1 /* $NetBSD: intel_bios.c,v 1.4 2021/12/19 12:24:49 riastradh Exp $ */
2
3 /*
4 * Copyright © 2006 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Eric Anholt <eric@anholt.net>
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: intel_bios.c,v 1.4 2021/12/19 12:24:49 riastradh Exp $");
32
33 #include <drm/drm_dp_helper.h>
34 #include <drm/i915_drm.h>
35
36 #include "display/intel_display.h"
37 #include "display/intel_display_types.h"
38 #include "display/intel_gmbus.h"
39
40 #include "i915_drv.h"
41
42 #define _INTEL_BIOS_PRIVATE
43 #include "intel_vbt_defs.h"
44
45 /**
46 * DOC: Video BIOS Table (VBT)
47 *
48 * The Video BIOS Table, or VBT, provides platform and board specific
49 * configuration information to the driver that is not discoverable or available
50 * through other means. The configuration is mostly related to display
51 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
52 * the PCI ROM.
53 *
54 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
55 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
56 * contain the actual configuration information. The VBT Header, and thus the
57 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
58 * BDB Header. The data blocks are concatenated after the BDB Header. The data
59 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
60 * data. (Block 53, the MIPI Sequence Block is an exception.)
61 *
62 * The driver parses the VBT during load. The relevant information is stored in
63 * driver private data for ease of use, and the actual VBT is not read after
64 * that.
65 */
66
67 /* Wrapper for VBT child device config */
68 struct display_device_data {
69 struct child_device_config child;
70 struct dsc_compression_parameters_entry *dsc;
71 struct list_head node;
72 };
73
74 #define SLAVE_ADDR1 0x70
75 #define SLAVE_ADDR2 0x72
76
77 /* Get BDB block size given a pointer to Block ID. */
_get_blocksize(const u8 * block_base)78 static u32 _get_blocksize(const u8 *block_base)
79 {
80 /* The MIPI Sequence Block v3+ has a separate size field. */
81 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
82 return *((const u32 *)(block_base + 4));
83 else
84 return *((const u16 *)(block_base + 1));
85 }
86
87 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
get_blocksize(const void * block_data)88 static u32 get_blocksize(const void *block_data)
89 {
90 return _get_blocksize(block_data - 3);
91 }
92
93 static const void *
find_section(const void * _bdb,enum bdb_block_id section_id)94 find_section(const void *_bdb, enum bdb_block_id section_id)
95 {
96 const struct bdb_header *bdb = _bdb;
97 const u8 *base = _bdb;
98 int index = 0;
99 u32 total, current_size;
100 enum bdb_block_id current_id;
101
102 /* skip to first section */
103 index += bdb->header_size;
104 total = bdb->bdb_size;
105
106 /* walk the sections looking for section_id */
107 while (index + 3 < total) {
108 current_id = *(base + index);
109 current_size = _get_blocksize(base + index);
110 index += 3;
111
112 if (index + current_size > total)
113 return NULL;
114
115 if (current_id == section_id)
116 return base + index;
117
118 index += current_size;
119 }
120
121 return NULL;
122 }
123
124 static void
fill_detail_timing_data(struct drm_display_mode * panel_fixed_mode,const struct lvds_dvo_timing * dvo_timing)125 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
126 const struct lvds_dvo_timing *dvo_timing)
127 {
128 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
129 dvo_timing->hactive_lo;
130 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
131 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
132 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
133 ((dvo_timing->hsync_pulse_width_hi << 8) |
134 dvo_timing->hsync_pulse_width_lo);
135 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
136 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
137
138 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
139 dvo_timing->vactive_lo;
140 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
141 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
142 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
143 ((dvo_timing->vsync_pulse_width_hi << 4) |
144 dvo_timing->vsync_pulse_width_lo);
145 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
146 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
147 panel_fixed_mode->clock = dvo_timing->clock * 10;
148 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
149
150 if (dvo_timing->hsync_positive)
151 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
152 else
153 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
154
155 if (dvo_timing->vsync_positive)
156 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
157 else
158 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
159
160 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
161 dvo_timing->himage_lo;
162 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
163 dvo_timing->vimage_lo;
164
165 /* Some VBTs have bogus h/vtotal values */
166 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
167 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
168 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
169 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
170
171 drm_mode_set_name(panel_fixed_mode);
172 }
173
174 static const struct lvds_dvo_timing *
get_lvds_dvo_timing(const struct bdb_lvds_lfp_data * lvds_lfp_data,const struct bdb_lvds_lfp_data_ptrs * lvds_lfp_data_ptrs,int index)175 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
176 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
177 int index)
178 {
179 /*
180 * the size of fp_timing varies on the different platform.
181 * So calculate the DVO timing relative offset in LVDS data
182 * entry to get the DVO timing entry
183 */
184
185 int lfp_data_size =
186 lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
187 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
188 int dvo_timing_offset =
189 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
190 lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
191 const char *entry = (const char *)lvds_lfp_data->data +
192 lfp_data_size * index;
193
194 return (const struct lvds_dvo_timing *)(entry + dvo_timing_offset);
195 }
196
197 /* get lvds_fp_timing entry
198 * this function may return NULL if the corresponding entry is invalid
199 */
200 static const struct lvds_fp_timing *
get_lvds_fp_timing(const struct bdb_header * bdb,const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs,int index)201 get_lvds_fp_timing(const struct bdb_header *bdb,
202 const struct bdb_lvds_lfp_data *data,
203 const struct bdb_lvds_lfp_data_ptrs *ptrs,
204 int index)
205 {
206 size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
207 u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
208 size_t ofs;
209
210 if (index >= ARRAY_SIZE(ptrs->ptr))
211 return NULL;
212 ofs = ptrs->ptr[index].fp_timing_offset;
213 if (ofs < data_ofs ||
214 ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
215 return NULL;
216 return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
217 }
218
219 /* Parse general panel options */
220 static void
parse_panel_options(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)221 parse_panel_options(struct drm_i915_private *dev_priv,
222 const struct bdb_header *bdb)
223 {
224 const struct bdb_lvds_options *lvds_options;
225 int panel_type;
226 int drrs_mode;
227 int ret;
228
229 lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
230 if (!lvds_options)
231 return;
232
233 dev_priv->vbt.lvds_dither = lvds_options->pixel_dither;
234
235 ret = intel_opregion_get_panel_type(dev_priv);
236 if (ret >= 0) {
237 WARN_ON(ret > 0xf);
238 panel_type = ret;
239 DRM_DEBUG_KMS("Panel type: %d (OpRegion)\n", panel_type);
240 } else {
241 if (lvds_options->panel_type > 0xf) {
242 DRM_DEBUG_KMS("Invalid VBT panel type 0x%x\n",
243 lvds_options->panel_type);
244 return;
245 }
246 panel_type = lvds_options->panel_type;
247 DRM_DEBUG_KMS("Panel type: %d (VBT)\n", panel_type);
248 }
249
250 dev_priv->vbt.panel_type = panel_type;
251
252 drrs_mode = (lvds_options->dps_panel_type_bits
253 >> (panel_type * 2)) & MODE_MASK;
254 /*
255 * VBT has static DRRS = 0 and seamless DRRS = 2.
256 * The below piece of code is required to adjust vbt.drrs_type
257 * to match the enum drrs_support_type.
258 */
259 switch (drrs_mode) {
260 case 0:
261 dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT;
262 DRM_DEBUG_KMS("DRRS supported mode is static\n");
263 break;
264 case 2:
265 dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
266 DRM_DEBUG_KMS("DRRS supported mode is seamless\n");
267 break;
268 default:
269 dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
270 DRM_DEBUG_KMS("DRRS not supported (VBT input)\n");
271 break;
272 }
273 }
274
275 /* Try to find integrated panel timing data */
276 static void
parse_lfp_panel_dtd(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)277 parse_lfp_panel_dtd(struct drm_i915_private *dev_priv,
278 const struct bdb_header *bdb)
279 {
280 const struct bdb_lvds_lfp_data *lvds_lfp_data;
281 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
282 const struct lvds_dvo_timing *panel_dvo_timing;
283 const struct lvds_fp_timing *fp_timing;
284 struct drm_display_mode *panel_fixed_mode;
285 int panel_type = dev_priv->vbt.panel_type;
286
287 lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
288 if (!lvds_lfp_data)
289 return;
290
291 lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
292 if (!lvds_lfp_data_ptrs)
293 return;
294
295 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
296 lvds_lfp_data_ptrs,
297 panel_type);
298
299 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
300 if (!panel_fixed_mode)
301 return;
302
303 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
304
305 dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
306
307 DRM_DEBUG_KMS("Found panel mode in BIOS VBT legacy lfp table:\n");
308 drm_mode_debug_printmodeline(panel_fixed_mode);
309
310 fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
311 lvds_lfp_data_ptrs,
312 panel_type);
313 if (fp_timing) {
314 /* check the resolution, just to be sure */
315 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
316 fp_timing->y_res == panel_fixed_mode->vdisplay) {
317 dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
318 DRM_DEBUG_KMS("VBT initial LVDS value %x\n",
319 dev_priv->vbt.bios_lvds_val);
320 }
321 }
322 }
323
324 static void
parse_generic_dtd(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)325 parse_generic_dtd(struct drm_i915_private *dev_priv,
326 const struct bdb_header *bdb)
327 {
328 const struct bdb_generic_dtd *generic_dtd;
329 const struct generic_dtd_entry *dtd;
330 struct drm_display_mode *panel_fixed_mode;
331 int num_dtd;
332
333 generic_dtd = find_section(bdb, BDB_GENERIC_DTD);
334 if (!generic_dtd)
335 return;
336
337 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
338 DRM_ERROR("GDTD size %u is too small.\n",
339 generic_dtd->gdtd_size);
340 return;
341 } else if (generic_dtd->gdtd_size !=
342 sizeof(struct generic_dtd_entry)) {
343 DRM_ERROR("Unexpected GDTD size %u\n", generic_dtd->gdtd_size);
344 /* DTD has unknown fields, but keep going */
345 }
346
347 num_dtd = (get_blocksize(generic_dtd) -
348 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
349 if (dev_priv->vbt.panel_type >= num_dtd) {
350 DRM_ERROR("Panel type %d not found in table of %d DTD's\n",
351 dev_priv->vbt.panel_type, num_dtd);
352 return;
353 }
354
355 dtd = &generic_dtd->dtd[dev_priv->vbt.panel_type];
356
357 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
358 if (!panel_fixed_mode)
359 return;
360
361 panel_fixed_mode->hdisplay = dtd->hactive;
362 panel_fixed_mode->hsync_start =
363 panel_fixed_mode->hdisplay + dtd->hfront_porch;
364 panel_fixed_mode->hsync_end =
365 panel_fixed_mode->hsync_start + dtd->hsync;
366 panel_fixed_mode->htotal =
367 panel_fixed_mode->hdisplay + dtd->hblank;
368
369 panel_fixed_mode->vdisplay = dtd->vactive;
370 panel_fixed_mode->vsync_start =
371 panel_fixed_mode->vdisplay + dtd->vfront_porch;
372 panel_fixed_mode->vsync_end =
373 panel_fixed_mode->vsync_start + dtd->vsync;
374 panel_fixed_mode->vtotal =
375 panel_fixed_mode->vdisplay + dtd->vblank;
376
377 panel_fixed_mode->clock = dtd->pixel_clock;
378 panel_fixed_mode->width_mm = dtd->width_mm;
379 panel_fixed_mode->height_mm = dtd->height_mm;
380
381 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
382 drm_mode_set_name(panel_fixed_mode);
383
384 if (dtd->hsync_positive_polarity)
385 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
386 else
387 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
388
389 if (dtd->vsync_positive_polarity)
390 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
391 else
392 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
393
394 DRM_DEBUG_KMS("Found panel mode in BIOS VBT generic dtd table:\n");
395 drm_mode_debug_printmodeline(panel_fixed_mode);
396
397 dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
398 }
399
400 static void
parse_panel_dtd(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)401 parse_panel_dtd(struct drm_i915_private *dev_priv,
402 const struct bdb_header *bdb)
403 {
404 /*
405 * Older VBTs provided provided DTD information for internal displays
406 * through the "LFP panel DTD" block (42). As of VBT revision 229,
407 * that block is now deprecated and DTD information should be provided
408 * via a newer "generic DTD" block (58). Just to be safe, we'll
409 * try the new generic DTD block first on VBT >= 229, but still fall
410 * back to trying the old LFP block if that fails.
