1 //===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based 10 // register allocator for LLVM. This allocator works by constructing a PBQP 11 // problem representing the register allocation problem under consideration, 12 // solving this using a PBQP solver, and mapping the solution back to a 13 // register assignment. If any variables are selected for spilling then spill 14 // code is inserted and the process repeated. 15 // 16 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned 17 // for register allocation. For more information on PBQP for register 18 // allocation, see the following papers: 19 // 20 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with 21 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference 22 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. 23 // 24 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular 25 // architectures. In Proceedings of the Joint Conference on Languages, 26 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, 27 // NY, USA, 139-148. 28 // 29 //===----------------------------------------------------------------------===// 30 31 #include "llvm/CodeGen/RegAllocPBQP.h" 32 #include "RegisterCoalescer.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/DenseSet.h" 37 #include "llvm/ADT/STLExtras.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/ADT/StringRef.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/CodeGen/CalcSpillWeights.h" 43 #include "llvm/CodeGen/LiveInterval.h" 44 #include "llvm/CodeGen/LiveIntervals.h" 45 #include "llvm/CodeGen/LiveRangeEdit.h" 46 #include "llvm/CodeGen/LiveStacks.h" 47 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 48 #include "llvm/CodeGen/MachineDominators.h" 49 #include "llvm/CodeGen/MachineFunction.h" 50 #include "llvm/CodeGen/MachineFunctionPass.h" 51 #include "llvm/CodeGen/MachineInstr.h" 52 #include "llvm/CodeGen/MachineLoopInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/PBQP/Graph.h" 55 #include "llvm/CodeGen/PBQP/Math.h" 56 #include "llvm/CodeGen/PBQP/Solution.h" 57 #include "llvm/CodeGen/PBQPRAConstraint.h" 58 #include "llvm/CodeGen/RegAllocRegistry.h" 59 #include "llvm/CodeGen/SlotIndexes.h" 60 #include "llvm/CodeGen/Spiller.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/VirtRegMap.h" 64 #include "llvm/Config/llvm-config.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Compiler.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/FileSystem.h" 72 #include "llvm/Support/Printable.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <limits> 78 #include <map> 79 #include <memory> 80 #include <queue> 81 #include <set> 82 #include <sstream> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "regalloc" 92 93 static RegisterRegAlloc 94 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", 95 createDefaultPBQPRegisterAllocator); 96 97 static cl::opt<bool> 98 PBQPCoalescing("pbqp-coalescing", 99 cl::desc("Attempt coalescing during PBQP register allocation."), 100 cl::init(false), cl::Hidden); 101 102 #ifndef NDEBUG 103 static cl::opt<bool> 104 PBQPDumpGraphs("pbqp-dump-graphs", 105 cl::desc("Dump graphs for each function/round in the compilation unit."), 106 cl::init(false), cl::Hidden); 107 #endif 108 109 namespace { 110 111 /// 112 /// PBQP based allocators solve the register allocation problem by mapping 113 /// register allocation problems to Partitioned Boolean Quadratic 114 /// Programming problems. 115 class RegAllocPBQP : public MachineFunctionPass { 116 public: 117 static char ID; 118 119 /// Construct a PBQP register allocator. 120 RegAllocPBQP(char *cPassID = nullptr) 121 : MachineFunctionPass(ID), customPassID(cPassID) { 122 initializeSlotIndexesWrapperPassPass(*PassRegistry::getPassRegistry()); 123 initializeLiveIntervalsWrapperPassPass(*PassRegistry::getPassRegistry()); 124 initializeLiveStacksWrapperLegacyPass(*PassRegistry::getPassRegistry()); 125 initializeVirtRegMapWrapperLegacyPass(*PassRegistry::getPassRegistry()); 126 } 127 128 /// Return the pass name. 129 StringRef getPassName() const override { return "PBQP Register Allocator"; } 130 131 /// PBQP analysis usage. 