xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/i915/gvt/scheduler.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: scheduler.c,v 1.2 2021/12/18 23:45:31 riastradh Exp $	*/
2 
3 /*
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *
28  * Contributors:
29  *    Ping Gao <ping.a.gao@intel.com>
30  *    Tina Zhang <tina.zhang@intel.com>
31  *    Chanbin Du <changbin.du@intel.com>
32  *    Min He <min.he@intel.com>
33  *    Bing Niu <bing.niu@intel.com>
34  *    Zhenyu Wang <zhenyuw@linux.intel.com>
35  *
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: scheduler.c,v 1.2 2021/12/18 23:45:31 riastradh Exp $");
40 
41 #include <linux/kthread.h>
42 
43 #include "gem/i915_gem_pm.h"
44 #include "gt/intel_context.h"
45 #include "gt/intel_ring.h"
46 
47 #include "i915_drv.h"
48 #include "i915_gem_gtt.h"
49 #include "gvt.h"
50 
51 #define RING_CTX_OFF(x) \
52 	offsetof(struct execlist_ring_context, x)
53 
set_context_pdp_root_pointer(struct execlist_ring_context * ring_context,u32 pdp[8])54 static void set_context_pdp_root_pointer(
55 		struct execlist_ring_context *ring_context,
56 		u32 pdp[8])
57 {
58 	int i;
59 
60 	for (i = 0; i < 8; i++)
61 		ring_context->pdps[i].val = pdp[7 - i];
62 }
63 
update_shadow_pdps(struct intel_vgpu_workload * workload)64 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
65 {
66 	struct drm_i915_gem_object *ctx_obj =
67 		workload->req->context->state->obj;
68 	struct execlist_ring_context *shadow_ring_context;
69 	struct page *page;
70 
71 	if (WARN_ON(!workload->shadow_mm))
72 		return;
73 
74 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
75 		return;
76 
77 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
78 	shadow_ring_context = kmap(page);
79 	set_context_pdp_root_pointer(shadow_ring_context,
80 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
81 	kunmap(page);
82 }
83 
84 /*
85  * when populating shadow ctx from guest, we should not overrride oa related
86  * registers, so that they will not be overlapped by guest oa configs. Thus
87  * made it possible to capture oa data from host for both host and guests.
88  */
sr_oa_regs(struct intel_vgpu_workload * workload,u32 * reg_state,bool save)89 static void sr_oa_regs(struct intel_vgpu_workload *workload,
90 		u32 *reg_state, bool save)
91 {
92 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
93 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
94 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
95 	int i = 0;
96 	u32 flex_mmio[] = {
97 		i915_mmio_reg_offset(EU_PERF_CNTL0),
98 		i915_mmio_reg_offset(EU_PERF_CNTL1),
99 		i915_mmio_reg_offset(EU_PERF_CNTL2),
100 		i915_mmio_reg_offset(EU_PERF_CNTL3),
101 		i915_mmio_reg_offset(EU_PERF_CNTL4),
102 		i915_mmio_reg_offset(EU_PERF_CNTL5),
103 		i915_mmio_reg_offset(EU_PERF_CNTL6),
104 	};
105 
106 	if (workload->ring_id != RCS0)
107 		return;
108 
109 	if (save) {
110 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
111 
112 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113 			u32 state_offset = ctx_flexeu0 + i * 2;
114 
115 			workload->flex_mmio[i] = reg_state[state_offset + 1];
116 		}
117 	} else {
118 		reg_state[ctx_oactxctrl] =
119 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
120 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
121 
122 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
123 			u32 state_offset = ctx_flexeu0 + i * 2;
124 			u32 mmio = flex_mmio[i];
125 
126 			reg_state[state_offset] = mmio;
127 			reg_state[state_offset + 1] = workload->flex_mmio[i];
128 		}
129 	}
130 }
131 
populate_shadow_context(struct intel_vgpu_workload * workload)132 static int populate_shadow_context(struct intel_vgpu_workload *workload)
133 {
134 	struct intel_vgpu *vgpu = workload->vgpu;
135 	struct intel_gvt *gvt = vgpu->gvt;
136 	int ring_id = workload->ring_id;
137 	struct drm_i915_gem_object *ctx_obj =
138 		workload->req->context->state->obj;
139 	struct execlist_ring_context *shadow_ring_context;
140 	struct page *page;
141 	void *dst;
142 	unsigned long context_gpa, context_page_num;
143 	int i;
144 
145 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
146 	shadow_ring_context = kmap(page);
147 
148 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
149 #define COPY_REG(name) \
150 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
151 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
152 #define COPY_REG_MASKED(name) {\
153 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
154 					      + RING_CTX_OFF(name.val),\
155 					      &shadow_ring_context->name.val, 4);\
156 		shadow_ring_context->name.val |= 0xffff << 16;\
157 	}
158 
159 	COPY_REG_MASKED(ctx_ctrl);
160 	COPY_REG(ctx_timestamp);
161 
162 	if (ring_id == RCS0) {
163 		COPY_REG(bb_per_ctx_ptr);
164 		COPY_REG(rcs_indirect_ctx);
165 		COPY_REG(rcs_indirect_ctx_offset);
166 	}
167 #undef COPY_REG
168 #undef COPY_REG_MASKED
169 
170 	intel_gvt_hypervisor_read_gpa(vgpu,
171 			workload->ring_context_gpa +
172 			sizeof(*shadow_ring_context),
173 			(void *)shadow_ring_context +
174 			sizeof(*shadow_ring_context),
175 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
176 
177 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
178 	kunmap(page);
179 
180 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
181 		return 0;
182 
183 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
184 			workload->ctx_desc.lrca);
185 
186 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
187 
188 	context_page_num = context_page_num >> PAGE_SHIFT;
189 
190 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
191 		context_page_num = 19;
192 
193 	i = 2;
194 	while (i < context_page_num) {
195 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
196 				(u32)((workload->ctx_desc.lrca + i) <<
197 				I915_GTT_PAGE_SHIFT));
198 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
199 			gvt_vgpu_err("Invalid guest context descriptor\n");
200 			return -EFAULT;
201 		}
202 
203 		page = i915_gem_object_get_page(ctx_obj, i);
204 		dst = kmap(page);
205 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
206 				I915_GTT_PAGE_SIZE);
207 		kunmap(page);
208 		i++;
209 	}
210 	return 0;
211 }
212 
is_gvt_request(struct i915_request * rq)213 static inline bool is_gvt_request(struct i915_request *rq)
214 {
215 	return intel_context_force_single_submission(rq->context);
216 }
217 
save_ring_hw_state(struct intel_vgpu * vgpu,int ring_id)218 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
219 {
220 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
221 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
222 	i915_reg_t reg;
223 