411 */
412 if (bdb->version >= 229)
413 parse_generic_dtd(dev_priv, bdb);
414 if (!dev_priv->vbt.lfp_lvds_vbt_mode)
415 parse_lfp_panel_dtd(dev_priv, bdb);
416 }
417
418 static void
parse_lfp_backlight(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)419 parse_lfp_backlight(struct drm_i915_private *dev_priv,
420 const struct bdb_header *bdb)
421 {
422 const struct bdb_lfp_backlight_data *backlight_data;
423 const struct lfp_backlight_data_entry *entry;
424 int panel_type = dev_priv->vbt.panel_type;
425
426 backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
427 if (!backlight_data)
428 return;
429
430 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
431 DRM_DEBUG_KMS("Unsupported backlight data entry size %u\n",
432 backlight_data->entry_size);
433 return;
434 }
435
436 entry = &backlight_data->data[panel_type];
437
438 dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
439 if (!dev_priv->vbt.backlight.present) {
440 DRM_DEBUG_KMS("PWM backlight not present in VBT (type %u)\n",
441 entry->type);
442 return;
443 }
444
445 dev_priv->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
446 if (bdb->version >= 191 &&
447 get_blocksize(backlight_data) >= sizeof(*backlight_data)) {
448 const struct lfp_backlight_control_method *method;
449
450 method = &backlight_data->backlight_control[panel_type];
451 dev_priv->vbt.backlight.type = method->type;
452 dev_priv->vbt.backlight.controller = method->controller;
453 }
454
455 dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
456 dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm;
457 dev_priv->vbt.backlight.min_brightness = entry->min_brightness;
458 DRM_DEBUG_KMS("VBT backlight PWM modulation frequency %u Hz, "
459 "active %s, min brightness %u, level %u, controller %u\n",
460 dev_priv->vbt.backlight.pwm_freq_hz,
461 dev_priv->vbt.backlight.active_low_pwm ? "low" : "high",
462 dev_priv->vbt.backlight.min_brightness,
463 backlight_data->level[panel_type],
464 dev_priv->vbt.backlight.controller);
465 }
466
467 /* Try to find sdvo panel data */
468 static void
parse_sdvo_panel_data(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)469 parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
470 const struct bdb_header *bdb)
471 {
472 const struct bdb_sdvo_panel_dtds *dtds;
473 struct drm_display_mode *panel_fixed_mode;
474 int index;
475
476 index = i915_modparams.vbt_sdvo_panel_type;
477 if (index == -2) {
478 DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n");
479 return;
480 }
481
482 if (index == -1) {
483 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
484
485 sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
486 if (!sdvo_lvds_options)
487 return;
488
489 index = sdvo_lvds_options->panel_type;
490 }
491
492 dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
493 if (!dtds)
494 return;
495
496 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
497 if (!panel_fixed_mode)
498 return;
499
500 fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
501
502 dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
503
504 DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n");
505 drm_mode_debug_printmodeline(panel_fixed_mode);
506 }
507
intel_bios_ssc_frequency(struct drm_i915_private * dev_priv,bool alternate)508 static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv,
509 bool alternate)
510 {
511 switch (INTEL_GEN(dev_priv)) {
512 case 2:
513 return alternate ? 66667 : 48000;
514 case 3:
515 case 4:
516 return alternate ? 100000 : 96000;
517 default:
518 return alternate ? 100000 : 120000;
519 }
520 }
521
522 static void
parse_general_features(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)523 parse_general_features(struct drm_i915_private *dev_priv,
524 const struct bdb_header *bdb)
525 {
526 const struct bdb_general_features *general;
527
528 general = find_section(bdb, BDB_GENERAL_FEATURES);
529 if (!general)
530 return;
531
532 dev_priv->vbt.int_tv_support = general->int_tv_support;
533 /* int_crt_support can't be trusted on earlier platforms */
534 if (bdb->version >= 155 &&
535 (HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv)))
536 dev_priv->vbt.int_crt_support = general->int_crt_support;
537 dev_priv->vbt.lvds_use_ssc = general->enable_ssc;
538 dev_priv->vbt.lvds_ssc_freq =
539 intel_bios_ssc_frequency(dev_priv, general->ssc_freq);
540 dev_priv->vbt.display_clock_mode = general->display_clock_mode;
541 dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
542 if (bdb->version >= 181) {
543 dev_priv->vbt.orientation = general->rotate_180 ?
544 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
545 DRM_MODE_PANEL_ORIENTATION_NORMAL;
546 } else {
547 dev_priv->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
548 }
549 DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
550 dev_priv->vbt.int_tv_support,
551 dev_priv->vbt.int_crt_support,
552 dev_priv->vbt.lvds_use_ssc,
553 dev_priv->vbt.lvds_ssc_freq,
554 dev_priv->vbt.display_clock_mode,
555 dev_priv->vbt.fdi_rx_polarity_inverted);
556 }
557
558 static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions * defs,int i)559 child_device_ptr(const struct bdb_general_definitions *defs, int i)
560 {
561 return (const void *) &defs->devices[i * defs->child_dev_size];
562 }
563
564 static void
parse_sdvo_device_mapping(struct drm_i915_private * dev_priv,u8 bdb_version)565 parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, u8 bdb_version)
566 {
567 struct sdvo_device_mapping *mapping;
568 const struct display_device_data *devdata;
569 const struct child_device_config *child;
570 int count = 0;
571
572 /*
573 * Only parse SDVO mappings on gens that could have SDVO. This isn't
574 * accurate and doesn't have to be, as long as it's not too strict.
575 */
576 if (!IS_GEN_RANGE(dev_priv, 3, 7)) {
577 DRM_DEBUG_KMS("Skipping SDVO device mapping\n");
578 return;
579 }
580
581 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
582 child = &devdata->child;
583
584 if (child->slave_addr != SLAVE_ADDR1 &&
585 child->slave_addr != SLAVE_ADDR2) {
586 /*
587 * If the slave address is neither 0x70 nor 0x72,
588 * it is not a SDVO device. Skip it.
589 */
590 continue;
591 }
592 if (child->dvo_port != DEVICE_PORT_DVOB &&
593 child->dvo_port != DEVICE_PORT_DVOC) {
594 /* skip the incorrect SDVO port */
595 DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n");
596 continue;
597 }
598 DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on"
599 " %s port\n",
600 child->slave_addr,
601 (child->dvo_port == DEVICE_PORT_DVOB) ?
602 "SDVOB" : "SDVOC");
603 mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1];
604 if (!mapping->initialized) {
605 mapping->dvo_port = child->dvo_port;
606 mapping->slave_addr = child->slave_addr;
607 mapping->dvo_wiring = child->dvo_wiring;
608 mapping->ddc_pin = child->ddc_pin;
609 mapping->i2c_pin = child->i2c_pin;
610 mapping->initialized = 1;
611 DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
612 mapping->dvo_port,
613 mapping->slave_addr,
614 mapping->dvo_wiring,
615 mapping->ddc_pin,
616 mapping->i2c_pin);
617 } else {
618 DRM_DEBUG_KMS("Maybe one SDVO port is shared by "
619 "two SDVO device.\n");
620 }
621 if (child->slave2_addr) {
622 /* Maybe this is a SDVO device with multiple inputs */
623 /* And the mapping info is not added */
624 DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this"
625 " is a SDVO device with multiple inputs.\n");
626 }
627 count++;
628 }
629
630 if (!count) {
631 /* No SDVO device info is found */
632 DRM_DEBUG_KMS("No SDVO device info is found in VBT\n");
633 }
634 }
635
636 static void
parse_driver_features(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)637 parse_driver_features(struct drm_i915_private *dev_priv,
638 const struct bdb_header *bdb)
639 {
640 const struct bdb_driver_features *driver;
641
642 driver = find_section(bdb, BDB_DRIVER_FEATURES);
643 if (!driver)
644 return;
645
646 if (INTEL_GEN(dev_priv) >= 5) {
647 /*
648 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
649 * to mean "eDP". The VBT spec doesn't agree with that
650 * interpretation, but real world VBTs seem to.
651 */
652 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
653 dev_priv->vbt.int_lvds_support = 0;
654 } else {
655 /*
656 * FIXME it's not clear which BDB version has the LVDS config
657 * bits defined. Revision history in the VBT spec says:
658 * "0.92 | Add two definitions for VBT value of LVDS Active
659 * Config (00b and 11b values defined) | 06/13/2005"
660 * but does not the specify the BDB version.
