xref: /netbsd-src/sys/dev/pci/xmm7360.c (revision baa92896314a4a048068f8747b996da9b96137f7)
1 /*	$NetBSD: xmm7360.c,v 1.17 2022/10/27 00:01:07 riastradh Exp $	*/
2 
3 /*
4  * Device driver for Intel XMM7360 LTE modems, eg. Fibocom L850-GL.
5  * Written by James Wah
6  * james@laird-wah.net
7  *
8  * Development of this driver was supported by genua GmbH
9  *
10  * Copyright (c) 2020 genua GmbH <info@genua.de>
11  * Copyright (c) 2020 James Wah <james@laird-wah.net>
12  *
13  * The OpenBSD and NetBSD support was written by Jaromir Dolecek for
14  * Moritz Systems Technology Company Sp. z o.o.
15  *
16  * Permission to use, copy, modify, and/or distribute this software for any
17  * purpose with or without fee is hereby granted, provided that the above
18  * copyright notice and this permission notice appear in all copies.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
21  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES ON
22  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
23  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGE
24  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
25  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
26  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
27  */
28 
29 #ifdef __linux__
30 
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/pci.h>
36 #include <linux/delay.h>
37 #include <linux/uaccess.h>
38 #include <linux/cdev.h>
39 #include <linux/wait.h>
40 #include <linux/tty.h>
41 #include <linux/tty_flip.h>
42 #include <linux/poll.h>
43 #include <linux/skbuff.h>
44 #include <linux/netdevice.h>
45 #include <linux/if.h>
46 #include <linux/if_arp.h>
47 #include <net/rtnetlink.h>
48 #include <linux/hrtimer.h>
49 #include <linux/workqueue.h>
50 
51 MODULE_LICENSE("Dual BSD/GPL");
52 
53 static const struct pci_device_id xmm7360_ids[] = {
54 	{ PCI_DEVICE(0x8086, 0x7360), },
55 	{ 0, }
56 };
57 MODULE_DEVICE_TABLE(pci, xmm7360_ids);
58 
59 /* Actually this ioctl not used for xmm0/rpc device by python code */
60 #define XMM7360_IOCTL_GET_PAGE_SIZE _IOC(_IOC_READ, 'x', 0xc0, sizeof(u32))
61 
62 #define xmm7360_os_msleep(msec)		msleep(msec)
63 
64 #define __unused			/* nothing */
65 
66 #endif
67 
68 #if defined(__OpenBSD__) || defined(__NetBSD__)
69 
70 #ifdef __OpenBSD__
71 #include "bpfilter.h"
72 #endif
73 #ifdef __NetBSD__
74 #include "opt_inet.h"
75 #include "opt_gateway.h"
76 
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: xmm7360.c,v 1.17 2022/10/27 00:01:07 riastradh Exp $");
79 #endif
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/sockio.h>
84 #include <sys/mbuf.h>
85 #include <sys/kernel.h>
86 #include <sys/device.h>
87 #include <sys/socket.h>
88 #include <sys/mutex.h>
89 #include <sys/tty.h>
90 #include <sys/conf.h>
91 #include <sys/kthread.h>
92 #include <sys/poll.h>
93 #include <sys/fcntl.h>		/* for FREAD/FWRITE */
94 #include <sys/vnode.h>
95 #include <uvm/uvm_param.h>
96 
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99 #include <dev/pci/pcidevs.h>
100 
101 #include <net/if.h>
102 #include <net/if_types.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/ip.h>
106 #include <netinet/ip6.h>
107 
108 #ifdef __OpenBSD__
109 #include <netinet/if_ether.h>
110 #include <sys/timeout.h>
111 #include <machine/bus.h>
112 #endif
113 
114 #if NBPFILTER > 0 || defined(__NetBSD__)
115 #include <net/bpf.h>
116 #endif
117 
118 #ifdef __NetBSD__
119 #include "ioconf.h"
120 #include <sys/cpu.h>
121 #endif
122 
123 #ifdef INET
124 #include <netinet/in_var.h>
125 #endif
126 #ifdef INET6
127 #include <netinet6/in6_var.h>
128 #endif
129 
130 typedef uint8_t u8;
131 typedef uint16_t u16;
132 typedef uint32_t u32;
133 typedef bus_addr_t dma_addr_t;
134 typedef void * wait_queue_head_t;	/* just address for tsleep() */
135 
136 #define WWAN_BAR0	PCI_MAPREG_START
137 #define WWAN_BAR1	(PCI_MAPREG_START + 4)
138 #define WWAN_BAR2	(PCI_MAPREG_START + 8)
139 
140 #define BUG_ON(never_true)	KASSERT(!(never_true))
141 #define WARN_ON(x)		/* nothing */
142 
143 #ifdef __OpenBSD__
144 typedef struct mutex spinlock_t;
145 #define dev_err(devp, fmt, ...)		\
146 	printf("%s: " fmt, device_xname(devp), ##__VA_ARGS__)
147 #define dev_info(devp, fmt, ...)	\
148 	printf("%s: " fmt, device_xname(devp), ##__VA_ARGS__)
149 #define	kzalloc(size, flags)	malloc(size, M_DEVBUF, M_WAITOK | M_ZERO)
150 #define kfree(addr)		free(addr, M_DEVBUF, 0)
151 #define mutex_init(lock)	mtx_init(lock, IPL_TTY)
152 #define mutex_lock(lock)	mtx_enter(lock)
153 #define mutex_unlock(lock)	mtx_leave(lock)
154 /* In OpenBSD every mutex is spin mutex, and it must not be held on sleep */
155 #define spin_lock_irqsave(lock, flags)		mtx_enter(lock)
156 #define spin_unlock_irqrestore(lock, flags)	mtx_leave(lock)
157 
158 /* Compat defines for NetBSD API */
159 #define curlwp			curproc
160 #define LINESW(tp)				(linesw[(tp)->t_line])
161 #define selnotify(sel, band, note)		selwakeup(sel)
162 #define cfdata_t				void *
163 #define device_lookup_private(cdp, unit)	\
164 	(unit < (*cdp).cd_ndevs) ? (*cdp).cd_devs[unit] : NULL
165 #define IFQ_SET_READY(ifq)			/* nothing */
166 #define device_private(devt)			(void *)devt;
167 #define if_deferred_start_init(ifp, arg)	/* nothing */
168 #define IF_OUTPUT_CONST				/* nothing */
169 #define knote_set_eof(kn, f)			(kn)->kn_flags |= EV_EOF | (f)
170 #define tty_lock(tp)				int s = spltty()
171 #define tty_unlock(tp)				splx(s)
172 #define tty_locked(tp)				/* nothing */
173 #define pmf_device_deregister(dev)		/* nothing */
174 #if NBPFILTER > 0
175 #define BPF_MTAP_OUT(ifp, m)						\
176                 if (ifp->if_bpf) {					\
177                         bpf_mtap_af(ifp->if_bpf, m->m_pkthdr.ph_family,	\
178 			    m, BPF_DIRECTION_OUT);			\
179 		}
180 #else
181 #define BPF_MTAP_OUT(ifp, m)			/* nothing */
182 #endif
183 
184 /* Copied from NetBSD <lib/libkern/libkern.h> */
185 #define __validate_container_of(PTR, TYPE, FIELD)			\
186     (0 * sizeof((PTR) - &((TYPE *)(((char *)(PTR)) -			\
187     offsetof(TYPE, FIELD)))->FIELD))
188 #define	container_of(PTR, TYPE, FIELD)					\
189     ((TYPE *)(((char *)(PTR)) - offsetof(TYPE, FIELD))			\
190 	+ __validate_container_of(PTR, TYPE, FIELD))
191 
192 /* Copied from NetBSD <sys/cdefs.h> */
193 #define __UNVOLATILE(a)		((void *)(unsigned long)(volatile void *)(a))
194 
195 #if OpenBSD <= 201911
196 /* Backward compat with OpenBSD 6.6 */
197 #define klist_insert(klist, kn)		\
198 		SLIST_INSERT_HEAD(klist, kn, kn_selnext)
199 #define klist_remove(klist, kn)		\
200 		SLIST_REMOVE(klist, kn, knote, kn_selnext)
201 #define XMM_KQ_ISFD_INITIALIZER		.f_isfd = 1
202 #else
203 #define XMM_KQ_ISFD_INITIALIZER		.f_flags = FILTEROP_ISFD
204 #endif /* OpenBSD <= 201911 */
205 
206 #define	selrecord_knote(si, kn)						\
207 	klist_insert(&(si)->si_note, (kn))
208 #define	selremove_knote(si, kn)						\
209 	klist_remove(&(si)->si_note, (kn))
210 
211 #endif
212 
213 #ifdef __NetBSD__
214 typedef struct kmutex spinlock_t;
215 #define dev_err			aprint_error_dev
216 #define dev_info		aprint_normal_dev
217 #define mutex			kmutex
218 #define kzalloc(size, flags)	malloc(size, M_DEVBUF, M_WAITOK | M_ZERO)
219 #define kfree(addr)		free(addr, M_DEVBUF)
220 #define mutex_init(lock)	mutex_init(lock, MUTEX_DEFAULT, IPL_TTY)
221 #define mutex_lock(lock)	mutex_enter(lock)
222 #define mutex_unlock(lock)	mutex_exit(lock)
223 #define spin_lock_irqsave(lock, flags)	mutex_enter(lock)
224 #define spin_unlock_irqrestore(lock, flags)	mutex_exit(lock)
225 
226 /* Compat defines with OpenBSD API */
227 #define caddr_t			void *
228 #define proc			lwp
229 #define LINESW(tp)		(*tp->t_linesw)
230 #define ttymalloc(speed)	tty_alloc()
231 #define ttyfree(tp)		tty_free(tp)
232 #define l_open(dev, tp, p)	l_open(dev, tp)
233 #define l_close(tp, flag, p)	l_close(tp, flag)
234 #define ttkqfilter(dev, kn)	ttykqfilter(dev, kn)
235 #define msleep(ident, lock, prio, wmesg, timo) \
236 		mtsleep(ident, prio, wmesg, timo, lock)
237 #define pci_mapreg_map(pa, reg, type, busfl, tp, hp, bp, szp, maxsize) \
238 	pci_mapreg_map(pa, reg, type, busfl, tp, hp, bp, szp)
239 #define pci_intr_establish(pc, ih, lvl, func, arg, name) \
240 	pci_intr_establish_xname(pc, ih, lvl, func, arg, name)
241 #define suser(l)					\
242 	kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp)
243 #define kthread_create(func, arg, lwpp, name)		\
244 	kthread_create(0, 0, NULL, func, arg, lwpp, "%s", name)
245 #define MUTEX_ASSERT_LOCKED(lock)	KASSERT(mutex_owned(lock))
246 #define MCLGETI(m, how, m0, sz)		MCLGET(m, how)
247 #define m_copyback(m, off, sz, buf, how)		\
248 					m_copyback(m, off, sz, buf)
249 #define ifq_deq_begin(ifq)		({		\
250 		struct mbuf *m0;			\
251 		IFQ_DEQUEUE(ifq, m0);			\
252 		m0;					\
253 })
254 #define ifq_deq_rollback(ifq, m)	m_freem(m)
255 #define ifq_deq_commit(ifq, m)		/* nothing to do */
256 #define ifq_is_oactive(ifq)		true	/* always restart queue */
257 #define ifq_clr_oactive(ifq)		/* nothing to do */
258 #define ifq_empty(ifq)			IFQ_IS_EMPTY(ifq)
259 #define ifq_purge(ifq)			IF_PURGE(ifq)
260 #define if_enqueue(ifp, m)		ifq_enqueue(ifp, m)
261 #define if_ih_insert(ifp, func, arg)	(ifp)->_if_input = (func)
262 #define if_ih_remove(ifp, func, arg)	/* nothing to do */
263 #define if_hardmtu			if_mtu
264 #define IF_OUTPUT_CONST			const
265 #define XMM_KQ_ISFD_INITIALIZER		.f_flags = FILTEROP_ISFD
266 #define tty_lock(tp)			ttylock(tp)
267 #define tty_unlock(tp)			ttyunlock(tp)
268 #define tty_locked(tp)			KASSERT(ttylocked(tp))
269 #define bpfattach(bpf, ifp, dlt, sz)	bpf_attach(ifp, dlt, sz)
270 #define NBPFILTER			1
271 #define BPF_MTAP_OUT(ifp, m)		bpf_mtap(ifp, m, BPF_D_OUT)
272 #endif /* __NetBSD__ */
273 
274 #define __user				/* nothing */
275 #define copy_from_user(kbuf, userbuf, sz)		\
276 ({							\
277 	int __ret = 0;					\
278 	int error = copyin(userbuf, kbuf, sz);		\
279 	if (error != 0)					\
280 		return -error;				\
281 	__ret;						\
282 })
283 #define copy_to_user(kbuf, userbuf, sz)			\
284 ({							\
285 	int __ret = 0;					\
286 	int error = copyout(userbuf, kbuf, sz);		\
287 	if (error != 0)					\
288 		return -error;				\
289 	__ret;						\
290 })
291 #define xmm7360_os_msleep(msec)					\
292 	do {							\
293 		KASSERT(!cold);					\
294 		tsleep(xmm, 0, "wwancsl", msec * hz / 1000);	\
295 	} while (0)
296 
297 static pktq_rps_hash_func_t xmm7360_pktq_rps_hash_p;
298 static void *dma_alloc_coherent(struct device *, size_t, dma_addr_t *, int);
299 static void dma_free_coherent(struct device *, size_t, volatile void *, dma_addr_t);
300 
301 #ifndef PCI_PRODUCT_INTEL_XMM7360
302 #define PCI_PRODUCT_INTEL_XMM7360	0x7360
303 #endif
304 
305 #define init_waitqueue_head(wqp)	*(wqp) = (wqp)
306 #define wait_event_interruptible(wq, cond)				\
307 ({									\
308 	int __ret = 1;							\
309 	while (!(cond)) {						\
310 		KASSERT(!cold);						\
311 		int error = tsleep(wq, PCATCH, "xmmwq", 0);		\
312 		if (error) {						\
313 			__ret = (cond) ? 1				\
314 			    : ((error != ERESTART) ? -error : error);	\
315 			break;						\
316 		}							\
317 	}								\
318 	__ret;								\
319 })
320 
321 #define msecs_to_jiffies(msec)						\
322 ({									\
323 	KASSERT(hz < 1000);						\
324 	KASSERT(msec > (1000 / hz));					\
325 	msec * hz / 1000;						\
326 })
327 
328 #define wait_event_interruptible_timeout(wq, cond, jiffies)		\
329 ({									\
330 	int __ret = 1;							\
331 	while (!(cond)) {						\
332 		if (cold) {						\
333 			for (int loop = 0; loop < 10; loop++) {		\
334 				delay(jiffies * 1000 * 1000 / hz / 10);	\
335 				if (cond)				\
336 					break;				\
337 			}						\
338 			__ret = (cond) ? 1 : 0;				\
339 			break;						\
340 		}							\
341 		int error = tsleep(wq, PCATCH, "xmmwq", jiffies);	\
342 		if (error) {						\
343 			__ret = (cond) ? 1				\
344 			    : ((error != ERESTART) ? -error : error);	\
345 			break;						\
346 		}							\
347 	}								\
348 	__ret;								\
349 })
350 
351 #define GFP_KERNEL			0
352 
353 #endif /* __OpenBSD__ || __NetBSD__ */
354 
355 /*
356  * The XMM7360 communicates via DMA ring buffers. It has one
357  * command ring, plus sixteen transfer descriptor (TD)
358  * rings. The command ring is mainly used to configure and
359  * deconfigure the TD rings.
360  *
361  * The 16 TD rings form 8 queue pairs (QP). For example, QP
362  * 0 uses ring 0 for host->device, and ring 1 for
363  * device->host.