224 	reg = RING_INSTDONE(ring_base);
225 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
226 	reg = RING_ACTHD(ring_base);
227 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
228 	reg = RING_ACTHD_UDW(ring_base);
229 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
230 }
231 
shadow_context_status_change(struct notifier_block * nb,unsigned long action,void * data)232 static int shadow_context_status_change(struct notifier_block *nb,
233 		unsigned long action, void *data)
234 {
235 	struct i915_request *req = data;
236 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
237 				shadow_ctx_notifier_block[req->engine->id]);
238 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
239 	enum intel_engine_id ring_id = req->engine->id;
240 	struct intel_vgpu_workload *workload;
241 	unsigned long flags;
242 
243 	if (!is_gvt_request(req)) {
244 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
245 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
246 		    scheduler->engine_owner[ring_id]) {
247 			/* Switch ring from vGPU to host. */
248 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
249 					      NULL, ring_id);
250 			scheduler->engine_owner[ring_id] = NULL;
251 		}
252 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
253 
254 		return NOTIFY_OK;
255 	}
256 
257 	workload = scheduler->current_workload[ring_id];
258 	if (unlikely(!workload))
259 		return NOTIFY_OK;
260 
261 	switch (action) {
262 	case INTEL_CONTEXT_SCHEDULE_IN:
263 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
264 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
265 			/* Switch ring from host to vGPU or vGPU to vGPU. */
266 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
267 					      workload->vgpu, ring_id);
268 			scheduler->engine_owner[ring_id] = workload->vgpu;
269 		} else
270 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
271 				      ring_id, workload->vgpu->id);
272 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
273 		atomic_set(&workload->shadow_ctx_active, 1);
274 		break;
275 	case INTEL_CONTEXT_SCHEDULE_OUT:
276 		save_ring_hw_state(workload->vgpu, ring_id);
277 		atomic_set(&workload->shadow_ctx_active, 0);
278 		break;
279 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
280 		save_ring_hw_state(workload->vgpu, ring_id);
281 		break;
282 	default:
283 		WARN_ON(1);
284 		return NOTIFY_OK;
285 	}
286 	wake_up(&workload->shadow_ctx_status_wq);
287 	return NOTIFY_OK;
288 }
289 
290 static void
shadow_context_descriptor_update(struct intel_context * ce,struct intel_vgpu_workload * workload)291 shadow_context_descriptor_update(struct intel_context *ce,
292 				 struct intel_vgpu_workload *workload)
293 {
294 	u64 desc = ce->lrc_desc;
295 
296 	/*
297 	 * Update bits 0-11 of the context descriptor which includes flags
298 	 * like GEN8_CTX_* cached in desc_template
299 	 */
300 	desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
301 	desc |= workload->ctx_desc.addressing_mode <<
302 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
303 
304 	ce->lrc_desc = desc;
305 }
306 
copy_workload_to_ring_buffer(struct intel_vgpu_workload * workload)307 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
308 {
309 	struct intel_vgpu *vgpu = workload->vgpu;
310 	struct i915_request *req = workload->req;
311 	void *shadow_ring_buffer_va;
312 	u32 *cs;
313 	int err;
314 
315 	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
316 		intel_vgpu_restore_inhibit_context(vgpu, req);
317 
318 	/*
319 	 * To track whether a request has started on HW, we can emit a
320 	 * breadcrumb at the beginning of the request and check its
321 	 * timeline's HWSP to see if the breadcrumb has advanced past the
322 	 * start of this request. Actually, the request must have the
323 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
324 	 * scheduler might get a wrong state of it during reset. Since the
325 	 * requests from gvt always set the has_init_breadcrumb flag, here
326 	 * need to do the emit_init_breadcrumb for all the requests.
327 	 */
328 	if (req->engine->emit_init_breadcrumb) {
329 		err = req->engine->emit_init_breadcrumb(req);
330 		if (err) {
331 			gvt_vgpu_err("fail to emit init breadcrumb\n");
332 			return err;
333 		}
334 	}
335 
336 	/* allocate shadow ring buffer */
337 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
338 	if (IS_ERR(cs)) {
339 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
340 			workload->rb_len);
341 		return PTR_ERR(cs);
342 	}
343 
344 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
345 
346 	/* get shadow ring buffer va */
347 	workload->shadow_ring_buffer_va = cs;
348 
349 	memcpy(cs, shadow_ring_buffer_va,
350 			workload->rb_len);
351 
352 	cs += workload->rb_len / sizeof(u32);
353 	intel_ring_advance(workload->req, cs);
354 
355 	return 0;
356 }
357 
release_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)358 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
359 {
360 	if (!wa_ctx->indirect_ctx.obj)
361 		return;
362 
363 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
364 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
365 
366 	wa_ctx->indirect_ctx.obj = NULL;
367 	wa_ctx->indirect_ctx.shadow_va = NULL;
368 }
369 
set_context_ppgtt_from_shadow(struct intel_vgpu_workload * workload,struct intel_context * ce)370 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
371 					  struct intel_context *ce)
372 {
373 	struct intel_vgpu_mm *mm = workload->shadow_mm;
374 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
375 	int i = 0;
376 
377 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
378 		px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
379 	} else {
380 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
381 			struct i915_page_directory * const pd =
382 				i915_pd_entry(ppgtt->pd, i);
383 
384 			px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
385 		}
386 	}
387 }
388 
389 static int
intel_gvt_workload_req_alloc(struct intel_vgpu_workload * workload)390 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
391 {
392 	struct intel_vgpu *vgpu = workload->vgpu;
393 	struct intel_vgpu_submission *s = &vgpu->submission;
394 	struct i915_request *rq;
395 
396 	if (workload->req)
397 		return 0;
398 
399 	rq = i915_request_create(s->shadow[workload->ring_id]);
400 	if (IS_ERR(rq)) {
401 		gvt_vgpu_err("fail to allocate gem request\n");
402 		return PTR_ERR(rq);
403 	}
404 
405 	workload->req = i915_request_get(rq);
406 	return 0;
407 }
408 
409 /**
410  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
411  * shadow it as well, include ringbuffer,wa_ctx and ctx.