661 *
662 * So far version 134 (on i945gm) is the oldest VBT observed
663 * in the wild with the bits correctly populated. Version
664 * 108 (on i85x) does not have the bits correctly populated.
665 */
666 if (bdb->version >= 134 &&
667 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
668 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
669 dev_priv->vbt.int_lvds_support = 0;
670 }
671
672 if (bdb->version < 228) {
673 DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled);
674 /*
675 * If DRRS is not supported, drrs_type has to be set to 0.
676 * This is because, VBT is configured in such a way that
677 * static DRRS is 0 and DRRS not supported is represented by
678 * driver->drrs_enabled=false
679 */
680 if (!driver->drrs_enabled)
681 dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
682
683 dev_priv->vbt.psr.enable = driver->psr_enabled;
684 }
685 }
686
687 static void
parse_power_conservation_features(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)688 parse_power_conservation_features(struct drm_i915_private *dev_priv,
689 const struct bdb_header *bdb)
690 {
691 const struct bdb_lfp_power *power;
692 u8 panel_type = dev_priv->vbt.panel_type;
693
694 if (bdb->version < 228)
695 return;
696
697 power = find_section(bdb, BDB_LVDS_POWER);
698 if (!power)
699 return;
700
701 dev_priv->vbt.psr.enable = power->psr & BIT(panel_type);
702
703 /*
704 * If DRRS is not supported, drrs_type has to be set to 0.
705 * This is because, VBT is configured in such a way that
706 * static DRRS is 0 and DRRS not supported is represented by
707 * power->drrs & BIT(panel_type)=false
708 */
709 if (!(power->drrs & BIT(panel_type)))
710 dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
711 }
712
713 static void
parse_edp(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)714 parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
715 {
716 const struct bdb_edp *edp;
717 const struct edp_power_seq *edp_pps;
718 const struct edp_fast_link_params *edp_link_params;
719 int panel_type = dev_priv->vbt.panel_type;
720
721 edp = find_section(bdb, BDB_EDP);
722 if (!edp)
723 return;
724
725 switch ((edp->color_depth >> (panel_type * 2)) & 3) {
726 case EDP_18BPP:
727 dev_priv->vbt.edp.bpp = 18;
728 break;
729 case EDP_24BPP:
730 dev_priv->vbt.edp.bpp = 24;
731 break;
732 case EDP_30BPP:
733 dev_priv->vbt.edp.bpp = 30;
734 break;
735 }
736
737 /* Get the eDP sequencing and link info */
738 edp_pps = &edp->power_seqs[panel_type];
739 edp_link_params = &edp->fast_link_params[panel_type];
740
741 dev_priv->vbt.edp.pps = *edp_pps;
742
743 switch (edp_link_params->rate) {
744 case EDP_RATE_1_62:
745 dev_priv->vbt.edp.rate = DP_LINK_BW_1_62;
746 break;
747 case EDP_RATE_2_7:
748 dev_priv->vbt.edp.rate = DP_LINK_BW_2_7;
749 break;
750 default:
751 DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n",
752 edp_link_params->rate);
753 break;
754 }
755
756 switch (edp_link_params->lanes) {
757 case EDP_LANE_1:
758 dev_priv->vbt.edp.lanes = 1;
759 break;
760 case EDP_LANE_2:
761 dev_priv->vbt.edp.lanes = 2;
762 break;
763 case EDP_LANE_4:
764 dev_priv->vbt.edp.lanes = 4;
765 break;
766 default:
767 DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n",
768 edp_link_params->lanes);
769 break;
770 }
771
772 switch (edp_link_params->preemphasis) {
773 case EDP_PREEMPHASIS_NONE:
774 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
775 break;
776 case EDP_PREEMPHASIS_3_5dB:
777 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
778 break;
779 case EDP_PREEMPHASIS_6dB:
780 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
781 break;
782 case EDP_PREEMPHASIS_9_5dB:
783 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
784 break;
785 default:
786 DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n",
787 edp_link_params->preemphasis);
788 break;
789 }
790
791 switch (edp_link_params->vswing) {
792 case EDP_VSWING_0_4V:
793 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
794 break;
795 case EDP_VSWING_0_6V:
796 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
797 break;
798 case EDP_VSWING_0_8V:
799 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
800 break;
801 case EDP_VSWING_1_2V:
802 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
803 break;
804 default:
805 DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n",
806 edp_link_params->vswing);
807 break;
808 }
809
810 if (bdb->version >= 173) {
811 u8 vswing;
812
813 /* Don't read from VBT if module parameter has valid value*/
814 if (i915_modparams.edp_vswing) {
815 dev_priv->vbt.edp.low_vswing =
816 i915_modparams.edp_vswing == 1;
817 } else {
818 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
819 dev_priv->vbt.edp.low_vswing = vswing == 0;
820 }
821 }
822 }
823
824 static void
parse_psr(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)825 parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
826 {
827 const struct bdb_psr *psr;
828 const struct psr_table *psr_table;
829 int panel_type = dev_priv->vbt.panel_type;
830
831 psr = find_section(bdb, BDB_PSR);
832 if (!psr) {
833 DRM_DEBUG_KMS("No PSR BDB found.\n");
834 return;
835 }
836
837 psr_table = &psr->psr_table[panel_type];
838
839 dev_priv->vbt.psr.full_link = psr_table->full_link;
840 dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
841
842 /* Allowed VBT values goes from 0 to 15 */
843 dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
844 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
845
846 switch (psr_table->lines_to_wait) {
847 case 0:
848 dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
849 break;
850 case 1:
851 dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
852 break;
853 case 2:
854 dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
855 break;
856 case 3:
857 dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
858 break;
859 default:
860 DRM_DEBUG_KMS("VBT has unknown PSR lines to wait %u\n",
861 psr_table->lines_to_wait);
862 break;
863 }
864
865 /*
866 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
867 * Old decimal value is wake up time in multiples of 100 us.
868 */
869 if (bdb->version >= 205 &&
870 (IS_GEN9_BC(dev_priv) || IS_GEMINILAKE(dev_priv) ||
871 INTEL_GEN(dev_priv) >= 10)) {
872 switch (psr_table->tp1_wakeup_time) {
873 case 0:
874 dev_priv->vbt.psr.tp1_wakeup_time_us = 500;
875 break;
876 case 1:
877 dev_priv->vbt.psr.tp1_wakeup_time_us = 100;
878 break;
879 case 3:
880 dev_priv->vbt.psr.tp1_wakeup_time_us = 0;
881 break;
882 default:
883 DRM_DEBUG_KMS("VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
884 psr_table->tp1_wakeup_time);
885 /* fallthrough */
886 case 2:
887 dev_priv->vbt.psr.tp1_wakeup_time_us = 2500;
888 break;
889 }
890
891 switch (psr_table->tp2_tp3_wakeup_time) {
892 case 0:
893 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 500;
894 break;
895 case 1:
896 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 100;
897 break;
898 case 3:
899 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 0;
900 break;
901 default:
902 DRM_DEBUG_KMS("VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
903 psr_table->tp2_tp3_wakeup_time);
904 /* fallthrough */
905 case 2:
906 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
907 break;
908 }
909 } else {
910 dev_priv->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
911 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
912 }
913
914 if (bdb->version >= 226) {
915 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
916
917 wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
918 switch (wakeup_time) {
919 case 0:
920 wakeup_time = 500;
921 break;
922 case 1:
923 wakeup_time = 100;
924 break;
925 case 3:
926 wakeup_time = 50;
927 break;
928 default:
929 case 2:
930 wakeup_time = 2500;
931 break;
932 }
933 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
934 } else {
935 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
936 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = dev_priv->vbt.psr.tp2_tp3_wakeup_time_us;
937 }
938 }
939
parse_dsi_backlight_ports(struct drm_i915_private * dev_priv,u16 version,enum port port)940 static void parse_dsi_backlight_ports(struct drm_i915_private *dev_priv,
941 u16 version, enum port port)
942 {
943 if (!dev_priv->vbt.dsi.config->dual_link || version < 197) {
944 dev_priv->vbt.dsi.bl_ports = BIT(port);
945 if (dev_priv->vbt.dsi.config->cabc_supported)
946 dev_priv->vbt.dsi.cabc_ports = BIT(port);
947
948 return;
949 }
950
951 switch (dev_priv->vbt.dsi.config->dl_dcs_backlight_ports) {
952 case DL_DCS_PORT_A:
953 dev_priv->vbt.dsi.bl_ports = BIT(PORT_A);
954 break;
955 case DL_DCS_PORT_C:
956 dev_priv->vbt.dsi.bl_ports = BIT(PORT_C);
957 break;
958 default:
959 case DL_DCS_PORT_A_AND_C:
960 dev_priv->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
961 break;
962 }
963
964 if (!dev_priv->vbt.dsi.config->cabc_supported)
965 return;
966
967 switch (dev_priv->vbt.dsi.config->dl_dcs_cabc_ports) {
968 case DL_DCS_PORT_A:
969 dev_priv->vbt.dsi.cabc_ports = BIT(PORT_A);
970 break;
971 case DL_DCS_PORT_C:
972 dev_priv->vbt.dsi.cabc_ports = BIT(PORT_C);
973 break;
974 default:
975 case DL_DCS_PORT_A_AND_C:
976 dev_priv->vbt.dsi.cabc_ports =
977 BIT(PORT_A) | BIT(PORT_C);
978 break;
979 }
980 }
981
982 static void
parse_mipi_config(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)983 parse_mipi_config(struct drm_i915_private *dev_priv,
984 const struct bdb_header *bdb)
985 {
986 const struct bdb_mipi_config *start;
987 const struct mipi_config *config;
988 const struct mipi_pps_data *pps;
989 int panel_type = dev_priv->vbt.panel_type;
990 enum port port;
991
992 /* parse MIPI blocks only if LFP type is MIPI */
993 if (!intel_bios_is_dsi_present(dev_priv, &port))
994 return;
995
996 /* Initialize this to undefined indicating no generic MIPI support */
997 dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
998
999 /* Block #40 is already parsed and panel_fixed_mode is
1000 * stored in dev_priv->lfp_lvds_vbt_mode
1001 * resuse this when needed
1002 */
1003
1004 /* Parse #52 for panel index used from panel_type already
1005 * parsed
1006 */
1007 start = find_section(bdb, BDB_MIPI_CONFIG);
1008 if (!start) {
1009 DRM_DEBUG_KMS("No MIPI config BDB found");
1010 return;
1011 }
1012
1013 DRM_DEBUG_DRIVER("Found MIPI Config block, panel index = %d\n",
1014 panel_type);
1015
1016 /*
1017 * get hold of the correct configuration block and pps data as per
1018 * the panel_type as index
1019 */
1020 config = &start->config[panel_type];
1021 pps = &start->pps[panel_type];
1022
1023 /* store as of now full data. Trim when we realise all is not needed */
1024 dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1025 if (!dev_priv->vbt.dsi.config)
1026 return;
1027
1028 dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1029 if (!dev_priv->vbt.dsi.pps) {
1030 kfree(dev_priv->vbt.dsi.config);
1031 return;
1032 }
1033
1034 parse_dsi_backlight_ports(dev_priv, bdb->version, port);
1035
1036 /* FIXME is the 90 vs. 270 correct? */
1037 switch (config->rotation) {
1038 case ENABLE_ROTATION_0:
1039 /*
1040 * Most (all?) VBTs claim 0 degrees despite having
1041 * an upside down panel, thus we do not trust this.
