xref: /openbsd-src/sys/dev/pci/drm/i915/i915_vgpu.c (revision 1bb76ff151c0aba8e3312a604e4cd2e5195cf4b7)
1 /*
2  * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "i915_drv.h"
25 #include "i915_pvinfo.h"
26 #include "i915_vgpu.h"
27 
28 /**
29  * DOC: Intel GVT-g guest support
30  *
31  * Intel GVT-g is a graphics virtualization technology which shares the
32  * GPU among multiple virtual machines on a time-sharing basis. Each
33  * virtual machine is presented a virtual GPU (vGPU), which has equivalent
34  * features as the underlying physical GPU (pGPU), so i915 driver can run
35  * seamlessly in a virtual machine. This file provides vGPU specific
36  * optimizations when running in a virtual machine, to reduce the complexity
37  * of vGPU emulation and to improve the overall performance.
38  *
39  * A primary function introduced here is so-called "address space ballooning"
40  * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
41  * so each VM can directly access a portion of the memory without hypervisor's
42  * intervention, e.g. filling textures or queuing commands. However with the
43  * partitioning an unmodified i915 driver would assume a smaller graphics
44  * memory starting from address ZERO, then requires vGPU emulation module to
45  * translate the graphics address between 'guest view' and 'host view', for
46  * all registers and command opcodes which contain a graphics memory address.
47  * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
48  * by telling the exact partitioning knowledge to each guest i915 driver, which
49  * then reserves and prevents non-allocated portions from allocation. Thus vGPU
50  * emulation module only needs to scan and validate graphics addresses without
51  * complexity of address translation.
52  *
53  */
54 
55 /**
56  * intel_vgpu_detect - detect virtual GPU
57  * @dev_priv: i915 device private
58  *
59  * This function is called at the initialization stage, to detect whether
60  * running on a vGPU.
61  */
intel_vgpu_detect(struct drm_i915_private * dev_priv)62 void intel_vgpu_detect(struct drm_i915_private *dev_priv)
63 {
64 #ifdef notyet
65 	struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
66 	u64 magic;
67 	u16 version_major;
68 	void __iomem *shared_area;
69 
70 	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
71 
72 	/*
73 	 * This is called before we setup the main MMIO BAR mappings used via
74 	 * the uncore structure, so we need to access the BAR directly. Since
75 	 * we do not support VGT on older gens, return early so we don't have
76 	 * to consider differently numbered or sized MMIO bars
77 	 */
78 	if (GRAPHICS_VER(dev_priv) < 6)
79 		return;
80 
81 	shared_area = pci_iomap_range(pdev, 0, VGT_PVINFO_PAGE, VGT_PVINFO_SIZE);
82 	if (!shared_area) {
83 		drm_err(&dev_priv->drm,
84 			"failed to map MMIO bar to check for VGT\n");
85 		return;
86 	}
87 
88 	magic = readq(shared_area + vgtif_offset(magic));
89 	if (magic != VGT_MAGIC)
90 		goto out;
91 
92 	version_major = readw(shared_area + vgtif_offset(version_major));
93 	if (version_major < VGT_VERSION_MAJOR) {
94 		drm_info(&dev_priv->drm, "VGT interface version mismatch!\n");
95 		goto out;
96 	}
97 
98 	dev_priv->vgpu.caps = readl(shared_area + vgtif_offset(vgt_caps));
99 
100 	dev_priv->vgpu.active = true;
101 	rw_init(&dev_priv->vgpu.lock, "vgpul");
102 	drm_info(&dev_priv->drm, "Virtual GPU for Intel GVT-g detected.\n");
103 
104 out:
105 	pci_iounmap(pdev, shared_area);
106 #endif
107 }
108 
intel_vgpu_register(struct drm_i915_private * i915)109 void intel_vgpu_register(struct drm_i915_private *i915)
110 {
111 	/*
112 	 * Notify a valid surface after modesetting, when running inside a VM.