412  * @workload: an abstract entity for each execlist submission.
413  *
414  * This function is called before the workload submitting to i915, to make
415  * sure the content of the workload is valid.
416  */
intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload * workload)417 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
418 {
419 	struct intel_vgpu *vgpu = workload->vgpu;
420 	struct intel_vgpu_submission *s = &vgpu->submission;
421 	int ret;
422 
423 	lockdep_assert_held(&vgpu->vgpu_lock);
424 
425 	if (workload->shadow)
426 		return 0;
427 
428 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
429 		shadow_context_descriptor_update(s->shadow[workload->ring_id],
430 						 workload);
431 
432 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
433 	if (ret)
434 		return ret;
435 
436 	if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
437 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
438 		if (ret)
439 			goto err_shadow;
440 	}
441 
442 	workload->shadow = true;
443 	return 0;
444 err_shadow:
445 	release_shadow_wa_ctx(&workload->wa_ctx);
446 	return ret;
447 }
448 
449 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
450 
prepare_shadow_batch_buffer(struct intel_vgpu_workload * workload)451 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
452 {
453 	struct intel_gvt *gvt = workload->vgpu->gvt;
454 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
455 	struct intel_vgpu_shadow_bb *bb;
456 	int ret;
457 
458 	list_for_each_entry(bb, &workload->shadow_bb, list) {
459 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
460 		 * is only updated into ring_scan_buffer, not real ring address
461 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
462 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
463 		 * in copy_workload_to_ring_buffer.
464 		 */
465 
466 		if (bb->bb_offset)
467 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
468 				+ bb->bb_offset;
469 
470 		if (bb->ppgtt) {
471 			/* for non-priv bb, scan&shadow is only for
472 			 * debugging purpose, so the content of shadow bb
473 			 * is the same as original bb. Therefore,
474 			 * here, rather than switch to shadow bb's gma
475 			 * address, we directly use original batch buffer's
476 			 * gma address, and send original bb to hardware
477 			 * directly
478 			 */
479 			if (bb->clflush & CLFLUSH_AFTER) {
480 				drm_clflush_virt_range(bb->va,
481 						bb->obj->base.size);
482 				bb->clflush &= ~CLFLUSH_AFTER;
483 			}
484 			i915_gem_object_finish_access(bb->obj);
485 			bb->accessing = false;
486 
487 		} else {
488 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
489 					NULL, 0, 0, 0);
490 			if (IS_ERR(bb->vma)) {
491 				ret = PTR_ERR(bb->vma);
492 				goto err;
493 			}
494 
495 			/* relocate shadow batch buffer */
496 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
497 			if (gmadr_bytes == 8)
498 				bb->bb_start_cmd_va[2] = 0;
499 
500 			/* No one is going to touch shadow bb from now on. */
501 			if (bb->clflush & CLFLUSH_AFTER) {
502 				drm_clflush_virt_range(bb->va,
503 						bb->obj->base.size);
504 				bb->clflush &= ~CLFLUSH_AFTER;
505 			}
506 
507 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
508 								false);
509 			if (ret)
510 				goto err;
511 
512 			ret = i915_vma_move_to_active(bb->vma,
513 						      workload->req,
514 						      0);
515 			if (ret)
516 				goto err;
517 
518 			i915_gem_object_finish_access(bb->obj);
519 			bb->accessing = false;
520 		}
521 	}
522 	return 0;
523 err:
524 	release_shadow_batch_buffer(workload);
525 	return ret;
526 }
527 
update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx * wa_ctx)528 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
529 {
530 	struct intel_vgpu_workload *workload =
531 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
532 	struct i915_request *rq = workload->req;
533 	struct execlist_ring_context *shadow_ring_context =
534 		(struct execlist_ring_context *)rq->context->lrc_reg_state;
535 
536 	shadow_ring_context->bb_per_ctx_ptr.val =
537 		(shadow_ring_context->bb_per_ctx_ptr.val &
538 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
539 	shadow_ring_context->rcs_indirect_ctx.val =
540 		(shadow_ring_context->rcs_indirect_ctx.val &
541 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
542 }
543 
prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)544 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
545 {
546 	struct i915_vma *vma;
547 	unsigned char *per_ctx_va =
548 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
549 		wa_ctx->indirect_ctx.size;
550 
551 	if (wa_ctx->indirect_ctx.size == 0)
552 		return 0;
553 
554 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
555 				       0, CACHELINE_BYTES, 0);
556 	if (IS_ERR(vma))
557 		return PTR_ERR(vma);
558 
559 	/* FIXME: we are not tracking our pinned VMA leaving it
560 	 * up to the core to fix up the stray pin_count upon
561 	 * free.
