1 /* $NetBSD: intel_guc.c,v 1.4 2021/12/19 12:32:15 riastradh Exp $ */
2
3 // SPDX-License-Identifier: MIT
4 /*
5 * Copyright © 2014-2019 Intel Corporation
6 */
7
8 #include <sys/cdefs.h>
9 __KERNEL_RCSID(0, "$NetBSD: intel_guc.c,v 1.4 2021/12/19 12:32:15 riastradh Exp $");
10
11 #include "gt/intel_gt.h"
12 #include "gt/intel_gt_irq.h"
13 #include "gt/intel_gt_pm_irq.h"
14 #include "intel_guc.h"
15 #include "intel_guc_ads.h"
16 #include "intel_guc_submission.h"
17 #include "i915_drv.h"
18
19 #include <linux/nbsd-namespace.h>
20
21 /**
22 * DOC: GuC
23 *
24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
25 * designed to offload some of the functionality usually performed by the host
26 * driver; currently the main operations it can take care of are:
27 *
28 * - Authentication of the HuC, which is required to fully enable HuC usage.
29 * - Low latency graphics context scheduling (a.k.a. GuC submission).
30 * - GT Power management.
31 *
32 * The enable_guc module parameter can be used to select which of those
33 * operations to enable within GuC. Note that not all the operations are
34 * supported on all gen9+ platforms.
35 *
36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded
37 * if at least one of the operations is selected. However, not loading the GuC
38 * might result in the loss of some features that do require the GuC (currently
39 * just the HuC, but more are expected to land in the future).
40 */
41
intel_guc_notify(struct intel_guc * guc)42 void intel_guc_notify(struct intel_guc *guc)
43 {
44 struct intel_gt *gt = guc_to_gt(guc);
45
46 /*
47 * On Gen11+, the value written to the register is passes as a payload
48 * to the FW. However, the FW currently treats all values the same way
49 * (H2G interrupt), so we can just write the value that the HW expects
50 * on older gens.
51 */
52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
53 }
54
guc_send_reg(struct intel_guc * guc,u32 i)55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
56 {
57 GEM_BUG_ON(!guc->send_regs.base);
58 GEM_BUG_ON(!guc->send_regs.count);
59 GEM_BUG_ON(i >= guc->send_regs.count);
60
61 return _MMIO(guc->send_regs.base + 4 * i);
62 }
63
intel_guc_init_send_regs(struct intel_guc * guc)64 void intel_guc_init_send_regs(struct intel_guc *guc)
65 {
66 struct intel_gt *gt = guc_to_gt(guc);
67 enum forcewake_domains fw_domains = 0;
68 unsigned int i;
69
70 if (INTEL_GEN(gt->i915) >= 11) {
71 guc->send_regs.base =
72 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
73 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
74 } else {
75 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
76 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
77 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
78 }
79
80 for (i = 0; i < guc->send_regs.count; i++) {
81 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
82 guc_send_reg(guc, i),
83 FW_REG_READ | FW_REG_WRITE);
84 }
85 guc->send_regs.fw_domains = fw_domains;
86 }
87
gen9_reset_guc_interrupts(struct intel_guc * guc)88 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
89 {
90 struct intel_gt *gt = guc_to_gt(guc);
91
92 assert_rpm_wakelock_held(>->i915->runtime_pm);
93
94 spin_lock_irq(>->irq_lock);
95 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
96 spin_unlock_irq(>->irq_lock);
97 }
98
gen9_enable_guc_interrupts(struct intel_guc * guc)99 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
100 {
101 struct intel_gt *gt = guc_to_gt(guc);
102
103 assert_rpm_wakelock_held(>->i915->runtime_pm);
104
105 spin_lock_irq(>->irq_lock);
106 if (!guc->interrupts.enabled) {
107 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
108 gt->pm_guc_events);
109 guc->interrupts.enabled = true;
110 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
111 }
112 spin_unlock_irq(>->irq_lock);
113 }
114
gen9_disable_guc_interrupts(struct intel_guc * guc)115 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
116 {
117 struct intel_gt *gt = guc_to_gt(guc);
118
119 assert_rpm_wakelock_held(>->i915->runtime_pm);
120
121 spin_lock_irq(>->irq_lock);
122 guc->interrupts.enabled = false;
123
124 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
125
126 spin_unlock_irq(>->irq_lock);
127 intel_synchronize_irq(gt->i915);
128
129 gen9_reset_guc_interrupts(guc);
130 }
131
gen11_reset_guc_interrupts(struct intel_guc * guc)132 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
133 {
134 struct intel_gt *gt = guc_to_gt(guc);
135
136 spin_lock_irq(>->irq_lock);
137 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
138 spin_unlock_irq(>->irq_lock);
139 }
140
gen11_enable_guc_interrupts(struct intel_guc * guc)141 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
142 {
143 struct intel_gt *gt = guc_to_gt(guc);
144
145 spin_lock_irq(>->irq_lock);