132 void getAnalysisUsage(AnalysisUsage &au) const override; 133 134 /// Perform register allocation 135 bool runOnMachineFunction(MachineFunction &MF) override; 136 137 MachineFunctionProperties getRequiredProperties() const override { 138 return MachineFunctionProperties().set( 139 MachineFunctionProperties::Property::NoPHIs); 140 } 141 142 MachineFunctionProperties getClearedProperties() const override { 143 return MachineFunctionProperties().set( 144 MachineFunctionProperties::Property::IsSSA); 145 } 146 147 private: 148 using RegSet = std::set<Register>; 149 150 char *customPassID; 151 152 RegSet VRegsToAlloc, EmptyIntervalVRegs; 153 154 /// Inst which is a def of an original reg and whose defs are already all 155 /// dead after remat is saved in DeadRemats. The deletion of such inst is 156 /// postponed till all the allocations are done, so its remat expr is 157 /// always available for the remat of all the siblings of the original reg. 158 SmallPtrSet<MachineInstr *, 32> DeadRemats; 159 160 /// Finds the initial set of vreg intervals to allocate. 161 void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); 162 163 /// Constructs an initial graph. 164 void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); 165 166 /// Spill the given VReg. 167 void spillVReg(Register VReg, SmallVectorImpl<Register> &NewIntervals, 168 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, 169 Spiller &VRegSpiller); 170 171 /// Given a solved PBQP problem maps this solution back to a register 172 /// assignment. 173 bool mapPBQPToRegAlloc(const PBQPRAGraph &G, 174 const PBQP::Solution &Solution, 175 VirtRegMap &VRM, 176 Spiller &VRegSpiller); 177 178 /// Postprocessing before final spilling. Sets basic block "live in" 179 /// variables. 180 void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, 181 VirtRegMap &VRM) const; 182 183 void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS); 184 }; 185 186 char RegAllocPBQP::ID = 0; 187 188 /// Set spill costs for each node in the PBQP reg-alloc graph. 189 class SpillCosts : public PBQPRAConstraint { 190 public: 191 void apply(PBQPRAGraph &G) override { 192 LiveIntervals &LIS = G.getMetadata().LIS; 193 194 // A minimum spill costs, so that register constraints can be set 195 // without normalization in the [0.0:MinSpillCost( interval. 196 const PBQP::PBQPNum MinSpillCost = 10.0; 197 198 for (auto NId : G.nodeIds()) { 199 PBQP::PBQPNum SpillCost = 200 LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight(); 201 if (SpillCost == 0.0) 202 SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); 203 else 204 SpillCost += MinSpillCost; 205 PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); 206 NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; 207 G.setNodeCosts(NId, std::move(NodeCosts)); 208 } 209 } 210 }; 211 212 /// Add interference edges between overlapping vregs. 213 class Interference : public PBQPRAConstraint { 214 private: 215 using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *; 216 using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>; 217 using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>; 218 using DisjointAllowedRegsCache = DenseSet<IKey>; 219 using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>; 220 using IEdgeCache = DenseSet<IEdgeKey>; 221 222 bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 223 PBQPRAGraph::NodeId MId, 224 const DisjointAllowedRegsCache &D) const { 225 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 226 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 227 228 if (NRegs == MRegs) 229 return false; 230 231 if (NRegs < MRegs) 232 return D.contains(IKey(NRegs, MRegs)); 233 234 return D.contains(IKey(MRegs, NRegs)); 235 } 236 237 void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 238 PBQPRAGraph::NodeId MId, 239 DisjointAllowedRegsCache &D) { 240 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 241 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 242 243 assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself"); 244 245 if (NRegs < MRegs) 246 D.insert(IKey(NRegs, MRegs)); 247 else 248 D.insert(IKey(MRegs, NRegs)); 249 } 250 251 // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required 252 // for the fast interference graph construction algorithm. The last is there 253 // to save us from looking up node ids via the VRegToNode map in the graph 254 // metadata. 