1042 */
1043 dev_priv->vbt.dsi.orientation =
1044 DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1045 break;
1046 case ENABLE_ROTATION_90:
1047 dev_priv->vbt.dsi.orientation =
1048 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1049 break;
1050 case ENABLE_ROTATION_180:
1051 dev_priv->vbt.dsi.orientation =
1052 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1053 break;
1054 case ENABLE_ROTATION_270:
1055 dev_priv->vbt.dsi.orientation =
1056 DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1057 break;
1058 }
1059
1060 /* We have mandatory mipi config blocks. Initialize as generic panel */
1061 dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1062 }
1063
1064 /* Find the sequence block and size for the given panel. */
1065 static const u8 *
find_panel_sequence_block(const struct bdb_mipi_sequence * sequence,u16 panel_id,u32 * seq_size)1066 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1067 u16 panel_id, u32 *seq_size)
1068 {
1069 u32 total = get_blocksize(sequence);
1070 const u8 *data = &sequence->data[0];
1071 u8 current_id;
1072 u32 current_size;
1073 int header_size = sequence->version >= 3 ? 5 : 3;
1074 int index = 0;
1075 int i;
1076
1077 /* skip new block size */
1078 if (sequence->version >= 3)
1079 data += 4;
1080
1081 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1082 if (index + header_size > total) {
1083 DRM_ERROR("Invalid sequence block (header)\n");
1084 return NULL;
1085 }
1086
1087 current_id = *(data + index);
1088 if (sequence->version >= 3)
1089 current_size = *((const u32 *)(data + index + 1));
1090 else
1091 current_size = *((const u16 *)(data + index + 1));
1092
1093 index += header_size;
1094
1095 if (index + current_size > total) {
1096 DRM_ERROR("Invalid sequence block\n");
1097 return NULL;
1098 }
1099
1100 if (current_id == panel_id) {
1101 *seq_size = current_size;
1102 return data + index;
1103 }
1104
1105 index += current_size;
1106 }
1107
1108 DRM_ERROR("Sequence block detected but no valid configuration\n");
1109
1110 return NULL;
1111 }
1112
goto_next_sequence(const u8 * data,int index,int total)1113 static int goto_next_sequence(const u8 *data, int index, int total)
1114 {
1115 u16 len;
1116
1117 /* Skip Sequence Byte. */
1118 for (index = index + 1; index < total; index += len) {
1119 u8 operation_byte = *(data + index);
1120 index++;
1121
1122 switch (operation_byte) {
1123 case MIPI_SEQ_ELEM_END:
1124 return index;
1125 case MIPI_SEQ_ELEM_SEND_PKT:
1126 if (index + 4 > total)
1127 return 0;
1128
1129 len = *((const u16 *)(data + index + 2)) + 4;
1130 break;
1131 case MIPI_SEQ_ELEM_DELAY:
1132 len = 4;
1133 break;
1134 case MIPI_SEQ_ELEM_GPIO:
1135 len = 2;
1136 break;
1137 case MIPI_SEQ_ELEM_I2C:
1138 if (index + 7 > total)
1139 return 0;
1140 len = *(data + index + 6) + 7;
1141 break;
1142 default:
1143 DRM_ERROR("Unknown operation byte\n");
1144 return 0;
1145 }
1146 }
1147
1148 return 0;
1149 }
1150
goto_next_sequence_v3(const u8 * data,int index,int total)1151 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1152 {
1153 int seq_end;
1154 u16 len;
1155 u32 size_of_sequence;
1156
1157 /*
1158 * Could skip sequence based on Size of Sequence alone, but also do some
1159 * checking on the structure.
1160 */
1161 if (total < 5) {
1162 DRM_ERROR("Too small sequence size\n");
1163 return 0;
1164 }
1165
1166 /* Skip Sequence Byte. */
1167 index++;
1168
1169 /*
1170 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1171 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1172 * byte.
1173 */
1174 size_of_sequence = *((const u32 *)(data + index));
1175 index += 4;
1176
1177 seq_end = index + size_of_sequence;
1178 if (seq_end > total) {
1179 DRM_ERROR("Invalid sequence size\n");
1180 return 0;
1181 }
1182
1183 for (; index < total; index += len) {
1184 u8 operation_byte = *(data + index);
1185 index++;
1186
1187 if (operation_byte == MIPI_SEQ_ELEM_END) {
1188 if (index != seq_end) {
1189 DRM_ERROR("Invalid element structure\n");
1190 return 0;
1191 }
1192 return index;
1193 }
1194
1195 len = *(data + index);
1196 index++;
1197
1198 /*
1199 * FIXME: Would be nice to check elements like for v1/v2 in
1200 * goto_next_sequence() above.
1201 */
1202 switch (operation_byte) {
1203 case MIPI_SEQ_ELEM_SEND_PKT:
1204 case MIPI_SEQ_ELEM_DELAY:
1205 case MIPI_SEQ_ELEM_GPIO:
1206 case MIPI_SEQ_ELEM_I2C:
1207 case MIPI_SEQ_ELEM_SPI:
1208 case MIPI_SEQ_ELEM_PMIC:
1209 break;
1210 default:
1211 DRM_ERROR("Unknown operation byte %u\n",
1212 operation_byte);
1213 break;
1214 }
1215 }
1216
1217 return 0;
1218 }
1219
1220 /*
1221 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1222 * skip all delay + gpio operands and stop at the first DSI packet op.
1223 */
get_init_otp_deassert_fragment_len(struct drm_i915_private * dev_priv)1224 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *dev_priv)
1225 {
1226 const u8 *data = dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1227 int index, len;
1228
1229 if (WARN_ON(!data || dev_priv->vbt.dsi.seq_version != 1))
1230 return 0;
1231
1232 /* index = 1 to skip sequence byte */
1233 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1234 switch (data[index]) {
1235 case MIPI_SEQ_ELEM_SEND_PKT:
1236 return index == 1 ? 0 : index;
1237 case MIPI_SEQ_ELEM_DELAY:
1238 len = 5; /* 1 byte for operand + uint32 */
1239 break;
1240 case MIPI_SEQ_ELEM_GPIO:
1241 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1242 break;
1243 default:
1244 return 0;
1245 }
1246 }
1247
1248 return 0;
1249 }
1250
1251 /*
1252 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1253 * The deassert must be done before calling intel_dsi_device_ready, so for
1254 * these devices we split the init OTP sequence into a deassert sequence and
1255 * the actual init OTP part.
1256 */
fixup_mipi_sequences(struct drm_i915_private * dev_priv)1257 static void fixup_mipi_sequences(struct drm_i915_private *dev_priv)
1258 {
1259 u8 *init_otp;
1260 int len;
1261
1262 /* Limit this to VLV for now. */
1263 if (!IS_VALLEYVIEW(dev_priv))
1264 return;
1265
1266 /* Limit this to v1 vid-mode sequences */
1267 if (dev_priv->vbt.dsi.config->is_cmd_mode ||
1268 dev_priv->vbt.dsi.seq_version != 1)
1269 return;
1270
1271 /* Only do this if there are otp and assert seqs and no deassert seq */
1272 if (!dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1273 !dev_priv->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1274 dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1275 return;
1276
1277 /* The deassert-sequence ends at the first DSI packet */
1278 len = get_init_otp_deassert_fragment_len(dev_priv);
1279 if (!len)
1280 return;
1281
1282 DRM_DEBUG_KMS("Using init OTP fragment to deassert reset\n");
1283
1284 /* Copy the fragment, update seq byte and terminate it */
1285 init_otp = (u8 *)__UNCONST(dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]);
1286 dev_priv->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1287 if (!dev_priv->vbt.dsi.deassert_seq)
1288 return;
1289 dev_priv->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1290 dev_priv->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1291 /* Use the copy for deassert */
1292 dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1293 dev_priv->vbt.dsi.deassert_seq;
1294 /* Replace the last byte of the fragment with init OTP seq byte */
1295 init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1296 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1297 dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1298 }
1299
1300 static void
parse_mipi_sequence(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)1301 parse_mipi_sequence(struct drm_i915_private *dev_priv,
1302 const struct bdb_header *bdb)
1303 {
1304 int panel_type = dev_priv->vbt.panel_type;
1305 const struct bdb_mipi_sequence *sequence;
1306 const u8 *seq_data;
1307 u32 seq_size;
1308 u8 *data;
1309 int index = 0;
1310
1311 /* Only our generic panel driver uses the sequence block. */
1312 if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1313 return;
1314
1315 sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1316 if (!sequence) {
1317 DRM_DEBUG_KMS("No MIPI Sequence found, parsing complete\n");
1318 return;
1319 }
1320
1321 /* Fail gracefully for forward incompatible sequence block. */
1322 if (sequence->version >= 4) {
1323 DRM_ERROR("Unable to parse MIPI Sequence Block v%u\n",