562 	 */
563 
564 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
565 
566 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
567 	memset(per_ctx_va, 0, CACHELINE_BYTES);
568 
569 	update_wa_ctx_2_shadow_ctx(wa_ctx);
570 	return 0;
571 }
572 
update_vreg_in_ctx(struct intel_vgpu_workload * workload)573 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
574 {
575 	struct intel_vgpu *vgpu = workload->vgpu;
576 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
577 	u32 ring_base;
578 
579 	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
580 	vgpu_vreg_t(vgpu, RING_START(ring_base)) = workload->rb_start;
581 }
582 
release_shadow_batch_buffer(struct intel_vgpu_workload * workload)583 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
584 {
585 	struct intel_vgpu_shadow_bb *bb, *pos;
586 
587 	if (list_empty(&workload->shadow_bb))
588 		return;
589 
590 	bb = list_first_entry(&workload->shadow_bb,
591 			struct intel_vgpu_shadow_bb, list);
592 
593 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
594 		if (bb->obj) {
595 			if (bb->accessing)
596 				i915_gem_object_finish_access(bb->obj);
597 
598 			if (bb->va && !IS_ERR(bb->va))
599 				i915_gem_object_unpin_map(bb->obj);
600 
601 			if (bb->vma && !IS_ERR(bb->vma)) {
602 				i915_vma_unpin(bb->vma);
603 				i915_vma_close(bb->vma);
604 			}
605 			i915_gem_object_put(bb->obj);
606 		}
607 		list_del(&bb->list);
608 		kfree(bb);
609 	}
610 }
611 
prepare_workload(struct intel_vgpu_workload * workload)612 static int prepare_workload(struct intel_vgpu_workload *workload)
613 {
614 	struct intel_vgpu *vgpu = workload->vgpu;
615 	struct intel_vgpu_submission *s = &vgpu->submission;
616 	int ring = workload->ring_id;
617 	int ret = 0;
618 
619 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
620 	if (ret) {
621 		gvt_vgpu_err("fail to vgpu pin mm\n");
622 		return ret;
623 	}
624 
625 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
626 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
627 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
628 		return -EINVAL;
629 	}
630 
631 	update_shadow_pdps(workload);
632 
633 	set_context_ppgtt_from_shadow(workload, s->shadow[ring]);
634 
635 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
636 	if (ret) {
637 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
638 		goto err_unpin_mm;
639 	}
640 
641 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
642 	if (ret) {
643 		gvt_vgpu_err("fail to flush post shadow\n");
644 		goto err_unpin_mm;
645 	}
646 
647 	ret = copy_workload_to_ring_buffer(workload);
648 	if (ret) {
649 		gvt_vgpu_err("fail to generate request\n");
650 		goto err_unpin_mm;
651 	}
652 
653 	ret = prepare_shadow_batch_buffer(workload);
654 	if (ret) {
655 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
656 		goto err_unpin_mm;
657 	}
658 
659 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
660 	if (ret) {
661 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
662 		goto err_shadow_batch;
663 	}
664 
665 	if (workload->prepare) {
666 		ret = workload->prepare(workload);
667 		if (ret)
668 			goto err_shadow_wa_ctx;
669 	}
670 
671 	return 0;
672 err_shadow_wa_ctx:
673 	release_shadow_wa_ctx(&workload->wa_ctx);
674 err_shadow_batch:
675 	release_shadow_batch_buffer(workload);
676 err_unpin_mm:
677 	intel_vgpu_unpin_mm(workload->shadow_mm);
678 	return ret;
679 }
680 
dispatch_workload(struct intel_vgpu_workload * workload)681 static int dispatch_workload(struct intel_vgpu_workload *workload)
682 {
683 	struct intel_vgpu *vgpu = workload->vgpu;
684 	struct i915_request *rq;
685 	int ring_id = workload->ring_id;
686 	int ret;
687 
688 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
689 		ring_id, workload);
690 
691 	mutex_lock(&vgpu->vgpu_lock);
692 
693 	ret = intel_gvt_workload_req_alloc(workload);
694 	if (ret)
695 		goto err_req;
696 
697 	ret = intel_gvt_scan_and_shadow_workload(workload);
698 	if (ret)
699 		goto out;
700 
701 	ret = populate_shadow_context(workload);
702 	if (ret) {
703 		release_shadow_wa_ctx(&workload->wa_ctx);
704 		goto out;
705 	}
706 
707 	ret = prepare_workload(workload);
708 out:
709 	if (ret) {
710 		/* We might still need to add request with
711 		 * clean ctx to retire it properly..
712 		 */
713 		rq = fetch_and_zero(&workload->req);
714 		i915_request_put(rq);
715 	}
716 
717 	if (!IS_ERR_OR_NULL(workload->req)) {
718 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
719 				ring_id, workload->req);
720 		i915_request_add(workload->req);
721 		workload->dispatched = true;
722 	}
723 err_req:
724 	if (ret)
725 		workload->status = ret;
726 	mutex_unlock(&vgpu->vgpu_lock);
727 	return ret;
728 }
729 
pick_next_workload(struct intel_gvt * gvt,int ring_id)730 static struct intel_vgpu_workload *pick_next_workload(
731 		struct intel_gvt *gvt, int ring_id)
732 {
733 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
734 	struct intel_vgpu_workload *workload = NULL;
735 
736 	mutex_lock(&gvt->sched_lock);
737 
738 	/*
739 	 * no current vgpu / will be scheduled out / no workload
740 	 * bail out
741 	 */
742 	if (!scheduler->current_vgpu) {
743 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
744 		goto out;
745 	}
746 
747 	if (scheduler->need_reschedule) {
748 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
749 		goto out;
750 	}
751 
752 	if (!scheduler->current_vgpu->active ||
753 	    list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
754 		goto out;
755 
756 	/*
757 	 * still have current workload, maybe the workload disptacher
758 	 * fail to submit it for some reason, resubmit it.
759 	 */
760 	if (scheduler->current_workload[ring_id]) {
761 		workload = scheduler->current_workload[ring_id];
762 		gvt_dbg_sched("ring id %d still have current workload %p\n",
763 				ring_id, workload);
764 		goto out;
765 	}
766 
767 	/*
768 	 * pick a workload as current workload
769 	 * once current workload is set, schedule policy routines
770 	 * will wait the current workload is finished when trying to
771 	 * schedule out a vgpu.