255 using IntervalInfo = 256 std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>; 257 258 static SlotIndex getStartPoint(const IntervalInfo &I) { 259 return std::get<0>(I)->segments[std::get<1>(I)].start; 260 } 261 262 static SlotIndex getEndPoint(const IntervalInfo &I) { 263 return std::get<0>(I)->segments[std::get<1>(I)].end; 264 } 265 266 static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { 267 return std::get<2>(I); 268 } 269 270 static bool lowestStartPoint(const IntervalInfo &I1, 271 const IntervalInfo &I2) { 272 // Condition reversed because priority queue has the *highest* element at 273 // the front, rather than the lowest. 274 return getStartPoint(I1) > getStartPoint(I2); 275 } 276 277 static bool lowestEndPoint(const IntervalInfo &I1, 278 const IntervalInfo &I2) { 279 SlotIndex E1 = getEndPoint(I1); 280 SlotIndex E2 = getEndPoint(I2); 281 282 if (E1 < E2) 283 return true; 284 285 if (E1 > E2) 286 return false; 287 288 // If two intervals end at the same point, we need a way to break the tie or 289 // the set will assume they're actually equal and refuse to insert a 290 // "duplicate". Just compare the vregs - fast and guaranteed unique. 291 return std::get<0>(I1)->reg() < std::get<0>(I2)->reg(); 292 } 293 294 static bool isAtLastSegment(const IntervalInfo &I) { 295 return std::get<1>(I) == std::get<0>(I)->size() - 1; 296 } 297 298 static IntervalInfo nextSegment(const IntervalInfo &I) { 299 return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); 300 } 301 302 public: 303 void apply(PBQPRAGraph &G) override { 304 // The following is loosely based on the linear scan algorithm introduced in 305 // "Linear Scan Register Allocation" by Poletto and Sarkar. This version 306 // isn't linear, because the size of the active set isn't bound by the 307 // number of registers, but rather the size of the largest clique in the 308 // graph. Still, we expect this to be better than N^2. 309 LiveIntervals &LIS = G.getMetadata().LIS; 310 311 // Interferenc matrices are incredibly regular - they're only a function of 312 // the allowed sets, so we cache them to avoid the overhead of constructing 313 // and uniquing them. 314 IMatrixCache C; 315 316 // Finding an edge is expensive in the worst case (O(max_clique(G))). So 317 // cache locally edges we have already seen. 318 IEdgeCache EC; 319 320 // Cache known disjoint allowed registers pairs 321 DisjointAllowedRegsCache D; 322 323 using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>; 324 using IntervalQueue = 325 std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, 326 decltype(&lowestStartPoint)>; 327 IntervalSet Active(lowestEndPoint); 328 IntervalQueue Inactive(lowestStartPoint); 329 330 // Start by building the inactive set. 331 for (auto NId : G.nodeIds()) { 332 Register VReg = G.getNodeMetadata(NId).getVReg(); 333 LiveInterval &LI = LIS.getInterval(VReg); 334 assert(!LI.empty() && "PBQP graph contains node for empty interval"); 335 Inactive.push(std::make_tuple(&LI, 0, NId)); 336 } 337 338 while (!Inactive.empty()) { 339 // Tentatively grab the "next" interval - this choice may be overriden 340 // below. 341 IntervalInfo Cur = Inactive.top(); 342 343 // Retire any active intervals that end before Cur starts. 344 IntervalSet::iterator RetireItr = Active.begin(); 345 while (RetireItr != Active.end() && 346 (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { 347 // If this interval has subsequent segments, add the next one to the 348 // inactive list. 349 if (!isAtLastSegment(*RetireItr)) 350 Inactive.push(nextSegment(*RetireItr)); 351 352 ++RetireItr; 353 } 354 Active.erase(Active.begin(), RetireItr); 355 356 // One of the newly retired segments may actually start before the 357 // Cur segment, so re-grab the front of the inactive list. 358 Cur = Inactive.top(); 359 Inactive.pop(); 360 361 // At this point we know that Cur overlaps all active intervals. Add the 362 // interference edges. 