146 if (!guc->interrupts.enabled) {
147 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
148
149 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
150 intel_uncore_write(gt->uncore,
151 GEN11_GUC_SG_INTR_ENABLE, events);
152 intel_uncore_write(gt->uncore,
153 GEN11_GUC_SG_INTR_MASK, ~events);
154 guc->interrupts.enabled = true;
155 }
156 spin_unlock_irq(>->irq_lock);
157 }
158
gen11_disable_guc_interrupts(struct intel_guc * guc)159 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
160 {
161 struct intel_gt *gt = guc_to_gt(guc);
162
163 spin_lock_irq(>->irq_lock);
164 guc->interrupts.enabled = false;
165
166 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
167 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
168
169 spin_unlock_irq(>->irq_lock);
170 intel_synchronize_irq(gt->i915);
171
172 gen11_reset_guc_interrupts(guc);
173 }
174
intel_guc_init_early(struct intel_guc * guc)175 void intel_guc_init_early(struct intel_guc *guc)
176 {
177 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
178
179 intel_guc_fw_init_early(guc);
180 intel_guc_ct_init_early(&guc->ct);
181 intel_guc_log_init_early(&guc->log);
182 intel_guc_submission_init_early(guc);
183
184 mutex_init(&guc->send_mutex);
185 spin_lock_init(&guc->irq_lock);
186 if (INTEL_GEN(i915) >= 11) {
187 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
188 guc->interrupts.reset = gen11_reset_guc_interrupts;
189 guc->interrupts.enable = gen11_enable_guc_interrupts;
190 guc->interrupts.disable = gen11_disable_guc_interrupts;
191 } else {
192 guc->notify_reg = GUC_SEND_INTERRUPT;
193 guc->interrupts.reset = gen9_reset_guc_interrupts;
194 guc->interrupts.enable = gen9_enable_guc_interrupts;
195 guc->interrupts.disable = gen9_disable_guc_interrupts;
196 }
197 }
198
guc_ctl_debug_flags(struct intel_guc * guc)199 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
200 {
201 u32 level = intel_guc_log_get_level(&guc->log);
202 u32 flags = 0;
203
204 if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
205 flags |= GUC_LOG_DISABLED;
206 else
207 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
208 GUC_LOG_VERBOSITY_SHIFT;
209
210 return flags;
211 }
212
guc_ctl_feature_flags(struct intel_guc * guc)213 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
214 {
215 u32 flags = 0;
216
217 if (!intel_guc_is_submission_supported(guc))
218 flags |= GUC_CTL_DISABLE_SCHEDULER;
219
220 return flags;
221 }
222
guc_ctl_ctxinfo_flags(struct intel_guc * guc)223 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
224 {
225 u32 flags = 0;
226
227 if (intel_guc_is_submission_supported(guc)) {
228 u32 ctxnum, base;
229
230 base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
231 ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
232
233 base >>= PAGE_SHIFT;
234 flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
235 (ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
236 }
237 return flags;
238 }
239
guc_ctl_log_params_flags(struct intel_guc * guc)240 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
241 {
242 u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
243 u32 flags;
244
245 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
246 #define UNIT SZ_1M
247 #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
248 #else
249 #define UNIT SZ_4K
250 #define FLAG 0
251 #endif
252
253 BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
254 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
255 BUILD_BUG_ON(!DPC_BUFFER_SIZE);
256 BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
257 BUILD_BUG_ON(!ISR_BUFFER_SIZE);
258 BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
259
260 BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
261 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
262 BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
263 (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
264 BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
265 (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
266
267 flags = GUC_LOG_VALID |
268 GUC_LOG_NOTIFY_ON_HALF_FULL |
269 FLAG |
270 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
271 ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
272 ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
273 (offset << GUC_LOG_BUF_ADDR_SHIFT);
274
275 #undef UNIT
276 #undef FLAG
277
278 return flags;
279 }
280
guc_ctl_ads_flags(struct intel_guc * guc)281 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
282 {
283 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
284 u32 flags = ads << GUC_ADS_ADDR_SHIFT;
285
286 return flags;
287 }
288
289 /*
290 * Initialise the GuC parameter block before starting the firmware
291 * transfer. These parameters are read by the firmware on startup
292 * and cannot be changed thereafter.