364  *
365  * The known queue pair functions are as follows:
366  *
367  * 0:	Mux (Raw IP packets, amongst others)
368  * 1:	RPC (funky command protocol based in part on ASN.1 BER)
369  * 2:	AT trace? port; does not accept commands after init
370  * 4:	AT command port
371  * 7:	AT command port
372  *
373  */
374 
375 /* Command ring, which is used to configure the queue pairs */
376 struct cmd_ring_entry {
377 	dma_addr_t ptr;
378 	u16 len;
379 	u8 parm;
380 	u8 cmd;
381 	u32 extra;
382 	u32 unk, flags;
383 };
384 
385 #define CMD_RING_OPEN	1
386 #define CMD_RING_CLOSE	2
387 #define CMD_RING_FLUSH	3
388 #define CMD_WAKEUP	4
389 
390 #define CMD_FLAG_DONE	1
391 #define CMD_FLAG_READY	2
392 
393 /* Transfer descriptors used on the Tx and Rx rings of each queue pair */
394 struct td_ring_entry {
395 	dma_addr_t addr;
396 	u16 length;
397 	u16 flags;
398 	u32 unk;
399 };
400 
401 #define TD_FLAG_COMPLETE 0x200
402 
403 /* Root configuration object. This contains pointers to all of the control
404  * structures that the modem will interact with.
405  */
406 struct control {
407 	dma_addr_t status;
408 	dma_addr_t s_wptr, s_rptr;
409 	dma_addr_t c_wptr, c_rptr;
410 	dma_addr_t c_ring;
411 	u16 c_ring_size;
412 	u16 unk;
413 };
414 
415 struct status {
416 	u32 code;
417 	u32 mode;
418 	u32 asleep;
419 	u32 pad;
420 };
421 
422 #define CMD_RING_SIZE 0x80
423 
424 /* All of the control structures can be packed into one page of RAM. */
425 struct control_page {
426 	struct control ctl;
427 	// Status words - written by modem.
428 	volatile struct status status;
429 	// Slave ring write/read pointers.
430 	volatile u32 s_wptr[16], s_rptr[16];
431 	// Command ring write/read pointers.
432 	volatile u32 c_wptr, c_rptr;
433 	// Command ring entries.
434 	volatile struct cmd_ring_entry c_ring[CMD_RING_SIZE];
435 };
436 
437 #define BAR0_MODE	0x0c
438 #define BAR0_DOORBELL	0x04
439 #define BAR0_WAKEUP	0x14
440 
441 #define DOORBELL_TD	0
442 #define DOORBELL_CMD	1
443 
444 #define BAR2_STATUS	0x00
445 #define BAR2_MODE	0x18
446 #define BAR2_CONTROL	0x19
447 #define BAR2_CONTROLH	0x1a
448 
449 #define BAR2_BLANK0	0x1b
450 #define BAR2_BLANK1	0x1c
451 #define BAR2_BLANK2	0x1d
452 #define BAR2_BLANK3	0x1e
453 
454 #define XMM_MODEM_BOOTING	0xfeedb007
455 #define XMM_MODEM_READY		0x600df00d
456 
457 #define XMM_TAG_ACBH		0x41434248	// 'ACBH'
458 #define XMM_TAG_CMDH		0x434d4448	// 'CMDH'
459 #define XMM_TAG_ADBH		0x41444248	// 'ADBH'
460 #define XMM_TAG_ADTH		0x41445448	// 'ADTH'
461 
462 /* There are 16 TD rings: a Tx and Rx ring for each queue pair */
463 struct td_ring {
464 	u8 depth;
465 	u8 last_handled;
466 	u16 page_size;
467 
468 	struct td_ring_entry *tds;
469 	dma_addr_t tds_phys;
470 
471 	// One page of page_size per td
472 	void **pages;
473 	dma_addr_t *pages_phys;
474 };
475 
476 #define TD_MAX_PAGE_SIZE 16384
477 
478 struct queue_pair {
479 	struct xmm_dev *xmm;
480 	u8 depth;
481 	u16 page_size;
482 	int tty_index;
483 	int tty_needs_wake;
484 #ifdef __linux__
485 	struct device dev;
486 #endif
487 	int num;
488 	int open;
489 	struct mutex lock;
490 	unsigned char user_buf[TD_MAX_PAGE_SIZE];
491 	wait_queue_head_t wq;
492 
493 #ifdef __linux__
494 	struct cdev cdev;
495 	struct tty_port port;
496 #endif
497 #if defined(__OpenBSD__) || defined(__NetBSD__)
498 	struct selinfo selr, selw;
499 #endif
500 };
501 
502 #define XMM_QP_COUNT	8
503 
504 struct xmm_dev {
505 	struct device *dev;
506 
507 	volatile uint32_t *bar0, *bar2;
508 
509 	volatile struct control_page *cp;
510 	dma_addr_t cp_phys;
511 
512 	struct td_ring td_ring[2 * XMM_QP_COUNT];
513 
514 	struct queue_pair qp[XMM_QP_COUNT];
515 
516 	struct xmm_net *net;
517 	struct net_device *netdev;
518 
519 	int error;
520 	int card_num;
521 	int num_ttys;
522 	wait_queue_head_t wq;
523 
524 #ifdef __linux__
525 	struct pci_dev *pci_dev;
526 
527 	int irq;
528 
529 	struct work_struct init_work;	// XXX work not actually scheduled
530 #endif
531 };
532 
533 struct mux_bounds {
534 	uint32_t offset;
535 	uint32_t length;
536 };
537 
538 struct mux_first_header {
539 	uint32_t tag;
540 	uint16_t unknown;
541 	uint16_t sequence;
542 	uint16_t length;
543 	uint16_t extra;
544 	uint16_t next;
545 	uint16_t pad;
546 };
547 
548 struct mux_next_header {
549 	uint32_t tag;
550 	uint16_t length;
551 	uint16_t extra;
552 	uint16_t next;
553 	uint16_t pad;
554 };
555 
556 #define MUX_MAX_PACKETS	64
557 
558 struct mux_frame {
559 	int n_packets, n_bytes, max_size, sequence;
560 	uint16_t *last_tag_length, *last_tag_next;
561 	struct mux_bounds bounds[MUX_MAX_PACKETS];
562 	uint8_t data[TD_MAX_PAGE_SIZE];
563 };
564 
565 struct xmm_net {
566 	struct xmm_dev *xmm;
567 	struct queue_pair *qp;
568 	int channel;
569 
570 #ifdef __linux__
571 	struct sk_buff_head queue;
572 	struct hrtimer deadline;
573 #endif
574 	int queued_packets, queued_bytes;
575 
576 	int sequence;
577 	spinlock_t lock;
578 	struct mux_frame frame;
579 };
580 
581 static void xmm7360_os_handle_net_frame(struct xmm_dev *, const u8 *, size_t);
582 static void xmm7360_os_handle_net_dequeue(struct xmm_net *, struct mux_frame *);
583 static void xmm7360_os_handle_net_txwake(struct xmm_net *);
584 static void xmm7360_os_handle_tty_idata(struct queue_pair *, const u8 *, size_t);
585 
xmm7360_poll(struct xmm_dev * xmm)586 static void xmm7360_poll(struct xmm_dev *xmm)
587 {
588 	if (xmm->cp->status.code == 0xbadc0ded) {
589 		dev_err(xmm->dev, "crashed but dma up\n");
590 		xmm->error = -ENODEV;
591 	}
592 	if (xmm->bar2[BAR2_STATUS] != XMM_MODEM_READY) {
593 		dev_err(xmm->dev, "bad status %x\n",xmm->bar2[BAR2_STATUS]);
594 		xmm->error = -ENODEV;
595 	}
596 }
597 
xmm7360_ding(struct xmm_dev * xmm,int bell)598 static void xmm7360_ding(struct xmm_dev *xmm, int bell)
599 {
600 	if (xmm->cp->status.asleep)
601 		xmm->bar0[BAR0_WAKEUP] = 1;
602 	xmm->bar0[BAR0_DOORBELL] = bell;
603 	xmm7360_poll(xmm);
604 }
605 
xmm7360_cmd_ring_wait(struct xmm_dev * xmm)606 static int xmm7360_cmd_ring_wait(struct xmm_dev *xmm)
607 {
608 	// Wait for all commands to complete
609 	// XXX locking?
610 	int ret = wait_event_interruptible_timeout(xmm->wq, (xmm->cp->c_rptr == xmm->cp->c_wptr) || xmm->error, msecs_to_jiffies(1000));
611 	if (ret == 0)
612 		return -ETIMEDOUT;
613 	if (ret < 0)
614 		return ret;
615 	return xmm->error;
616 }
617 
xmm7360_cmd_ring_execute(struct xmm_dev * xmm,u8 cmd,u8 parm,u16 len,dma_addr_t ptr,u32 extra)618 static int xmm7360_cmd_ring_execute(struct xmm_dev *xmm, u8 cmd, u8 parm, u16 len, dma_addr_t ptr, u32 extra)
619 {
620 	u8 wptr = xmm->cp->c_wptr;
621 	u8 new_wptr = (wptr + 1) % CMD_RING_SIZE;
622 	if (xmm->error)
623 		return xmm->error;
624 	if (new_wptr == xmm->cp->c_rptr)	// ring full
625 		return -EAGAIN;
626 
627 	xmm->cp->c_ring[wptr].ptr = ptr;
628 	xmm->cp->c_ring[wptr].cmd = cmd;
629 	xmm->cp->c_ring[wptr].parm = parm;
630 	xmm->cp->c_ring[wptr].len = len;
631 	xmm->cp->c_ring[wptr].extra = extra;
632 	xmm->cp->c_ring[wptr].unk = 0;
633 	xmm->cp->c_ring[wptr].flags = CMD_FLAG_READY;
634 
635 	xmm->cp->c_wptr = new_wptr;
636 
637 	xmm7360_ding(xmm, DOORBELL_CMD);
638 	return xmm7360_cmd_ring_wait(xmm);
639 }
640 
xmm7360_cmd_ring_init(struct xmm_dev * xmm)641 static int xmm7360_cmd_ring_init(struct xmm_dev *xmm) {
642 	int timeout;
643 	int ret;
644 
645 	xmm->cp = dma_alloc_coherent(xmm->dev, sizeof(struct control_page), &xmm->cp_phys, GFP_KERNEL);
646 	BUG_ON(xmm->cp == NULL);
647 
648 	xmm->cp->ctl.status = xmm->cp_phys + offsetof(struct control_page, status);
649 	xmm->cp->ctl.s_wptr = xmm->cp_phys + offsetof(struct control_page, s_wptr);
650 	xmm->cp->ctl.s_rptr = xmm->cp_phys + offsetof(struct control_page, s_rptr);
651 	xmm->cp->ctl.c_wptr = xmm->cp_phys + offsetof(struct control_page, c_wptr);
652 	xmm->cp->ctl.c_rptr = xmm->cp_phys + offsetof(struct control_page, c_rptr);
653 	xmm->cp->ctl.c_ring = xmm->cp_phys + offsetof(struct control_page, c_ring);
654 	xmm->cp->ctl.c_ring_size = CMD_RING_SIZE;
655 
656 	xmm->bar2[BAR2_CONTROL] = xmm->cp_phys;
657 	xmm->bar2[BAR2_CONTROLH] = xmm->cp_phys >> 32;
658 
659 	xmm->bar0[BAR0_MODE] = 1;
660 
661 	timeout = 100;
662 	while (xmm->bar2[BAR2_MODE] == 0 && --timeout)
663 		xmm7360_os_msleep(10);
664 
665 	if (!timeout)
666 		return -ETIMEDOUT;
667 
668 	xmm->bar2[BAR2_BLANK0] = 0;
669 	xmm->bar2[BAR2_BLANK1] = 0;
670 	xmm->bar2[BAR2_BLANK2] = 0;
671 	xmm->bar2[BAR2_BLANK3] = 0;
672 
673 	xmm->bar0[BAR0_MODE] = 2;	// enable intrs?