363 PBQP::GraphBase::NodeId NId = getNodeId(Cur); 364 for (const auto &A : Active) { 365 PBQP::GraphBase::NodeId MId = getNodeId(A); 366 367 // Do not add an edge when the nodes' allowed registers do not 368 // intersect: there is obviously no interference. 369 if (haveDisjointAllowedRegs(G, NId, MId, D)) 370 continue; 371 372 // Check that we haven't already added this edge 373 IEdgeKey EK(std::min(NId, MId), std::max(NId, MId)); 374 if (EC.count(EK)) 375 continue; 376 377 // This is a new edge - add it to the graph. 378 if (!createInterferenceEdge(G, NId, MId, C)) 379 setDisjointAllowedRegs(G, NId, MId, D); 380 else 381 EC.insert(EK); 382 } 383 384 // Finally, add Cur to the Active set. 385 Active.insert(Cur); 386 } 387 } 388 389 private: 390 // Create an Interference edge and add it to the graph, unless it is 391 // a null matrix, meaning the nodes' allowed registers do not have any 392 // interference. This case occurs frequently between integer and floating 393 // point registers for example. 394 // return true iff both nodes interferes. 395 bool createInterferenceEdge(PBQPRAGraph &G, 396 PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, 397 IMatrixCache &C) { 398 const TargetRegisterInfo &TRI = 399 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 400 const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); 401 const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); 402 403 // Try looking the edge costs up in the IMatrixCache first. 404 IKey K(&NRegs, &MRegs); 405 IMatrixCache::iterator I = C.find(K); 406 if (I != C.end()) { 407 G.addEdgeBypassingCostAllocator(NId, MId, I->second); 408 return true; 409 } 410 411 PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); 412 bool NodesInterfere = false; 413 for (unsigned I = 0; I != NRegs.size(); ++I) { 414 MCRegister PRegN = NRegs[I]; 415 for (unsigned J = 0; J != MRegs.size(); ++J) { 416 MCRegister PRegM = MRegs[J]; 417 if (TRI.regsOverlap(PRegN, PRegM)) { 418 M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); 419 NodesInterfere = true; 420 } 421 } 422 } 423 424 if (!NodesInterfere) 425 return false; 426 427 PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); 428 C[K] = G.getEdgeCostsPtr(EId); 429 430 return true; 431 } 432 }; 433 434 class Coalescing : public PBQPRAConstraint { 435 public: 436 void apply(PBQPRAGraph &G) override { 437 MachineFunction &MF = G.getMetadata().MF; 438 MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; 439 CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); 440 441 // Scan the machine function and add a coalescing cost whenever CoalescerPair 442 // gives the Ok. 443 for (const auto &MBB : MF) { 444 for (const auto &MI : MBB) { 445 // Skip not-coalescable or already coalesced copies. 446 if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) 447 continue; 448 449 Register DstReg = CP.getDstReg(); 450 Register SrcReg = CP.getSrcReg(); 451 452 PBQP::PBQPNum CBenefit = MBFI.getBlockFreqRelativeToEntryBlock(&MBB); 453 454 if (CP.isPhys()) { 455 if (!MF.getRegInfo().isAllocatable(DstReg)) 456 continue; 457 458 PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); 459 460 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = 461 G.getNodeMetadata(NId).getAllowedRegs(); 462 463 unsigned PRegOpt = 0; 464 while (PRegOpt < Allowed.size() && Allowed[PRegOpt].id() != DstReg) 465 ++PRegOpt; 466 467 if (PRegOpt < Allowed.size()) { 468 PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); 469 NewCosts[PRegOpt + 1] -= CBenefit; 470 G.setNodeCosts(NId, std::move(NewCosts)); 471 } 472 } else { 473 PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); 474 PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); 475 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = 476 &G.getNodeMetadata(N1Id).getAllowedRegs(); 477 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = 478 &G.getNodeMetadata(N2Id).getAllowedRegs(); 479 480 PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); 481 if (EId == G.invalidEdgeId()) { 482 PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, 483 Allowed2->size() + 1, 0); 484 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 485 G.addEdge(N1Id, N2Id, std::move(Costs)); 486 } else { 487 if (G.getEdgeNode1Id(EId) == N2Id) { 488 std::swap(N1Id, N2Id); 489 std::swap(Allowed1, Allowed2); 490 } 491 PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); 492 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 493 G.updateEdgeCosts(EId, std::move(Costs)); 494 } 495 } 496 } 497 } 498 } 499 500 private: 501 void addVirtRegCoalesce( 502 PBQPRAGraph::RawMatrix &CostMat, 503 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, 504 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, 505 PBQP::PBQPNum Benefit) { 506 assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); 507 assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); 508 for (unsigned I = 0; I != Allowed1.size(); ++I) { 509 MCRegister PReg1 = Allowed1[I]; 510 for (unsigned J = 0; J != Allowed2.size(); ++J) { 511 MCRegister PReg2 = Allowed2[J]; 512 if (PReg1 == PReg2) 513 CostMat[I + 1][J + 1] -= Benefit; 514 } 515 } 516 } 517 }; 518 519 /// PBQP-specific implementation of weight normalization. 520 class PBQPVirtRegAuxInfo final : public VirtRegAuxInfo { 521 float normalize(float UseDefFreq, unsigned Size, unsigned NumInstr) override { 522 // All intervals have a spill weight that is mostly proportional to the 523 // number of uses, with uses in loops having a bigger weight. 524 return NumInstr * VirtRegAuxInfo::normalize(UseDefFreq, Size, 1); 525 } 526 527 public: 528 PBQPVirtRegAuxInfo(MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, 529 const MachineLoopInfo &Loops, 530 const MachineBlockFrequencyInfo &MBFI) 531 : VirtRegAuxInfo(MF, LIS, VRM, Loops, MBFI) {} 532 }; 533 } // end anonymous namespace 534 535 // Out-of-line destructor/anchor for PBQPRAConstraint. 536 PBQPRAConstraint::~PBQPRAConstraint() = default; 537 538 void PBQPRAConstraint::anchor() {} 539 540 void PBQPRAConstraintList::anchor() {} 541 542 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { 543 au.setPreservesCFG(); 544 au.addRequired<AAResultsWrapperPass>(); 545 au.addPreserved<AAResultsWrapperPass>(); 546 au.addRequired<SlotIndexesWrapperPass>(); 547 au.addPreserved<SlotIndexesWrapperPass>(); 548 au.addRequired<LiveIntervalsWrapperPass>(); 549 au.addPreserved<LiveIntervalsWrapperPass>(); 550 //au.addRequiredID(SplitCriticalEdgesID); 551 if (customPassID) 552 au.addRequiredID(*customPassID); 553 au.addRequired<LiveStacksWrapperLegacy>(); 554 au.addPreserved<LiveStacksWrapperLegacy>(); 555 au.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 556 au.addPreserved<MachineBlockFrequencyInfoWrapperPass>(); 557 au.addRequired<MachineLoopInfoWrapperPass>(); 558 au.addPreserved<MachineLoopInfoWrapperPass>(); 559 au.addRequired<MachineDominatorTreeWrapperPass>(); 560 au.addPreserved<MachineDominatorTreeWrapperPass>(); 561 au.addRequired<VirtRegMapWrapperLegacy>(); 562 au.addPreserved<VirtRegMapWrapperLegacy>(); 563 MachineFunctionPass::getAnalysisUsage(au); 564 } 565 566 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, 567 LiveIntervals &LIS) { 568 const MachineRegisterInfo &MRI = MF.getRegInfo(); 569 570 // Iterate over all live ranges. 571 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 572 Register Reg = Register::index2VirtReg(I); 573 if (MRI.reg_nodbg_empty(Reg)) 574 continue; 575 VRegsToAlloc.insert(Reg); 576 } 577 } 578 579 static bool isACalleeSavedRegister(MCRegister Reg, 580 const TargetRegisterInfo &TRI, 581 const MachineFunction &MF) { 582 const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs(); 583 for (unsigned i = 0; CSR[i] != 0; ++i) 584 if (TRI.regsOverlap(Reg, CSR[i])) 585 return true; 586 return false; 587 } 588 589 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, 590 Spiller &VRegSpiller) { 591 MachineFunction &MF = G.getMetadata().MF; 592 593 LiveIntervals &LIS = G.getMetadata().LIS; 594 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 595 const TargetRegisterInfo &TRI = 596 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 597 598 std::vector<Register> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); 599 600 std::map<Register, std::vector<MCRegister>> VRegAllowedMap; 601 602 while (!Worklist.empty()) { 603 Register VReg = Worklist.back(); 604 Worklist.pop_back(); 605 606 LiveInterval &VRegLI = LIS.getInterval(VReg); 607 608 // If this is an empty interval move it to the EmptyIntervalVRegs set then 609 // continue. 