bmi,pv_addr_t * pv)331 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
332 {
333 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
334 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
335 		pv_addr_t * const pv0 = (*pvp);
336 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
337 		if (concat_pvaddr(pv0, pv)) {
338 			VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
339 			    __func__, "appending", pv,
340 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
341 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
342 			pv = SLIST_NEXT(pv0, pv_list);
343 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
344 				VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
345 				    __func__, "merging", pv,
346 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
347 				    pv0->pv_pa,
348 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
349 				SLIST_REMOVE_AFTER(pv0, pv_list);
350 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
351 			}
352 			return;
353 		}
354 		KASSERT(pv->pv_va != (*pvp)->pv_va);
355 		pvp = &SLIST_NEXT(*pvp, pv_list);
356 	}
357 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
358 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
359 	KASSERT(new_pv != NULL);
360 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
361 	*new_pv = *pv;
362 	SLIST_NEXT(new_pv, pv_list) = *pvp;
363 	(*pvp) = new_pv;
364 
365 	VPRINTF("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
366 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
367 	    new_pv->pv_size / PAGE_SIZE);
368 	if (SLIST_NEXT(new_pv, pv_list)) {
369 		VPRINTF("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
370 	} else {
371 		VPRINTF("at tail\n");
372 	}
373 }
374 
375 static void
valloc_pages(struct bootmem_info * bmi,pv_addr_t * pv,size_t npages,int prot,int cache,bool zero_p)376 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
377     int prot, int cache, bool zero_p)
378 {
379 	size_t nbytes = npages * PAGE_SIZE;
380 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
381 	size_t free_idx = 0;
382 	static bool l1pt_found;
383 
384 	KASSERT(npages > 0);
385 
386 	/*
387 	 * If we haven't allocated the kernel L1 page table and we are aligned
388 	 * at a L1 table boundary, alloc the memory for it.
389 	 */
390 	if (!l1pt_found
391 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
392 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
393 		l1pt_found = true;
394 		VPRINTF(" l1pt");
395 
396 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
397 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
398 		add_pages(bmi, &kernel_l1pt);
399 #if defined(EFI_RUNTIME)
400 		valloc_pages(bmi, &efirt_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
401 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
402 		add_pages(bmi, &efirt_l1pt);
403 #endif
404 	}
405 
406 	while (nbytes > free_pv->pv_size) {
407 		free_pv++;
408 		free_idx++;
409 		if (free_idx == bmi->bmi_nfreeblocks) {
410 			panic("%s: could not allocate %zu bytes",
411 			    __func__, nbytes);
412 		}
413 	}
414 
415 	/*
416 	 * As we allocate the memory, make sure that we don't walk over
417 	 * our current first level translation table.
418 	 */
419 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
420 
421 #if defined(FDT)
422 	fdt_memory_remove_range(free_pv->pv_pa, nbytes);
423 #endif
424 	pv->pv_pa = free_pv->pv_pa;
425 	pv->pv_va = free_pv->pv_va;
426 	pv->pv_size = nbytes;
427 	pv->pv_prot = prot;
428 	pv->pv_cache = cache;
429 
430 	/*
431 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
432 	 * just use PTE_CACHE.
433 	 */
434 	if (cache == PTE_PAGETABLE
435 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
436 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
437 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
438 		pv->pv_cache = PTE_CACHE;
439 
440 	free_pv->pv_pa += nbytes;
441 	free_pv->pv_va += nbytes;
442 	free_pv->pv_size -= nbytes;
443 	if (free_pv->pv_size == 0) {
444 		--bmi->bmi_nfreeblocks;
445 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
446 			free_pv[0] = free_pv[1];
447 		}
448 	}
449 
450 	bmi->bmi_freepages -= npages;
451 
452 	if (zero_p)
453 		memset((void *)pv->pv_va, 0, nbytes);
454 }
455 
456 void
arm32_kernel_vm_init(vaddr_t kernel_vm_base,vaddr_t vectors,vaddr_t iovbase,const struct pmap_devmap * devmap,bool mapallmem_p)457 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
458     const struct pmap_devmap *devmap, bool mapallmem_p)
459 {
460 	struct bootmem_info * const bmi = &bootmem_info;
461 #ifdef MULTIPROCESSOR
462 	const size_t cpu_num = arm_cpu_max;
463 #else
464 	const size_t cpu_num = 1;
465 #endif
466 
467 #ifdef ARM_HAS_VBAR
468 	const bool map_vectors_p = false;
469 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
470 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
471 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
472 #else
473 	const bool map_vectors_p = true;
474 #endif
475 
476 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
477 	KASSERT(mapallmem_p);
478 #ifdef ARM_MMU_EXTENDED
479 	/*
480 	 * The direct map VA space ends at the start of the kernel VM space.