674 
675 	timeout = 100;
676 	while (xmm->bar2[BAR2_MODE] != 2 && --timeout)
677 		xmm7360_os_msleep(10);
678 
679 	if (!timeout)
680 		return -ETIMEDOUT;
681 
682 	// enable going to sleep when idle
683 	ret = xmm7360_cmd_ring_execute(xmm, CMD_WAKEUP, 0, 1, 0, 0);
684 	if (ret)
685 		return ret;
686 
687 	return 0;
688 }
689 
xmm7360_cmd_ring_free(struct xmm_dev * xmm)690 static void xmm7360_cmd_ring_free(struct xmm_dev *xmm) {
691 	if (xmm->bar0)
692 		xmm->bar0[BAR0_MODE] = 0;
693 	if (xmm->cp)
694 		dma_free_coherent(xmm->dev, sizeof(struct control_page), (volatile void *)xmm->cp, xmm->cp_phys);
695 	xmm->cp = NULL;
696 	return;
697 }
698 
xmm7360_td_ring_activate(struct xmm_dev * xmm,u8 ring_id)699 static void xmm7360_td_ring_activate(struct xmm_dev *xmm, u8 ring_id)
700 {
701 	struct td_ring *ring = &xmm->td_ring[ring_id];
702 	int ret __diagused;
703 
704 	xmm->cp->s_rptr[ring_id] = xmm->cp->s_wptr[ring_id] = 0;
705 	ring->last_handled = 0;
706 	ret = xmm7360_cmd_ring_execute(xmm, CMD_RING_OPEN, ring_id, ring->depth, ring->tds_phys, 0x60);
707 	BUG_ON(ret);
708 }
709 
xmm7360_td_ring_create(struct xmm_dev * xmm,u8 ring_id,u8 depth,u16 page_size)710 static void xmm7360_td_ring_create(struct xmm_dev *xmm, u8 ring_id, u8 depth, u16 page_size)
711 {
712 	struct td_ring *ring = &xmm->td_ring[ring_id];
713 	int i;
714 
715 	BUG_ON(ring->depth);
716 	BUG_ON(depth & (depth-1));
717 	BUG_ON(page_size > TD_MAX_PAGE_SIZE);
718 
719 	memset(ring, 0, sizeof(struct td_ring));
720 	ring->depth = depth;
721 	ring->page_size = page_size;
722 	ring->tds = dma_alloc_coherent(xmm->dev, sizeof(struct td_ring_entry)*depth, &ring->tds_phys, GFP_KERNEL);
723 
724 	ring->pages = kzalloc(sizeof(void*)*depth, GFP_KERNEL);
725 	ring->pages_phys = kzalloc(sizeof(dma_addr_t)*depth, GFP_KERNEL);
726 
727 	for (i=0; i<depth; i++) {
728 		ring->pages[i] = dma_alloc_coherent(xmm->dev, ring->page_size, &ring->pages_phys[i], GFP_KERNEL);
729 		ring->tds[i].addr = ring->pages_phys[i];
730 	}
731 
732 	xmm7360_td_ring_activate(xmm, ring_id);
733 }
734 
xmm7360_td_ring_deactivate(struct xmm_dev * xmm,u8 ring_id)735 static void xmm7360_td_ring_deactivate(struct xmm_dev *xmm, u8 ring_id)
736 {
737 	xmm7360_cmd_ring_execute(xmm, CMD_RING_CLOSE, ring_id, 0, 0, 0);
738 }
739 
xmm7360_td_ring_destroy(struct xmm_dev * xmm,u8 ring_id)740 static void xmm7360_td_ring_destroy(struct xmm_dev *xmm, u8 ring_id)
741 {
742 	struct td_ring *ring = &xmm->td_ring[ring_id];
743 	int i, depth=ring->depth;
744 
745 	if (!depth) {
746 		WARN_ON(1);
747 		dev_err(xmm->dev, "Tried destroying empty ring!\n");
748 		return;
749 	}
750 
751 	xmm7360_td_ring_deactivate(xmm, ring_id);
752 
753 	for (i=0; i<depth; i++) {
754 		dma_free_coherent(xmm->dev, ring->page_size, ring->pages[i], ring->pages_phys[i]);
755 	}
756 
757 	kfree(ring->pages_phys);
758 	kfree(ring->pages);
759 
760 	dma_free_coherent(xmm->dev, sizeof(struct td_ring_entry)*depth, ring->tds, ring->tds_phys);
761 
762 	ring->depth = 0;
763 }
764 
xmm7360_td_ring_write(struct xmm_dev * xmm,u8 ring_id,const void * buf,int len)765 static void xmm7360_td_ring_write(struct xmm_dev *xmm, u8 ring_id, const void *buf, int len)
766 {
767 	struct td_ring *ring = &xmm->td_ring[ring_id];
768 	u8 wptr = xmm->cp->s_wptr[ring_id];
769 
770 	BUG_ON(!ring->depth);
771 	BUG_ON(len > ring->page_size);
772 	BUG_ON(ring_id & 1);
773 
774 	memcpy(ring->pages[wptr], buf, len);
775 	ring->tds[wptr].length = len;
776 	ring->tds[wptr].flags = 0;
777 	ring->tds[wptr].unk = 0;
778 
779 	wptr = (wptr + 1) & (ring->depth - 1);
780 	BUG_ON(wptr == xmm->cp->s_rptr[ring_id]);
781 
782 	xmm->cp->s_wptr[ring_id] = wptr;
783 }
784 
xmm7360_td_ring_full(struct xmm_dev * xmm,u8 ring_id)785 static int xmm7360_td_ring_full(struct xmm_dev *xmm, u8 ring_id)
786 {
787 	struct td_ring *ring = &xmm->td_ring[ring_id];
788 	u8 wptr = xmm->cp->s_wptr[ring_id];
789 	wptr = (wptr + 1) & (ring->depth - 1);
790 	return wptr == xmm->cp->s_rptr[ring_id];
791 }
792 
xmm7360_td_ring_read(struct xmm_dev * xmm,u8 ring_id)793 static void xmm7360_td_ring_read(struct xmm_dev *xmm, u8 ring_id)
794 {
795 	struct td_ring *ring = &xmm->td_ring[ring_id];
796 	u8 wptr = xmm->cp->s_wptr[ring_id];
797 
798 	if (!ring->depth) {
799 		dev_err(xmm->dev, "read on disabled ring\n");
800 		WARN_ON(1);
801 		return;
802 	}
803 	if (!(ring_id & 1)) {
804 		dev_err(xmm->dev, "read on write ring\n");
805 		WARN_ON(1);
806 		return;
807 	}
808 
809 	ring->tds[wptr].length = ring->page_size;
810 	ring->tds[wptr].flags = 0;
811 	ring->tds[wptr].unk = 0;
812 
813 	wptr = (wptr + 1) & (ring->depth - 1);
814 	BUG_ON(wptr == xmm->cp->s_rptr[ring_id]);
815 
816 	xmm->cp->s_wptr[ring_id] = wptr;
817 }
818 
xmm7360_init_qp(struct xmm_dev * xmm,int num,u8 depth,u16 page_size)819 static struct queue_pair * xmm7360_init_qp(struct xmm_dev *xmm, int num, u8 depth, u16 page_size)
820 {
821 	struct queue_pair *qp = &xmm->qp[num];
822 
823 	qp->xmm = xmm;
824 	qp->num = num;
825 	qp->open = 0;
826 	qp->depth = depth;
827 	qp->page_size = page_size;
828 
829 	mutex_init(&qp->lock);
830 	init_waitqueue_head(&qp->wq);
831 	return qp;
832 }
833 
xmm7360_qp_arm(struct xmm_dev * xmm,struct queue_pair * qp)834 static void xmm7360_qp_arm(struct xmm_dev *xmm, struct queue_pair *qp)
835 {
836 	while (!xmm7360_td_ring_full(xmm, qp->num*2+1))
837 		xmm7360_td_ring_read(xmm, qp->num*2+1);
838 	xmm7360_ding(xmm, DOORBELL_TD);
839 }
840 
xmm7360_qp_start(struct queue_pair * qp)841 static int xmm7360_qp_start(struct queue_pair *qp)
842 {
843 	struct xmm_dev *xmm = qp->xmm;
844 	int ret;
845 
846 	mutex_lock(&qp->lock);
847 	if (qp->open) {
848 		ret = -EBUSY;
849 	} else {
850 		ret = 0;
851 		qp->open = 1;
852 	}
853 	mutex_unlock(&qp->lock);
854 
855 	if (ret == 0) {
856 		xmm7360_td_ring_create(xmm, qp->num*2, qp->depth, qp->page_size);
857 		xmm7360_td_ring_create(xmm, qp->num*2+1, qp->depth, qp->page_size);
858 		xmm7360_qp_arm(xmm, qp);
859 	}
860 
861 	return ret;
862 }
863 
xmm7360_qp_resume(struct queue_pair * qp)864 static void xmm7360_qp_resume(struct queue_pair *qp)
865 {
866 	struct xmm_dev *xmm = qp->xmm;
867 
868 	BUG_ON(!qp->open);
869 	xmm7360_td_ring_activate(xmm, qp->num*2);
870 	xmm7360_td_ring_activate(xmm, qp->num*2+1);
871 	xmm7360_qp_arm(xmm, qp);
872 }
873 
xmm7360_qp_stop(struct queue_pair * qp)874 static int xmm7360_qp_stop(struct queue_pair *qp)
875 {
876 	struct xmm_dev *xmm = qp->xmm;
877 	int ret = 0;
878 
879 	mutex_lock(&qp->lock);
880 	if (!qp->open) {
881 		ret = -ENODEV;
882 	} else {
883 		ret = 0;
884 		/* still holding qp->open to prevent concurrent access */
885 	}
886 	mutex_unlock(&qp->lock);
887 
888 	if (ret == 0) {
889 		xmm7360_td_ring_destroy(xmm, qp->num*2);
890 		xmm7360_td_ring_destroy(xmm, qp->num*2+1);
891 
892 		mutex_lock(&qp->lock);
893 		qp->open = 0;
894 		mutex_unlock(&qp->lock);
895 	}
896 
897 	return ret;
898 }
899 
xmm7360_qp_suspend(struct queue_pair * qp)900 static void xmm7360_qp_suspend(struct queue_pair *qp)
901 {
902 	struct xmm_dev *xmm = qp->xmm;
903 
904 	BUG_ON(!qp->open);
905 	xmm7360_td_ring_deactivate(xmm, qp->num*2);
906 }
907 
xmm7360_qp_can_write(struct queue_pair * qp)908 static int xmm7360_qp_can_write(struct queue_pair *qp)
909 {
910 	struct xmm_dev *xmm = qp->xmm;
911 	return !xmm7360_td_ring_full(xmm, qp->num*2);
912 }
913 
xmm7360_qp_write(struct queue_pair * qp,const char * buf,size_t size)914 static ssize_t xmm7360_qp_write(struct queue_pair *qp, const char *buf, size_t size)
915 {
916 	struct xmm_dev *xmm = qp->xmm;
917 	int page_size = qp->xmm->td_ring[qp->num*2].page_size;
918 	if (xmm->error)
919 		return xmm->error;
920 	if (!xmm7360_qp_can_write(qp))
921 		return 0;
922 	if (size > page_size)
923 		size = page_size;
924 	xmm7360_td_ring_write(xmm, qp->num*2, buf, size);
925 	xmm7360_ding(xmm, DOORBELL_TD);
926 	return size;
927 }
928 
xmm7360_qp_write_user(struct queue_pair * qp,const char __user * buf,size_t size)929 static ssize_t xmm7360_qp_write_user(struct queue_pair *qp, const char __user *buf, size_t size)
930 {
931 	int page_size = qp->xmm->td_ring[qp->num*2].page_size;
932 	int ret;
933 
934 	if (size > page_size)
935 		size = page_size;
936 
937 	ret = copy_from_user(qp->user_buf, buf, size);
938 	size = size - ret;
939 	if (!size)
940 		return 0;
941 	return xmm7360_qp_write(qp, qp->user_buf, size);
942 }
943 
xmm7360_qp_has_data(struct queue_pair * qp)944 static int xmm7360_qp_has_data(struct queue_pair *qp)
945 {
946 	struct xmm_dev *xmm = qp->xmm;
947 	struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
948 
949 	return (xmm->cp->s_rptr[qp->num*2+1] != ring->last_handled);
950 }
951 
xmm7360_qp_read_user(struct queue_pair * qp,char __user * buf,size_t size)952 static ssize_t xmm7360_qp_read_user(struct queue_pair *qp, char __user *buf, size_t size)
953 {
954 	struct xmm_dev *xmm = qp->xmm;
955 	struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
956 	int idx, nread, ret;
957 	// XXX locking?
958 	ret = wait_event_interruptible(qp->wq, xmm7360_qp_has_data(qp) || xmm->error);
959 	if (ret < 0)
960 		return ret;
961 	if (xmm->error)
962 		return xmm->error;
963 
964 	idx = ring->last_handled;
965 	nread = ring->tds[idx].length;
966 	if (nread > size)
967 		nread = size;
968 	ret = copy_to_user(buf, ring->pages[idx], nread);
969 	nread -= ret;
970 	if (nread == 0)
971 		return 0;
972 
973 	// XXX all data not fitting into buf+size is discarded
974 	xmm7360_td_ring_read(xmm, qp->num*2+1);
975 	xmm7360_ding(xmm, DOORBELL_TD);
976 	ring->last_handled = (idx + 1) & (ring->depth - 1);
977 
978 	return nread;
979 }
980 
xmm7360_tty_poll_qp(struct queue_pair * qp)981 static void xmm7360_tty_poll_qp(struct queue_pair *qp)
982 {
983 	struct xmm_dev *xmm = qp->xmm;
984 	struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
985 	int idx, nread;
986 	while (xmm7360_qp_has_data(qp)) {
987 		idx = ring->last_handled;
988 		nread = ring->tds[idx].length;
989 		xmm7360_os_handle_tty_idata(qp, ring->pages[idx], nread);
990 
991 		xmm7360_td_ring_read(xmm, qp->num*2+1);
992 		xmm7360_ding(xmm, DOORBELL_TD);
993 		ring->last_handled = (idx + 1) & (ring->depth - 1);
994 	}
995 }
996 
997 #ifdef __linux__
998 
xmm7360_os_handle_tty_idata(struct queue_pair * qp,const u8 * data,size_t nread)999 static void xmm7360_os_handle_tty_idata(struct queue_pair *qp, const u8 *data, size_t nread)
1000 {
1001 	tty_insert_flip_string(&qp->port, data, nread);
1002 	tty_flip_buffer_push(&qp->port);
1003 }
1004 
xmm7360_cdev_open(struct inode * inode,struct file * file)1005 int xmm7360_cdev_open (struct inode *inode, struct file *file)
1006 {
1007 	struct queue_pair *qp = container_of(inode->i_cdev, struct queue_pair, cdev);
1008 	file->private_data = qp;
1009 	return xmm7360_qp_start(qp);
1010 }
1011 
xmm7360_cdev_release(struct inode * inode,struct file * file)1012 int xmm7360_cdev_release (struct inode *inode, struct file *file)
1013 {
1014 	struct queue_pair *qp = file->private_data;
1015 	return xmm7360_qp_stop(qp);
1016 }
1017 
xmm7360_cdev_write(struct file * file,const char __user * buf,size_t size,loff_t * offset)1018 ssize_t xmm7360_cdev_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
1019 {
1020 	struct queue_pair *qp = file->private_data;
1021 	int ret;
1022 
1023 	ret = xmm7360_qp_write_user(qp, buf, size);
1024 	if (ret < 0)
1025 		return ret;
1026 
1027 	*offset += ret;
1028 	return ret;
1029 }
1030 
xmm7360_cdev_read(struct file * file,char __user * buf,size_t size,loff_t * offset)1031 ssize_t xmm7360_cdev_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
1032 {
1033 	struct queue_pair *qp = file->private_data;
1034 	int ret;
1035 
1036 	ret = xmm7360_qp_read_user(qp, buf, size);
1037 	if (ret < 0)
1038 		return ret;
1039 
1040 	*offset += ret;
1041 	return ret;
1042 }
1043 
xmm7360_cdev_poll(struct file * file,poll_table * wait)1044 static unsigned int xmm7360_cdev_poll(struct file *file, poll_table *wait)
1045 {
1046 	struct queue_pair *qp = file->private_data;
1047 	unsigned int mask = 0;
1048 
1049 	poll_wait(file, &qp->wq, wait);
1050 
1051 	if (qp->xmm->error)
1052 		return POLLHUP;
1053 
1054 	if (xmm7360_qp_has_data(qp))
1055 		mask |= POLLIN | POLLRDNORM;
1056 
1057 	if (xmm7360_qp_can_write(qp))
1058 		mask |= POLLOUT | POLLWRNORM;
1059 
1060 	return mask;
1061 }
1062 
xmm7360_cdev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1063 static long xmm7360_cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1064 {
1065 	struct queue_pair *qp = file->private_data;
1066 
1067 	u32 val;
1068 
1069 	switch (cmd) {
1070 		case XMM7360_IOCTL_GET_PAGE_SIZE:
1071 			val = qp->xmm->td_ring[qp->num*2].page_size;
1072 			if (copy_to_user((u32*)arg, &val, sizeof(u32)))
1073 				return -EFAULT;
1074 			return 0;
1075 	}
1076 
1077 	return -ENOTTY;
1078 }
1079 
1080 static struct file_operations xmm7360_fops = {
1081 	.read		= xmm7360_cdev_read,
1082 	.write		= xmm7360_cdev_write,
1083 	.poll		= xmm7360_cdev_poll,
1084 	.unlocked_ioctl	= xmm7360_cdev_ioctl,
1085 	.open		= xmm7360_cdev_open,
1086 	.release	= xmm7360_cdev_release
1087 };
1088 
1089 #endif /* __linux__ */
1090 