772 	 */
773 	scheduler->current_workload[ring_id] = container_of(
774 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
775 			struct intel_vgpu_workload, list);
776 
777 	workload = scheduler->current_workload[ring_id];
778 
779 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
780 
781 	atomic_inc(&workload->vgpu->submission.running_workload_num);
782 out:
783 	mutex_unlock(&gvt->sched_lock);
784 	return workload;
785 }
786 
update_guest_context(struct intel_vgpu_workload * workload)787 static void update_guest_context(struct intel_vgpu_workload *workload)
788 {
789 	struct i915_request *rq = workload->req;
790 	struct intel_vgpu *vgpu = workload->vgpu;
791 	struct intel_gvt *gvt = vgpu->gvt;
792 	struct drm_i915_gem_object *ctx_obj = rq->context->state->obj;
793 	struct execlist_ring_context *shadow_ring_context;
794 	struct page *page;
795 	void *src;
796 	unsigned long context_gpa, context_page_num;
797 	int i;
798 	struct drm_i915_private *dev_priv = gvt->dev_priv;
799 	u32 ring_base;
800 	u32 head, tail;
801 	u16 wrap_count;
802 
803 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
804 		      workload->ctx_desc.lrca);
805 
806 	head = workload->rb_head;
807 	tail = workload->rb_tail;
808 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
809 
810 	if (tail < head) {
811 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
812 			wrap_count = 0;
813 		else
814 			wrap_count += 1;
815 	}
816 
817 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
818 
819 	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
820 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
821 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
822 
823 	context_page_num = rq->engine->context_size;
824 	context_page_num = context_page_num >> PAGE_SHIFT;
825 
826 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
827 		context_page_num = 19;
828 
829 	i = 2;
830 
831 	while (i < context_page_num) {
832 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
833 				(u32)((workload->ctx_desc.lrca + i) <<
834 					I915_GTT_PAGE_SHIFT));
835 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
836 			gvt_vgpu_err("invalid guest context descriptor\n");
837 			return;
838 		}
839 
840 		page = i915_gem_object_get_page(ctx_obj, i);
841 		src = kmap(page);
842 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
843 				I915_GTT_PAGE_SIZE);
844 		kunmap(page);
845 		i++;
846 	}
847 
848 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
849 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
850 
851 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
852 	shadow_ring_context = kmap(page);
853 
854 #define COPY_REG(name) \
855 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
856 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
857 
858 	COPY_REG(ctx_ctrl);
859 	COPY_REG(ctx_timestamp);
860 
861 #undef COPY_REG
862 
863 	intel_gvt_hypervisor_write_gpa(vgpu,
864 			workload->ring_context_gpa +
865 			sizeof(*shadow_ring_context),
866 			(void *)shadow_ring_context +
867 			sizeof(*shadow_ring_context),
868 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
869 
870 	kunmap(page);
871 }
872 
intel_vgpu_clean_workloads(struct intel_vgpu * vgpu,intel_engine_mask_t engine_mask)873 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
874 				intel_engine_mask_t engine_mask)
875 {
876 	struct intel_vgpu_submission *s = &vgpu->submission;
877 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
878 	struct intel_engine_cs *engine;
879 	struct intel_vgpu_workload *pos, *n;
880 	intel_engine_mask_t tmp;
881 
882 	/* free the unsubmited workloads in the queues. */
883 	for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
884 		list_for_each_entry_safe(pos, n,
885 			&s->workload_q_head[engine->id], list) {
886 			list_del_init(&pos->list);
887 			intel_vgpu_destroy_workload(pos);
888 		}
889 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
890 	}
891 }
892 
complete_current_workload(struct intel_gvt * gvt,int ring_id)893 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
894 {
895 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
896 	struct intel_vgpu_workload *workload =
897 		scheduler->current_workload[ring_id];
898 	struct intel_vgpu *vgpu = workload->vgpu;
899 	struct intel_vgpu_submission *s = &vgpu->submission;
900 	struct i915_request *rq = workload->req;
901 	int event;
902 
903 	mutex_lock(&vgpu->vgpu_lock);
904 	mutex_lock(&gvt->sched_lock);
905 
906 	/* For the workload w/ request, needs to wait for the context
907 	 * switch to make sure request is completed.
908 	 * For the workload w/o request, directly complete the workload.
909 	 */
910 	if (rq) {
911 		wait_event(workload->shadow_ctx_status_wq,
912 			   !atomic_read(&workload->shadow_ctx_active));
913 
914 		/* If this request caused GPU hang, req->fence.error will
915 		 * be set to -EIO. Use -EIO to set workload status so
916 		 * that when this request caused GPU hang, didn't trigger
917 		 * context switch interrupt to guest.
918 		 */
919 		if (likely(workload->status == -EINPROGRESS)) {
920 			if (workload->req->fence.error == -EIO)
921 				workload->status = -EIO;
922 			else
923 				workload->status = 0;
924 		}
925 
926 		if (!workload->status &&
927 		    !(vgpu->resetting_eng & BIT(ring_id))) {
928 			update_guest_context(workload);
929 
930 			for_each_set_bit(event, workload->pending_events,
931 					 INTEL_GVT_EVENT_MAX)
932 				intel_vgpu_trigger_virtual_event(vgpu, event);
933 		}
934 
935 		i915_request_put(fetch_and_zero(&workload->req));
936 	}
937 
938 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
939 			ring_id, workload, workload->status);
940 
941 	scheduler->current_workload[ring_id] = NULL;
942 
943 	list_del_init(&workload->list);
944 
945 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
946 		/* if workload->status is not successful means HW GPU
947 		 * has occurred GPU hang or something wrong with i915/GVT,
948 		 * and GVT won't inject context switch interrupt to guest.
949 		 * So this error is a vGPU hang actually to the guest.
950 		 * According to this we should emunlate a vGPU hang. If
951 		 * there are pending workloads which are already submitted
952 		 * from guest, we should clean them up like HW GPU does.
953 		 *
954 		 * if it is in middle of engine resetting, the pending
955 		 * workloads won't be submitted to HW GPU and will be
956 		 * cleaned up during the resetting process later, so doing
957 		 * the workload clean up here doesn't have any impact.
958 		 **/
959 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
960 	}
961 
962 	workload->complete(workload);
963 
964 	atomic_dec(&s->running_workload_num);
965 	wake_up(&scheduler->workload_complete_wq);
966 
967 	if (gvt->scheduler.need_reschedule)
968 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
969 
970 	mutex_unlock(&gvt->sched_lock);
971 	mutex_unlock(&vgpu->vgpu_lock);
972 }
973 
974 struct workload_thread_param {
975 	struct intel_gvt *gvt;
976 	int ring_id;
977 };
978 
workload_thread(void * priv)979 static int workload_thread(void *priv)
980 {
981 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
982 	struct intel_gvt *gvt = p->gvt;
983 	int ring_id = p->ring_id;
984 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
985 	struct intel_vgpu_workload *workload = NULL;
986 	struct intel_vgpu *vgpu = NULL;
987 	int ret;
988 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
989 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
990 	struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm;
991 
992 	kfree(p);
993 
994 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
995 
996 	while (!kthread_should_stop()) {
997 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
998 		do {
999 			workload = pick_next_workload(gvt, ring_id);
1000 			if (workload)
1001 				break;
1002 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1003 				   MAX_SCHEDULE_TIMEOUT);
1004 		} while (!kthread_should_stop());
1005 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1006 
1007 		if (!workload)
1008 			break;
1009 
1010 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1011 				workload->ring_id, workload,
1012 				workload->vgpu->id);
1013 
1014 		intel_runtime_pm_get(rpm);
1015 
1016 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1017 				workload->ring_id, workload);
1018 
1019 		if (need_force_wake)
1020 			intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1021 					FORCEWAKE_ALL);
1022 		/*
1023 		 * Update the vReg of the vGPU which submitted this
1024 		 * workload. The vGPU may use these registers for checking
1025 		 * the context state. The value comes from GPU commands
1026 		 * in this workload.