1324 sequence->version);
1325 return;
1326 }
1327
1328 DRM_DEBUG_DRIVER("Found MIPI sequence block v%u\n", sequence->version);
1329
1330 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1331 if (!seq_data)
1332 return;
1333
1334 data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1335 if (!data)
1336 return;
1337
1338 /* Parse the sequences, store pointers to each sequence. */
1339 for (;;) {
1340 u8 seq_id = *(data + index);
1341 if (seq_id == MIPI_SEQ_END)
1342 break;
1343
1344 if (seq_id >= MIPI_SEQ_MAX) {
1345 DRM_ERROR("Unknown sequence %u\n", seq_id);
1346 goto err;
1347 }
1348
1349 /* Log about presence of sequences we won't run. */
1350 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1351 DRM_DEBUG_KMS("Unsupported sequence %u\n", seq_id);
1352
1353 dev_priv->vbt.dsi.sequence[seq_id] = data + index;
1354
1355 if (sequence->version >= 3)
1356 index = goto_next_sequence_v3(data, index, seq_size);
1357 else
1358 index = goto_next_sequence(data, index, seq_size);
1359 if (!index) {
1360 DRM_ERROR("Invalid sequence %u\n", seq_id);
1361 goto err;
1362 }
1363 }
1364
1365 dev_priv->vbt.dsi.data = data;
1366 dev_priv->vbt.dsi.size = seq_size;
1367 dev_priv->vbt.dsi.seq_version = sequence->version;
1368
1369 fixup_mipi_sequences(dev_priv);
1370
1371 DRM_DEBUG_DRIVER("MIPI related VBT parsing complete\n");
1372 return;
1373
1374 err:
1375 kfree(data);
1376 memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
1377 }
1378
1379 static void
parse_compression_parameters(struct drm_i915_private * i915,const struct bdb_header * bdb)1380 parse_compression_parameters(struct drm_i915_private *i915,
1381 const struct bdb_header *bdb)
1382 {
1383 const struct bdb_compression_parameters *params;
1384 struct display_device_data *devdata;
1385 const struct child_device_config *child;
1386 u16 block_size;
1387 int index;
1388
1389 if (bdb->version < 198)
1390 return;
1391
1392 params = find_section(bdb, BDB_COMPRESSION_PARAMETERS);
1393 if (params) {
1394 /* Sanity checks */
1395 if (params->entry_size != sizeof(params->data[0])) {
1396 DRM_DEBUG_KMS("VBT: unsupported compression param entry size\n");
1397 return;
1398 }
1399
1400 block_size = get_blocksize(params);
1401 if (block_size < sizeof(*params)) {
1402 DRM_DEBUG_KMS("VBT: expected 16 compression param entries\n");
1403 return;
1404 }
1405 }
1406
1407 list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1408 child = &devdata->child;
1409
1410 if (!child->compression_enable)
1411 continue;
1412
1413 if (!params) {
1414 DRM_DEBUG_KMS("VBT: compression params not available\n");
1415 continue;
1416 }
1417
1418 if (child->compression_method_cps) {
1419 DRM_DEBUG_KMS("VBT: CPS compression not supported\n");
1420 continue;
1421 }
1422
1423 index = child->compression_structure_index;
1424
1425 devdata->dsc = kmemdup(¶ms->data[index],
1426 sizeof(*devdata->dsc), GFP_KERNEL);
1427 }
1428 }
1429
translate_iboost(u8 val)1430 static u8 translate_iboost(u8 val)
1431 {
1432 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1433
1434 if (val >= ARRAY_SIZE(mapping)) {
1435 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1436 return 0;
1437 }
1438 return mapping[val];
1439 }
1440
get_port_by_ddc_pin(struct drm_i915_private * i915,u8 ddc_pin)1441 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
1442 {
1443 const struct ddi_vbt_port_info *info;
1444 enum port port;
1445
1446 for_each_port(port) {
1447 info = &i915->vbt.ddi_port_info[port];
1448
1449 if (info->child && ddc_pin == info->alternate_ddc_pin)
1450 return port;
1451 }
1452
1453 return PORT_NONE;
1454 }
1455
sanitize_ddc_pin(struct drm_i915_private * dev_priv,enum port port)1456 static void sanitize_ddc_pin(struct drm_i915_private *dev_priv,
1457 enum port port)
1458 {
1459 struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1460 enum port p;
1461
1462 if (!info->alternate_ddc_pin)
1463 return;
1464
1465 p = get_port_by_ddc_pin(dev_priv, info->alternate_ddc_pin);
1466 if (p != PORT_NONE) {
1467 DRM_DEBUG_KMS("port %c trying to use the same DDC pin (0x%x) as port %c, "
1468 "disabling port %c DVI/HDMI support\n",
1469 port_name(port), info->alternate_ddc_pin,
1470 port_name(p), port_name(p));
1471
1472 /*
1473 * If we have multiple ports supposedly sharing the
1474 * pin, then dvi/hdmi couldn't exist on the shared
1475 * port. Otherwise they share the same ddc bin and
1476 * system couldn't communicate with them separately.
1477 *
1478 * Give inverse child device order the priority,
1479 * last one wins. Yes, there are real machines
1480 * (eg. Asrock B250M-HDV) where VBT has both
1481 * port A and port E with the same AUX ch and
1482 * we must pick port E :(
1483 */
1484 info = &dev_priv->vbt.ddi_port_info[p];
1485
1486 info->supports_dvi = false;
1487 info->supports_hdmi = false;
1488 info->alternate_ddc_pin = 0;
1489 }
1490 }
1491
get_port_by_aux_ch(struct drm_i915_private * i915,u8 aux_ch)1492 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
1493 {
1494 const struct ddi_vbt_port_info *info;
1495 enum port port;
1496
1497 for_each_port(port) {
1498 info = &i915->vbt.ddi_port_info[port];
1499
1500 if (info->child && aux_ch == info->alternate_aux_channel)
1501 return port;
1502 }
1503
1504 return PORT_NONE;
1505 }
1506
sanitize_aux_ch(struct drm_i915_private * dev_priv,enum port port)1507 static void sanitize_aux_ch(struct drm_i915_private *dev_priv,
1508 enum port port)
1509 {
1510 struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1511 enum port p;
1512
1513 if (!info->alternate_aux_channel)
1514 return;
1515
1516 p = get_port_by_aux_ch(dev_priv, info->alternate_aux_channel);
1517 if (p != PORT_NONE) {
1518 DRM_DEBUG_KMS("port %c trying to use the same AUX CH (0x%x) as port %c, "
1519 "disabling port %c DP support\n",
1520 port_name(port), info->alternate_aux_channel,
1521 port_name(p), port_name(p));
1522
1523 /*
1524 * If we have multiple ports supposedlt sharing the
1525 * aux channel, then DP couldn't exist on the shared
1526 * port. Otherwise they share the same aux channel
1527 * and system couldn't communicate with them separately.
1528 *
1529 * Give inverse child device order the priority,
1530 * last one wins. Yes, there are real machines
1531 * (eg. Asrock B250M-HDV) where VBT has both
1532 * port A and port E with the same AUX ch and
1533 * we must pick port E :(
1534 */
1535 info = &dev_priv->vbt.ddi_port_info[p];
1536
1537 info->supports_dp = false;
1538 info->alternate_aux_channel = 0;
1539 }
1540 }
1541
1542 static const u8 cnp_ddc_pin_map[] = {
1543 [0] = 0, /* N/A */
1544 [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1545 [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1546 [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1547 [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1548 };
1549
1550 static const u8 icp_ddc_pin_map[] = {
1551 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1552 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1553 [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1554 [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1555 [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1556 [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1557 [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1558 [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1559 [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1560 };
1561
map_ddc_pin(struct drm_i915_private * dev_priv,u8 vbt_pin)1562 static u8 map_ddc_pin(struct drm_i915_private *dev_priv, u8 vbt_pin)
1563 {
1564 const u8 *ddc_pin_map;
1565 int n_entries;
1566
1567 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) {
1568 ddc_pin_map = icp_ddc_pin_map;
1569 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1570 } else if (HAS_PCH_CNP(dev_priv)) {
1571 ddc_pin_map = cnp_ddc_pin_map;
1572 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1573 } else {
1574 /* Assuming direct map */
1575 return vbt_pin;
1576 }
1577
1578 if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1579 return ddc_pin_map[vbt_pin];
1580
1581 DRM_DEBUG_KMS("Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1582 vbt_pin);
1583 return 0;
1584 }
1585
dvo_port_to_port(u8 dvo_port)1586 static enum port dvo_port_to_port(u8 dvo_port)
1587 {
1588 /*
1589 * Each DDI port can have more than one value on the "DVO Port" field,
1590 * so look for all the possible values for each port.