xmm7360_mux_frame_init(struct xmm_net * xn,struct mux_frame * frame,int sequence)1091 static void xmm7360_mux_frame_init(struct xmm_net *xn, struct mux_frame *frame, int sequence)
1092 {
1093 	frame->sequence = xn->sequence;
1094 	frame->max_size = xn->xmm->td_ring[0].page_size;
1095 	frame->n_packets = 0;
1096 	frame->n_bytes = 0;
1097 	frame->last_tag_next = NULL;
1098 	frame->last_tag_length = NULL;
1099 }
1100 
xmm7360_mux_frame_add_tag(struct mux_frame * frame,uint32_t tag,uint16_t extra,void * data,int data_len)1101 static void xmm7360_mux_frame_add_tag(struct mux_frame *frame, uint32_t tag, uint16_t extra, void *data, int data_len)
1102 {
1103 	int total_length;
1104 	if (frame->n_bytes == 0)
1105 		total_length = sizeof(struct mux_first_header) + data_len;
1106 	else
1107 		total_length = sizeof(struct mux_next_header) + data_len;
1108 
1109 	while (frame->n_bytes & 3)
1110 		frame->n_bytes++;
1111 
1112 	BUG_ON(frame->n_bytes + total_length > frame->max_size);
1113 
1114 	if (frame->last_tag_next)
1115 		*frame->last_tag_next = frame->n_bytes;
1116 
1117 	if (frame->n_bytes == 0) {
1118 		struct mux_first_header *hdr = (struct mux_first_header *)frame->data;
1119 		memset(hdr, 0, sizeof(struct mux_first_header));
1120 		hdr->tag = htonl(tag);
1121 		hdr->sequence = frame->sequence;
1122 		hdr->length = total_length;
1123 		hdr->extra = extra;
1124 		frame->last_tag_length = &hdr->length;
1125 		frame->last_tag_next = &hdr->next;
1126 		frame->n_bytes += sizeof(struct mux_first_header);
1127 	} else {
1128 		struct mux_next_header *hdr = (struct mux_next_header *)(&frame->data[frame->n_bytes]);
1129 		memset(hdr, 0, sizeof(struct mux_next_header));
1130 		hdr->tag = htonl(tag);
1131 		hdr->length = total_length;
1132 		hdr->extra = extra;
1133 		frame->last_tag_length = &hdr->length;
1134 		frame->last_tag_next = &hdr->next;
1135 		frame->n_bytes += sizeof(struct mux_next_header);
1136 	}
1137 
1138 	if (data_len) {
1139 		memcpy(&frame->data[frame->n_bytes], data, data_len);
1140 		frame->n_bytes += data_len;
1141 	}
1142 }
1143 
xmm7360_mux_frame_append_data(struct mux_frame * frame,const void * data,int data_len)1144 static void xmm7360_mux_frame_append_data(struct mux_frame *frame, const void *data, int data_len)
1145 {
1146 	BUG_ON(frame->n_bytes + data_len > frame->max_size);
1147 	BUG_ON(!frame->last_tag_length);
1148 
1149 	memcpy(&frame->data[frame->n_bytes], data, data_len);
1150 	*frame->last_tag_length += data_len;
1151 	frame->n_bytes += data_len;
1152 }
1153 
xmm7360_mux_frame_append_packet(struct mux_frame * frame,const void * data,int data_len)1154 static int xmm7360_mux_frame_append_packet(struct mux_frame *frame, const void *data, int data_len)
1155 {
1156 	int expected_adth_size = sizeof(struct mux_next_header) + 4 + (frame->n_packets+1)*sizeof(struct mux_bounds);
1157 	uint8_t pad[16];
1158 
1159 	if (frame->n_packets >= MUX_MAX_PACKETS)
1160 		return -1;
1161 
1162 	if (frame->n_bytes + data_len + 16 + expected_adth_size > frame->max_size)
1163 		return -1;
1164 
1165 	BUG_ON(!frame->last_tag_length);
1166 
1167 	frame->bounds[frame->n_packets].offset = frame->n_bytes;
1168 	frame->bounds[frame->n_packets].length = data_len + 16;
1169 	frame->n_packets++;
1170 
1171 	memset(pad, 0, sizeof(pad));
1172 	xmm7360_mux_frame_append_data(frame, pad, 16);
1173 	xmm7360_mux_frame_append_data(frame, data, data_len);
1174 	return 0;
1175 }
1176 
xmm7360_mux_frame_push(struct xmm_dev * xmm,struct mux_frame * frame)1177 static int xmm7360_mux_frame_push(struct xmm_dev *xmm, struct mux_frame *frame)
1178 {
1179 	struct mux_first_header *hdr = (void*)&frame->data[0];
1180 	int ret;
1181 	hdr->length = frame->n_bytes;
1182 
1183 	ret = xmm7360_qp_write(xmm->net->qp, frame->data, frame->n_bytes);
1184 	if (ret < 0)
1185 		return ret;
1186 	return 0;
1187 }
1188 
xmm7360_mux_control(struct xmm_net * xn,u32 arg1,u32 arg2,u32 arg3,u32 arg4)1189 static int xmm7360_mux_control(struct xmm_net *xn, u32 arg1, u32 arg2, u32 arg3, u32 arg4)
1190 {
1191 	struct mux_frame *frame = &xn->frame;
1192 	int ret;
1193 	uint32_t cmdh_args[] = {arg1, arg2, arg3, arg4};
1194 	unsigned long flags __unused;
1195 
1196 	spin_lock_irqsave(&xn->lock, flags);
1197 
1198 	xmm7360_mux_frame_init(xn, frame, 0);
1199 	xmm7360_mux_frame_add_tag(frame, XMM_TAG_ACBH, 0, NULL, 0);
1200 	xmm7360_mux_frame_add_tag(frame, XMM_TAG_CMDH, xn->channel, cmdh_args, sizeof(cmdh_args));
1201 	ret = xmm7360_mux_frame_push(xn->xmm, frame);
1202 
1203 	spin_unlock_irqrestore(&xn->lock, flags);
1204 
1205 	return ret;
1206 }
1207 
xmm7360_net_flush(struct xmm_net * xn)1208 static void xmm7360_net_flush(struct xmm_net *xn)
1209 {
1210 	struct mux_frame *frame = &xn->frame;
1211 	int ret;
1212 	u32 unknown = 0;
1213 
1214 #ifdef __linux__
1215 	/* Never called with empty queue */
1216 	BUG_ON(skb_queue_empty(&xn->queue));
1217 #endif
1218 	BUG_ON(!xmm7360_qp_can_write(xn->qp));
1219 
1220 	xmm7360_mux_frame_init(xn, frame, xn->sequence++);
1221 	xmm7360_mux_frame_add_tag(frame, XMM_TAG_ADBH, 0, NULL, 0);
1222 
1223 	xmm7360_os_handle_net_dequeue(xn, frame);
1224 	xn->queued_packets = xn->queued_bytes = 0;
1225 
1226 	xmm7360_mux_frame_add_tag(frame, XMM_TAG_ADTH, xn->channel, &unknown, sizeof(uint32_t));
1227 	xmm7360_mux_frame_append_data(frame, &frame->bounds[0], sizeof(struct mux_bounds)*frame->n_packets);
1228 
1229 	ret = xmm7360_mux_frame_push(xn->xmm, frame);
1230 	if (ret)
1231 		goto drop;
1232 
1233 	return;
1234 
1235 drop:
1236 	dev_err(xn->xmm->dev, "Failed to ship coalesced frame");
1237 }
1238 
xmm7360_base_init(struct xmm_dev * xmm)1239 static int xmm7360_base_init(struct xmm_dev *xmm)
1240 {
1241 	int ret, i;
1242 	u32 status;
1243 
1244 	xmm->error = 0;
1245 	xmm->num_ttys = 0;
1246 
1247 	status = xmm->bar2[BAR2_STATUS];
1248 	if (status == XMM_MODEM_BOOTING) {
1249 		dev_info(xmm->dev, "modem still booting, waiting...\n");
1250 		for (i=0; i<100; i++) {
1251 			status = xmm->bar2[BAR2_STATUS];
1252 			if (status != XMM_MODEM_BOOTING)
1253 				break;
1254 			xmm7360_os_msleep(200);
1255 		}
1256 	}
1257 
1258 	if (status != XMM_MODEM_READY) {
1259 		dev_err(xmm->dev, "unknown modem status: 0x%08x\n", status);
1260 		return -EINVAL;
1261 	}
1262 
1263 	dev_info(xmm->dev, "modem is ready\n");
1264 
1265 	ret = xmm7360_cmd_ring_init(xmm);
1266 	if (ret) {
1267 		dev_err(xmm->dev, "Could not bring up command ring %d\n",
1268 		    ret);
1269 		return ret;
1270 	}
1271 
1272 	return 0;
1273 }
1274 
xmm7360_net_mux_handle_frame(struct xmm_net * xn,u8 * data,int len)1275 static void xmm7360_net_mux_handle_frame(struct xmm_net *xn, u8 *data, int len)
1276 {
1277 	struct mux_first_header *first;
1278 	struct mux_next_header *adth;
1279 	int n_packets, i;
1280 	struct mux_bounds *bounds;
1281 
1282 	first = (void*)data;
1283 	if (ntohl(first->tag) == XMM_TAG_ACBH)
1284 		return;
1285 
1286 	if (ntohl(first->tag) != XMM_TAG_ADBH) {
1287 		dev_info(xn->xmm->dev, "Unexpected tag %x\n", first->tag);
1288 		return;
1289 	}
1290 
1291 	adth = (void*)(&data[first->next]);
1292 	if (ntohl(adth->tag) != XMM_TAG_ADTH) {
1293 		dev_err(xn->xmm->dev, "Unexpected tag %x, expected ADTH\n", adth->tag);
1294 		return;
1295 	}
1296 
1297 	n_packets = (adth->length - sizeof(struct mux_next_header) - 4) / sizeof(struct mux_bounds);
1298 
1299 	bounds = (void*)&data[first->next + sizeof(struct mux_next_header) + 4];
1300 
1301 	for (i=0; i<n_packets; i++) {
1302 		if (!bounds[i].length)
1303 			continue;
1304 
1305 		xmm7360_os_handle_net_frame(xn->xmm,
1306 		    &data[bounds[i].offset], bounds[i].length);
1307 	}
1308 }
1309 
xmm7360_net_poll(struct xmm_dev * xmm)1310 static void xmm7360_net_poll(struct xmm_dev *xmm)
1311 {
1312 	struct queue_pair *qp;
1313 	struct td_ring *ring;
1314 	int idx, nread;
1315 	struct xmm_net *xn = xmm->net;
1316 	unsigned long flags __unused;
1317 
1318 	BUG_ON(!xn);
1319 
1320 	qp = xn->qp;
1321 	ring = &xmm->td_ring[qp->num*2+1];
1322 
1323 	spin_lock_irqsave(&xn->lock, flags);
1324 
1325 	if (xmm7360_qp_can_write(qp))
1326 		xmm7360_os_handle_net_txwake(xn);
1327 
1328 	while (xmm7360_qp_has_data(qp)) {
1329 		idx = ring->last_handled;
1330 		nread = ring->tds[idx].length;
1331 		xmm7360_net_mux_handle_frame(xn, ring->pages[idx], nread);
1332 
1333 		xmm7360_td_ring_read(xmm, qp->num*2+1);
1334 		xmm7360_ding(xmm, DOORBELL_TD);
1335 		ring->last_handled = (idx + 1) & (ring->depth - 1);
1336 	}
1337 
1338 	spin_unlock_irqrestore(&xn->lock, flags);
1339 }
1340 
1341 #ifdef __linux__
1342 
xmm7360_net_uninit(struct net_device * dev)1343 static void xmm7360_net_uninit(struct net_device *dev)
1344 {
1345 }
1346 
xmm7360_net_open(struct net_device * dev)1347 static int xmm7360_net_open(struct net_device *dev)
1348 {
1349 	struct xmm_net *xn = netdev_priv(dev);
1350 	xn->queued_packets = xn->queued_bytes = 0;
1351 	skb_queue_purge(&xn->queue);
1352 	netif_start_queue(dev);
1353 	return xmm7360_mux_control(xn, 1, 0, 0, 0);
1354 }
1355 
xmm7360_net_close(struct net_device * dev)1356 static int xmm7360_net_close(struct net_device *dev)
1357 {
1358 	netif_stop_queue(dev);
1359 	return 0;
1360 }
1361 
xmm7360_net_must_flush(struct xmm_net * xn,int new_packet_bytes)1362 static int xmm7360_net_must_flush(struct xmm_net *xn, int new_packet_bytes)
1363 {
1364 	int frame_size;
1365 	if (xn->queued_packets >= MUX_MAX_PACKETS)
1366 		return 1;
1367 
1368 	frame_size = sizeof(struct mux_first_header) + xn->queued_bytes + sizeof(struct mux_next_header) + 4 + sizeof(struct mux_bounds)*xn->queued_packets;
1369 
1370 	frame_size += 16 + new_packet_bytes + sizeof(struct mux_bounds);
1371 
1372 	return frame_size > xn->frame.max_size;
1373 }
1374 
xmm7360_net_deadline_cb(struct hrtimer * t)1375 static enum hrtimer_restart xmm7360_net_deadline_cb(struct hrtimer *t)
1376 {
1377 	struct xmm_net *xn = container_of(t, struct xmm_net, deadline);
1378 	unsigned long flags;
1379 	spin_lock_irqsave(&xn->lock, flags);
1380 	if (!skb_queue_empty(&xn->queue) && xmm7360_qp_can_write(xn->qp))
1381 		xmm7360_net_flush(xn);
1382 	spin_unlock_irqrestore(&xn->lock, flags);
1383 	return HRTIMER_NORESTART;
1384 }
1385 
xmm7360_net_xmit(struct sk_buff * skb,struct net_device * dev)1386 static netdev_tx_t xmm7360_net_xmit(struct sk_buff *skb, struct net_device *dev)
1387 {
1388 	struct xmm_net *xn = netdev_priv(dev);
1389 	ktime_t kt;
1390 	unsigned long flags;
1391 
1392 	if (netif_queue_stopped(dev))
1393 		return NETDEV_TX_BUSY;
1394 
1395 	skb_orphan(skb);
1396 
1397 	spin_lock_irqsave(&xn->lock, flags);
1398 	if (xmm7360_net_must_flush(xn, skb->len)) {
1399 		if (xmm7360_qp_can_write(xn->qp)) {
1400 			xmm7360_net_flush(xn);
1401 		} else {
1402 			netif_stop_queue(dev);
1403 			spin_unlock_irqrestore(&xn->lock, flags);
1404 			return NETDEV_TX_BUSY;
1405 		}
1406 	}
1407 
1408 	xn->queued_packets++;
1409 	xn->queued_bytes += 16 + skb->len;
1410 	skb_queue_tail(&xn->queue, skb);
1411 
1412 	spin_unlock_irqrestore(&xn->lock, flags);
1413 
1414 	if (!hrtimer_active(&xn->deadline)) {
1415 		kt = ktime_set(0, 100000);
1416 		hrtimer_start(&xn->deadline, kt, HRTIMER_MODE_REL);
1417 	}
1418 
1419 	return NETDEV_TX_OK;
1420 }
1421 
xmm7360_os_handle_net_frame(struct xmm_dev * xmm,const u8 * buf,size_t sz)1422 static void xmm7360_os_handle_net_frame(struct xmm_dev *xmm, const u8 *buf, size_t sz)
1423 {
1424 	struct sk_buff *skb;
1425 	void *p;
1426 	u8 ip_version;
1427 
1428 	skb = dev_alloc_skb(sz + NET_IP_ALIGN);
1429 	if (!skb)
1430 		return;
1431 	skb_reserve(skb, NET_IP_ALIGN);
1432 	p = skb_put(skb, sz);
1433 	memcpy(p, buf, sz);
1434 
1435 	skb->dev = xmm->netdev;
1436 
1437 	ip_version = skb->data[0] >> 4;
1438 	if (ip_version == 4) {
1439 		skb->protocol = htons(ETH_P_IP);
1440 	} else if (ip_version == 6) {
1441 		skb->protocol = htons(ETH_P_IPV6);
1442 	} else {
1443 		kfree_skb(skb);
1444 		return;
1445 	}
1446 
1447 	netif_rx(skb);
1448 }
1449 
xmm7360_os_handle_net_dequeue(struct xmm_net * xn,struct mux_frame * frame)1450 static void xmm7360_os_handle_net_dequeue(struct xmm_net *xn, struct mux_frame *frame)
1451 {
1452 	struct sk_buff *skb;
1453 	int ret;
1454 
1455 	while ((skb = skb_dequeue(&xn->queue))) {
1456 		ret = xmm7360_mux_frame_append_packet(frame,
1457 		    skb->data, skb->len);
1458 		kfree_skb(skb);
1459 		if (ret) {
1460 			/* No more space in the frame */
1461 			break;
1462 		}
1463 	}
1464 }
1465 
xmm7360_os_handle_net_txwake(struct xmm_net * xn)1466 static void xmm7360_os_handle_net_txwake(struct xmm_net *xn)
1467 {
1468 	BUG_ON(!xmm7360_qp_can_write(xn->qp));
1469 
1470 	if (netif_queue_stopped(xn->xmm->netdev))
1471 		netif_wake_queue(xn->xmm->netdev);
1472 }
1473 
1474 static const struct net_device_ops xmm7360_netdev_ops = {
1475 	.ndo_uninit		= xmm7360_net_uninit,
1476 	.ndo_open		= xmm7360_net_open,
1477 	.ndo_stop		= xmm7360_net_close,
1478 	.ndo_start_xmit		= xmm7360_net_xmit,
1479 };
1480 
xmm7360_net_setup(struct net_device * dev)1481 static void xmm7360_net_setup(struct net_device *dev)
1482 {
1483 	struct xmm_net *xn = netdev_priv(dev);
1484 	spin_lock_init(&xn->lock);
1485 	hrtimer_init(&xn->deadline, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1486 	xn->deadline.function = xmm7360_net_deadline_cb;
