1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2016-2019 Intel Corporation 4 */ 5 6 #include <linux/types.h> 7 8 #include "gt/intel_gt.h" 9 #include "gt/intel_rps.h" 10 #include "intel_guc_reg.h" 11 #include "intel_huc.h" 12 #include "intel_huc_print.h" 13 #include "i915_drv.h" 14 #include "i915_reg.h" 15 #include "pxp/intel_pxp_cmd_interface_43.h" 16 17 #include <linux/device/bus.h> 18 #include <linux/mei_aux.h> 19 20 /** 21 * DOC: HuC 22 * 23 * The HuC is a dedicated microcontroller for usage in media HEVC (High 24 * Efficiency Video Coding) operations. Userspace can directly use the firmware 25 * capabilities by adding HuC specific commands to batch buffers. 26 * 27 * The kernel driver is only responsible for loading the HuC firmware and 28 * triggering its security authentication. This is done differently depending 29 * on the platform: 30 * 31 * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA 32 * and the authentication via GuC 33 * - DG2: load and authentication are both performed via GSC. 34 * - MTL and newer platforms: the load is performed via DMA (same as with 35 * not-DG2 older platforms), while the authentication is done in 2-steps, 36 * a first auth for clear-media workloads via GuC and a second one for all 37 * workloads via GSC. 38 * 39 * On platforms where the GuC does the authentication, to correctly do so the 40 * HuC binary must be loaded before the GuC one. 41 * Loading the HuC is optional; however, not using the HuC might negatively 42 * impact power usage and/or performance of media workloads, depending on the 43 * use-cases. 44 * HuC must be reloaded on events that cause the WOPCM to lose its contents 45 * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT 46 * reset, while on newer ones it will survive that. 47 * 48 * See https://github.com/intel/media-driver for the latest details on HuC 49 * functionality. 50 */ 51 52 /** 53 * DOC: HuC Memory Management 54 * 55 * Similarly to the GuC, the HuC can't do any memory allocations on its own, 56 * with the difference being that the allocations for HuC usage are handled by 57 * the userspace driver instead of the kernel one. The HuC accesses the memory 58 * via the PPGTT belonging to the context loaded on the VCS executing the 59 * HuC-specific commands. 60 */ 61 62 /* 63 * MEI-GSC load is an async process. The probing of the exposed aux device 64 * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending 65 * on when the kernel schedules it. Unless something goes terribly wrong, we're 66 * guaranteed for this to happen during boot, so the big timeout is a safety net 67 * that we never expect to need. 68 * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed 69 * and/or reset, this can take longer. Note that the kernel might schedule 70 * other work between the i915 init/resume and the MEI one, which can add to 71 * the delay. 72 */ 73 #define GSC_INIT_TIMEOUT_MS 10000 74 #define PXP_INIT_TIMEOUT_MS 5000 75 76 static int sw_fence_dummy_notify(struct i915_sw_fence *sf, 77 enum i915_sw_fence_notify state) 78 { 79 return NOTIFY_DONE; 80 } 81 82 static void __delayed_huc_load_complete(struct intel_huc *huc) 83 { 84 if (!i915_sw_fence_done(&huc->delayed_load.fence)) 85 i915_sw_fence_complete(&huc->delayed_load.fence); 86 } 87 88 static void delayed_huc_load_complete(struct intel_huc *huc) 89 { 90 hrtimer_cancel(&huc->delayed_load.timer); 91 __delayed_huc_load_complete(huc); 92 } 93 94 static void __gsc_init_error(struct intel_huc *huc) 95 { 96 huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR; 97 __delayed_huc_load_complete(huc); 98 } 99 100 static void gsc_init_error(struct intel_huc *huc) 101 { 102 hrtimer_cancel(&huc->delayed_load.timer); 103 __gsc_init_error(huc); 104 } 105 106 static void gsc_init_done(struct intel_huc *huc) 107 { 108 hrtimer_cancel(&huc->delayed_load.timer); 109 110 /* MEI-GSC init is done, now we wait for MEI-PXP to bind */ 111 huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP; 112 if (!i915_sw_fence_done(&huc->delayed_load.fence)) 113 #ifdef __linux__ 114 hrtimer_start(&huc->delayed_load.timer, 115 ms_to_ktime(PXP_INIT_TIMEOUT_MS), 116 HRTIMER_MODE_REL); 117 #else 118 timeout_add_msec(&huc->delayed_load.timer, PXP_INIT_TIMEOUT_MS); 119 #endif 120 } 121 122 static void huc_delayed_load_timer_callback(void *arg) 123 { 124 struct intel_huc *huc = arg; 125 126 if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) { 127 if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC) 128 huc_notice(huc, "timed out waiting for MEI GSC\n"); 129 else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP) 130 huc_notice(huc, "timed out waiting for MEI PXP\n"); 131 else 132 MISSING_CASE(huc->delayed_load.status); 133 134 __gsc_init_error(huc); 135 } 136 } 137 138 static void huc_delayed_load_start(struct intel_huc *huc) 139 { 140 ktime_t delay; 141 142 GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)); 143 144 /* 145 * On resume we don't have to wait for MEI-GSC to be re-probed, but we 146 * do need to wait for MEI-PXP to reset & re-bind 147 */ 148 switch (huc->delayed_load.status) { 149 case INTEL_HUC_WAITING_ON_GSC: 150 delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS); 151 break; 152 case INTEL_HUC_WAITING_ON_PXP: 153 delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS); 154 break; 155 default: 156 gsc_init_error(huc); 157 return; 158 } 159 160 /* 161 * This fence is always complete unless we're waiting for the 162 * GSC device to come up to load the HuC. We arm the fence here 163 * and complete it when we confirm that the HuC is loaded from 164 * the PXP bind callback. 165 */ 166 GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence)); 167 i915_sw_fence_fini(&huc->delayed_load.fence); 168 i915_sw_fence_reinit(&huc->delayed_load.fence); 169 i915_sw_fence_await(&huc->delayed_load.fence); 170 i915_sw_fence_commit(&huc->delayed_load.fence); 171 172 #ifdef __linux__ 173 hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL); 174 #else 175 timeout_add_nsec(&huc->delayed_load.timer, ktime_to_ns(delay)); 176 #endif 177 } 178 179 static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data) 180 { 181 STUB(); 182 return -ENOSYS; 183 #ifdef notyet 184 struct device *dev = data; 185 struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb); 186 struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0]; 187 188 if (!intf->adev || &intf->adev->aux_dev.dev != dev) 189 return 0; 190 191 switch (action) { 192 case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */ 193 gsc_init_done(huc); 194 break; 195 196 case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */ 197 case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */ 198 huc_info(huc, "MEI driver not bound, disabling load\n"); 199 gsc_init_error(huc); 200 break; 201 } 202 203 return 0; 204 #endif 205 } 206 207 void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus) 208 { 209 int ret; 210 211 if (!intel_huc_is_loaded_by_gsc(huc)) 212 return; 213 214 huc->delayed_load.nb.notifier_call = gsc_notifier; 215 ret = bus_register_notifier(bus, &huc->delayed_load.nb); 216 if (ret) { 217 huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret)); 218 huc->delayed_load.nb.notifier_call = NULL; 219 gsc_init_error(huc); 220 } 221 } 222 223 void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus) 224 { 225 if (!huc->delayed_load.nb.notifier_call) 226 return; 227 228 delayed_huc_load_complete(huc); 229 230 bus_unregister_notifier(bus, &huc->delayed_load.nb); 231 huc->delayed_load.nb.notifier_call = NULL; 232 } 233 234 static void delayed_huc_load_init(struct intel_huc *huc) 235 { 236 /* 237 * Initialize fence to be complete as this is expected to be complete 238 * unless there is a delayed HuC load in progress. 