1591 */
1592 static const int dvo_ports[][3] = {
1593 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1},
1594 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1},
1595 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1},
1596 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1},
1597 [PORT_E] = { DVO_PORT_CRT, DVO_PORT_HDMIE, DVO_PORT_DPE},
1598 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1},
1599 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1},
1600 };
1601 enum port port;
1602 int i;
1603
1604 for (port = PORT_A; port < ARRAY_SIZE(dvo_ports); port++) {
1605 for (i = 0; i < ARRAY_SIZE(dvo_ports[port]); i++) {
1606 if (dvo_ports[port][i] == -1)
1607 break;
1608
1609 if (dvo_port == dvo_ports[port][i])
1610 return port;
1611 }
1612 }
1613
1614 return PORT_NONE;
1615 }
1616
parse_ddi_port(struct drm_i915_private * dev_priv,struct display_device_data * devdata,u8 bdb_version)1617 static void parse_ddi_port(struct drm_i915_private *dev_priv,
1618 struct display_device_data *devdata,
1619 u8 bdb_version)
1620 {
1621 const struct child_device_config *child = &devdata->child;
1622 struct ddi_vbt_port_info *info;
1623 bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
1624 enum port port;
1625
1626 port = dvo_port_to_port(child->dvo_port);
1627 if (port == PORT_NONE)
1628 return;
1629
1630 info = &dev_priv->vbt.ddi_port_info[port];
1631
1632 if (info->child) {
1633 DRM_DEBUG_KMS("More than one child device for port %c in VBT, using the first.\n",
1634 port_name(port));
1635 return;
1636 }
1637
1638 is_dvi = child->device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1639 is_dp = child->device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1640 is_crt = child->device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1641 is_hdmi = is_dvi && (child->device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1642 is_edp = is_dp && (child->device_type & DEVICE_TYPE_INTERNAL_CONNECTOR);
1643
1644 if (port == PORT_A && is_dvi && INTEL_GEN(dev_priv) < 12) {
1645 DRM_DEBUG_KMS("VBT claims port A supports DVI%s, ignoring\n",
1646 is_hdmi ? "/HDMI" : "");
1647 is_dvi = false;
1648 is_hdmi = false;
1649 }
1650
1651 info->supports_dvi = is_dvi;
1652 info->supports_hdmi = is_hdmi;
1653 info->supports_dp = is_dp;
1654 info->supports_edp = is_edp;
1655
1656 if (bdb_version >= 195)
1657 info->supports_typec_usb = child->dp_usb_type_c;
1658
1659 if (bdb_version >= 209)
1660 info->supports_tbt = child->tbt;
1661
1662 DRM_DEBUG_KMS("Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
1663 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
1664 HAS_LSPCON(dev_priv) && child->lspcon,
1665 info->supports_typec_usb, info->supports_tbt,
1666 devdata->dsc != NULL);
1667
1668 if (is_dvi) {
1669 u8 ddc_pin;
1670
1671 ddc_pin = map_ddc_pin(dev_priv, child->ddc_pin);
1672 if (intel_gmbus_is_valid_pin(dev_priv, ddc_pin)) {
1673 info->alternate_ddc_pin = ddc_pin;
1674 sanitize_ddc_pin(dev_priv, port);
1675 } else {
1676 DRM_DEBUG_KMS("Port %c has invalid DDC pin %d, "
1677 "sticking to defaults\n",
1678 port_name(port), ddc_pin);
1679 }
1680 }
1681
1682 if (is_dp) {
1683 info->alternate_aux_channel = child->aux_channel;
1684
1685 sanitize_aux_ch(dev_priv, port);
1686 }
1687
1688 if (bdb_version >= 158) {
1689 /* The VBT HDMI level shift values match the table we have. */
1690 u8 hdmi_level_shift = child->hdmi_level_shifter_value;
1691 DRM_DEBUG_KMS("VBT HDMI level shift for port %c: %d\n",
1692 port_name(port),
1693 hdmi_level_shift);
1694 info->hdmi_level_shift = hdmi_level_shift;
1695 info->hdmi_level_shift_set = true;
1696 }
1697
1698 if (bdb_version >= 204) {
1699 int max_tmds_clock;
1700
1701 switch (child->hdmi_max_data_rate) {
1702 default:
1703 MISSING_CASE(child->hdmi_max_data_rate);
1704 /* fall through */
1705 case HDMI_MAX_DATA_RATE_PLATFORM:
1706 max_tmds_clock = 0;
1707 break;
1708 case HDMI_MAX_DATA_RATE_297:
1709 max_tmds_clock = 297000;
1710 break;
1711 case HDMI_MAX_DATA_RATE_165:
1712 max_tmds_clock = 165000;
1713 break;
1714 }
1715
1716 if (max_tmds_clock)
1717 DRM_DEBUG_KMS("VBT HDMI max TMDS clock for port %c: %d kHz\n",
1718 port_name(port), max_tmds_clock);
1719 info->max_tmds_clock = max_tmds_clock;
1720 }
1721
1722 /* Parse the I_boost config for SKL and above */
1723 if (bdb_version >= 196 && child->iboost) {
1724 info->dp_boost_level = translate_iboost(child->dp_iboost_level);
1725 DRM_DEBUG_KMS("VBT (e)DP boost level for port %c: %d\n",
1726 port_name(port), info->dp_boost_level);
1727 info->hdmi_boost_level = translate_iboost(child->hdmi_iboost_level);
1728 DRM_DEBUG_KMS("VBT HDMI boost level for port %c: %d\n",
1729 port_name(port), info->hdmi_boost_level);
1730 }
1731
1732 /* DP max link rate for CNL+ */
1733 if (bdb_version >= 216) {
1734 switch (child->dp_max_link_rate) {
1735 default:
1736 case VBT_DP_MAX_LINK_RATE_HBR3:
1737 info->dp_max_link_rate = 810000;
1738 break;
1739 case VBT_DP_MAX_LINK_RATE_HBR2:
1740 info->dp_max_link_rate = 540000;
1741 break;
1742 case VBT_DP_MAX_LINK_RATE_HBR:
1743 info->dp_max_link_rate = 270000;
1744 break;
1745 case VBT_DP_MAX_LINK_RATE_LBR:
1746 info->dp_max_link_rate = 162000;
1747 break;
1748 }
1749 DRM_DEBUG_KMS("VBT DP max link rate for port %c: %d\n",
1750 port_name(port), info->dp_max_link_rate);
1751 }
1752
1753 info->child = child;
1754 }
1755
parse_ddi_ports(struct drm_i915_private * dev_priv,u8 bdb_version)1756 static void parse_ddi_ports(struct drm_i915_private *dev_priv, u8 bdb_version)
1757 {
1758 struct display_device_data *devdata;
1759
1760 if (!HAS_DDI(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1761 return;
1762
1763 if (bdb_version < 155)
1764 return;
1765
1766 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node)
1767 parse_ddi_port(dev_priv, devdata, bdb_version);
1768 }
1769
1770 static void
parse_general_definitions(struct drm_i915_private * dev_priv,const struct bdb_header * bdb)1771 parse_general_definitions(struct drm_i915_private *dev_priv,
1772 const struct bdb_header *bdb)
1773 {
1774 const struct bdb_general_definitions *defs;
1775 struct display_device_data *devdata;
1776 const struct child_device_config *child;
1777 int i, child_device_num;
1778 u8 expected_size;
1779 u16 block_size;
1780 int bus_pin;
1781
1782 defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
1783 if (!defs) {
1784 DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n");
1785 return;
1786 }
1787
1788 block_size = get_blocksize(defs);
1789 if (block_size < sizeof(*defs)) {
1790 DRM_DEBUG_KMS("General definitions block too small (%u)\n",
1791 block_size);
1792 return;
1793 }
1794
1795 bus_pin = defs->crt_ddc_gmbus_pin;
1796 DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin);
1797 if (intel_gmbus_is_valid_pin(dev_priv, bus_pin))
1798 dev_priv->vbt.crt_ddc_pin = bus_pin;
1799
1800 if (bdb->version < 106) {
1801 expected_size = 22;
1802 } else if (bdb->version < 111) {
1803 expected_size = 27;
1804 } else if (bdb->version < 195) {
1805 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
1806 } else if (bdb->version == 195) {
1807 expected_size = 37;
1808 } else if (bdb->version <= 215) {
1809 expected_size = 38;
1810 } else if (bdb->version <= 229) {
1811 expected_size = 39;
1812 } else {
1813 expected_size = sizeof(*child);
1814 BUILD_BUG_ON(sizeof(*child) < 39);
1815 DRM_DEBUG_DRIVER("Expected child device config size for VBT version %u not known; assuming %u\n",
1816 bdb->version, expected_size);
1817 }
1818
1819 /* Flag an error for unexpected size, but continue anyway. */
1820 if (defs->child_dev_size != expected_size)
1821 DRM_ERROR("Unexpected child device config size %u (expected %u for VBT version %u)\n",
1822 defs->child_dev_size, expected_size, bdb->version);
1823
1824 /* The legacy sized child device config is the minimum we need. */
1825 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
1826 DRM_DEBUG_KMS("Child device config size %u is too small.\n",
1827 defs->child_dev_size);
1828 return;
1829 }
1830
1831 /* get the number of child device */
1832 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
1833
1834 for (i = 0; i < child_device_num; i++) {
1835 child = child_device_ptr(defs, i);
1836 if (!child->device_type)
1837 continue;
1838
1839 DRM_DEBUG_KMS("Found VBT child device with type 0x%x\n",
1840 child->device_type);
1841
1842 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
1843 if (!devdata)
1844 break;
1845
1846 /*
1847 * Copy as much as we know (sizeof) and is available
1848 * (child_dev_size) of the child device config. Accessing the
1849 * data must depend on VBT version.
1850 */
1851 memcpy(&devdata->child, child,
1852 min_t(size_t, defs->child_dev_size, sizeof(*child)));
1853
1854 list_add_tail(&devdata->node, &dev_priv->vbt.display_devices);
1855 }
1856
1857 if (list_empty(&dev_priv->vbt.display_devices))
1858 DRM_DEBUG_KMS("no child dev is parsed from VBT\n");
1859 }
1860
1861 /* Common defaults which may be overridden by VBT. */
1862 static void
init_vbt_defaults(struct drm_i915_private * dev_priv)1863 init_vbt_defaults(struct drm_i915_private *dev_priv)
1864 {
1865 dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
1866
1867 /* Default to having backlight */
1868 dev_priv->vbt.backlight.present = true;
1869
1870 /* LFP panel data */
1871 dev_priv->vbt.lvds_dither = 1;
1872
1873 /* SDVO panel data */
1874 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1875
1876 /* general features */
1877 dev_priv->vbt.int_tv_support = 1;
1878 dev_priv->vbt.int_crt_support = 1;
1879
1880 /* driver features */
1881 dev_priv->vbt.int_lvds_support = 1;
1882
1883 /* Default to using SSC */
1884 dev_priv->vbt.lvds_use_ssc = 1;
1885 /*
1886 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
1887 * clock for LVDS.
1888 */
1889 dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv,
1890 !HAS_PCH_SPLIT(dev_priv));
1891 DRM_DEBUG_KMS("Set default to SSC at %d kHz\n", dev_priv->vbt.lvds_ssc_freq);
1892 }
1893
1894 /* Defaults to initialize only if there is no VBT. */
1895 static void
init_vbt_missing_defaults(struct drm_i915_private * dev_priv)1896 init_vbt_missing_defaults(struct drm_i915_private *dev_priv)
1897 {
1898 enum port port;
1899
1900 for_each_port(port) {
1901 struct ddi_vbt_port_info *info =
1902 &dev_priv->vbt.ddi_port_info[port];
1903 enum phy phy = intel_port_to_phy(dev_priv, port);
1904
1905 /*
1906 * VBT has the TypeC mode (native,TBT/USB) and we don't want
1907 * to detect it.
1908 */
1909 if (intel_phy_is_tc(dev_priv, phy))
1910 continue;
1911
1912 info->supports_dvi = (port != PORT_A && port != PORT_E);
1913 info->supports_hdmi = info->supports_dvi;
1914 info->supports_dp = (port != PORT_E);
1915 info->supports_edp = (port == PORT_A);
1916 }
1917 }
1918
get_bdb_header(const struct vbt_header * vbt)1919 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
1920 {
1921 const void *_vbt = vbt;
1922
1923 return _vbt + vbt->bdb_offset;
1924 }
1925
1926 /**
1927 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
1928 * @buf: pointer to a buffer to validate
1929 * @size: size of the buffer
1930 *
1931 * Returns true on valid VBT.