1487 	skb_queue_head_init(&xn->queue);
1488 
1489 	dev->netdev_ops = &xmm7360_netdev_ops;
1490 
1491 	dev->hard_header_len = 0;
1492 	dev->addr_len = 0;
1493 	dev->mtu = 1500;
1494 	dev->min_mtu = 1500;
1495 	dev->max_mtu = 1500;
1496 
1497 	dev->tx_queue_len = 1000;
1498 
1499 	dev->type = ARPHRD_NONE;
1500 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1501 }
1502 
xmm7360_create_net(struct xmm_dev * xmm,int num)1503 static int xmm7360_create_net(struct xmm_dev *xmm, int num)
1504 {
1505 	struct net_device *netdev;
1506 	struct xmm_net *xn;
1507 	int ret;
1508 
1509 	netdev = alloc_netdev(sizeof(struct xmm_net), "wwan%d", NET_NAME_UNKNOWN, xmm7360_net_setup);
1510 
1511 	if (!netdev)
1512 		return -ENOMEM;
1513 
1514 	SET_NETDEV_DEV(netdev, xmm->dev);
1515 
1516 	xmm->netdev = netdev;
1517 
1518 	xn = netdev_priv(netdev);
1519 	xn->xmm = xmm;
1520 	xmm->net = xn;
1521 
1522 	rtnl_lock();
1523 	ret = register_netdevice(netdev);
1524 	rtnl_unlock();
1525 
1526 	xn->qp = xmm7360_init_qp(xmm, num, 128, TD_MAX_PAGE_SIZE);
1527 
1528 	if (!ret)
1529 		ret = xmm7360_qp_start(xn->qp);
1530 
1531 	if (ret < 0) {
1532 		free_netdev(netdev);
1533 		xmm->netdev = NULL;
1534 		xmm7360_qp_stop(xn->qp);
1535 	}
1536 
1537 	return ret;
1538 }
1539 
xmm7360_destroy_net(struct xmm_dev * xmm)1540 static void xmm7360_destroy_net(struct xmm_dev *xmm)
1541 {
1542 	if (xmm->netdev) {
1543 		xmm7360_qp_stop(xmm->net->qp);
1544 		rtnl_lock();
1545 		unregister_netdevice(xmm->netdev);
1546 		rtnl_unlock();
1547 		free_netdev(xmm->netdev);
1548 		xmm->net = NULL;
1549 		xmm->netdev = NULL;
1550 	}
1551 }
1552 
xmm7360_irq0(int irq,void * dev_id)1553 static irqreturn_t xmm7360_irq0(int irq, void *dev_id) {
1554 	struct xmm_dev *xmm = dev_id;
1555 	struct queue_pair *qp;
1556 	int id;
1557 
1558 	xmm7360_poll(xmm);
1559 	wake_up(&xmm->wq);
1560 	if (xmm->td_ring) {
1561 		if (xmm->net)
1562 			xmm7360_net_poll(xmm);
1563 
1564 		for (id=1; id<XMM_QP_COUNT; id++) {
1565 			qp = &xmm->qp[id];
1566 
1567 			/* wake _cdev_read() */
1568 			if (qp->open)
1569 				wake_up(&qp->wq);
1570 
1571 			/* tty tasks */
1572 			if (qp->open && qp->port.ops) {
1573 				xmm7360_tty_poll_qp(qp);
1574 				if (qp->tty_needs_wake && xmm7360_qp_can_write(qp) && qp->port.tty) {
1575 					struct tty_ldisc *ldisc = tty_ldisc_ref(qp->port.tty);
1576 					if (ldisc) {
1577 						if (ldisc->ops->write_wakeup)
1578 							ldisc->ops->write_wakeup(qp->port.tty);
1579 						tty_ldisc_deref(ldisc);
1580 					}
1581 					qp->tty_needs_wake = 0;
1582 				}
1583 			}
1584 		}
1585 	}
1586 
1587 	return IRQ_HANDLED;
1588 }
1589 
1590 static dev_t xmm_base;
1591 
1592 static struct tty_driver *xmm7360_tty_driver;
1593 
xmm7360_dev_deinit(struct xmm_dev * xmm)1594 static void xmm7360_dev_deinit(struct xmm_dev *xmm)
1595 {
1596 	int i;
1597 	xmm->error = -ENODEV;
1598 
1599 	cancel_work_sync(&xmm->init_work);
1600 
1601 	xmm7360_destroy_net(xmm);
1602 
1603 	for (i=0; i<XMM_QP_COUNT; i++) {
1604 		if (xmm->qp[i].xmm) {
1605 			if (xmm->qp[i].cdev.owner) {
1606 				cdev_del(&xmm->qp[i].cdev);
1607 				device_unregister(&xmm->qp[i].dev);
1608 			}
1609 			if (xmm->qp[i].port.ops) {
1610 				tty_unregister_device(xmm7360_tty_driver, xmm->qp[i].tty_index);
1611 				tty_port_destroy(&xmm->qp[i].port);
1612 			}
1613 		}
1614 		memset(&xmm->qp[i], 0, sizeof(struct queue_pair));
1615 	}
1616 	xmm7360_cmd_ring_free(xmm);
1617 
1618 }
1619 
xmm7360_remove(struct pci_dev * dev)1620 static void xmm7360_remove(struct pci_dev *dev)
1621 {
1622 	struct xmm_dev *xmm = pci_get_drvdata(dev);
1623 
1624 	xmm7360_dev_deinit(xmm);
1625 
1626 	if (xmm->irq)
1627 		free_irq(xmm->irq, xmm);
1628 	pci_free_irq_vectors(dev);
1629 	pci_release_region(dev, 0);
1630 	pci_release_region(dev, 2);
1631 	pci_disable_device(dev);
1632 	kfree(xmm);
1633 }
1634 
xmm7360_cdev_dev_release(struct device * dev)1635 static void xmm7360_cdev_dev_release(struct device *dev)
1636 {
1637 }
1638 
xmm7360_tty_open(struct tty_struct * tty,struct file * filp)1639 static int xmm7360_tty_open(struct tty_struct *tty, struct file *filp)
1640 {
1641 	struct queue_pair *qp = tty->driver_data;
1642 	return tty_port_open(&qp->port, tty, filp);
1643 }
1644 
xmm7360_tty_close(struct tty_struct * tty,struct file * filp)1645 static void xmm7360_tty_close(struct tty_struct *tty, struct file *filp)
1646 {
1647 	struct queue_pair *qp = tty->driver_data;
1648 	if (qp)
1649 		tty_port_close(&qp->port, tty, filp);
1650 }
1651 
xmm7360_tty_write(struct tty_struct * tty,const unsigned char * buffer,int count)1652 static int xmm7360_tty_write(struct tty_struct *tty, const unsigned char *buffer,
1653 		      int count)
1654 {
1655 	struct queue_pair *qp = tty->driver_data;
1656 	int written;
1657 	written = xmm7360_qp_write(qp, buffer, count);
1658 	if (written < count)
1659 		qp->tty_needs_wake = 1;
1660 	return written;
1661 }
1662 
xmm7360_tty_write_room(struct tty_struct * tty)1663 static int xmm7360_tty_write_room(struct tty_struct *tty)
1664 {
1665 	struct queue_pair *qp = tty->driver_data;
1666 	if (!xmm7360_qp_can_write(qp))
1667 		return 0;
1668 	else
1669 		return qp->xmm->td_ring[qp->num*2].page_size;
1670 }
1671 
xmm7360_tty_install(struct tty_driver * driver,struct tty_struct * tty)1672 static int xmm7360_tty_install(struct tty_driver *driver, struct tty_struct *tty)
1673 {
1674 	struct queue_pair *qp;
1675 	int ret;
1676 
1677 	ret = tty_standard_install(driver, tty);
1678 	if (ret)
1679 		return ret;
1680 
1681 	tty->port = driver->ports[tty->index];
1682 	qp = container_of(tty->port, struct queue_pair, port);
1683 	tty->driver_data = qp;
1684 	return 0;
1685 }
1686 
1687 
xmm7360_tty_port_activate(struct tty_port * tport,struct tty_struct * tty)1688 static int xmm7360_tty_port_activate(struct tty_port *tport, struct tty_struct *tty)
1689 {
1690 	struct queue_pair *qp = tty->driver_data;
1691 	return xmm7360_qp_start(qp);
1692 }
1693 
xmm7360_tty_port_shutdown(struct tty_port * tport)1694 static void xmm7360_tty_port_shutdown(struct tty_port *tport)
1695 {
1696 	struct queue_pair *qp = tport->tty->driver_data;
1697 	xmm7360_qp_stop(qp);
1698 }
1699 
1700 
1701 static const struct tty_port_operations xmm7360_tty_port_ops = {
1702 	.activate = xmm7360_tty_port_activate,
1703 	.shutdown = xmm7360_tty_port_shutdown,
1704 };
1705 
1706 static const struct tty_operations xmm7360_tty_ops = {
1707 	.open = xmm7360_tty_open,
1708 	.close = xmm7360_tty_close,
1709 	.write = xmm7360_tty_write,
1710 	.write_room = xmm7360_tty_write_room,
1711 	.install = xmm7360_tty_install,
1712 };
1713 
xmm7360_create_tty(struct xmm_dev * xmm,int num)1714 static int xmm7360_create_tty(struct xmm_dev *xmm, int num)
1715 {
1716 	struct device *tty_dev;
1717 	struct queue_pair *qp = xmm7360_init_qp(xmm, num, 8, 4096);
1718 	int ret;
1719 	tty_port_init(&qp->port);
1720 	qp->port.low_latency = 1;
1721 	qp->port.ops = &xmm7360_tty_port_ops;
1722 	qp->tty_index = xmm->num_ttys++;
1723 	tty_dev = tty_port_register_device(&qp->port, xmm7360_tty_driver, qp->tty_index, xmm->dev);
1724 
1725 	if (IS_ERR(tty_dev)) {
1726 		qp->port.ops = NULL;	// prevent calling unregister
1727 		ret = PTR_ERR(tty_dev);
1728 		dev_err(xmm->dev, "Could not allocate tty?\n");
1729 		tty_port_destroy(&qp->port);
1730 		return ret;
1731 	}
1732 
1733 	return 0;
1734 }
1735 
xmm7360_create_cdev(struct xmm_dev * xmm,int num,const char * name,int cardnum)1736 static int xmm7360_create_cdev(struct xmm_dev *xmm, int num, const char *name, int cardnum)
1737 {
1738 	struct queue_pair *qp = xmm7360_init_qp(xmm, num, 16, TD_MAX_PAGE_SIZE);
1739 	int ret;
1740 
1741 	cdev_init(&qp->cdev, &xmm7360_fops);
1742 	qp->cdev.owner = THIS_MODULE;
1743 	device_initialize(&qp->dev);
1744 	qp->dev.devt = MKDEV(MAJOR(xmm_base), num); // XXX multiple cards
1745 	qp->dev.parent = &xmm->pci_dev->dev;
1746 	qp->dev.release = xmm7360_cdev_dev_release;
1747 	dev_set_name(&qp->dev, name, cardnum);
1748 	dev_set_drvdata(&qp->dev, qp);
1749 	ret = cdev_device_add(&qp->cdev, &qp->dev);
1750 	if (ret) {
1751 		dev_err(xmm->dev, "cdev_device_add: %d\n", ret);
1752 		return ret;
1753 	}
1754 	return 0;
1755 }
1756 
xmm7360_dev_init(struct xmm_dev * xmm)1757 static int xmm7360_dev_init(struct xmm_dev *xmm)
1758 {
1759 	int ret;
1760 
1761 	ret = xmm7360_base_init(xmm);
1762 	if (ret)
1763 		return ret;
1764 
1765 	ret = xmm7360_create_cdev(xmm, 1, "xmm%d/rpc", xmm->card_num);
1766 	if (ret)
1767 		return ret;
1768 	ret = xmm7360_create_cdev(xmm, 3, "xmm%d/trace", xmm->card_num);
1769 	if (ret)
1770 		return ret;
1771 	ret = xmm7360_create_tty(xmm, 2);
1772 	if (ret)
1773 		return ret;
1774 	ret = xmm7360_create_tty(xmm, 4);
1775 	if (ret)
1776 		return ret;
1777 	ret = xmm7360_create_tty(xmm, 7);
1778 	if (ret)
1779 		return ret;
1780 	ret = xmm7360_create_net(xmm, 0);
1781 	if (ret)
1782 		return ret;
1783 
1784 	return 0;
1785 }
1786 
xmm7360_dev_init_work(struct work_struct * work)1787 void xmm7360_dev_init_work(struct work_struct *work)
1788 {
1789 	struct xmm_dev *xmm = container_of(work, struct xmm_dev, init_work);
1790 	xmm7360_dev_init(xmm);
1791 }
1792 
xmm7360_probe(struct pci_dev * dev,const struct pci_device_id * id)1793 static int xmm7360_probe(struct pci_dev *dev, const struct pci_device_id *id)
1794 {
1795 	struct xmm_dev *xmm = kzalloc(sizeof(struct xmm_dev), GFP_KERNEL);
1796 	int ret;
1797 
1798 	xmm->pci_dev = dev;
1799 	xmm->dev = &dev->dev;
1800 
1801 	if (!xmm) {
1802 		dev_err(&(dev->dev), "kzalloc\n");
1803 		return -ENOMEM;
1804 	}
1805 
1806 	ret = pci_enable_device(dev);
1807 	if (ret) {
1808 		dev_err(&(dev->dev), "pci_enable_device\n");
1809 		goto fail;
1810 	}
1811 	pci_set_master(dev);
1812 
1813 	ret = pci_set_dma_mask(dev, 0xffffffffffffffff);
1814 	if (ret) {
1815 		dev_err(xmm->dev, "Cannot set DMA mask\n");
1816 		goto fail;
1817 	}
1818 	dma_set_coherent_mask(xmm->dev, 0xffffffffffffffff);
1819 
1820 
1821 	ret = pci_request_region(dev, 0, "xmm0");
1822 	if (ret) {
1823 		dev_err(&(dev->dev), "pci_request_region(0)\n");
1824 		goto fail;
1825 	}
1826 	xmm->bar0 = pci_iomap(dev, 0, pci_resource_len(dev, 0));
1827 
1828 	ret = pci_request_region(dev, 2, "xmm2");
1829 	if (ret) {
1830 		dev_err(&(dev->dev), "pci_request_region(2)\n");
1831 		goto fail;
1832 	}
1833 	xmm->bar2 = pci_iomap(dev, 2, pci_resource_len(dev, 2));
1834 
1835 	ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_MSI | PCI_IRQ_MSIX);
1836 	if (ret < 0) {
1837 		dev_err(&(dev->dev), "pci_alloc_irq_vectors\n");
1838 		goto fail;
1839 	}
1840 
1841 	init_waitqueue_head(&xmm->wq);
1842 	INIT_WORK(&xmm->init_work, xmm7360_dev_init_work);
1843 
1844 	pci_set_drvdata(dev, xmm);
1845 
1846 	ret = xmm7360_dev_init(xmm);
1847 	if (ret)
1848 		goto fail;
1849 
1850 	xmm->irq = pci_irq_vector(dev, 0);
1851 	ret = request_irq(xmm->irq, xmm7360_irq0, 0, "xmm7360", xmm);
1852 	if (ret) {
1853 		dev_err(&(dev->dev), "request_irq\n");
1854 		goto fail;
1855 	}
1856 
1857 	return ret;
1858 
1859 fail:
1860 	xmm7360_dev_deinit(xmm);
1861 	xmm7360_remove(dev);
1862 	return ret;
1863 }
1864 
1865 static struct pci_driver xmm7360_driver = {
1866 	.name		= "xmm7360",
1867 	.id_table	= xmm7360_ids,
1868 	.probe		= xmm7360_probe,
1869 	.remove		= xmm7360_remove,
1870 };
1871 
xmm7360_init(void)1872 static int xmm7360_init(void)
1873 {
1874 	int ret;
1875 	ret = alloc_chrdev_region(&xmm_base, 0, 8, "xmm");
1876 	if (ret)
1877 		return ret;
1878 
1879 	xmm7360_tty_driver = alloc_tty_driver(8);
1880 	if (!xmm7360_tty_driver)
1881 		return -ENOMEM;
1882 
1883 	xmm7360_tty_driver->driver_name = "xmm7360";
1884 	xmm7360_tty_driver->name = "ttyXMM";
1885 	xmm7360_tty_driver->major = 0;
1886 	xmm7360_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
1887 	xmm7360_tty_driver->subtype = SERIAL_TYPE_NORMAL;
1888 	xmm7360_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1889 	xmm7360_tty_driver->init_termios = tty_std_termios;
1890 	xmm7360_tty_driver->init_termios.c_cflag = B115200 | CS8 | CREAD | \
1891 						HUPCL | CLOCAL;
1892 	xmm7360_tty_driver->init_termios.c_lflag &= ~ECHO;
1893 	xmm7360_tty_driver->init_termios.c_ispeed = 115200;
1894 	xmm7360_tty_driver->init_termios.c_ospeed = 115200;
1895 	tty_set_operations(xmm7360_tty_driver, &xmm7360_tty_ops);
1896 
1897 	ret = tty_register_driver(xmm7360_tty_driver);
1898 	if (ret) {
1899 		pr_err("xmm7360: failed to register xmm7360_tty driver\n");
1900 		return ret;
1901 	}
1902 
1903 
1904 	ret = pci_register_driver(&xmm7360_driver);
1905 	if (ret)
1906 		return ret;
1907 
1908 	return 0;
1909 }
1910 
xmm7360_exit(void)1911 static void xmm7360_exit(void)
1912 {
1913 	pci_unregister_driver(&xmm7360_driver);
1914 	unregister_chrdev_region(xmm_base, 8);
1915 	tty_unregister_driver(xmm7360_tty_driver);
1916 	put_tty_driver(xmm7360_tty_driver);
1917 }
1918 
1919 module_init(xmm7360_init);
1920 module_exit(xmm7360_exit);
1921 
1922 #endif /* __linux__ */
1923 
1924 #if defined(__OpenBSD__) || defined(__NetBSD__)
1925 
1926 /*
1927  * RPC and trace devices behave as regular character device,
1928  * other devices behave as terminal.