113 	 */
114 	if (intel_vgpu_active(i915))
115 		intel_uncore_write(&i915->uncore, vgtif_reg(display_ready),
116 				   VGT_DRV_DISPLAY_READY);
117 }
118 
intel_vgpu_active(struct drm_i915_private * dev_priv)119 bool intel_vgpu_active(struct drm_i915_private *dev_priv)
120 {
121 	return dev_priv->vgpu.active;
122 }
123 
intel_vgpu_has_full_ppgtt(struct drm_i915_private * dev_priv)124 bool intel_vgpu_has_full_ppgtt(struct drm_i915_private *dev_priv)
125 {
126 	return dev_priv->vgpu.caps & VGT_CAPS_FULL_PPGTT;
127 }
128 
intel_vgpu_has_hwsp_emulation(struct drm_i915_private * dev_priv)129 bool intel_vgpu_has_hwsp_emulation(struct drm_i915_private *dev_priv)
130 {
131 	return dev_priv->vgpu.caps & VGT_CAPS_HWSP_EMULATION;
132 }
133 
intel_vgpu_has_huge_gtt(struct drm_i915_private * dev_priv)134 bool intel_vgpu_has_huge_gtt(struct drm_i915_private *dev_priv)
135 {
136 	return dev_priv->vgpu.caps & VGT_CAPS_HUGE_GTT;
137 }
138 
139 struct _balloon_info_ {
140 	/*
141 	 * There are up to 2 regions per mappable/unmappable graphic
142 	 * memory that might be ballooned. Here, index 0/1 is for mappable
143 	 * graphic memory, 2/3 for unmappable graphic memory.
144 	 */
145 	struct drm_mm_node space[4];
146 };
147 
148 static struct _balloon_info_ bl_info;
149 
vgt_deballoon_space(struct i915_ggtt * ggtt,struct drm_mm_node * node)150 static void vgt_deballoon_space(struct i915_ggtt *ggtt,
151 				struct drm_mm_node *node)
152 {
153 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
154 	if (!drm_mm_node_allocated(node))
155 		return;
156 
157 	drm_dbg(&dev_priv->drm,
158 		"deballoon space: range [0x%llx - 0x%llx] %llu KiB.\n",
159 		node->start,
160 		node->start + node->size,
161 		node->size / 1024);
162 
163 	ggtt->vm.reserved -= node->size;
164 	drm_mm_remove_node(node);
165 }
166 
167 /**
168  * intel_vgt_deballoon - deballoon reserved graphics address trunks
169  * @ggtt: the global GGTT from which we reserved earlier
170  *
171  * This function is called to deallocate the ballooned-out graphic memory, when
172  * driver is unloaded or when ballooning fails.
173  */
intel_vgt_deballoon(struct i915_ggtt * ggtt)174 void intel_vgt_deballoon(struct i915_ggtt *ggtt)
175 {
176 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
177 	int i;
178 
179 	if (!intel_vgpu_active(ggtt->vm.i915))
180 		return;
181 
182 	drm_dbg(&dev_priv->drm, "VGT deballoon.\n");
183 
184 	for (i = 0; i < 4; i++)
185 		vgt_deballoon_space(ggtt, &bl_info.space[i]);
186 }
187 
vgt_balloon_space(struct i915_ggtt * ggtt,struct drm_mm_node * node,unsigned long start,unsigned long end)188 static int vgt_balloon_space(struct i915_ggtt *ggtt,
189 			     struct drm_mm_node *node,
190 			     unsigned long start, unsigned long end)
191 {
192 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
193 	unsigned long size = end - start;
194 	int ret;
195 
196 	if (start >= end)
197 		return -EINVAL;
198 
199 	drm_info(&dev_priv->drm,
200 		 "balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
201 		 start, end, size / 1024);
202 	ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, node,
203 				   size, start, I915_COLOR_UNEVICTABLE,
204 				   0);
205 	if (!ret)
206 		ggtt->vm.reserved += size;
207 
208 	return ret;
209 }
210 
211 /**
212  * intel_vgt_balloon - balloon out reserved graphics address trunks
213  * @ggtt: the global GGTT from which to reserve
214  *
215  * This function is called at the initialization stage, to balloon out the
216  * graphic address space allocated to other vGPUs, by marking these spaces as
217  * reserved. The ballooning related knowledge(starting address and size of
218  * the mappable/unmappable graphic memory) is described in the vgt_if structure
219  * in a reserved mmio range.