481 	 */
482 	pmap_directlimit = kernel_vm_base;
483 #else
484 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
485 #endif /* ARM_MMU_EXTENDED */
486 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
487 
488 	/*
489 	 * Calculate the number of L2 pages needed for mapping the
490 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
491 	 * and 1 for IO
492 	 */
493 	size_t kernel_size = bmi->bmi_kernelend;
494 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
495 	kernel_size += L1_TABLE_SIZE;
496 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
497 	kernel_size += PAGE_SIZE * KERNEL_L2PT_KASAN_NUM;
498 	if (map_vectors_p) {
499 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
500 	}
501 	if (iovbase) {
502 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
503 	}
504 	kernel_size +=
505 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
506 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
507 	kernel_size += round_page(MSGBUFSIZE);
508 	kernel_size += 0x10000;	/* slop */
509 	if (!mapallmem_p) {
510 		kernel_size += PAGE_SIZE
511 		    * howmany(kernel_size, L2_S_SEGSIZE);
512 	}
513 	kernel_size = round_page(kernel_size);
514 
515 	/*
516 	 * Now we know how many L2 pages it will take.
517 	 */
518 	const size_t KERNEL_L2PT_KERNEL_NUM =
519 	    howmany(kernel_size, L2_S_SEGSIZE);
520 
521 	VPRINTF("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
522 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
523 
524 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
525 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
526 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
527 	pv_addr_t msgbuf;
528 	pv_addr_t text;
529 	pv_addr_t data;
530 	pv_addr_t chunks[__arraycount(bmi->bmi_l2pts) + 11];
531 #if ARM_MMU_XSCALE == 1
532 	pv_addr_t minidataclean;
533 #endif
534 
535 	/*
536 	 * We need to allocate some fixed page tables to get the kernel going.
537 	 *
538 	 * We are going to allocate our bootstrap pages from the beginning of
539 	 * the free space that we just calculated.  We allocate one page
540 	 * directory and a number of page tables and store the physical
541 	 * addresses in the bmi_l2pts array in bootmem_info.
542 	 *
543 	 * The kernel page directory must be on a 16K boundary.  The page
544 	 * tables must be on 4K boundaries.  What we do is allocate the
545 	 * page directory on the first 16K boundary that we encounter, and
546 	 * the page tables on 4K boundaries otherwise.  Since we allocate
547 	 * at least 3 L2 page tables, we are guaranteed to encounter at
548 	 * least one 16K aligned region.
549 	 */
550 
551 	VPRINTF("%s: allocating page tables for", __func__);
552 	for (size_t i = 0; i < __arraycount(chunks); i++) {
553 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
554 	}
555 
556 	kernel_l1pt.pv_pa = 0;
557 	kernel_l1pt.pv_va = 0;
558 
559 #if defined(EFI_RUNTIME)
560 	efirt_l1pt.pv_pa = 0;
561 	efirt_l1pt.pv_va = 0;
562 #endif
563 	/*
564 	 * Allocate the L2 pages, but if we get to a page that is aligned for
565 	 * an L1 page table, we will allocate the pages for it first and then
566 	 * allocate the L2 page.
567 	 */
568 
569 	if (map_vectors_p) {
570 		/*
571 		 * First allocate L2 page for the vectors.
572 		 */
573 		VPRINTF(" vector");
574 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
575 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
576 		add_pages(bmi, &bmi->bmi_vector_l2pt);
577 	}
578 
579 	/*
580 	 * Now allocate L2 pages for the kernel
581 	 */
582 	VPRINTF(" kernel");
583 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
584 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
585 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
586 		add_pages(bmi, &kernel_l2pt[idx]);
587 	}
588 
589 	/*
590 	 * Now allocate L2 pages for the initial kernel VA space.
591 	 */
592 	VPRINTF(" vm");
593 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
594 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
595 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
596 		add_pages(bmi, &vmdata_l2pt[idx]);
597 	}
598 
599 #ifdef KASAN
600 	/*
601 	 * Now allocate L2 pages for the KASAN shadow map l2pt VA space.