1929  */
1930 #define DEVCUA(x)	(minor(x) & 0x80)
1931 #define DEVUNIT(x)	((minor(x) & 0x70) >> 4)
1932 #define DEVFUNC_MASK	0x0f
1933 #define DEVFUNC(x)	(minor(x) & DEVFUNC_MASK)
1934 #define DEV_IS_TTY(x)	(DEVFUNC(x) == 2 || DEVFUNC(x) > 3)
1935 
1936 struct wwanc_softc {
1937 #ifdef __OpenBSD__
1938 	struct device		sc_devx;	/* gen. device info storage */
1939 #endif
1940 	struct device		*sc_dev;	/* generic device information */
1941         pci_chipset_tag_t       sc_pc;
1942         pcitag_t                sc_tag;
1943 	bus_dma_tag_t		sc_dmat;
1944 	pci_intr_handle_t	sc_pih;
1945         void                    *sc_ih;         /* interrupt vectoring */
1946 
1947 	bus_space_tag_t		sc_bar0_tag;
1948 	bus_space_handle_t	sc_bar0_handle;
1949 	bus_size_t		sc_bar0_sz;
1950 	bus_space_tag_t		sc_bar2_tag;
1951 	bus_space_handle_t	sc_bar2_handle;
1952 	bus_size_t		sc_bar2_sz;
1953 
1954 	struct xmm_dev		sc_xmm;
1955 	struct tty		*sc_tty[XMM_QP_COUNT];
1956 	struct device		*sc_net;
1957 	struct selinfo		sc_selr, sc_selw;
1958 	bool			sc_resume;
1959 };
1960 
1961 struct wwanc_attach_args {
1962 	enum wwanc_type {
1963 		WWMC_TYPE_RPC,
1964 		WWMC_TYPE_TRACE,
1965 		WWMC_TYPE_TTY,
1966 		WWMC_TYPE_NET
1967 	} aa_type;
1968 };
1969 
1970 static int     wwanc_match(struct device *, cfdata_t, void *);
1971 static void    wwanc_attach(struct device *, struct device *, void *);
1972 static int     wwanc_detach(struct device *, int);
1973 
1974 #ifdef __OpenBSD__
1975 static int     wwanc_activate(struct device *, int);
1976 
1977 struct cfattach wwanc_ca = {
1978         sizeof(struct wwanc_softc), wwanc_match, wwanc_attach,
1979         wwanc_detach, wwanc_activate
1980 };
1981 
1982 struct cfdriver wwanc_cd = {
1983         NULL, "wwanc", DV_DULL
1984 };
1985 #endif
1986 
1987 #ifdef __NetBSD__
1988 CFATTACH_DECL3_NEW(wwanc, sizeof(struct wwanc_softc),
1989    wwanc_match, wwanc_attach, wwanc_detach, NULL,
1990    NULL, NULL, DVF_DETACH_SHUTDOWN);
1991 
1992 static bool wwanc_pmf_suspend(device_t, const pmf_qual_t *);
1993 static bool wwanc_pmf_resume(device_t, const pmf_qual_t *);
1994 #endif /* __NetBSD__ */
1995 
1996 static int
wwanc_match(struct device * parent,cfdata_t match,void * aux)1997 wwanc_match(struct device *parent, cfdata_t match, void *aux)
1998 {
1999 	struct pci_attach_args *pa = aux;
2000 
2001 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
2002 		PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_XMM7360);
2003 }
2004 
xmm7360_dev_init(struct xmm_dev * xmm)2005 static int xmm7360_dev_init(struct xmm_dev *xmm)
2006 {
2007 	int ret;
2008 	int depth, page_size;
2009 
2010 	ret = xmm7360_base_init(xmm);
2011 	if (ret)
2012 		return ret;
2013 
2014 	/* Initialize queue pairs for later use */
2015 	for (int num = 0; num < XMM_QP_COUNT; num++) {
2016 		switch (num) {
2017 		case 0:	/* net */
2018 			depth = 128;
2019 			page_size = TD_MAX_PAGE_SIZE;
2020 			break;
2021 		case 1:	/* rpc */
2022 		case 3: /* trace */
2023 			depth = 16;
2024 			page_size = TD_MAX_PAGE_SIZE;
2025 			break;
2026 		default: /* tty */
2027 			depth = 8;
2028 			page_size = 4096;
2029 			break;
2030 		}
2031 
2032 		xmm7360_init_qp(xmm, num, depth, page_size);
2033 	}
2034 
2035 	return 0;
2036 }
2037 
xmm7360_dev_deinit(struct xmm_dev * xmm)2038 static void xmm7360_dev_deinit(struct xmm_dev *xmm)
2039 {
2040 	struct wwanc_softc *sc = device_private(xmm->dev);
2041 	bool devgone = false;
2042 	struct tty *tp;
2043 
2044 	xmm->error = -ENODEV;
2045 
2046 	/* network device should be gone by now */
2047 	KASSERT(sc->sc_net == NULL);
2048 	KASSERT(xmm->net == NULL);
2049 
2050 	/* free ttys */
2051 	for (int i=0; i<XMM_QP_COUNT; i++) {
2052 		tp = sc->sc_tty[i];
2053 		if (tp) {
2054 			KASSERT(DEV_IS_TTY(i));
2055 			if (!devgone) {
2056 				vdevgone(major(tp->t_dev), 0, DEVFUNC_MASK,
2057 				    VCHR);
2058 				devgone = true;
2059 			}
2060 			ttyfree(tp);
2061 			sc->sc_tty[i] = NULL;
2062 		}
2063 	}
2064 
2065 	xmm7360_cmd_ring_free(xmm);
2066 }
2067 
2068 static void
wwanc_io_wakeup(struct queue_pair * qp,int flag)2069 wwanc_io_wakeup(struct queue_pair *qp, int flag)
2070 {
2071         if (flag & FREAD) {
2072                 selnotify(&qp->selr, POLLIN|POLLRDNORM, NOTE_SUBMIT);
2073                 wakeup(qp->wq);
2074         }
2075         if (flag & FWRITE) {
2076                 selnotify(&qp->selw, POLLOUT|POLLWRNORM, NOTE_SUBMIT);
2077                 wakeup(qp->wq);
2078         }
2079 }
2080 
2081 static int
wwanc_intr(void * xsc)2082 wwanc_intr(void *xsc)
2083 {
2084 	struct wwanc_softc *sc = xsc;
2085 	struct xmm_dev *xmm = &sc->sc_xmm;
2086 	struct queue_pair *qp;
2087 
2088 	xmm7360_poll(xmm);
2089 	wakeup(&xmm->wq);
2090 
2091 	if (xmm->net && xmm->net->qp->open && xmm7360_qp_has_data(xmm->net->qp))
2092 		xmm7360_net_poll(xmm);
2093 
2094 	for (int func = 1; func < XMM_QP_COUNT; func++) {
2095 		qp = &xmm->qp[func];
2096 		if (!qp->open)
2097 			continue;
2098 
2099 		/* Check for input, wwancstart()/wwancwrite() does output */
2100 		if (xmm7360_qp_has_data(qp)) {
2101 			if (DEV_IS_TTY(func)) {
2102 				int s = spltty();
2103 				xmm7360_tty_poll_qp(qp);
2104 				splx(s);
2105 			}
2106 			wwanc_io_wakeup(qp, FREAD);
2107 		}
2108 
2109 		/* Wakeup/notify eventual writers */
2110 		if (xmm7360_qp_can_write(qp))
2111 			wwanc_io_wakeup(qp, FWRITE);
2112 	}
2113 
2114 	return 1;
2115 }
2116 
2117 static int
wwancprint(void * aux,const char * pnp)2118 wwancprint(void *aux, const char *pnp)
2119 {
2120 	struct wwanc_attach_args *wa = aux;
2121 
2122 	if (pnp)
2123                 printf("wwanc type %s at %s",
2124 		    (wa->aa_type == WWMC_TYPE_NET) ? "net" : "unk", pnp);
2125 	else
2126 		printf(" type %s",
2127 		    (wa->aa_type == WWMC_TYPE_NET) ? "net" : "unk");
2128 
2129 	return (UNCONF);
2130 }
2131 
2132 static void
wwanc_attach_finish(struct device * self)2133 wwanc_attach_finish(struct device *self)
2134 {
2135 	struct wwanc_softc *sc = device_private(self);
2136 
2137 	if (xmm7360_dev_init(&sc->sc_xmm)) {
2138 		/* error already printed */
2139 		return;
2140 	}
2141 
2142 	/* Attach the network device */
2143 	struct wwanc_attach_args wa;
2144 	memset(&wa, 0, sizeof(wa));
2145 	wa.aa_type = WWMC_TYPE_NET;
2146 	sc->sc_net = config_found(self, &wa, wwancprint, CFARGS_NONE);
2147 }
2148 
2149 static void
wwanc_attach(struct device * parent,struct device * self,void * aux)2150 wwanc_attach(struct device *parent, struct device *self, void *aux)
2151 {
2152 	struct wwanc_softc *sc = device_private(self);
2153 	struct pci_attach_args *pa = aux;
2154 	bus_space_tag_t memt;
2155 	bus_space_handle_t memh;
2156 	bus_size_t sz;
2157 	int error;
2158 	const char *intrstr;
2159 #ifdef __OpenBSD__
2160 	pci_intr_handle_t ih;
2161 #endif
2162 #ifdef __NetBSD__
2163 	pci_intr_handle_t *ih;
2164 	char intrbuf[PCI_INTRSTR_LEN];
2165 #endif
2166 
2167 	sc->sc_dev = self;
2168 	sc->sc_pc = pa->pa_pc;
2169 	sc->sc_tag = pa->pa_tag;
2170 	sc->sc_dmat = pa->pa_dmat;
2171 
2172 	/* map the register window, memory mapped 64-bit non-prefetchable */
2173 	error = pci_mapreg_map(pa, WWAN_BAR0,
2174 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT,
2175 	    BUS_SPACE_MAP_LINEAR, &memt, &memh, NULL, &sz, 0);
2176 	if (error != 0) {
2177 		printf(": can't map mem space for BAR0 %d\n", error);
2178 		return;
2179 	}
2180 	sc->sc_bar0_tag = memt;
2181 	sc->sc_bar0_handle = memh;
2182 	sc->sc_bar0_sz = sz;
2183 
2184 	error = pci_mapreg_map(pa, WWAN_BAR2,
2185 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT,
2186 	    BUS_SPACE_MAP_LINEAR, &memt, &memh, NULL, &sz, 0);
2187 	if (error != 0) {
2188 		bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle,
2189 		    sc->sc_bar0_sz);
2190 		printf(": can't map mem space for BAR2\n");
2191 		return;
2192 	}
2193 	sc->sc_bar2_tag = memt;
2194 	sc->sc_bar2_handle = memh;
2195 	sc->sc_bar2_sz = sz;
2196 
2197 	/* Set xmm members needed for xmm7360_dev_init() */
2198 	sc->sc_xmm.dev = self;
2199 	sc->sc_xmm.bar0 = bus_space_vaddr(sc->sc_bar0_tag, sc->sc_bar0_handle);
2200 	sc->sc_xmm.bar2 = bus_space_vaddr(sc->sc_bar0_tag, sc->sc_bar2_handle);
2201 	init_waitqueue_head(&sc->sc_xmm.wq);
2202 
2203 #ifdef __OpenBSD__
2204 	if (pci_intr_map_msi(pa, &ih) && pci_intr_map(pa, &ih)) {
2205 		printf(": can't map interrupt\n");
2206 		goto fail;
2207 	}
2208 	sc->sc_pih = ih;
2209 	intrstr = pci_intr_string(sc->sc_pc, ih);
2210 	printf(": %s\n", intrstr);
2211 #endif
2212 #ifdef __NetBSD__
2213 	if (pci_intr_alloc(pa, &ih, NULL, 0)) {
2214 		printf(": can't map interrupt\n");
2215 		goto fail;
2216 	}
2217 	sc->sc_pih = ih[0];
2218 	intrstr = pci_intr_string(pa->pa_pc, ih[0], intrbuf, sizeof(intrbuf));
2219 	aprint_normal(": LTE modem\n");
2220 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
2221 #endif
2222 
2223 	/* Device initialized, can establish the interrupt now */
2224 	sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_pih, IPL_NET,
2225 	    wwanc_intr, sc, device_xname(sc->sc_dev));
2226 	if (sc->sc_ih == NULL) {
2227 		device_printf(self, "can't establish interrupt\n");
2228 		return;
2229 	}
2230 
2231 #ifdef __NetBSD__
2232 	if (!pmf_device_register(self, wwanc_pmf_suspend, wwanc_pmf_resume))
2233 		aprint_error_dev(self, "couldn't establish power handler\n");
2234 #endif
2235 
2236 	/*
2237 	 * Device initialization requires working interrupts, so need
2238 	 * to postpone this until they are enabled.