1027 		 */
1028 		update_vreg_in_ctx(workload);
1029 
1030 		ret = dispatch_workload(workload);
1031 
1032 		if (ret) {
1033 			vgpu = workload->vgpu;
1034 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1035 			goto complete;
1036 		}
1037 
1038 		gvt_dbg_sched("ring id %d wait workload %p\n",
1039 				workload->ring_id, workload);
1040 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1041 
1042 complete:
1043 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1044 				workload, workload->status);
1045 
1046 		complete_current_workload(gvt, ring_id);
1047 
1048 		if (need_force_wake)
1049 			intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1050 					FORCEWAKE_ALL);
1051 
1052 		intel_runtime_pm_put_unchecked(rpm);
1053 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1054 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1055 	}
1056 	return 0;
1057 }
1058 
intel_gvt_wait_vgpu_idle(struct intel_vgpu * vgpu)1059 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1060 {
1061 	struct intel_vgpu_submission *s = &vgpu->submission;
1062 	struct intel_gvt *gvt = vgpu->gvt;
1063 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1064 
1065 	if (atomic_read(&s->running_workload_num)) {
1066 		gvt_dbg_sched("wait vgpu idle\n");
1067 
1068 		wait_event(scheduler->workload_complete_wq,
1069 				!atomic_read(&s->running_workload_num));
1070 	}
1071 }
1072 
intel_gvt_clean_workload_scheduler(struct intel_gvt * gvt)1073 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1074 {
1075 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1076 	struct intel_engine_cs *engine;
1077 	enum intel_engine_id i;
1078 
1079 	gvt_dbg_core("clean workload scheduler\n");
1080 
1081 	for_each_engine(engine, gvt->dev_priv, i) {
1082 		atomic_notifier_chain_unregister(
1083 					&engine->context_status_notifier,
1084 					&gvt->shadow_ctx_notifier_block[i]);
1085 		kthread_stop(scheduler->thread[i]);
1086 	}
1087 }
1088 
intel_gvt_init_workload_scheduler(struct intel_gvt * gvt)1089 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1090 {
1091 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1092 	struct workload_thread_param *param = NULL;
1093 	struct intel_engine_cs *engine;
1094 	enum intel_engine_id i;
1095 	int ret;
1096 
1097 	gvt_dbg_core("init workload scheduler\n");
1098 
1099 	init_waitqueue_head(&scheduler->workload_complete_wq);
1100 
1101 	for_each_engine(engine, gvt->dev_priv, i) {
1102 		init_waitqueue_head(&scheduler->waitq[i]);
1103 
1104 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1105 		if (!param) {
1106 			ret = -ENOMEM;
1107 			goto err;
1108 		}
1109 
1110 		param->gvt = gvt;
1111 		param->ring_id = i;
1112 
1113 		scheduler->thread[i] = kthread_run(workload_thread, param,
1114 			"gvt workload %d", i);
1115 		if (IS_ERR(scheduler->thread[i])) {
1116 			gvt_err("fail to create workload thread\n");
1117 			ret = PTR_ERR(scheduler->thread[i]);
1118 			goto err;
1119 		}
1120 
1121 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1122 					shadow_context_status_change;
1123 		atomic_notifier_chain_register(&engine->context_status_notifier,
1124 					&gvt->shadow_ctx_notifier_block[i]);
1125 	}
1126 	return 0;
1127 err:
1128 	intel_gvt_clean_workload_scheduler(gvt);
1129 	kfree(param);
1130 	param = NULL;
1131 	return ret;
1132 }
1133 
1134 static void
i915_context_ppgtt_root_restore(struct intel_vgpu_submission * s,struct i915_ppgtt * ppgtt)1135 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1136 				struct i915_ppgtt *ppgtt)
1137 {
1138 	int i;
1139 
1140 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1141 		px_dma(ppgtt->pd) = s->i915_context_pml4;
1142 	} else {
1143 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1144 			struct i915_page_directory * const pd =
1145 				i915_pd_entry(ppgtt->pd, i);
1146 
1147 			px_dma(pd) = s->i915_context_pdps[i];
1148 		}
1149 	}
1150 }
1151 
1152 /**
1153  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1154  * @vgpu: a vGPU
1155  *
1156  * This function is called when a vGPU is being destroyed.
1157  *
1158  */
intel_vgpu_clean_submission(struct intel_vgpu * vgpu)1159 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1160 {
1161 	struct intel_vgpu_submission *s = &vgpu->submission;
1162 	struct intel_engine_cs *engine;
1163 	enum intel_engine_id id;
1164 
1165 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1166 
1167 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1168 	for_each_engine(engine, vgpu->gvt->dev_priv, id)
1169 		intel_context_unpin(s->shadow[id]);
1170 
1171 	kmem_cache_destroy(s->workloads);
1172 }
1173 
1174 
1175 /**
1176  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1177  * @vgpu: a vGPU
1178  * @engine_mask: engines expected to be reset
1179  *
1180  * This function is called when a vGPU is being destroyed.
1181  *
1182  */
intel_vgpu_reset_submission(struct intel_vgpu * vgpu,intel_engine_mask_t engine_mask)1183 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1184 				 intel_engine_mask_t engine_mask)
1185 {
1186 	struct intel_vgpu_submission *s = &vgpu->submission;
1187 
1188 	if (!s->active)
1189 		return;
1190 
1191 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1192 	s->ops->reset(vgpu, engine_mask);
1193 }
1194 
1195 static void
i915_context_ppgtt_root_save(struct intel_vgpu_submission * s,struct i915_ppgtt * ppgtt)1196 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1197 			     struct i915_ppgtt *ppgtt)
1198 {
1199 	int i;
1200 
1201 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1202 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1203 	} else {
1204 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1205 			struct i915_page_directory * const pd =
1206 				i915_pd_entry(ppgtt->pd, i);
1207 
1208 			s->i915_context_pdps[i] = px_dma(pd);
1209 		}
1210 	}
1211 }
1212 
1213 /**
1214  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1215  * @vgpu: a vGPU
1216  *
1217  * This function is called when a vGPU is being created.
1218  *
1219  * Returns:
1220  * Zero on success, negative error code if failed.