602 	 */
603 	VPRINTF(" kasan");
604 	for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; ++idx) {
605 		valloc_pages(bmi, &kasan_l2pt[idx], 1,
606 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
607 		add_pages(bmi, &kasan_l2pt[idx]);
608 	}
609 
610 #endif
611 	/*
612 	 * If someone wanted a L2 page for I/O, allocate it now.
613 	 */
614 	if (iovbase) {
615 		VPRINTF(" io");
616 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
617 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
618 		add_pages(bmi, &bmi->bmi_io_l2pt);
619 	}
620 
621 	VPRINTF("%s: allocating stacks\n", __func__);
622 
623 	/* Allocate stacks for all modes and CPUs */
624 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
625 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
626 	add_pages(bmi, &abtstack);
627 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
628 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
629 	add_pages(bmi, &fiqstack);
630 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
631 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
632 	add_pages(bmi, &irqstack);
633 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
634 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
635 	add_pages(bmi, &undstack);
636 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
637 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
638 	add_pages(bmi, &idlestack);
639 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
640 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
641 	add_pages(bmi, &kernelstack);
642 
643 	/* Allocate the message buffer from the end of memory. */
644 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
645 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
646 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, false);
647 	add_pages(bmi, &msgbuf);
648 	msgbufphys = msgbuf.pv_pa;
649 	msgbufaddr = (void *)msgbuf.pv_va;
650 
651 #ifdef KASAN
652 	kasan_kernelstart = KERNEL_BASE;
653 	kasan_kernelsize = (msgbuf.pv_va + round_page(MSGBUFSIZE)) - KERNEL_BASE;
654 #endif
655 
656 	if (map_vectors_p) {
657 		/*
658 		 * Allocate a page for the system vector page.
659 		 * This page will just contain the system vectors and can be
660 		 * shared by all processes.
661 		 */
662 		VPRINTF(" vector");
663 
664 		valloc_pages(bmi, &systempage, 1,
665 		    VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE,
666 		    PTE_CACHE, true);
667 	}
668 	systempage.pv_va = vectors;
669 
670 	/*
671 	 * If the caller needed a few extra pages for some reason, allocate
672 	 * them now.
673 	 */
674 #if ARM_MMU_XSCALE == 1
675 #if (ARM_NMMUS > 1)
676 	if (xscale_use_minidata)
677 #endif
678 		valloc_pages(bmi, &minidataclean, 1,
679 		    VM_PROT_READ | VM_PROT_WRITE, 0, true);
680 #endif
681 
682 	/*
683 	 * Ok we have allocated physical pages for the primary kernel
684 	 * page tables and stacks.  Let's just confirm that.
685 	 */
686 	if (kernel_l1pt.pv_va == 0
687 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
688 		panic("%s: Failed to allocate or align the kernel "
689 		    "page directory", __func__);
690 
691 	VPRINTF("Creating L1 page table at 0x%08lx/0x%08lx\n",
692 	    kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
693 
694 	/*
695 	 * Now we start construction of the L1 page table
696 	 * We start by mapping the L2 page tables into the L1.