2239 	 */
2240 	config_mountroot(self, wwanc_attach_finish);
2241 	return;
2242 
2243 fail:
2244 	bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle, sc->sc_bar0_sz);
2245 	sc->sc_bar0_tag = 0;
2246 	bus_space_unmap(sc->sc_bar2_tag, sc->sc_bar2_handle, sc->sc_bar2_sz);
2247 	sc->sc_bar2_tag = 0;
2248 	return;
2249 }
2250 
2251 static int
wwanc_detach(struct device * self,int flags)2252 wwanc_detach(struct device *self, int flags)
2253 {
2254 	int error;
2255 	struct wwanc_softc *sc = device_private(self);
2256 
2257 	if (sc->sc_ih) {
2258 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
2259 		sc->sc_ih = NULL;
2260 	}
2261 
2262 	if (sc->sc_net) {
2263 		error = config_detach_children(self, flags);
2264 		if (error)
2265 			return error;
2266 		sc->sc_net = NULL;
2267 	}
2268 
2269 	pmf_device_deregister(self);
2270 
2271 	xmm7360_dev_deinit(&sc->sc_xmm);
2272 
2273 	if (sc->sc_bar0_tag) {
2274 		bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle,
2275 		    sc->sc_bar0_sz);
2276 		sc->sc_bar0_tag = 0;
2277 	}
2278 	sc->sc_xmm.bar0 = NULL;
2279 
2280 	if (sc->sc_bar2_tag) {
2281 		bus_space_unmap(sc->sc_bar2_tag, sc->sc_bar2_handle,
2282 		    sc->sc_bar2_sz);
2283 		sc->sc_bar2_tag = 0;
2284 	}
2285 	sc->sc_xmm.bar2 = NULL;
2286 
2287 	return 0;
2288 }
2289 
2290 static void
wwanc_suspend(struct device * self)2291 wwanc_suspend(struct device *self)
2292 {
2293 	struct wwanc_softc *sc = device_private(self);
2294 	struct xmm_dev *xmm = &sc->sc_xmm;
2295 	struct queue_pair *qp;
2296 
2297 	KASSERT(!sc->sc_resume);
2298 	KASSERT(xmm->cp != NULL);
2299 
2300 	for (int i = 0; i < XMM_QP_COUNT; i++) {
2301 		qp = &xmm->qp[i];
2302 		if (qp->open)
2303 			xmm7360_qp_suspend(qp);
2304 	}
2305 
2306 	xmm7360_cmd_ring_free(xmm);
2307 	KASSERT(xmm->cp == NULL);
2308 }
2309 
2310 static void
wwanc_resume(struct device * self)2311 wwanc_resume(struct device *self)
2312 {
2313 	struct wwanc_softc *sc = device_private(self);
2314 	struct xmm_dev *xmm = &sc->sc_xmm;
2315 	struct queue_pair *qp;
2316 
2317 	KASSERT(xmm->cp == NULL);
2318 
2319 	xmm7360_base_init(xmm);
2320 
2321 	for (int i = 0; i < XMM_QP_COUNT; i++) {
2322 		qp = &xmm->qp[i];
2323 		if (qp->open)
2324 			xmm7360_qp_resume(qp);
2325 	}
2326 }
2327 
2328 #ifdef __OpenBSD__
2329 
2330 static void
wwanc_defer_resume(void * xarg)2331 wwanc_defer_resume(void *xarg)
2332 {
2333 	struct device *self = xarg;
2334 	struct wwanc_softc *sc = device_private(self);
2335 
2336 	tsleep(&sc->sc_resume, 0, "wwancdr", 2 * hz);
2337 
2338 	wwanc_resume(self);
2339 
2340 	(void)config_activate_children(self, DVACT_RESUME);
2341 
2342 	sc->sc_resume = false;
2343 	kthread_exit(0);
2344 }
2345 
2346 static int
wwanc_activate(struct device * self,int act)2347 wwanc_activate(struct device *self, int act)
2348 {
2349 	struct wwanc_softc *sc = device_private(self);
2350 
2351 	switch (act) {
2352 	case DVACT_QUIESCE:
2353 		(void)config_activate_children(self, act);
2354 		break;
2355 	case DVACT_SUSPEND:
2356 		if (sc->sc_resume) {
2357 			/* Refuse to suspend if resume still ongoing */
2358 			device_printf(self,
2359 			    "not suspending, resume still ongoing\n");
2360 			return EBUSY;
2361 		}
2362 
2363 		(void)config_activate_children(self, act);
2364 		wwanc_suspend(self);
2365 		break;
2366 	case DVACT_RESUME:
2367 		/*
2368 		 * Modem reinitialization can take several seconds, defer
2369 		 * it via kernel thread to avoid blocking the resume.
2370 		 */
2371 		sc->sc_resume = true;
2372 		kthread_create(wwanc_defer_resume, self, NULL, "wwancres");
2373 		break;
2374 	default:
2375 		break;
2376 	}
2377 
2378 	return 0;
2379 }
2380 
2381 cdev_decl(wwanc);
2382 #endif /* __OpenBSD__ */
2383 
2384 #ifdef __NetBSD__
2385 static bool
wwanc_pmf_suspend(device_t self,const pmf_qual_t * qual)2386 wwanc_pmf_suspend(device_t self, const pmf_qual_t *qual)
2387 {
2388 	wwanc_suspend(self);
2389 	return true;
2390 }
2391 
2392 static bool
wwanc_pmf_resume(device_t self,const pmf_qual_t * qual)2393 wwanc_pmf_resume(device_t self, const pmf_qual_t *qual)
2394 {
2395 	wwanc_resume(self);
2396 	return true;
2397 }
2398 
2399 static dev_type_open(wwancopen);
2400 static dev_type_close(wwancclose);
2401 static dev_type_read(wwancread);
2402 static dev_type_write(wwancwrite);
2403 static dev_type_ioctl(wwancioctl);
2404 static dev_type_poll(wwancpoll);
2405 static dev_type_kqfilter(wwanckqfilter);
2406 static dev_type_tty(wwanctty);
2407 
2408 const struct cdevsw wwanc_cdevsw = {
2409 	.d_open = wwancopen,
2410 	.d_close = wwancclose,
2411 	.d_read = wwancread,
2412 	.d_write = wwancwrite,
2413 	.d_ioctl = wwancioctl,
2414 	.d_stop = nullstop,
2415 	.d_tty = wwanctty,
2416 	.d_poll = wwancpoll,
2417 	.d_mmap = nommap,
2418 	.d_kqfilter = wwanckqfilter,
2419 	.d_discard = nodiscard,
2420 	.d_flag = D_TTY
2421 };
2422 #endif
2423 
2424 static int wwancparam(struct tty *, struct termios *);
2425 static void wwancstart(struct tty *);
2426 
xmm7360_os_handle_tty_idata(struct queue_pair * qp,const u8 * data,size_t nread)2427 static void xmm7360_os_handle_tty_idata(struct queue_pair *qp, const u8 *data, size_t nread)
2428 {
2429 	struct xmm_dev *xmm = qp->xmm;
2430 	struct wwanc_softc *sc = device_private(xmm->dev);
2431 	int func = qp->num;
2432 	struct tty *tp = sc->sc_tty[func];
2433 
2434 	KASSERT(DEV_IS_TTY(func));
2435 	KASSERT(tp);
2436 
2437 	for (int i = 0; i < nread; i++)
2438 		LINESW(tp).l_rint(data[i], tp);
2439 }
2440 
2441 int
wwancopen(dev_t dev,int flags,int mode,struct proc * p)2442 wwancopen(dev_t dev, int flags, int mode, struct proc *p)
2443 {
2444 	int unit = DEVUNIT(dev);
2445 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, unit);
2446 	struct tty *tp;
2447 	int func, error;
2448 
2449 	if (sc == NULL)
2450 		return ENXIO;
2451 
2452 	/* Only allow opening the rpc/trace/AT queue pairs */
2453 	func = DEVFUNC(dev);
2454 	if (func < 1 || func > 7)
2455 		return ENXIO;
2456 
2457 	if (DEV_IS_TTY(dev)) {
2458 		if (!sc->sc_tty[func]) {
2459 			tp = sc->sc_tty[func] = ttymalloc(1000000);
2460 
2461 			tp->t_oproc = wwancstart;
2462 		        tp->t_param = wwancparam;
2463 			tp->t_dev = dev;
2464 			tp->t_sc = (void *)sc;
2465 		} else
2466 			tp = sc->sc_tty[func];
2467 
2468 		if (!ISSET(tp->t_state, TS_ISOPEN)) {
2469 			ttychars(tp);
2470 			tp->t_iflag = TTYDEF_IFLAG;
2471 			tp->t_oflag = TTYDEF_OFLAG;
2472 			tp->t_lflag = TTYDEF_LFLAG;
2473 			tp->t_cflag = TTYDEF_CFLAG;
2474 			tp->t_ispeed = tp->t_ospeed = B115200;
2475 			SET(tp->t_cflag, CS8 | CREAD | HUPCL | CLOCAL);
2476 
2477 			SET(tp->t_state, TS_CARR_ON);
2478 		} else if (suser(p) != 0) {
2479 			return EBUSY;
2480 		}
2481 
2482 		error = LINESW(tp).l_open(dev, tp, p);
2483 		if (error)
2484 			return error;
2485 	}
2486 
2487 	/* Initialize ring if qp not open yet */
2488 	xmm7360_qp_start(&sc->sc_xmm.qp[func]);
2489 
2490 	return 0;
2491 }
2492 
2493 int
wwancread(dev_t dev,struct uio * uio,int flag)2494 wwancread(dev_t dev, struct uio *uio, int flag)
2495 {
2496 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2497 	int func = DEVFUNC(dev);
2498 
2499 	KASSERT(sc != NULL);
2500 
2501 	if (DEV_IS_TTY(dev)) {
2502 		struct tty *tp = sc->sc_tty[func];
2503 
2504 		return (LINESW(tp).l_read(tp, uio, flag));
2505 	} else {
2506 		struct queue_pair *qp = &sc->sc_xmm.qp[func];
2507 		ssize_t ret;
2508 		char *buf;
2509 		size_t size, read = 0;
2510 
2511 #ifdef __OpenBSD__
2512 		KASSERT(uio->uio_segflg == UIO_USERSPACE);
2513 #endif
2514 
2515 		for (int i = 0; i < uio->uio_iovcnt; i++) {
2516 			buf = uio->uio_iov[i].iov_base;
2517 			size = uio->uio_iov[i].iov_len;
2518 
2519 			while (size > 0) {
2520 				ret = xmm7360_qp_read_user(qp, buf, size);
2521 				if (ret < 0) {
2522 					/*
2523 					 * This shadows -EPERM, but that is
2524 					 * not returned by the call stack,
2525 					 * so this condition is safe.
2526 					 */
2527 					return (ret == ERESTART) ? ret : -ret;
2528 				}
2529 
2530 				KASSERT(ret > 0 && ret <= size);
2531 				size -= ret;
2532 				buf += ret;
2533 				read += ret;
2534 
2535 				/* Reader will re-try if they want more */
2536 				goto out;
2537 			}
2538 		}
2539 
2540 out:
2541 		uio->uio_resid -= read;
2542 		uio->uio_offset += read;
2543 
2544 		return 0;
2545 	}
2546 }
2547 
2548 int
wwancwrite(dev_t dev,struct uio * uio,int flag)2549 wwancwrite(dev_t dev, struct uio *uio, int flag)
2550 {
2551 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2552 	int func = DEVFUNC(dev);
2553 
2554 	if (DEV_IS_TTY(dev)) {
2555 		struct tty *tp = sc->sc_tty[func];
2556 
2557 		return (LINESW(tp).l_write(tp, uio, flag));
2558 	} else {
2559 		struct queue_pair *qp = &sc->sc_xmm.qp[func];
2560 		ssize_t ret;
2561 		const char *buf;
2562 		size_t size, wrote = 0;
2563 
2564 #ifdef __OpenBSD__
2565 		KASSERT(uio->uio_segflg == UIO_USERSPACE);
2566 #endif
2567 
2568 		for (int i = 0; i < uio->uio_iovcnt; i++) {
2569 			buf = uio->uio_iov[i].iov_base;
2570 			size = uio->uio_iov[i].iov_len;
2571 
2572 			while (size > 0) {
2573 				ret = xmm7360_qp_write_user(qp, buf, size);
2574 				if (ret < 0) {
2575 					/*
2576 					 * This shadows -EPERM, but that is
2577 					 * not returned by the call stack,
2578 					 * so this condition is safe.
2579 					 */
2580 					return (ret == ERESTART) ? ret : -ret;
2581 				}
2582 
2583 				KASSERT(ret > 0 && ret <= size);
2584 				size -= ret;
2585 				buf += ret;
2586 				wrote += ret;
2587 			}
2588 		}
2589 
2590 		uio->uio_resid -= wrote;
2591 		uio->uio_offset += wrote;
2592 
2593 		return 0;
2594 	}
2595 }
2596 
2597 int
wwancioctl(dev_t dev,u_long cmd,caddr_t data,int flag,struct proc * p)2598 wwancioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
2599 {
2600 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2601 	int error;
2602 
2603 	if (DEV_IS_TTY(dev)) {
2604 		struct tty *tp = sc->sc_tty[DEVFUNC(dev)];
2605 		KASSERT(tp);
2606 
2607 		error = LINESW(tp).l_ioctl(tp, cmd, data, flag, p);
2608 		if (error >= 0)
2609 			return error;
2610 		error = ttioctl(tp, cmd, data, flag, p);
2611 		if (error >= 0)
2612 			return error;
2613 	}
2614 
2615 	return ENOTTY;
2616 }
2617 
2618 int
wwancclose(dev_t dev,int flag,int mode,struct proc * p)2619 wwancclose(dev_t dev, int flag, int mode, struct proc *p)
2620 {
2621 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2622 	int func = DEVFUNC(dev);
2623 
2624 	if (DEV_IS_TTY(dev)) {
2625 		struct tty *tp = sc->sc_tty[func];
2626 		KASSERT(tp);
2627 
2628 		CLR(tp->t_state, TS_BUSY | TS_FLUSH);
2629 		LINESW(tp).l_close(tp, flag, p);
2630 		ttyclose(tp);
2631 	}
2632 
2633 	xmm7360_qp_stop(&sc->sc_xmm.qp[func]);
2634 
2635 	return 0;
2636 }
2637 
2638 struct tty *
wwanctty(dev_t dev)2639 wwanctty(dev_t dev)
2640 {
2641 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2642 	struct tty *tp = sc->sc_tty[DEVFUNC(dev)];
2643 
2644 	KASSERT(DEV_IS_TTY(dev));
2645 	KASSERT(tp);
2646 
2647 	return tp;
2648 }
2649 
2650 static int
wwancparam(struct tty * tp,struct termios * t)2651 wwancparam(struct tty *tp, struct termios *t)
2652 {
2653 	struct wwanc_softc *sc __diagused = (struct wwanc_softc *)tp->t_sc;
2654 	dev_t dev = tp->t_dev;
2655 	int func __diagused = DEVFUNC(dev);
2656 
2657 	KASSERT(DEV_IS_TTY(dev));
2658 	KASSERT(tp == sc->sc_tty[func]);
2659 	/* Can't assert tty_locked(), it's not taken when called via ttioctl()*/
2660 
2661 	/* Nothing to set on hardware side, just copy values */
2662 	tp->t_ispeed = t->c_ispeed;
2663 	tp->t_ospeed = t->c_ospeed;
2664 	tp->t_cflag = t->c_cflag;
2665 
2666 	return 0;
2667 }
2668 
2669 static void
wwancstart(struct tty * tp)2670 wwancstart(struct tty *tp)
2671 {
2672 	struct wwanc_softc *sc = (struct wwanc_softc *)tp->t_sc;
2673 	dev_t dev = tp->t_dev;
2674 	int func = DEVFUNC(dev);
2675 	struct queue_pair *qp = &sc->sc_xmm.qp[func];
2676 	int n, written;
2677 
2678 	KASSERT(DEV_IS_TTY(dev));
2679 	KASSERT(tp == sc->sc_tty[func]);
2680 	tty_locked(tp);
2681 
2682 	if (ISSET(tp->t_state, TS_BUSY) || !xmm7360_qp_can_write(qp))
2683 		return;
2684 	if (tp->t_outq.c_cc == 0)
2685 		return;
2686 
2687 	/*
2688 	 * If we can write, we can write full qb page_size amount of data.
2689 	 * Once q_to_b() is called, the data must be trasmitted - q_to_b()
2690 	 * removes them from the tty output queue. Partial write is not
2691 	 * possible.