239 */ 240 i915_sw_fence_init(&huc->delayed_load.fence, 241 sw_fence_dummy_notify); 242 i915_sw_fence_commit(&huc->delayed_load.fence); 243 244 #ifdef __linux__ 245 hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 246 huc->delayed_load.timer.function = huc_delayed_load_timer_callback; 247 #else 248 timeout_set(&huc->delayed_load.timer, huc_delayed_load_timer_callback, 249 huc); 250 #endif 251 } 252 253 static void delayed_huc_load_fini(struct intel_huc *huc) 254 { 255 /* 256 * the fence is initialized in init_early, so we need to clean it up 257 * even if HuC loading is off. 258 */ 259 delayed_huc_load_complete(huc); 260 i915_sw_fence_fini(&huc->delayed_load.fence); 261 } 262 263 int intel_huc_sanitize(struct intel_huc *huc) 264 { 265 delayed_huc_load_complete(huc); 266 intel_uc_fw_sanitize(&huc->fw); 267 return 0; 268 } 269 270 static bool vcs_supported(struct intel_gt *gt) 271 { 272 intel_engine_mask_t mask = gt->info.engine_mask; 273 274 /* 275 * We reach here from i915_driver_early_probe for the primary GT before 276 * its engine mask is set, so we use the device info engine mask for it; 277 * this means we're not taking VCS fusing into account, but if the 278 * primary GT supports VCS engines we expect at least one of them to 279 * remain unfused so we're fine. 280 * For other GTs we expect the GT-specific mask to be set before we 281 * call this function. 282 */ 283 GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask); 284 285 if (gt_is_root(gt)) 286 mask = INTEL_INFO(gt->i915)->platform_engine_mask; 287 else 288 mask = gt->info.engine_mask; 289 290 return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS); 291 } 292 293 void intel_huc_init_early(struct intel_huc *huc) 294 { 295 struct drm_i915_private *i915 = huc_to_gt(huc)->i915; 296 struct intel_gt *gt = huc_to_gt(huc); 297 298 intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true); 299 300 /* 301 * we always init the fence as already completed, even if HuC is not 302 * supported. This way we don't have to distinguish between HuC not 303 * supported/disabled or already loaded, and can focus on if the load 304 * is currently in progress (fence not complete) or not, which is what 305 * we care about for stalling userspace submissions. 306 */ 307 delayed_huc_load_init(huc); 308 309 if (!vcs_supported(gt)) { 310 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED); 311 return; 312 } 313 314 if (GRAPHICS_VER(i915) >= 11) { 315 huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO; 316 huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL; 317 huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL; 318 } else { 319 huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2; 320 huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED; 321 huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED; 322 } 323 324 if (IS_DG2(i915)) { 325 huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO; 326 huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL; 327 huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL; 328 } else { 329 huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS(MTL_GSC_HECI1_BASE, 5); 330 huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI1_FWSTS5_HUC_AUTH_DONE; 331 huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI1_FWSTS5_HUC_AUTH_DONE; 332 } 333 } 334 335 #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy") 336 static int check_huc_loading_mode(struct intel_huc *huc) 337 { 338 struct intel_gt *gt = huc_to_gt(huc); 339 bool gsc_enabled = huc->fw.has_gsc_headers; 340 341 /* 342 * The fuse for HuC load via GSC is only valid on platforms that have 343 * GuC deprivilege. 