697 	 * This means that we can replace L1 mappings later on if necessary
698 	 */
699 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
700 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
701 
702 	if (map_vectors_p) {
703 		/* Map the L2 pages tables in the L1 page table */
704 		const vaddr_t va = systempage.pv_va & -L2_S_SEGSIZE;
705 
706 		pmap_link_l2pt(l1pt_va, va,  &bmi->bmi_vector_l2pt);
707 
708 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
709 		    __func__, bmi->bmi_vector_l2pt.pv_va,
710 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va, "(vectors)");
711 	}
712 
713 	/*
714 	 * This enforces an alignment requirement of L2_S_SEGSIZE for kernel
715 	 * start PA
716 	 */
717 	const vaddr_t kernel_base =
718 	    KERN_PHYSTOV(bmi->bmi_kernelstart & -L2_S_SEGSIZE);
719 
720 	VPRINTF("%s: kernel_base %lx KERNEL_L2PT_KERNEL_NUM %zu\n", __func__,
721 	    kernel_base, KERNEL_L2PT_KERNEL_NUM);
722 
723 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
724 		const vaddr_t va = kernel_base + idx * L2_S_SEGSIZE;
725 
726 		pmap_link_l2pt(l1pt_va, va, &kernel_l2pt[idx]);
727 
728 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
729 		    __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
730 		    va, "(kernel)");
731 	}
732 
733 	VPRINTF("%s: kernel_vm_base %lx KERNEL_L2PT_VMDATA_NUM %d\n", __func__,
734 	    kernel_vm_base, KERNEL_L2PT_VMDATA_NUM);
735 
736 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
737 		const vaddr_t va = kernel_vm_base + idx * L2_S_SEGSIZE;
738 
739 		pmap_link_l2pt(l1pt_va, va, &vmdata_l2pt[idx]);
740 
741 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
742 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
743 		    va, "(vm)");
744 	}
745 	if (iovbase) {
746 		const vaddr_t va = iovbase & -L2_S_SEGSIZE;
747 
748 		pmap_link_l2pt(l1pt_va, va, &bmi->bmi_io_l2pt);
749 
750 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
751 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
752 		    va, "(io)");
753 	}
754 
755 #ifdef KASAN
756 	VPRINTF("%s: kasan_shadow_base %x KERNEL_L2PT_KASAN_NUM %d\n", __func__,
757 	    VM_KERNEL_KASAN_BASE, KERNEL_L2PT_KASAN_NUM);
758 
759 	for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; idx++) {
760 		const vaddr_t va = VM_KERNEL_KASAN_BASE  + idx * L2_S_SEGSIZE;
761 
762 		pmap_link_l2pt(l1pt_va, va, &kasan_l2pt[idx]);
763 
764 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
765 		    __func__, kasan_l2pt[idx].pv_va, kasan_l2pt[idx].pv_pa,
766 		    va, "(kasan)");
767 	}
768 	kasan_l2pts_created = true;
769 #endif
770 
771 	/* update the top of the kernel VM */
772 	pmap_curmaxkvaddr =
773 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
774 
775 	// This could be done earlier and then the kernel data and pages
776 	// allocated above would get merged (concatentated)
777 
778 	VPRINTF("Mapping kernel\n");
779 
780 	extern char etext[];
781 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
782 	size_t textsize = KERN_VTOPHYS((uintptr_t)etext) - bmi->bmi_kernelstart;
783 
784 	textsize = (textsize + PGOFSET) & ~PGOFSET;
785 
786 	/* start at offset of kernel in RAM */
787 
788 	text.pv_pa = bmi->bmi_kernelstart;
789 	text.pv_va = KERN_PHYSTOV(bmi->bmi_kernelstart);
790 	text.pv_size = textsize;
791 	text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
792 	text.pv_cache = PTE_CACHE;
793 
794 	VPRINTF("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
795 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
796 
797 	add_pages(bmi, &text);
798 
799 	data.pv_pa = text.pv_pa + textsize;
800 	data.pv_va = text.pv_va + textsize;
801 	data.pv_size = totalsize - textsize;
802 	data.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
803 	data.pv_cache = PTE_CACHE;
804 
805 	VPRINTF("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
806 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
807 
808 	add_pages(bmi, &data);
809 
810 	VPRINTF("Listing Chunks\n");
811 
812 	pv_addr_t *lpv;
813 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
814 		VPRINTF("%s: pv %p: chunk VA %#lx..%#lx "
815 		    "(PA %#lx, prot %d, cache %d)\n",
816 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
817 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
818 	}
819 	VPRINTF("\nMapping Chunks\n");
820 
821 	pv_addr_t cur_pv;
822 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
823 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
824 		cur_pv = *pv;
825 		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
826 		pv = SLIST_NEXT(pv, pv_list);
827 	} else {
828 		cur_pv.pv_va = KERNEL_BASE;
829 		cur_pv.pv_pa = KERN_VTOPHYS(cur_pv.pv_va);
830 		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
831 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
832 		cur_pv.pv_cache = PTE_CACHE;
833 	}
834 	while (pv != NULL) {
835 		if (mapallmem_p) {
836 			if (concat_pvaddr(&cur_pv, pv)) {
837 				pv = SLIST_NEXT(pv, pv_list);
838 				continue;
839 			}
840 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
841 				/*
842 				 * See if we can extend the current pv to emcompass the
843 				 * hole, and if so do it and retry the concatenation.
844 				 */
845 				if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
846 				    && cur_pv.pv_cache == PTE_CACHE) {
847 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
848 					continue;
849 				}
850 
851 				/*
852 				 * We couldn't so emit the current chunk and then
853 				 */
854 				VPRINTF("%s: mapping chunk VA %#lx..%#lx "
855 				    "(PA %#lx, prot %d, cache %d)\n",
856 				    __func__,
857 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
858 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
859 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
860 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
861 
862 				/*
863 				 * set the current chunk to the hole and try again.