1932 */
intel_bios_is_valid_vbt(const void * buf,size_t size)1933 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
1934 {
1935 const struct vbt_header *vbt = buf;
1936 const struct bdb_header *bdb;
1937
1938 if (!vbt)
1939 return false;
1940
1941 if (sizeof(struct vbt_header) > size) {
1942 DRM_DEBUG_DRIVER("VBT header incomplete\n");
1943 return false;
1944 }
1945
1946 if (memcmp(vbt->signature, "$VBT", 4)) {
1947 DRM_DEBUG_DRIVER("VBT invalid signature\n");
1948 return false;
1949 }
1950
1951 if (vbt->vbt_size > size) {
1952 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
1953 return false;
1954 }
1955
1956 size = vbt->vbt_size;
1957
1958 if (range_overflows_t(size_t,
1959 vbt->bdb_offset,
1960 sizeof(struct bdb_header),
1961 size)) {
1962 DRM_DEBUG_DRIVER("BDB header incomplete\n");
1963 return false;
1964 }
1965
1966 bdb = get_bdb_header(vbt);
1967 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
1968 DRM_DEBUG_DRIVER("BDB incomplete\n");
1969 return false;
1970 }
1971
1972 return vbt;
1973 }
1974
1975 #ifdef __NetBSD__
1976 # define __iomem __pci_rom_iomem
1977 # define ioread16 fake_ioread16
1978 # define ioread32 fake_ioread32
1979 static inline uint16_t
fake_ioread16(const void __iomem * p)1980 fake_ioread16(const void __iomem *p)
1981 {
1982 uint16_t v;
1983
1984 v = *(const uint16_t __iomem *)p;
1985 __insn_barrier();
1986
1987 return v;
1988 }
1989 static inline uint32_t
fake_ioread32(const void __iomem * p)1990 fake_ioread32(const void __iomem *p)
1991 {
1992 uint32_t v;
1993
1994 v = *(const uint32_t __iomem *)p;
1995 __insn_barrier();
1996
1997 return v;
1998 }
1999 #endif
2000
oprom_get_vbt(struct drm_i915_private * dev_priv)2001 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *dev_priv)
2002 {
2003 struct pci_dev *pdev = dev_priv->drm.pdev;
2004 void __iomem *p = NULL, *oprom;
2005 struct vbt_header *vbt;
2006 u16 vbt_size;
2007 size_t i, size;
2008
2009 oprom = pci_map_rom(pdev, &size);
2010 if (!oprom)
2011 return NULL;
2012
2013 /* Scour memory looking for the VBT signature. */
2014 for (i = 0; i + 4 < size; i += 4) {
2015 if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2016 continue;
2017
2018 p = oprom + i;
2019 size -= i;
2020 break;
2021 }
2022
2023 if (!p)
2024 goto err_unmap_oprom;
2025
2026 if (sizeof(struct vbt_header) > size) {
2027 DRM_DEBUG_DRIVER("VBT header incomplete\n");
2028 goto err_unmap_oprom;
2029 }
2030
2031 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
2032 if (vbt_size > size) {
2033 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2034 goto err_unmap_oprom;
2035 }
2036
2037 /* The rest will be validated by intel_bios_is_valid_vbt() */
2038 vbt = kmalloc(vbt_size, GFP_KERNEL);
2039 if (!vbt)
2040 goto err_unmap_oprom;
2041
2042 memcpy_fromio(vbt, p, vbt_size);
2043
2044 if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2045 goto err_free_vbt;
2046
2047 pci_unmap_rom(pdev, oprom);
2048
2049 return vbt;
2050
2051 err_free_vbt:
2052 kfree(vbt);
2053 err_unmap_oprom:
2054 pci_unmap_rom(pdev, oprom);
2055
2056 return NULL;
2057 }
2058
2059 #ifdef __NetBSD__
2060 # undef __iomem
2061 # undef ioread32
2062 #endif
2063
2064 /**
2065 * intel_bios_init - find VBT and initialize settings from the BIOS
2066 * @dev_priv: i915 device instance
2067 *
2068 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
2069 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
2070 * initialize some defaults if the VBT is not present at all.
2071 */
intel_bios_init(struct drm_i915_private * dev_priv)2072 void intel_bios_init(struct drm_i915_private *dev_priv)
2073 {
2074 const struct vbt_header *vbt = dev_priv->opregion.vbt;
2075 struct vbt_header *oprom_vbt = NULL;
2076 const struct bdb_header *bdb;
2077
2078 INIT_LIST_HEAD(&dev_priv->vbt.display_devices);
2079
2080 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) {
2081 DRM_DEBUG_KMS("Skipping VBT init due to disabled display.\n");
2082 return;
2083 }
2084
2085 init_vbt_defaults(dev_priv);
2086
2087 /* If the OpRegion does not have VBT, look in PCI ROM. */
2088 if (!vbt) {
2089 oprom_vbt = oprom_get_vbt(dev_priv);
2090 if (!oprom_vbt)
2091 goto out;
2092
2093 vbt = oprom_vbt;
2094
2095 DRM_DEBUG_KMS("Found valid VBT in PCI ROM\n");
2096 }
2097
2098 bdb = get_bdb_header(vbt);
2099
2100 DRM_DEBUG_KMS("VBT signature \"%.*s\", BDB version %d\n",
2101 (int)sizeof(vbt->signature), vbt->signature, bdb->version);
2102
2103 /* Grab useful general definitions */
2104 parse_general_features(dev_priv, bdb);
2105 parse_general_definitions(dev_priv, bdb);
2106 parse_panel_options(dev_priv, bdb);
2107 parse_panel_dtd(dev_priv, bdb);
2108 parse_lfp_backlight(dev_priv, bdb);
2109 parse_sdvo_panel_data(dev_priv, bdb);
2110 parse_driver_features(dev_priv, bdb);
2111 parse_power_conservation_features(dev_priv, bdb);
2112 parse_edp(dev_priv, bdb);
2113 parse_psr(dev_priv, bdb);
2114 parse_mipi_config(dev_priv, bdb);
2115 parse_mipi_sequence(dev_priv, bdb);
2116
2117 /* Depends on child device list */
2118 parse_compression_parameters(dev_priv, bdb);
2119
2120 /* Further processing on pre-parsed data */
2121 parse_sdvo_device_mapping(dev_priv, bdb->version);
2122 parse_ddi_ports(dev_priv, bdb->version);
2123
2124 out:
2125 if (!vbt) {
2126 DRM_INFO("Failed to find VBIOS tables (VBT)\n");
2127 init_vbt_missing_defaults(dev_priv);
2128 }
2129
2130 kfree(oprom_vbt);
2131 }
2132
2133 /**
2134 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
2135 * @dev_priv: i915 device instance
2136 */
intel_bios_driver_remove(struct drm_i915_private * dev_priv)2137 void intel_bios_driver_remove(struct drm_i915_private *dev_priv)
2138 {
2139 struct display_device_data *devdata, *n;
2140
2141 list_for_each_entry_safe(devdata, n, &dev_priv->vbt.display_devices, node) {
2142 list_del(&devdata->node);
2143 kfree(devdata->dsc);
2144 kfree(devdata);
2145 }
2146
2147 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
2148 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
2149 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
2150 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
2151 kfree(dev_priv->vbt.dsi.data);
2152 dev_priv->vbt.dsi.data = NULL;
2153 kfree(dev_priv->vbt.dsi.pps);
2154 dev_priv->vbt.dsi.pps = NULL;
2155 kfree(dev_priv->vbt.dsi.config);
2156 dev_priv->vbt.dsi.config = NULL;
2157 kfree(dev_priv->vbt.dsi.deassert_seq);
2158 dev_priv->vbt.dsi.deassert_seq = NULL;
2159 }
2160
2161 /**
2162 * intel_bios_is_tv_present - is integrated TV present in VBT
2163 * @dev_priv: i915 device instance
2164 *
2165 * Return true if TV is present. If no child devices were parsed from VBT,
2166 * assume TV is present.
2167 */
intel_bios_is_tv_present(struct drm_i915_private * dev_priv)2168 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv)
2169 {
2170 const struct display_device_data *devdata;
2171 const struct child_device_config *child;
2172
2173 if (!dev_priv->vbt.int_tv_support)
2174 return false;
2175
2176 if (list_empty(&dev_priv->vbt.display_devices))
2177 return true;
2178
2179 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2180 child = &devdata->child;
2181
2182 /*
2183 * If the device type is not TV, continue.
2184 */
2185 switch (child->device_type) {
2186 case DEVICE_TYPE_INT_TV:
2187 case DEVICE_TYPE_TV:
2188 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
2189 break;
2190 default:
2191 continue;
2192 }
2193 /* Only when the addin_offset is non-zero, it is regarded
2194 * as present.
2195 */
2196 if (child->addin_offset)
2197 return true;
2198 }
2199
2200 return false;
2201 }
2202
2203 /**
2204 * intel_bios_is_lvds_present - is LVDS present in VBT
2205 * @dev_priv: i915 device instance
2206 * @i2c_pin: i2c pin for LVDS if present
2207 *
2208 * Return true if LVDS is present. If no child devices were parsed from VBT,
2209 * assume LVDS is present.
2210 */
intel_bios_is_lvds_present(struct drm_i915_private * dev_priv,u8 * i2c_pin)2211 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin)
2212 {
2213 const struct display_device_data *devdata;
2214 const struct child_device_config *child;
2215
2216 if (list_empty(&dev_priv->vbt.display_devices))
2217 return true;
2218
2219 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2220 child = &devdata->child;
2221
2222 /* If the device type is not LFP, continue.
2223 * We have to check both the new identifiers as well as the
2224 * old for compatibility with some BIOSes.
2225 */
2226 if (child->device_type != DEVICE_TYPE_INT_LFP &&
2227 child->device_type != DEVICE_TYPE_LFP)
2228 continue;
2229
2230 if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
2231 *i2c_pin = child->i2c_pin;
2232
2233 /* However, we cannot trust the BIOS writers to populate
2234 * the VBT correctly. Since LVDS requires additional
2235 * information from AIM blocks, a non-zero addin offset is
2236 * a good indicator that the LVDS is actually present.
2237 */
2238 if (child->addin_offset)
2239 return true;
2240
2241 /* But even then some BIOS writers perform some black magic
2242 * and instantiate the device without reference to any
2243 * additional data. Trust that if the VBT was written into
2244 * the OpRegion then they have validated the LVDS's existence.
2245 */
2246 if (dev_priv->opregion.vbt)
2247 return true;
2248 }
2249
2250 return false;
2251 }
2252
2253 /**
2254 * intel_bios_is_port_present - is the specified digital port present
2255 * @dev_priv: i915 device instance
2256 * @port: port to check
2257 *
2258 * Return true if the device in %port is present.