293 */
guc_init_params(struct intel_guc * guc)294 static void guc_init_params(struct intel_guc *guc)
295 {
296 u32 *params = guc->params;
297 int i;
298
299 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
300
301 params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
302 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
303 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
304 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
305 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
306
307 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
308 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
309 }
310
311 /*
312 * Initialise the GuC parameter block before starting the firmware
313 * transfer. These parameters are read by the firmware on startup
314 * and cannot be changed thereafter.
315 */
intel_guc_write_params(struct intel_guc * guc)316 void intel_guc_write_params(struct intel_guc *guc)
317 {
318 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
319 int i;
320
321 /*
322 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
323 * they are power context saved so it's ok to release forcewake
324 * when we are done here and take it again at xfer time.
325 */
326 intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER);
327
328 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
329
330 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
331 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
332
333 intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER);
334 }
335
intel_guc_init(struct intel_guc * guc)336 int intel_guc_init(struct intel_guc *guc)
337 {
338 struct intel_gt *gt = guc_to_gt(guc);
339 int ret;
340
341 ret = intel_uc_fw_init(&guc->fw);
342 if (ret)
343 goto err_fetch;
344
345 ret = intel_guc_log_create(&guc->log);
346 if (ret)
347 goto err_fw;
348
349 ret = intel_guc_ads_create(guc);
350 if (ret)
351 goto err_log;
352 GEM_BUG_ON(!guc->ads_vma);
353
354 ret = intel_guc_ct_init(&guc->ct);
355 if (ret)
356 goto err_ads;
357
358 if (intel_guc_is_submission_supported(guc)) {
359 /*
360 * This is stuff we need to have available at fw load time
361 * if we are planning to enable submission later
362 */
363 ret = intel_guc_submission_init(guc);
364 if (ret)
365 goto err_ct;
366 }
367
368 /* now that everything is perma-pinned, initialize the parameters */
369 guc_init_params(guc);
370
371 /* We need to notify the guc whenever we change the GGTT */
372 i915_ggtt_enable_guc(gt->ggtt);
373
374 return 0;
375
376 err_ct:
377 intel_guc_ct_fini(&guc->ct);
378 err_ads:
379 intel_guc_ads_destroy(guc);
380 err_log:
381 intel_guc_log_destroy(&guc->log);
382 err_fw:
383 intel_uc_fw_fini(&guc->fw);
384 err_fetch:
385 intel_uc_fw_cleanup_fetch(&guc->fw);
386 DRM_DEV_DEBUG_DRIVER(gt->i915->drm.dev, "failed with %d\n", ret);
387 return ret;
388 }
389
intel_guc_fini(struct intel_guc * guc)390 void intel_guc_fini(struct intel_guc *guc)
391 {
392 struct intel_gt *gt = guc_to_gt(guc);
393
394 if (!intel_uc_fw_is_available(&guc->fw))
395 return;
396
397 i915_ggtt_disable_guc(gt->ggtt);
398
399 if (intel_guc_is_submission_supported(guc))
400 intel_guc_submission_fini(guc);
401
402 intel_guc_ct_fini(&guc->ct);
403
404 intel_guc_ads_destroy(guc);
405 intel_guc_log_destroy(&guc->log);
406 intel_uc_fw_fini(&guc->fw);
407 intel_uc_fw_cleanup_fetch(&guc->fw);
408
409 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_DISABLED);
410
411 spin_lock_destroy(&guc->irq_lock);
412 mutex_destroy(&guc->send_mutex);
413 }
414
415 /*
416 * This function implements the MMIO based host to GuC interface.
417 */
intel_guc_send_mmio(struct intel_guc * guc,const u32 * action,u32 len,u32 * response_buf,u32 response_buf_size)418 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
419 u32 *response_buf, u32 response_buf_size)
420 {
421 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
422 u32 status;
423 int i;
424 int ret;
425
426 GEM_BUG_ON(!len);
427 GEM_BUG_ON(len > guc->send_regs.count);
428
429 /* We expect only action code */
430 GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
431
432 /* If CT is available, we expect to use MMIO only during init/fini */
433 GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
434 *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
435
436 mutex_lock(&guc->send_mutex);
437 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
438
439 for (i = 0; i < len; i++)
440 intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]);
441
442 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
443
444 intel_guc_notify(guc);
445
446 /*
447 * No GuC command should ever take longer than 10ms.