344 */ 345 if (HAS_GUC_DEPRIVILEGE(gt->i915)) 346 huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) & 347 GSC_LOADS_HUC; 348 349 if (huc->loaded_via_gsc && !gsc_enabled) { 350 huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n"); 351 return -ENOEXEC; 352 } 353 354 /* 355 * On newer platforms we have GSC-enabled binaries but we load the HuC 356 * via DMA. To do so we need to find the location of the legacy-style 357 * binary inside the GSC-enabled one, which we do at fetch time. Make 358 * sure that we were able to do so if the fuse says we need to load via 359 * DMA and the binary is GSC-enabled. 360 */ 361 if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) { 362 huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n"); 363 return -ENOEXEC; 364 } 365 366 /* 367 * If the HuC is loaded via GSC, we need to be able to access the GSC. 368 * On DG2 this is done via the mei components, while on newer platforms 369 * it is done via the GSCCS, 370 */ 371 if (huc->loaded_via_gsc) { 372 if (IS_DG2(gt->i915)) { 373 if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) || 374 !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) { 375 huc_info(huc, "can't load due to missing mei modules\n"); 376 return -EIO; 377 } 378 } else { 379 if (!HAS_ENGINE(gt, GSC0)) { 380 huc_info(huc, "can't load due to missing GSCCS\n"); 381 return -EIO; 382 } 383 } 384 } 385 386 huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc)); 387 388 return 0; 389 } 390 391 int intel_huc_init(struct intel_huc *huc) 392 { 393 struct intel_gt *gt = huc_to_gt(huc); 394 int err; 395 396 err = check_huc_loading_mode(huc); 397 if (err) 398 goto out; 399 400 if (HAS_ENGINE(gt, GSC0)) { 401 struct i915_vma *vma; 402 403 vma = intel_guc_allocate_vma(>->uc.guc, PXP43_HUC_AUTH_INOUT_SIZE * 2); 404 if (IS_ERR(vma)) { 405 err = PTR_ERR(vma); 406 huc_info(huc, "Failed to allocate heci pkt\n"); 407 goto out; 408 } 409 410 huc->heci_pkt = vma; 411 } 412 413 err = intel_uc_fw_init(&huc->fw); 414 if (err) 415 goto out_pkt; 416 417 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE); 418 419 return 0; 420 421 out_pkt: 422 if (huc->heci_pkt) 423 i915_vma_unpin_and_release(&huc->heci_pkt, 0); 424 out: 425 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 426 huc_info(huc, "initialization failed %pe\n", ERR_PTR(err)); 427 return err; 428 } 429 430 void intel_huc_fini(struct intel_huc *huc) 431 { 432 /* 433 * the fence is initialized in init_early, so we need to clean it up 434 * even if HuC loading is off. 435 */ 436 delayed_huc_load_fini(huc); 437 438 if (huc->heci_pkt) 439 i915_vma_unpin_and_release(&huc->heci_pkt, 0); 440 441 if (intel_uc_fw_is_loadable(&huc->fw)) 442 intel_uc_fw_fini(&huc->fw); 443 } 444 445 void intel_huc_suspend(struct intel_huc *huc) 446 { 447 if (!intel_uc_fw_is_loadable(&huc->fw)) 448 return; 449 450 /* 451 * in the unlikely case that we're suspending before the GSC has 452 * completed its loading sequence, just stop waiting. We'll restart 453 * on resume. 454 */ 455 delayed_huc_load_complete(huc); 456 } 457 458 static const char *auth_mode_string(struct intel_huc *huc, 459 enum intel_huc_authentication_type type) 460 { 461 bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC; 462 463 return partial ? "clear media" : "all workloads"; 464 } 465 466 /* 467 * Use a longer timeout for debug builds so that problems can be detected 468 * and analysed. But a shorter timeout for releases so that user's don't 469 * wait forever to find out there is a problem. Note that the only reason 470 * an end user should hit the timeout is in case of extreme thermal throttling. 471 * And a system that is that hot during boot is probably dead anyway! 