1221  *
1222  */
intel_vgpu_setup_submission(struct intel_vgpu * vgpu)1223 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1224 {
1225 	struct drm_i915_private *i915 = vgpu->gvt->dev_priv;
1226 	struct intel_vgpu_submission *s = &vgpu->submission;
1227 	struct intel_engine_cs *engine;
1228 	struct i915_ppgtt *ppgtt;
1229 	enum intel_engine_id i;
1230 	int ret;
1231 
1232 	ppgtt = i915_ppgtt_create(&i915->gt);
1233 	if (IS_ERR(ppgtt))
1234 		return PTR_ERR(ppgtt);
1235 
1236 	i915_context_ppgtt_root_save(s, ppgtt);
1237 
1238 	for_each_engine(engine, i915, i) {
1239 		struct intel_context *ce;
1240 
1241 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1242 		s->shadow[i] = ERR_PTR(-EINVAL);
1243 
1244 		ce = intel_context_create(engine);
1245 		if (IS_ERR(ce)) {
1246 			ret = PTR_ERR(ce);
1247 			goto out_shadow_ctx;
1248 		}
1249 
1250 		i915_vm_put(ce->vm);
1251 		ce->vm = i915_vm_get(&ppgtt->vm);
1252 		intel_context_set_single_submission(ce);
1253 
1254 		if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */
1255 			const unsigned int ring_size = 512 * SZ_4K;
1256 
1257 			ce->ring = __intel_context_ring_size(ring_size);
1258 		}
1259 
1260 		ret = intel_context_pin(ce);
1261 		intel_context_put(ce);
1262 		if (ret)
1263 			goto out_shadow_ctx;
1264 
1265 		s->shadow[i] = ce;
1266 	}
1267 
1268 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1269 
1270 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1271 						  sizeof(struct intel_vgpu_workload), 0,
1272 						  SLAB_HWCACHE_ALIGN,
1273 						  offsetof(struct intel_vgpu_workload, rb_tail),
1274 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1275 						  NULL);
1276 
1277 	if (!s->workloads) {
1278 		ret = -ENOMEM;
1279 		goto out_shadow_ctx;
1280 	}
1281 
1282 	atomic_set(&s->running_workload_num, 0);
1283 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1284 
1285 	i915_vm_put(&ppgtt->vm);
1286 	return 0;
1287 
1288 out_shadow_ctx:
1289 	i915_context_ppgtt_root_restore(s, ppgtt);
1290 	for_each_engine(engine, i915, i) {
1291 		if (IS_ERR(s->shadow[i]))
1292 			break;
1293 
1294 		intel_context_unpin(s->shadow[i]);
1295 		intel_context_put(s->shadow[i]);
1296 	}
1297 	i915_vm_put(&ppgtt->vm);
1298 	return ret;
1299 }
1300 
1301 /**
1302  * intel_vgpu_select_submission_ops - select virtual submission interface
1303  * @vgpu: a vGPU
1304  * @engine_mask: either ALL_ENGINES or target engine mask
1305  * @interface: expected vGPU virtual submission interface
1306  *
1307  * This function is called when guest configures submission interface.
1308  *
1309  * Returns:
1310  * Zero on success, negative error code if failed.
1311  *
1312  */
intel_vgpu_select_submission_ops(struct intel_vgpu * vgpu,intel_engine_mask_t engine_mask,unsigned int interface)1313 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1314 				     intel_engine_mask_t engine_mask,
1315 				     unsigned int interface)
1316 {
1317 	struct intel_vgpu_submission *s = &vgpu->submission;
1318 	const struct intel_vgpu_submission_ops *ops[] = {
1319 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1320 			&intel_vgpu_execlist_submission_ops,
1321 	};
1322 	int ret;
1323 
1324 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1325 		return -EINVAL;
1326 
1327 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1328 		return -EINVAL;
1329 
1330 	if (s->active)
1331 		s->ops->clean(vgpu, engine_mask);
1332 
1333 	if (interface == 0) {
1334 		s->ops = NULL;
1335 		s->virtual_submission_interface = 0;
1336 		s->active = false;
1337 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1338 		return 0;
1339 	}
1340 
1341 	ret = ops[interface]->init(vgpu, engine_mask);
1342 	if (ret)
1343 		return ret;
1344 
1345 	s->ops = ops[interface];
1346 	s->virtual_submission_interface = interface;
1347 	s->active = true;
1348 
1349 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1350 			vgpu->id, s->ops->name);
1351 
1352 	return 0;
1353 }
1354 
1355 /**
1356  * intel_vgpu_destroy_workload - destroy a vGPU workload
1357  * @workload: workload to destroy
1358  *
1359  * This function is called when destroy a vGPU workload.
1360  *
1361  */
intel_vgpu_destroy_workload(struct intel_vgpu_workload * workload)1362 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1363 {
1364 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1365 
1366 	release_shadow_batch_buffer(workload);
1367 	release_shadow_wa_ctx(&workload->wa_ctx);
1368 
1369 	if (workload->shadow_mm)
1370 		intel_vgpu_mm_put(workload->shadow_mm);
1371 
1372 	kmem_cache_free(s->workloads, workload);
1373 }
1374 
1375 static struct intel_vgpu_workload *
alloc_workload(struct intel_vgpu * vgpu)1376 alloc_workload(struct intel_vgpu *vgpu)
1377 {
1378 	struct intel_vgpu_submission *s = &vgpu->submission;
1379 	struct intel_vgpu_workload *workload;
1380 
1381 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1382 	if (!workload)
1383 		return ERR_PTR(-ENOMEM);
1384 
1385 	INIT_LIST_HEAD(&workload->list);
1386 	INIT_LIST_HEAD(&workload->shadow_bb);
1387 
1388 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1389 	atomic_set(&workload->shadow_ctx_active, 0);
1390 
1391 	workload->status = -EINPROGRESS;
1392 	workload->vgpu = vgpu;
1393 
1394 	return workload;
1395 }
1396 
1397 #define RING_CTX_OFF(x) \
1398 	offsetof(struct execlist_ring_context, x)
1399 
read_guest_pdps(struct intel_vgpu * vgpu,u64 ring_context_gpa,u32 pdp[8])1400 static void read_guest_pdps(struct intel_vgpu *vgpu,
1401 		u64 ring_context_gpa, u32 pdp[8])
1402 {
1403 	u64 gpa;
1404 	int i;
1405 
1406 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1407 
1408 	for (i = 0; i < 8; i++)
1409 		intel_gvt_hypervisor_read_gpa(vgpu,
1410 				gpa + i * 8, &pdp[7 - i], 4);
1411 }
1412 
prepare_mm(struct intel_vgpu_workload * workload)1413 static int prepare_mm(struct intel_vgpu_workload *workload)
1414 {
1415 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1416 	struct intel_vgpu_mm *mm;
1417 	struct intel_vgpu *vgpu = workload->vgpu;
1418 	enum intel_gvt_gtt_type root_entry_type;
1419 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1420 
1421 	switch (desc->addressing_mode) {
1422 	case 1: /* legacy 32-bit */
1423 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1424 		break;
1425 	case 3: /* legacy 64-bit */
1426 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1427 		break;
1428 	default:
1429 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1430 		return -EINVAL;
1431 	}
1432 
1433 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1434 
1435 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1436 	if (IS_ERR(mm))
1437 		return PTR_ERR(mm);
1438 
1439 	workload->shadow_mm = mm;
1440 	return 0;
1441 }
1442 
1443 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1444 		((a)->lrca == (b)->lrca))
1445 
1446 /**
1447  * intel_vgpu_create_workload - create a vGPU workload
1448  * @vgpu: a vGPU
1449  * @ring_id: ring index
1450  * @desc: a guest context descriptor
1451  *
1452  * This function is called when creating a vGPU workload.