448 * Fast commands should still complete in 10us.
449 */
450 ret = __intel_wait_for_register_fw(uncore,
451 guc_send_reg(guc, 0),
452 INTEL_GUC_MSG_TYPE_MASK,
453 INTEL_GUC_MSG_TYPE_RESPONSE <<
454 INTEL_GUC_MSG_TYPE_SHIFT,
455 10, 10, &status);
456 /* If GuC explicitly returned an error, convert it to -EIO */
457 if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
458 ret = -EIO;
459
460 if (ret) {
461 DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
462 action[0], ret, status);
463 goto out;
464 }
465
466 if (response_buf) {
467 int count = min(response_buf_size, guc->send_regs.count - 1);
468
469 for (i = 0; i < count; i++)
470 response_buf[i] = intel_uncore_read(uncore,
471 guc_send_reg(guc, i + 1));
472 }
473
474 /* Use data from the GuC response as our return value */
475 ret = INTEL_GUC_MSG_TO_DATA(status);
476
477 out:
478 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
479 mutex_unlock(&guc->send_mutex);
480
481 return ret;
482 }
483
intel_guc_to_host_process_recv_msg(struct intel_guc * guc,const u32 * payload,u32 len)484 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
485 const u32 *payload, u32 len)
486 {
487 u32 msg;
488
489 if (unlikely(!len))
490 return -EPROTO;
491
492 /* Make sure to handle only enabled messages */
493 msg = payload[0] & guc->msg_enabled_mask;
494
495 if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
496 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
497 intel_guc_log_handle_flush_event(&guc->log);
498
499 return 0;
500 }
501
intel_guc_sample_forcewake(struct intel_guc * guc)502 int intel_guc_sample_forcewake(struct intel_guc *guc)
503 {
504 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
505 u32 action[2];
506
507 action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
508 /* WaRsDisableCoarsePowerGating:skl,cnl */
509 if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
510 action[1] = 0;
511 else
512 /* bit 0 and 1 are for Render and Media domain separately */
513 action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
514
515 return intel_guc_send(guc, action, ARRAY_SIZE(action));
516 }
517
518 /**
519 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
520 * @guc: intel_guc structure
521 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
522 *
523 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
524 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
525 * intel_huc_auth().
526 *
527 * Return: non-zero code on error
528 */
intel_guc_auth_huc(struct intel_guc * guc,u32 rsa_offset)529 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
530 {
531 u32 action[] = {
532 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
533 rsa_offset
534 };
535
536 return intel_guc_send(guc, action, ARRAY_SIZE(action));
537 }
538
539 /**
540 * intel_guc_suspend() - notify GuC entering suspend state
541 * @guc: the guc
542 */
intel_guc_suspend(struct intel_guc * guc)543 int intel_guc_suspend(struct intel_guc *guc)
544 {
545 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
546 int ret;
547 u32 status;
548 u32 action[] = {
549 INTEL_GUC_ACTION_ENTER_S_STATE,
550 GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
551 };
552
553 /*
554 * If GuC communication is enabled but submission is not supported,
555 * we do not need to suspend the GuC.
556 */
557 if (!intel_guc_submission_is_enabled(guc))
558 return 0;
559
560 /*
561 * The ENTER_S_STATE action queues the save/restore operation in GuC FW
562 * and then returns, so waiting on the H2G is not enough to guarantee
563 * GuC is done. When all the processing is done, GuC writes
564 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll
565 * on that. Note that GuC does not ensure that the value in the register
566 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is
567 * in progress so we need to take care of that ourselves as well.