472 */ 473 #if defined(CONFIG_DRM_I915_DEBUG_GEM) 474 #define HUC_LOAD_RETRY_LIMIT 20 475 #else 476 #define HUC_LOAD_RETRY_LIMIT 3 477 #endif 478 479 int intel_huc_wait_for_auth_complete(struct intel_huc *huc, 480 enum intel_huc_authentication_type type) 481 { 482 struct intel_gt *gt = huc_to_gt(huc); 483 struct intel_uncore *uncore = gt->uncore; 484 ktime_t before, after, delta; 485 int ret, count; 486 u64 delta_ms; 487 u32 before_freq; 488 489 /* 490 * The KMD requests maximum frequency during driver load, however thermal 491 * throttling can force the frequency down to minimum (although the board 492 * really should never get that hot in real life!). IFWI issues have been 493 * seen to cause sporadic failures to grant the higher frequency. And at 494 * minimum frequency, the authentication time can be in the seconds range. 495 * Note that there is a limit on how long an individual wait_for() can wait. 496 * So wrap it in a loop. 497 */ 498 before_freq = intel_rps_read_actual_frequency(>->rps); 499 before = ktime_get(); 500 for (count = 0; count < HUC_LOAD_RETRY_LIMIT; count++) { 501 ret = __intel_wait_for_register(gt->uncore, 502 huc->status[type].reg, 503 huc->status[type].mask, 504 huc->status[type].value, 505 2, 1000, NULL); 506 if (!ret) 507 break; 508 509 huc_dbg(huc, "auth still in progress, count = %d, freq = %dMHz, status = 0x%08X\n", 510 count, intel_rps_read_actual_frequency(>->rps), 511 huc->status[type].reg.reg); 512 } 513 after = ktime_get(); 514 delta = ktime_sub(after, before); 515 delta_ms = ktime_to_ms(delta); 516 517 if (delta_ms > 50) { 518 huc_warn(huc, "excessive auth time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n", 519 delta_ms, huc->status[type].reg.reg, count, ret); 520 huc_warn(huc, "excessive auth time: [freq = %dMHz, before = %dMHz, perf_limit_reasons = 0x%08X]\n", 521 intel_rps_read_actual_frequency(>->rps), before_freq, 522 intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt))); 523 } else { 524 huc_dbg(huc, "auth took %lldms, freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d\n", 525 delta_ms, intel_rps_read_actual_frequency(>->rps), 526 before_freq, huc->status[type].reg.reg, count, ret); 527 } 528 529 /* mark the load process as complete even if the wait failed */ 530 delayed_huc_load_complete(huc); 531 532 if (ret) { 533 huc_err(huc, "firmware not verified for %s: %pe\n", 534 auth_mode_string(huc, type), ERR_PTR(ret)); 535 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); 536 return ret; 537 } 538 539 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING); 540 huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type)); 541 return 0; 542 } 543 544 /** 545 * intel_huc_auth() - Authenticate HuC uCode 546 * @huc: intel_huc structure 547 * @type: authentication type (via GuC or via GSC) 548 * 549 * Called after HuC and GuC firmware loading during intel_uc_init_hw(). 550 * 551 * This function invokes the GuC action to authenticate the HuC firmware, 552 * passing the offset of the RSA signature to intel_guc_auth_huc(). It then 553 * waits for up to 50ms for firmware verification ACK. 554 */ 555 int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type) 556 { 557 struct intel_gt *gt = huc_to_gt(huc); 558 struct intel_guc *guc = >->uc.guc; 559 int ret; 560 561 if (!intel_uc_fw_is_loaded(&huc->fw)) 562 return -ENOEXEC; 563 564 /* GSC will do the auth with the load */ 565 if (intel_huc_is_loaded_by_gsc(huc)) 566 return -ENODEV; 567 568 if (intel_huc_is_authenticated(huc, type)) 569 return -EEXIST; 570 571 ret = i915_inject_probe_error(gt->i915, -ENXIO); 572 if (ret) 573 goto fail; 574 575 switch (type) { 576 case INTEL_HUC_AUTH_BY_GUC: 577 ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data)); 578 break; 579 case INTEL_HUC_AUTH_BY_GSC: 580 ret = intel_huc_fw_auth_via_gsccs(huc); 581 break; 582 default: 583 MISSING_CASE(type); 584 ret = -EINVAL; 585 } 586 if (ret) 587 goto fail; 588 589 /* Check authentication status, it should be done by now */ 590 ret = intel_huc_wait_for_auth_complete(huc, type); 591 if (ret) 592 goto fail; 593 594 return 0; 595 596 fail: 597 huc_probe_error(huc, "%s authentication failed %pe\n", 598 auth_mode_string(huc, type), ERR_PTR(ret)); 599 return ret; 600 } 601 602 bool intel_huc_is_authenticated(struct intel_huc *huc, 603 enum intel_huc_authentication_type type) 604 { 605 struct intel_gt *gt = huc_to_gt(huc); 606 intel_wakeref_t wakeref; 607 u32 status = 0; 608 609 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 610 status = intel_uncore_read(gt->uncore, huc->status[type].reg); 611 612 return (status & huc->status[type].mask) == huc->status[type].value; 613 } 614 615 static bool huc_is_fully_authenticated(struct intel_huc *huc) 616 { 617 struct intel_uc_fw *huc_fw = &huc->fw; 618 619 if (!huc_fw->has_gsc_headers) 620 return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC); 621 else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0)) 622 return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC); 623 else 624 return false; 625 } 626 627 /** 628 * intel_huc_check_status() - check HuC status 629 * @huc: intel_huc structure 630 * 631 * This function reads status register to verify if HuC 632 * firmware was successfully loaded. 633 * 634 * The return values match what is expected for the I915_PARAM_HUC_STATUS 635 * getparam. 636 */ 637 int intel_huc_check_status(struct intel_huc *huc) 638 { 639 struct intel_uc_fw *huc_fw = &huc->fw; 640 641 switch (__intel_uc_fw_status(huc_fw)) { 642 case INTEL_UC_FIRMWARE_NOT_SUPPORTED: 643 return -ENODEV; 644 case INTEL_UC_FIRMWARE_DISABLED: 645 return -EOPNOTSUPP; 646 case INTEL_UC_FIRMWARE_MISSING: 647 return -ENOPKG; 648 case INTEL_UC_FIRMWARE_ERROR: 649 return -ENOEXEC; 650 case INTEL_UC_FIRMWARE_INIT_FAIL: 651 return -ENOMEM; 652 case INTEL_UC_FIRMWARE_LOAD_FAIL: 653 return -EIO; 654 default: 655 break; 656 } 657 658 /* 659 * GSC-enabled binaries loaded via DMA are first partially 660 * authenticated by GuC and then fully authenticated by GSC 661 */ 662 if (huc_is_fully_authenticated(huc)) 663 return 1; /* full auth */ 664 else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) && 665 intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC)) 666 return 2; /* clear media only */ 667 else 668 return 0; 669 } 670 671 static bool huc_has_delayed_load(struct intel_huc *huc) 672 { 673 return intel_huc_is_loaded_by_gsc(huc) && 674 (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR); 675 } 676 677 void intel_huc_update_auth_status(struct intel_huc *huc) 678 { 679 if (!intel_uc_fw_is_loadable(&huc->fw)) 680 return; 681 682 if (!huc->fw.has_gsc_headers) 683 return; 684 685 if (huc_is_fully_authenticated(huc)) 686 intel_uc_fw_change_status(&huc->fw, 687 INTEL_UC_FIRMWARE_RUNNING); 688 else if (huc_has_delayed_load(huc)) 689 huc_delayed_load_start(huc); 690 } 691 692 /** 693 * intel_huc_load_status - dump information about HuC load status 694 * @huc: the HuC 695 * @p: the &drm_printer 696 * 697 * Pretty printer for HuC load status. 698 */ 699 void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p) 700 { 701 struct intel_gt *gt = huc_to_gt(huc); 702 intel_wakeref_t wakeref; 703 704 if (!intel_huc_is_supported(huc)) { 705 drm_printf(p, "HuC not supported\n"); 706 return; 707 } 708 709 if (!intel_huc_is_wanted(huc)) { 710 drm_printf(p, "HuC disabled\n"); 711 return; 712 } 713 714 intel_uc_fw_dump(&huc->fw, p); 715 716 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 717 drm_printf(p, "HuC status: 0x%08x\n", 718 intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg)); 719 } 720