610 if (VRegLI.empty()) { 611 EmptyIntervalVRegs.insert(VRegLI.reg()); 612 VRegsToAlloc.erase(VRegLI.reg()); 613 continue; 614 } 615 616 const TargetRegisterClass *TRC = MRI.getRegClass(VReg); 617 618 // Record any overlaps with regmask operands. 619 BitVector RegMaskOverlaps; 620 LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); 621 622 // Compute an initial allowed set for the current vreg. 623 std::vector<MCRegister> VRegAllowed; 624 ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); 625 for (MCPhysReg R : RawPRegOrder) { 626 MCRegister PReg(R); 627 if (MRI.isReserved(PReg)) 628 continue; 629 630 // vregLI crosses a regmask operand that clobbers preg. 631 if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) 632 continue; 633 634 // vregLI overlaps fixed regunit interference. 635 bool Interference = false; 636 for (MCRegUnit Unit : TRI.regunits(PReg)) { 637 if (VRegLI.overlaps(LIS.getRegUnit(Unit))) { 638 Interference = true; 639 break; 640 } 641 } 642 if (Interference) 643 continue; 644 645 // preg is usable for this virtual register. 646 VRegAllowed.push_back(PReg); 647 } 648 649 // Check for vregs that have no allowed registers. These should be 650 // pre-spilled and the new vregs added to the worklist. 651 if (VRegAllowed.empty()) { 652 SmallVector<Register, 8> NewVRegs; 653 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 654 llvm::append_range(Worklist, NewVRegs); 655 continue; 656 } 657 658 VRegAllowedMap[VReg.id()] = std::move(VRegAllowed); 659 } 660 661 for (auto &KV : VRegAllowedMap) { 662 auto VReg = KV.first; 663 664 // Move empty intervals to the EmptyIntervalVReg set. 665 if (LIS.getInterval(VReg).empty()) { 666 EmptyIntervalVRegs.insert(VReg); 667 VRegsToAlloc.erase(VReg); 668 continue; 669 } 670 671 auto &VRegAllowed = KV.second; 672 673 PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); 674 675 // Tweak cost of callee saved registers, as using then force spilling and 676 // restoring them. This would only happen in the prologue / epilogue though. 677 for (unsigned i = 0; i != VRegAllowed.size(); ++i) 678 if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) 679 NodeCosts[1 + i] += 1.0; 680 681 PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); 682 G.getNodeMetadata(NId).setVReg(VReg); 683 G.getNodeMetadata(NId).setAllowedRegs( 684 G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); 685 G.getMetadata().setNodeIdForVReg(VReg, NId); 686 } 687 } 688 689 void RegAllocPBQP::spillVReg(Register VReg, 690 SmallVectorImpl<Register> &NewIntervals, 691 MachineFunction &MF, LiveIntervals &LIS, 692 VirtRegMap &VRM, Spiller &VRegSpiller) { 693 VRegsToAlloc.erase(VReg); 694 LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM, 695 nullptr, &DeadRemats); 696 VRegSpiller.spill(LRE); 697 698 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 699 (void)TRI; 700 LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: " 701 << LRE.getParent().weight() << ", New vregs: "); 702 703 // Copy any newly inserted live intervals into the list of regs to 704 // allocate. 705 for (const Register &R : LRE) { 706 const LiveInterval &LI = LIS.getInterval(R); 707 assert(!LI.empty() && "Empty spill range."); 708 LLVM_DEBUG(dbgs() << printReg(LI.reg(), &TRI) << " "); 709 VRegsToAlloc.insert(LI.reg()); 710 } 711 712 LLVM_DEBUG(dbgs() << ")\n"); 713 } 714 715 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, 716 const PBQP::Solution &Solution, 717 VirtRegMap &VRM, 718 Spiller &VRegSpiller) { 719 MachineFunction &MF = G.getMetadata().MF; 720 LiveIntervals &LIS = G.getMetadata().LIS; 721 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 722 (void)TRI; 723 724 // Set to true if we have any spills 725 bool AnotherRoundNeeded = false; 726 727 // Clear the existing allocation. 