864 				 */
865 				cur_pv.pv_pa += cur_pv.pv_size;
866 				cur_pv.pv_va += cur_pv.pv_size;
867 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
868 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
869 				cur_pv.pv_cache = PTE_CACHE;
870 				continue;
871 			}
872 		}
873 
874 		/*
875 		 * The new pv didn't concatenate so emit the current one
876 		 * and use the new pv as the current pv.
877 		 */
878 		VPRINTF("%s: mapping chunk VA %#lx..%#lx "
879 		    "(PA %#lx, prot %d, cache %d)\n",
880 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
881 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
882 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
883 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
884 		cur_pv = *pv;
885 		pv = SLIST_NEXT(pv, pv_list);
886 	}
887 
888 	/*
889 	 * If we are mapping all of memory, let's map the rest of memory.
890 	 */
891 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
892 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
893 		    && cur_pv.pv_cache == PTE_CACHE) {
894 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
895 		} else {
896 			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
897 			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
898 			    kernel_vm_base);
899 			VPRINTF("%s: mapping chunk VA %#lx..%#lx "
900 			    "(PA %#lx, prot %d, cache %d)\n",
901 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
902 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
903 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
904 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
905 			cur_pv.pv_pa += cur_pv.pv_size;
906 			cur_pv.pv_va += cur_pv.pv_size;
907 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
908 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
909 			cur_pv.pv_cache = PTE_CACHE;
910 		}
911 	}
912 
913 	/*
914 	 * The amount we can direct map is limited by the start of the
915 	 * virtual part of the kernel address space.  Don't overrun
916 	 * into it.
917 	 */
918 	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
919 		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
920 	}
921 
922 	/*
923 	 * Now we map the final chunk.
924 	 */
925 	VPRINTF("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
926 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
927 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
928 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
929 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
930 
931 	/*
932 	 * Now we map the stuff that isn't directly after the kernel
933 	 */
934 	if (map_vectors_p) {
935 		/* Map the vector page. */
936 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
937 		    VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE, PTE_CACHE);
938 	}
939 
940 	/* Map the Mini-Data cache clean area. */
941 #if ARM_MMU_XSCALE == 1
942 #if (ARM_NMMUS > 1)
943 	if (xscale_use_minidata)
944 #endif
945 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
946 		    minidataclean.pv_pa);
947 #endif
948 
949 	/*
950 	 * Map integrated peripherals at same address in first level page
951 	 * table so that we can continue to use console.
952 	 */
953 	if (devmap)
954 		pmap_devmap_bootstrap(l1pt_va, devmap);
955 
956 	/* Tell the user about where all the bits and pieces live. */
957 	VPRINTF("%22s       Physical              Virtual        Num\n", " ");
958 	VPRINTF("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
959 
960 #ifdef VERBOSE_INIT_ARM
961 	static const char mem_fmt[] =
962 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
963 	static const char mem_fmt_nov[] =
964 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
965 #endif
966 
967 #if 0
968 	// XXX Doesn't make sense if kernel not at bottom of RAM
969 	VPRINTF(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
970 	    KERN_PHYSTOV(bmi->bmi_start), KERN_PHYSTOV(bmi->bmi_end - 1),
971 	    (int)physmem);
972 #endif
973 	VPRINTF(mem_fmt, "text section",
974 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
975 	       text.pv_va, text.pv_va + text.pv_size - 1,
976 	       (int)(text.pv_size / PAGE_SIZE));
977 	VPRINTF(mem_fmt, "data section",
978 	       KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
979 	       (vaddr_t)__data_start, (vaddr_t)_edata,
980 	       (int)((round_page((vaddr_t)_edata)
981 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
982 	VPRINTF(mem_fmt, "bss section",