2259 */
intel_bios_is_port_present(struct drm_i915_private * dev_priv,enum port port)2260 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port)
2261 {
2262 const struct display_device_data *devdata;
2263 const struct child_device_config *child;
2264 static const struct {
2265 u16 dp, hdmi;
2266 } port_mapping[] = {
2267 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2268 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2269 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2270 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2271 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2272 };
2273
2274 if (HAS_DDI(dev_priv)) {
2275 const struct ddi_vbt_port_info *port_info =
2276 &dev_priv->vbt.ddi_port_info[port];
2277
2278 return port_info->supports_dp ||
2279 port_info->supports_dvi ||
2280 port_info->supports_hdmi;
2281 }
2282
2283 /* FIXME maybe deal with port A as well? */
2284 if (WARN_ON(port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
2285 return false;
2286
2287 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2288 child = &devdata->child;
2289
2290 if ((child->dvo_port == port_mapping[port].dp ||
2291 child->dvo_port == port_mapping[port].hdmi) &&
2292 (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
2293 DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
2294 return true;
2295 }
2296
2297 return false;
2298 }
2299
2300 /**
2301 * intel_bios_is_port_edp - is the device in given port eDP
2302 * @dev_priv: i915 device instance
2303 * @port: port to check
2304 *
2305 * Return true if the device in %port is eDP.
2306 */
intel_bios_is_port_edp(struct drm_i915_private * dev_priv,enum port port)2307 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
2308 {
2309 const struct display_device_data *devdata;
2310 const struct child_device_config *child;
2311 static const short port_mapping[] = {
2312 [PORT_B] = DVO_PORT_DPB,
2313 [PORT_C] = DVO_PORT_DPC,
2314 [PORT_D] = DVO_PORT_DPD,
2315 [PORT_E] = DVO_PORT_DPE,
2316 [PORT_F] = DVO_PORT_DPF,
2317 };
2318
2319 if (HAS_DDI(dev_priv))
2320 return dev_priv->vbt.ddi_port_info[port].supports_edp;
2321
2322 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2323 child = &devdata->child;
2324
2325 if (child->dvo_port == port_mapping[port] &&
2326 (child->device_type & DEVICE_TYPE_eDP_BITS) ==
2327 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2328 return true;
2329 }
2330
2331 return false;
2332 }
2333
child_dev_is_dp_dual_mode(const struct child_device_config * child,enum port port)2334 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child,
2335 enum port port)
2336 {
2337 static const struct {
2338 u16 dp, hdmi;
2339 } port_mapping[] = {
2340 /*
2341 * Buggy VBTs may declare DP ports as having
2342 * HDMI type dvo_port :( So let's check both.
2343 */
2344 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2345 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2346 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2347 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2348 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2349 };
2350
2351 if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
2352 return false;
2353
2354 if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
2355 (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
2356 return false;
2357
2358 if (child->dvo_port == port_mapping[port].dp)
2359 return true;
2360
2361 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2362 if (child->dvo_port == port_mapping[port].hdmi &&
2363 child->aux_channel != 0)
2364 return true;
2365
2366 return false;
2367 }
2368
intel_bios_is_port_dp_dual_mode(struct drm_i915_private * dev_priv,enum port port)2369 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv,
2370 enum port port)
2371 {
2372 const struct display_device_data *devdata;
2373
2374 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2375 if (child_dev_is_dp_dual_mode(&devdata->child, port))
2376 return true;
2377 }
2378
2379 return false;
2380 }
2381
2382 /**
2383 * intel_bios_is_dsi_present - is DSI present in VBT
2384 * @dev_priv: i915 device instance
2385 * @port: port for DSI if present
2386 *
2387 * Return true if DSI is present, and return the port in %port.
2388 */
intel_bios_is_dsi_present(struct drm_i915_private * dev_priv,enum port * port)2389 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv,
2390 enum port *port)
2391 {
2392 const struct display_device_data *devdata;
2393 const struct child_device_config *child;
2394 u8 dvo_port;
2395
2396 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) {
2397 child = &devdata->child;
2398
2399 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2400 continue;
2401
2402 dvo_port = child->dvo_port;
2403
2404 if (dvo_port == DVO_PORT_MIPIA ||
2405 (dvo_port == DVO_PORT_MIPIB && INTEL_GEN(dev_priv) >= 11) ||
2406 (dvo_port == DVO_PORT_MIPIC && INTEL_GEN(dev_priv) < 11)) {
2407 if (port)
2408 *port = dvo_port - DVO_PORT_MIPIA;
2409 return true;
2410 } else if (dvo_port == DVO_PORT_MIPIB ||
2411 dvo_port == DVO_PORT_MIPIC ||
2412 dvo_port == DVO_PORT_MIPID) {
2413 DRM_DEBUG_KMS("VBT has unsupported DSI port %c\n",
2414 port_name(dvo_port - DVO_PORT_MIPIA));
2415 }
2416 }
2417
2418 return false;
2419 }
2420
fill_dsc(struct intel_crtc_state * crtc_state,struct dsc_compression_parameters_entry * dsc,int dsc_max_bpc)2421 static void fill_dsc(struct intel_crtc_state *crtc_state,
2422 struct dsc_compression_parameters_entry *dsc,
2423 int dsc_max_bpc)
2424 {
2425 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2426 int bpc = 8;
2427
2428 vdsc_cfg->dsc_version_major = dsc->version_major;
2429 vdsc_cfg->dsc_version_minor = dsc->version_minor;
2430
2431 if (dsc->support_12bpc && dsc_max_bpc >= 12)
2432 bpc = 12;
2433 else if (dsc->support_10bpc && dsc_max_bpc >= 10)
2434 bpc = 10;
2435 else if (dsc->support_8bpc && dsc_max_bpc >= 8)
2436 bpc = 8;
2437 else
2438 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
2439 dsc_max_bpc);
2440
2441 crtc_state->pipe_bpp = bpc * 3;
2442
2443 crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
2444 VBT_DSC_MAX_BPP(dsc->max_bpp));
2445
2446 /*
2447 * FIXME: This is ugly, and slice count should take DSC engine
2448 * throughput etc. into account.
2449 *
2450 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
2451 */
2452 if (dsc->slices_per_line & BIT(2)) {
2453 crtc_state->dsc.slice_count = 4;
2454 } else if (dsc->slices_per_line & BIT(1)) {
2455 crtc_state->dsc.slice_count = 2;
2456 } else {
2457 /* FIXME */
2458 if (!(dsc->slices_per_line & BIT(0)))
2459 DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
2460
2461 crtc_state->dsc.slice_count = 1;
2462 }
2463
2464 if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
2465 crtc_state->dsc.slice_count != 0)
2466 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
2467 crtc_state->hw.adjusted_mode.crtc_hdisplay,
2468 crtc_state->dsc.slice_count);
2469
2470 /*
2471 * FIXME: Use VBT rc_buffer_block_size and rc_buffer_size for the
2472 * implementation specific physical rate buffer size. Currently we use
2473 * the required rate buffer model size calculated in
2474 * drm_dsc_compute_rc_parameters() according to VESA DSC Annex E.
2475 *
2476 * The VBT rc_buffer_block_size and rc_buffer_size definitions
2477 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. The DP DSC
2478 * implementation should also use the DPCD (or perhaps VBT for eDP)
2479 * provided value for the buffer size.
2480 */
2481
2482 /* FIXME: DSI spec says bpc + 1 for this one */
2483 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
2484
2485 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
2486
2487 vdsc_cfg->slice_height = dsc->slice_height;
2488 }
2489
2490 /* FIXME: initially DSI specific */
intel_bios_get_dsc_params(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,int dsc_max_bpc)2491 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
2492 struct intel_crtc_state *crtc_state,
2493 int dsc_max_bpc)
2494 {
2495 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2496 const struct display_device_data *devdata;
2497 const struct child_device_config *child;
2498
2499 list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2500 child = &devdata->child;
2501
2502 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2503 continue;
2504
2505 if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
2506 if (!devdata->dsc)
2507 return false;
2508
2509 if (crtc_state)
2510 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
2511
2512 return true;
2513 }
2514 }
2515
2516 return false;
2517 }
2518
2519 /**
2520 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2521 * @i915: i915 device instance
2522 * @port: port to check
2523 *
2524 * Return true if HPD should be inverted for %port.
2525 */
2526 bool
intel_bios_is_port_hpd_inverted(const struct drm_i915_private * i915,enum port port)2527 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
2528 enum port port)
2529 {
2530 const struct child_device_config *child =
2531 i915->vbt.ddi_port_info[port].child;
2532
2533 if (WARN_ON_ONCE(!IS_GEN9_LP(i915)))
2534 return false;
2535
2536 return child && child->hpd_invert;
2537 }
2538
2539 /**
2540 * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2541 * @i915: i915 device instance
2542 * @port: port to check
2543 *
2544 * Return true if LSPCON is present on this port
2545 */
2546 bool
intel_bios_is_lspcon_present(const struct drm_i915_private * i915,enum port port)2547 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
2548 enum port port)
2549 {
2550 const struct child_device_config *child =
2551 i915->vbt.ddi_port_info[port].child;
2552
2553 return HAS_LSPCON(i915) && child && child->lspcon;
2554 }
2555
intel_bios_port_aux_ch(struct drm_i915_private * dev_priv,enum port port)2556 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv,
2557 enum port port)
2558 {
2559 const struct ddi_vbt_port_info *info =
2560 &dev_priv->vbt.ddi_port_info[port];
2561 enum aux_ch aux_ch;
2562
2563 if (!info->alternate_aux_channel) {
2564 aux_ch = (enum aux_ch)port;
2565
2566 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
2567 aux_ch_name(aux_ch), port_name(port));
2568 return aux_ch;
2569 }
2570
2571 switch (info->alternate_aux_channel) {
2572 case DP_AUX_A:
2573 aux_ch = AUX_CH_A;
2574 break;
2575 case DP_AUX_B:
2576 aux_ch = AUX_CH_B;
2577 break;
2578 case DP_AUX_C:
2579 aux_ch = AUX_CH_C;
2580 break;
2581 case DP_AUX_D:
2582 aux_ch = AUX_CH_D;
2583 break;
2584 case DP_AUX_E:
2585 aux_ch = AUX_CH_E;
2586 break;
2587 case DP_AUX_F:
2588 aux_ch = AUX_CH_F;
2589 break;
2590 case DP_AUX_G:
2591 aux_ch = AUX_CH_G;
2592 break;
2593 default:
2594 MISSING_CASE(info->alternate_aux_channel);
2595 aux_ch = AUX_CH_A;
2596 break;
2597 }
2598
2599 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
2600 aux_ch_name(aux_ch), port_name(port));
2601
2602 return aux_ch;
2603 }
2604