728 VRM.clearAllVirt(); 729 730 // Iterate over the nodes mapping the PBQP solution to a register 731 // assignment. 732 for (auto NId : G.nodeIds()) { 733 Register VReg = G.getNodeMetadata(NId).getVReg(); 734 unsigned AllocOpt = Solution.getSelection(NId); 735 736 if (AllocOpt != PBQP::RegAlloc::getSpillOptionIdx()) { 737 MCRegister PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOpt - 1]; 738 LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> " 739 << TRI.getName(PReg) << "\n"); 740 assert(PReg != 0 && "Invalid preg selected."); 741 VRM.assignVirt2Phys(VReg, PReg); 742 } else { 743 // Spill VReg. If this introduces new intervals we'll need another round 744 // of allocation. 745 SmallVector<Register, 8> NewVRegs; 746 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 747 AnotherRoundNeeded |= !NewVRegs.empty(); 748 } 749 } 750 751 return !AnotherRoundNeeded; 752 } 753 754 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, 755 LiveIntervals &LIS, 756 VirtRegMap &VRM) const { 757 MachineRegisterInfo &MRI = MF.getRegInfo(); 758 759 // First allocate registers for the empty intervals. 760 for (const Register &R : EmptyIntervalVRegs) { 761 LiveInterval &LI = LIS.getInterval(R); 762 763 Register PReg = MRI.getSimpleHint(LI.reg()); 764 765 if (PReg == 0) { 766 const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg()); 767 const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF); 768 for (MCRegister CandidateReg : RawPRegOrder) { 769 if (!VRM.getRegInfo().isReserved(CandidateReg)) { 770 PReg = CandidateReg; 771 break; 772 } 773 } 774 assert(PReg && 775 "No un-reserved physical registers in this register class"); 776 } 777 778 VRM.assignVirt2Phys(LI.reg(), PReg); 779 } 780 } 781 782 void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) { 783 VRegSpiller.postOptimization(); 784 /// Remove dead defs because of rematerialization. 785 for (auto *DeadInst : DeadRemats) { 786 LIS.RemoveMachineInstrFromMaps(*DeadInst); 787 DeadInst->eraseFromParent(); 788 } 789 DeadRemats.clear(); 790 } 791 792 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { 793 LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 794 MachineBlockFrequencyInfo &MBFI = 795 getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); 796 797 auto &LiveStks = getAnalysis<LiveStacksWrapperLegacy>().getLS(); 798 auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 799 800 VirtRegMap &VRM = getAnalysis<VirtRegMapWrapperLegacy>().getVRM(); 801 802 PBQPVirtRegAuxInfo VRAI( 803 MF, LIS, VRM, getAnalysis<MachineLoopInfoWrapperPass>().getLI(), MBFI); 804 VRAI.calculateSpillWeightsAndHints(); 805 806 // FIXME: we create DefaultVRAI here to match existing behavior pre-passing 807 // the VRAI through the spiller to the live range editor. However, it probably 808 // makes more sense to pass the PBQP VRAI. The existing behavior had 809 // LiveRangeEdit make its own VirtRegAuxInfo object. 810 VirtRegAuxInfo DefaultVRAI( 811 MF, LIS, VRM, getAnalysis<MachineLoopInfoWrapperPass>().getLI(), MBFI); 812 std::unique_ptr<Spiller> VRegSpiller( 813 createInlineSpiller({LIS, LiveStks, MDT, MBFI}, MF, VRM, DefaultVRAI)); 814 815 MF.getRegInfo().freezeReservedRegs(); 816 817 LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); 818 819 // Allocator main loop: 820 // 821 // * Map current regalloc problem to a PBQP problem 822 // * Solve the PBQP problem 823 // * Map the solution back to a register allocation 824 // * Spill if necessary 825 // 826 // This process is continued till no more spills are generated. 827 828 // Find the vreg intervals in need of allocation. 