983 	       KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
984 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
985 	       (int)((round_page((vaddr_t)__bss_end__)
986 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
987 	VPRINTF(mem_fmt, "L1 page directory",
988 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
989 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
990 	    L1_TABLE_SIZE / PAGE_SIZE);
991 #if defined(EFI_RUNTIME)
992 	VPRINTF(mem_fmt, "EFI L1 page directory",
993 	    efirt_l1pt.pv_pa, efirt_l1pt.pv_pa + L1_TABLE_SIZE - 1,
994 	    efirt_l1pt.pv_va, efirt_l1pt.pv_va + L1_TABLE_SIZE - 1,
995 	    L1_TABLE_SIZE / PAGE_SIZE);
996 #endif
997 	VPRINTF(mem_fmt, "ABT stack (CPU 0)",
998 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
999 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1000 	    ABT_STACK_SIZE);
1001 	VPRINTF(mem_fmt, "FIQ stack (CPU 0)",
1002 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1003 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1004 	    FIQ_STACK_SIZE);
1005 	VPRINTF(mem_fmt, "IRQ stack (CPU 0)",
1006 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1007 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1008 	    IRQ_STACK_SIZE);
1009 	VPRINTF(mem_fmt, "UND stack (CPU 0)",
1010 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1011 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1012 	    UND_STACK_SIZE);
1013 	VPRINTF(mem_fmt, "IDLE stack (CPU 0)",
1014 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
1015 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
1016 	    UPAGES);
1017 	VPRINTF(mem_fmt, "SVC stack",
1018 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
1019 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
1020 	    UPAGES);
1021 	VPRINTF(mem_fmt, "Message Buffer",
1022 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
1023 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
1024 	    (int)msgbuf_pgs);
1025 	if (map_vectors_p) {
1026 		VPRINTF(mem_fmt, "Exception Vectors",
1027 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1028 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
1029 		    1);
1030 	}
1031 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
1032 		pv = &bmi->bmi_freeblocks[i];
1033 
1034 		VPRINTF(mem_fmt_nov, "Free Memory",
1035 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
1036 		    pv->pv_size / PAGE_SIZE);
1037 	}
1038 	/*
1039 	 * Now we have the real page tables in place so we can switch to them.
1040 	 * Once this is done we will be running with the REAL kernel page
1041 	 * tables.
1042 	 */
1043 
1044 	VPRINTF("TTBR0=%#x", armreg_ttbr_read());
1045 #ifdef _ARM_ARCH_6
1046 	VPRINTF(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
1047 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
1048 	    armreg_contextidr_read());
1049 #endif
1050 	VPRINTF("\n");
1051 
1052 	/* Switch tables */
1053 	VPRINTF("switching to new L1 page table @%#lx...\n", l1pt_pa);
1054 
1055 	cpu_ttb = l1pt_pa;
1056 
1057 	cpu_domains(DOMAIN_DEFAULT);
1058 
1059 	cpu_idcache_wbinv_all();
1060 
1061 #ifdef __HAVE_GENERIC_START
1062 
1063 	/*
1064 	 * Turn on caches and set SCTLR/ACTLR
1065 	 */
1066 	cpu_setup(boot_args);
1067 #endif
1068 
1069 	VPRINTF(" ttb");
1070 
1071 #ifdef ARM_MMU_EXTENDED
1072 	/*
1073 	 * TTBCR should have been initialized by the MD start code.
1074 	 */
1075 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
1076 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
1077 	/*
1078 	 * Disable lookups via TTBR0 until there is an activated pmap.
1079 	 */
1080 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
1081 	cpu_setttb(l1pt_pa, KERNEL_PID);
1082 	isb();
1083 #else
1084 	cpu_setttb(l1pt_pa, true);
1085 #endif
1086 
1087 	cpu_tlb_flushID();
1088 
1089 #ifdef KASAN
1090 	extern uint8_t start_stacks_bottom[];
1091 	kasan_early_init((void *)start_stacks_bottom);
1092 #endif
1093 
1094 #ifdef ARM_MMU_EXTENDED
1095 	VPRINTF("\nsctlr=%#x actlr=%#x\n",
1096 	    armreg_sctlr_read(), armreg_auxctl_read());
1097 #else
1098 	VPRINTF(" (TTBR0=%#x)", armreg_ttbr_read());
1099 #endif
1100 
1101 #ifdef MULTIPROCESSOR
1102 #ifndef __HAVE_GENERIC_START
1103 	/*
1104 	 * Kick the secondaries to load the TTB.  After which they'll go
1105 	 * back to sleep to wait for the final kick so they will hatch.
1106 	 */
1107 	VPRINTF(" hatchlings");
1108 	cpu_boot_secondary_processors();
1109 #endif
1110 #endif
1111 
1112 	VPRINTF(" OK\n");
1113 }
1114