220  *
221  * To give an example, the drawing below depicts one typical scenario after
222  * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
223  * out each for the mappable and the non-mappable part. From the vGPU1 point of
224  * view, the total size is the same as the physical one, with the start address
225  * of its graphic space being zero. Yet there are some portions ballooned out(
226  * the shadow part, which are marked as reserved by drm allocator). From the
227  * host point of view, the graphic address space is partitioned by multiple
228  * vGPUs in different VMs. ::
229  *
230  *                         vGPU1 view         Host view
231  *              0 ------> +-----------+     +-----------+
232  *                ^       |###########|     |   vGPU3   |
233  *                |       |###########|     +-----------+
234  *                |       |###########|     |   vGPU2   |
235  *                |       +-----------+     +-----------+
236  *         mappable GM    | available | ==> |   vGPU1   |
237  *                |       +-----------+     +-----------+
238  *                |       |###########|     |           |
239  *                v       |###########|     |   Host    |
240  *                +=======+===========+     +===========+
241  *                ^       |###########|     |   vGPU3   |
242  *                |       |###########|     +-----------+
243  *                |       |###########|     |   vGPU2   |
244  *                |       +-----------+     +-----------+
245  *       unmappable GM    | available | ==> |   vGPU1   |
246  *                |       +-----------+     +-----------+
247  *                |       |###########|     |           |
248  *                |       |###########|     |   Host    |
249  *                v       |###########|     |           |
250  *  total GM size ------> +-----------+     +-----------+
251  *
252  * Returns:
253  * zero on success, non-zero if configuration invalid or ballooning failed
254  */
intel_vgt_balloon(struct i915_ggtt * ggtt)255 int intel_vgt_balloon(struct i915_ggtt *ggtt)
256 {
257 	struct drm_i915_private *dev_priv = ggtt->vm.i915;
258 	struct intel_uncore *uncore = &dev_priv->uncore;
259 	unsigned long ggtt_end = ggtt->vm.total;
260 
261 	unsigned long mappable_base, mappable_size, mappable_end;
262 	unsigned long unmappable_base, unmappable_size, unmappable_end;
263 	int ret;
264 
265 	if (!intel_vgpu_active(ggtt->vm.i915))
266 		return 0;
267 
268 	mappable_base =
269 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.base));
270 	mappable_size =
271 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.size));
272 	unmappable_base =
273 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.base));
274 	unmappable_size =
275 	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.size));
276 
277 	mappable_end = mappable_base + mappable_size;
278 	unmappable_end = unmappable_base + unmappable_size;
279 
280 	drm_info(&dev_priv->drm, "VGT ballooning configuration:\n");
281 	drm_info(&dev_priv->drm,
282 		 "Mappable graphic memory: base 0x%lx size %ldKiB\n",
283 		 mappable_base, mappable_size / 1024);
284 	drm_info(&dev_priv->drm,
285 		 "Unmappable graphic memory: base 0x%lx size %ldKiB\n",
286 		 unmappable_base, unmappable_size / 1024);
287 
288 	if (mappable_end > ggtt->mappable_end ||
289 	    unmappable_base < ggtt->mappable_end ||
290 	    unmappable_end > ggtt_end) {
291 		drm_err(&dev_priv->drm, "Invalid ballooning configuration!\n");
292 		return -EINVAL;
293 	}
294 
295 	/* Unmappable graphic memory ballooning */
296 	if (unmappable_base > ggtt->mappable_end) {
297 		ret = vgt_balloon_space(ggtt, &bl_info.space[2],
298 					ggtt->mappable_end, unmappable_base);
299 
300 		if (ret)
301 			goto err;
302 	}
303 
304 	if (unmappable_end < ggtt_end) {
305 		ret = vgt_balloon_space(ggtt, &bl_info.space[3],
306 					unmappable_end, ggtt_end);
307 		if (ret)
308 			goto err_upon_mappable;
309 	}
310 
311 	/* Mappable graphic memory ballooning */
312 	if (mappable_base) {
313 		ret = vgt_balloon_space(ggtt, &bl_info.space[0],
314 					0, mappable_base);
315 
316 		if (ret)
317 			goto err_upon_unmappable;
318 	}
319 
320 	if (mappable_end < ggtt->mappable_end) {
321 		ret = vgt_balloon_space(ggtt, &bl_info.space[1],
322 					mappable_end, ggtt->mappable_end);
323 
324 		if (ret)
325 			goto err_below_mappable;
326 	}
327 
328 	drm_info(&dev_priv->drm, "VGT balloon successfully\n");
329 	return 0;
330 
331 err_below_mappable:
332 	vgt_deballoon_space(ggtt, &bl_info.space[0]);
333 err_upon_unmappable:
334 	vgt_deballoon_space(ggtt, &bl_info.space[3]);
335 err_upon_mappable:
336 	vgt_deballoon_space(ggtt, &bl_info.space[2]);
337 err:
338 	drm_err(&dev_priv->drm, "VGT balloon fail\n");
339 	return ret;
340 }
341