568 */
569
570 intel_uncore_write(uncore, SOFT_SCRATCH(14),
571 INTEL_GUC_SLEEP_STATE_INVALID_MASK);
572
573 ret = intel_guc_send(guc, action, ARRAY_SIZE(action));
574 if (ret)
575 return ret;
576
577 ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14),
578 INTEL_GUC_SLEEP_STATE_INVALID_MASK,
579 0, 0, 10, &status);
580 if (ret)
581 return ret;
582
583 if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
584 DRM_ERROR("GuC failed to change sleep state. "
585 "action=0x%x, err=%u\n",
586 action[0], status);
587 return -EIO;
588 }
589
590 return 0;
591 }
592
593 /**
594 * intel_guc_reset_engine() - ask GuC to reset an engine
595 * @guc: intel_guc structure
596 * @engine: engine to be reset
597 */
intel_guc_reset_engine(struct intel_guc * guc,struct intel_engine_cs * engine)598 int intel_guc_reset_engine(struct intel_guc *guc,
599 struct intel_engine_cs *engine)
600 {
601 /* XXX: to be implemented with submission interface rework */
602
603 return -ENODEV;
604 }
605
606 /**
607 * intel_guc_resume() - notify GuC resuming from suspend state
608 * @guc: the guc
609 */
intel_guc_resume(struct intel_guc * guc)610 int intel_guc_resume(struct intel_guc *guc)
611 {
612 u32 action[] = {
613 INTEL_GUC_ACTION_EXIT_S_STATE,
614 GUC_POWER_D0,
615 };
616
617 /*
618 * If GuC communication is enabled but submission is not supported,
619 * we do not need to resume the GuC but we do need to enable the
620 * GuC communication on resume (above).
621 */
622 if (!intel_guc_submission_is_enabled(guc))
623 return 0;
624
625 return intel_guc_send(guc, action, ARRAY_SIZE(action));
626 }
627
628 /**
629 * DOC: GuC Memory Management
630 *
631 * GuC can't allocate any memory for its own usage, so all the allocations must
632 * be handled by the host driver. GuC accesses the memory via the GGTT, with the
633 * exception of the top and bottom parts of the 4GB address space, which are
634 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
635 * or other parts of the HW. The driver must take care not to place objects that
636 * the GuC is going to access in these reserved ranges. The layout of the GuC
637 * address space is shown below:
638 *
639 * ::
640 *
641 * +===========> +====================+ <== FFFF_FFFF
642 * ^ | Reserved |
643 * | +====================+ <== GUC_GGTT_TOP
644 * | | |
645 * | | DRAM |
646 * GuC | |
647 * Address +===> +====================+ <== GuC ggtt_pin_bias
648 * Space ^ | |
649 * | | | |
650 * | GuC | GuC |
651 * | WOPCM | WOPCM |
652 * | Size | |
653 * | | | |
654 * v v | |
655 * +=======+===> +====================+ <== 0000_0000
656 *
657 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
658 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
659 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
660 */
661
662 /**
663 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
664 * @guc: the guc
665 * @size: size of area to allocate (both virtual space and memory)
666 *
667 * This is a wrapper to create an object for use with the GuC. In order to
668 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
669 * both some backing storage and a range inside the Global GTT. We must pin
670 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
671 * range is reserved inside GuC.
672 *
673 * Return: A i915_vma if successful, otherwise an ERR_PTR.
674 */
intel_guc_allocate_vma(struct intel_guc * guc,u32 size)675 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
676 {
677 struct intel_gt *gt = guc_to_gt(guc);
678 struct drm_i915_gem_object *obj;
679 struct i915_vma *vma;
680 u64 flags;
681 int ret;
682
683 obj = i915_gem_object_create_shmem(gt->i915, size);
684 if (IS_ERR(obj))
685 return ERR_CAST(obj);
686
687 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
688 if (IS_ERR(vma))
689 goto err;
690
691 flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
692 ret = i915_vma_pin(vma, 0, 0, flags);
693 if (ret) {
694 vma = ERR_PTR(ret);
695 goto err;
696 }
697
698 return i915_vma_make_unshrinkable(vma);
699
700 err:
701 i915_gem_object_put(obj);
702 return vma;
703 }
704
705 /**
706 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
707 * @guc: the guc
708 * @size: size of area to allocate (both virtual space and memory)
709 * @out_vma: return variable for the allocated vma pointer
710 * @out_vaddr: return variable for the obj mapping
711 *
712 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
713 * object with I915_MAP_WB.
714 *
715 * Return: 0 if successful, a negative errno code otherwise.
716 */
intel_guc_allocate_and_map_vma(struct intel_guc * guc,u32 size,struct i915_vma ** out_vma,void ** out_vaddr)717 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
718 struct i915_vma **out_vma, void **out_vaddr)
719 {
720 struct i915_vma *vma;
721 void *vaddr;
722
723 vma = intel_guc_allocate_vma(guc, size);
724 if (IS_ERR(vma))
725 return PTR_ERR(vma);
726
727 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
728 if (IS_ERR(vaddr)) {
729 i915_vma_unpin_and_release(&vma, 0);
730 return PTR_ERR(vaddr);
731 }
732
733 *out_vma = vma;
734 *out_vaddr = vaddr;
735
736 return 0;
737 }
738