1453  *
1454  * Returns:
1455  * struct intel_vgpu_workload * on success, negative error code in
1456  * pointer if failed.
1457  *
1458  */
1459 struct intel_vgpu_workload *
intel_vgpu_create_workload(struct intel_vgpu * vgpu,int ring_id,struct execlist_ctx_descriptor_format * desc)1460 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1461 			   struct execlist_ctx_descriptor_format *desc)
1462 {
1463 	struct intel_vgpu_submission *s = &vgpu->submission;
1464 	struct list_head *q = workload_q_head(vgpu, ring_id);
1465 	struct intel_vgpu_workload *last_workload = NULL;
1466 	struct intel_vgpu_workload *workload = NULL;
1467 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1468 	u64 ring_context_gpa;
1469 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1470 	u32 guest_head;
1471 	int ret;
1472 
1473 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1474 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1475 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1476 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1477 		return ERR_PTR(-EINVAL);
1478 	}
1479 
1480 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1481 			RING_CTX_OFF(ring_header.val), &head, 4);
1482 
1483 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1484 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1485 
1486 	guest_head = head;
1487 
1488 	head &= RB_HEAD_OFF_MASK;
1489 	tail &= RB_TAIL_OFF_MASK;
1490 
1491 	list_for_each_entry_reverse(last_workload, q, list) {
1492 
1493 		if (same_context(&last_workload->ctx_desc, desc)) {
1494 			gvt_dbg_el("ring id %d cur workload == last\n",
1495 					ring_id);
1496 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1497 					last_workload->rb_tail);
1498 			/*
1499 			 * cannot use guest context head pointer here,
1500 			 * as it might not be updated at this time
1501 			 */
1502 			head = last_workload->rb_tail;
1503 			break;
1504 		}
1505 	}
1506 
1507 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1508 
1509 	/* record some ring buffer register values for scan and shadow */
1510 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1511 			RING_CTX_OFF(rb_start.val), &start, 4);
1512 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1513 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1514 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1515 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1516 
1517 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1518 				_RING_CTL_BUF_SIZE(ctl))) {
1519 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1520 		return ERR_PTR(-EINVAL);
1521 	}
1522 
1523 	workload = alloc_workload(vgpu);
1524 	if (IS_ERR(workload))
1525 		return workload;
1526 
1527 	workload->ring_id = ring_id;
1528 	workload->ctx_desc = *desc;
1529 	workload->ring_context_gpa = ring_context_gpa;
1530 	workload->rb_head = head;
1531 	workload->guest_rb_head = guest_head;
1532 	workload->rb_tail = tail;
1533 	workload->rb_start = start;
1534 	workload->rb_ctl = ctl;
1535 
1536 	if (ring_id == RCS0) {
1537 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1538 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1539 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1540 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1541 
1542 		workload->wa_ctx.indirect_ctx.guest_gma =
1543 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1544 		workload->wa_ctx.indirect_ctx.size =
1545 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1546 			CACHELINE_BYTES;
1547 
1548 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1549 			if (!intel_gvt_ggtt_validate_range(vgpu,
1550 				workload->wa_ctx.indirect_ctx.guest_gma,
1551 				workload->wa_ctx.indirect_ctx.size)) {
1552 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1553 				    workload->wa_ctx.indirect_ctx.guest_gma);
1554 				kmem_cache_free(s->workloads, workload);
1555 				return ERR_PTR(-EINVAL);
1556 			}
1557 		}
1558 
1559 		workload->wa_ctx.per_ctx.guest_gma =
1560 			per_ctx & PER_CTX_ADDR_MASK;
1561 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1562 		if (workload->wa_ctx.per_ctx.valid) {
1563 			if (!intel_gvt_ggtt_validate_range(vgpu,
1564 				workload->wa_ctx.per_ctx.guest_gma,
1565 				CACHELINE_BYTES)) {
1566 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1567 					workload->wa_ctx.per_ctx.guest_gma);
1568 				kmem_cache_free(s->workloads, workload);
1569 				return ERR_PTR(-EINVAL);
1570 			}
1571 		}
1572 	}
1573 
1574 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1575 			workload, ring_id, head, tail, start, ctl);
1576 
1577 	ret = prepare_mm(workload);
1578 	if (ret) {
1579 		kmem_cache_free(s->workloads, workload);
1580 		return ERR_PTR(ret);
1581 	}
1582 
1583 	/* Only scan and shadow the first workload in the queue
1584 	 * as there is only one pre-allocated buf-obj for shadow.
1585 	 */
1586 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1587 		intel_runtime_pm_get(&dev_priv->runtime_pm);
1588 		ret = intel_gvt_scan_and_shadow_workload(workload);
1589 		intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1590 	}
1591 
1592 	if (ret) {
1593 		if (vgpu_is_vm_unhealthy(ret))
1594 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1595 		intel_vgpu_destroy_workload(workload);
1596 		return ERR_PTR(ret);
1597 	}
1598 
1599 	return workload;
1600 }
1601 
1602 /**
1603  * intel_vgpu_queue_workload - Qeue a vGPU workload
1604  * @workload: the workload to queue in
1605  */
intel_vgpu_queue_workload(struct intel_vgpu_workload * workload)1606 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1607 {
1608 	list_add_tail(&workload->list,
1609 		workload_q_head(workload->vgpu, workload->ring_id));
1610 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1611 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1612 }
1613