829 findVRegIntervalsToAlloc(MF, LIS); 830 831 #ifndef NDEBUG 832 const Function &F = MF.getFunction(); 833 std::string FullyQualifiedName = 834 F.getParent()->getModuleIdentifier() + "." + F.getName().str(); 835 #endif 836 837 // If there are non-empty intervals allocate them using pbqp. 838 if (!VRegsToAlloc.empty()) { 839 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 840 std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = 841 std::make_unique<PBQPRAConstraintList>(); 842 ConstraintsRoot->addConstraint(std::make_unique<SpillCosts>()); 843 ConstraintsRoot->addConstraint(std::make_unique<Interference>()); 844 if (PBQPCoalescing) 845 ConstraintsRoot->addConstraint(std::make_unique<Coalescing>()); 846 ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); 847 848 bool PBQPAllocComplete = false; 849 unsigned Round = 0; 850 851 while (!PBQPAllocComplete) { 852 LLVM_DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); 853 (void) Round; 854 855 PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); 856 initializeGraph(G, VRM, *VRegSpiller); 857 ConstraintsRoot->apply(G); 858 859 #ifndef NDEBUG 860 if (PBQPDumpGraphs) { 861 std::ostringstream RS; 862 RS << Round; 863 std::string GraphFileName = FullyQualifiedName + "." + RS.str() + 864 ".pbqpgraph"; 865 std::error_code EC; 866 raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_TextWithCRLF); 867 LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" 868 << GraphFileName << "\"\n"); 869 G.dump(OS); 870 } 871 #endif 872 873 PBQP::Solution Solution = PBQP::RegAlloc::solve(G); 874 PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); 875 ++Round; 876 } 877 } 878 879 // Finalise allocation, allocate empty ranges. 880 finalizeAlloc(MF, LIS, VRM); 881 postOptimization(*VRegSpiller, LIS); 882 VRegsToAlloc.clear(); 883 EmptyIntervalVRegs.clear(); 884 885 LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); 886 887 return true; 888 } 889 890 /// Create Printable object for node and register info. 891 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId, 892 const PBQP::RegAlloc::PBQPRAGraph &G) { 893 return Printable([NId, &G](raw_ostream &OS) { 894 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 895 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 896 Register VReg = G.getNodeMetadata(NId).getVReg(); 897 const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); 898 OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')'; 899 }); 900 } 901 902 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 903 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { 904 for (auto NId : nodeIds()) { 905 const Vector &Costs = getNodeCosts(NId); 906 assert(Costs.getLength() != 0 && "Empty vector in graph."); 907 OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; 908 } 909 OS << '\n'; 910 911 for (auto EId : edgeIds()) { 912 NodeId N1Id = getEdgeNode1Id(EId); 913 NodeId N2Id = getEdgeNode2Id(EId); 914 assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); 915 const Matrix &M = getEdgeCosts(EId); 916 assert(M.getRows() != 0 && "No rows in matrix."); 917 assert(M.getCols() != 0 && "No cols in matrix."); 918 OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; 919 OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; 920 OS << M << '\n'; 921 } 922 } 923 924 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { 925 dump(dbgs()); 926 } 927 #endif 928 929 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { 930 OS << "graph {\n"; 931 for (auto NId : nodeIds()) { 932 OS << " node" << NId << " [ label=\"" 933 << PrintNodeInfo(NId, *this) << "\\n" 934 << getNodeCosts(NId) << "\" ]\n"; 935 } 936 937 OS << " edge [ len=" << nodeIds().size() << " ]\n"; 938 for (auto EId : edgeIds()) { 939 OS << " node" << getEdgeNode1Id(EId) 940 << " -- node" << getEdgeNode2Id(EId) 941 << " [ label=\""; 942 const Matrix &EdgeCosts = getEdgeCosts(EId); 943 for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { 944 OS << EdgeCosts.getRowAsVector(i) << "\\n"; 945 } 946 OS << "\" ]\n"; 947 } 948 OS << "}\n"; 949 } 950 951 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { 952 return new RegAllocPBQP(customPassID); 953 } 954 955 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { 956 return createPBQPRegisterAllocator(); 957 } 958