2692 	 */
2693 	KASSERT(sizeof(qp->user_buf) >= qp->page_size);
2694 	SET(tp->t_state, TS_BUSY);
2695 	n = q_to_b(&tp->t_outq, qp->user_buf, qp->page_size);
2696 	KASSERT(n > 0);
2697 	KASSERT(n <= qp->page_size);
2698 	written = xmm7360_qp_write(qp, qp->user_buf, n);
2699 	CLR(tp->t_state, TS_BUSY);
2700 
2701 	if (written != n) {
2702 		dev_err(sc->sc_dev, "xmm7360_qp_write(%d) failed %d != %d\n",
2703 		    func, written, n);
2704 		/* nothing to recover, just return */
2705 	}
2706 }
2707 
2708 int
wwancpoll(dev_t dev,int events,struct proc * p)2709 wwancpoll(dev_t dev, int events, struct proc *p)
2710 {
2711 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2712 	int func = DEVFUNC(dev);
2713 	struct queue_pair *qp = &sc->sc_xmm.qp[func];
2714 	int mask = 0;
2715 
2716 	if (DEV_IS_TTY(dev)) {
2717 #ifdef __OpenBSD__
2718 		return ttpoll(dev, events, p);
2719 #endif
2720 #ifdef __NetBSD__
2721 		struct tty *tp = sc->sc_tty[func];
2722 
2723 		return LINESW(tp).l_poll(tp, events, p);
2724 #endif
2725 	}
2726 
2727 	KASSERT(!DEV_IS_TTY(dev));
2728 
2729 	if (qp->xmm->error) {
2730 		mask |= POLLHUP;
2731 		goto out;
2732 	}
2733 
2734 	if (xmm7360_qp_has_data(qp))
2735 		mask |= POLLIN | POLLRDNORM;
2736 
2737 	if (xmm7360_qp_can_write(qp))
2738 		mask |= POLLOUT | POLLWRNORM;
2739 
2740 out:
2741 	if ((mask & events) == 0) {
2742 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND))
2743 			selrecord(p, &sc->sc_selr);
2744                 if (events & (POLLOUT | POLLWRNORM))
2745                         selrecord(p, &sc->sc_selw);
2746 	}
2747 
2748 	return mask & events;
2749 }
2750 
2751 static void
filt_wwancrdetach(struct knote * kn)2752 filt_wwancrdetach(struct knote *kn)
2753 {
2754 	struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2755 	struct xmm_dev *xmm = qp->xmm;
2756 	int func = qp - xmm->qp;
2757 	struct wwanc_softc *sc = container_of(xmm, struct wwanc_softc, sc_xmm);
2758 	struct tty *tp = sc->sc_tty[func];
2759 
2760 	tty_lock(tp);
2761 	selremove_knote(&qp->selr, kn);
2762 	tty_unlock(tp);
2763 }
2764 
2765 static int
filt_wwancread(struct knote * kn,long hint)2766 filt_wwancread(struct knote *kn, long hint)
2767 {
2768 	struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2769 
2770 	kn->kn_data = 0;
2771 
2772 	if (!qp->open) {
2773 		knote_set_eof(kn, 0);
2774 		return (1);
2775 	} else {
2776 		kn->kn_data = xmm7360_qp_has_data(qp) ? 1 : 0;
2777 	}
2778 
2779 	return (kn->kn_data > 0);
2780 }
2781 
2782 static void
filt_wwancwdetach(struct knote * kn)2783 filt_wwancwdetach(struct knote *kn)
2784 {
2785 	struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2786 	struct xmm_dev *xmm = qp->xmm;
2787 	int func = qp - xmm->qp;
2788 	struct wwanc_softc *sc = container_of(xmm, struct wwanc_softc, sc_xmm);
2789 	struct tty *tp = sc->sc_tty[func];
2790 
2791 	tty_lock(tp);
2792 	selremove_knote(&qp->selw, kn);
2793 	tty_unlock(tp);
2794 }
2795 
2796 static int
filt_wwancwrite(struct knote * kn,long hint)2797 filt_wwancwrite(struct knote *kn, long hint)
2798 {
2799 	struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2800 
2801 	kn->kn_data = 0;
2802 
2803 	if (qp->open) {
2804 		if (xmm7360_qp_can_write(qp))
2805 			kn->kn_data = qp->page_size;
2806 	}
2807 
2808 	return (kn->kn_data > 0);
2809 }
2810 
2811 static const struct filterops wwancread_filtops = {
2812 	XMM_KQ_ISFD_INITIALIZER,
2813 	.f_attach	= NULL,
2814 	.f_detach	= filt_wwancrdetach,
2815 	.f_event	= filt_wwancread,
2816 };
2817 
2818 static const struct filterops wwancwrite_filtops = {
2819 	XMM_KQ_ISFD_INITIALIZER,
2820 	.f_attach	= NULL,
2821 	.f_detach	= filt_wwancwdetach,
2822 	.f_event	= filt_wwancwrite,
2823 };
2824 
2825 int
wwanckqfilter(dev_t dev,struct knote * kn)2826 wwanckqfilter(dev_t dev, struct knote *kn)
2827 {
2828 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2829 	int func = DEVFUNC(dev);
2830 	struct queue_pair *qp = &sc->sc_xmm.qp[func];
2831 	struct tty *tp = sc->sc_tty[func];
2832 	struct selinfo *si;
2833 
2834 	if (DEV_IS_TTY(func))
2835 		return ttkqfilter(dev, kn);
2836 
2837 	KASSERT(!DEV_IS_TTY(func));
2838 
2839 	switch (kn->kn_filter) {
2840 	case EVFILT_READ:
2841 		si = &qp->selr;
2842 		kn->kn_fop = &wwancread_filtops;
2843 		break;
2844 	case EVFILT_WRITE:
2845 		si = &qp->selw;
2846 		kn->kn_fop = &wwancwrite_filtops;
2847 		break;
2848 	default:
2849 		return (EINVAL);
2850 	}
2851 
2852 	kn->kn_hook = (void *)qp;
2853 
2854 	tty_lock(tp);
2855 	selrecord_knote(si, kn);
2856 	tty_unlock(tp);
2857 
2858 	return (0);
2859 }
2860 
2861 static void *
dma_alloc_coherent(struct device * self,size_t sz,dma_addr_t * physp,int flags)2862 dma_alloc_coherent(struct device *self, size_t sz, dma_addr_t *physp, int flags)
2863 {
2864 	struct wwanc_softc *sc = device_private(self);
2865 	bus_dma_segment_t seg;
2866 	int nsegs;
2867 	int error;
2868 	caddr_t kva;
2869 
2870 	error = bus_dmamem_alloc(sc->sc_dmat, sz, 0, 0, &seg, 1, &nsegs,
2871 	    BUS_DMA_WAITOK);
2872 	if (error) {
2873 		panic("%s: bus_dmamem_alloc(%lu) failed %d\n",
2874 		    device_xname(self), (unsigned long)sz, error);
2875 		/* NOTREACHED */
2876 	}
2877 
2878 	KASSERT(nsegs == 1);
2879 	KASSERT(seg.ds_len == round_page(sz));
2880 
2881 	error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, sz, &kva,
2882 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT);
2883 	if (error) {
2884 		panic("%s: bus_dmamem_alloc(%lu) failed %d\n",
2885 		    device_xname(self), (unsigned long)sz, error);
2886 		/* NOTREACHED */
2887 	}
2888 
2889 	memset(kva, 0, sz);
2890 	*physp = seg.ds_addr;
2891 	return (void *)kva;
2892 }
2893 
2894 static void
dma_free_coherent(struct device * self,size_t sz,volatile void * vaddr,dma_addr_t phys)2895 dma_free_coherent(struct device *self, size_t sz, volatile void *vaddr, dma_addr_t phys)
2896 {
2897 	struct wwanc_softc *sc = device_private(self);
2898 	bus_dma_segment_t seg;
2899 
2900 	sz = round_page(sz);
2901 
2902 	bus_dmamem_unmap(sc->sc_dmat, __UNVOLATILE(vaddr), sz);
2903 
2904 	/* this does't need the exact seg returned by bus_dmamem_alloc() */
2905 	memset(&seg, 0, sizeof(seg));
2906 	seg.ds_addr = phys;
2907 	seg.ds_len  = sz;
2908 	bus_dmamem_free(sc->sc_dmat, &seg, 1);
2909 }
2910 
2911 struct wwan_softc {
2912 #ifdef __OpenBSD__
2913 	struct device		sc_devx;	/* gen. device info storage */
2914 #endif
2915 	struct device		*sc_dev;	/* generic device */
2916 	struct wwanc_softc	*sc_parent;	/* parent device */
2917 	struct ifnet		sc_ifnet;	/* network-visible interface */
2918 	struct xmm_net		sc_xmm_net;
2919 };
2920 
xmm7360_os_handle_net_frame(struct xmm_dev * xmm,const u8 * buf,size_t sz)2921 static void xmm7360_os_handle_net_frame(struct xmm_dev *xmm, const u8 *buf, size_t sz)
2922 {
2923 	struct wwanc_softc *sc = device_private(xmm->dev);
2924 	struct wwan_softc *sc_if = device_private(sc->sc_net);
2925 	struct ifnet *ifp = &sc_if->sc_ifnet;
2926 	struct mbuf *m;
2927 
2928 	KASSERT(sz <= MCLBYTES);
2929 
2930 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2931 	if (!m)
2932 		return;
2933 	if (sz > MHLEN) {
2934 		MCLGETI(m, M_DONTWAIT, NULL, sz);
2935 		if ((m->m_flags & M_EXT) == 0) {
2936 			m_freem(m);
2937 			return;
2938 		}
2939 	}
2940 	m->m_len = m->m_pkthdr.len = sz;
2941 
2942 	/*
2943 	 * No explicit alignment necessary - there is no ethernet header,
2944 	 * so IP address is already aligned.
2945 	 */
2946 	KASSERT(m->m_pkthdr.len == sz);
2947 	m_copyback(m, 0, sz, (const void *)buf, M_NOWAIT);
2948 
2949 #ifdef __OpenBSD__
2950 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
2951 	ml_enqueue(&ml, m);
2952 	if_input(ifp, &ml);
2953 #endif
2954 #ifdef __NetBSD__
2955 	if_percpuq_enqueue(ifp->if_percpuq, m);
2956 #endif
2957 }
2958 
2959 static void
xmm7360_os_handle_net_dequeue(struct xmm_net * xn,struct mux_frame * frame)2960 xmm7360_os_handle_net_dequeue(struct xmm_net *xn, struct mux_frame *frame)
2961 {
2962 	struct wwan_softc *sc_if =
2963 		container_of(xn, struct wwan_softc, sc_xmm_net);
2964 	struct ifnet *ifp = &sc_if->sc_ifnet;
2965 	struct mbuf *m;
2966 	int ret;
2967 
2968 	MUTEX_ASSERT_LOCKED(&xn->lock);
2969 
2970 	while ((m = ifq_deq_begin(&ifp->if_snd))) {
2971 		/*
2972 		 * xmm7360_mux_frame_append_packet() requires single linear
2973 		 * buffer, so try m_defrag(). Another option would be
2974 		 * using m_copydata() into an intermediate buffer.
2975 		 */
2976 		if (m->m_next) {
2977 			if (m_defrag(m, M_DONTWAIT) != 0 || m->m_next) {
2978 				/* Can't defrag, drop and continue */
2979 				ifq_deq_commit(&ifp->if_snd, m);
2980 				m_freem(m);
2981 				continue;
2982 			}
2983 		}
2984 
2985 		ret = xmm7360_mux_frame_append_packet(frame,
2986 		    mtod(m, void *), m->m_pkthdr.len);
2987 		if (ret) {
2988 			/* No more space in the frame */
2989 			ifq_deq_rollback(&ifp->if_snd, m);
2990 			break;
2991 		}
2992 		ifq_deq_commit(&ifp->if_snd, m);
2993 
2994 		/* Send a copy of the frame to the BPF listener */
2995 		BPF_MTAP_OUT(ifp, m);
2996 
2997 		m_freem(m);
2998 	}
2999 }
3000 
xmm7360_os_handle_net_txwake(struct xmm_net * xn)3001 static void xmm7360_os_handle_net_txwake(struct xmm_net *xn)
3002 {
3003 	struct wwan_softc *sc_if =
3004 		container_of(xn, struct wwan_softc, sc_xmm_net);
3005 	struct ifnet *ifp = &sc_if->sc_ifnet;
3006 
3007 	MUTEX_ASSERT_LOCKED(&xn->lock);
3008 
3009 	KASSERT(xmm7360_qp_can_write(xn->qp));
3010 	if (ifq_is_oactive(&ifp->if_snd)) {
3011 		ifq_clr_oactive(&ifp->if_snd);
3012 #ifdef __OpenBSD__
3013 		ifq_restart(&ifp->if_snd);
3014 #endif
3015 #ifdef __NetBSD__
3016 		if_schedule_deferred_start(ifp);
3017 #endif
3018 	}
3019 }
3020 
3021 #ifdef __OpenBSD__
3022 /*
3023  * Process received raw IPv4/IPv6 packet. There is no encapsulation.
3024  */
3025 static int
wwan_if_input(struct ifnet * ifp,struct mbuf * m,void * cookie)3026 wwan_if_input(struct ifnet *ifp, struct mbuf *m, void *cookie)
3027 {
3028 	const uint8_t *data = mtod(m, uint8_t *);
3029 	void (*input)(struct ifnet *, struct mbuf *);
3030 	u8 ip_version;
3031 
3032 	ip_version = data[0] >> 4;
3033 
3034 	switch (ip_version) {
3035 	case IPVERSION:
3036 		input = ipv4_input;
3037 		break;
3038 	case (IPV6_VERSION >> 4):
3039 		input = ipv6_input;
3040 		break;
3041 	default:
3042 		/* Unknown protocol, just drop packet */
3043 		m_freem(m);
3044 		return 1;
3045 		/* NOTREACHED */
3046 	}
3047 
3048 	/* Needed for tcpdump(1) et.al */
3049 	m->m_pkthdr.ph_rtableid = ifp->if_rdomain;
3050 	m_adj(m, sizeof(u_int32_t));
3051 
3052 	(*input)(ifp, m);
3053 	return 1;
3054 }
3055 #endif /* __OpenBSD__ */
3056 
3057 #ifdef __NetBSD__
3058 static bool wwan_pmf_suspend(device_t, const pmf_qual_t *);
3059 
3060 /*
3061  * Process received raw IPv4/IPv6 packet. There is no encapsulation.
3062  */
3063 static void
wwan_if_input(struct ifnet * ifp,struct mbuf * m)3064 wwan_if_input(struct ifnet *ifp, struct mbuf *m)
3065 {
3066 	const uint8_t *data = mtod(m, uint8_t *);
3067 	pktqueue_t *pktq = NULL;
3068 	u8 ip_version;
3069 
3070 	KASSERT(!cpu_intr_p());
3071 	KASSERT((m->m_flags & M_PKTHDR) != 0);
3072 
3073 	if ((ifp->if_flags & IFF_UP) == 0) {
3074 		m_freem(m);
3075 		return;
3076 	}
3077 
3078 	if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
3079 
3080 	/*
3081 	 * The interface can't receive packets for other host, so never
3082 	 * really IFF_PROMISC even if bpf listener is attached.
3083 	 */
3084 	if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
3085 		return;
3086 	if (m == NULL)
3087 		return;
3088 
3089 	ip_version = data[0] >> 4;
3090 	switch (ip_version) {
3091 #ifdef INET
3092 	case IPVERSION:
3093 #ifdef GATEWAY
3094 		if (ipflow_fastforward(m))
3095 			return;
3096 #endif
3097 		pktq = ip_pktq;
3098 		break;
3099 #endif /* INET */
3100 #ifdef INET6
3101 	case (IPV6_VERSION >> 4):
3102 		if (__predict_false(!in6_present)) {
3103 			m_freem(m);
3104 			return;
3105 		}
3106 #ifdef GATEWAY
3107 		if (ip6flow_fastforward(&m))
3108 			return;
3109 #endif
3110 		pktq = ip6_pktq;
3111 		break;
3112 #endif /* INET6 */
3113 	default:
3114 		/* Unknown protocol, just drop packet */
3115 		m_freem(m);
3116 		return;
3117 		/* NOTREACHED */
3118 	}
3119 
3120 	KASSERT(pktq != NULL);
3121 
3122 	/* No errors.  Receive the packet. */
3123 	m_set_rcvif(m, ifp);
3124 
3125 	const uint32_t h = pktq_rps_hash(&xmm7360_pktq_rps_hash_p, m);
3126 	if (__predict_false(!pktq_enqueue(pktq, m, h))) {
3127 		m_freem(m);
3128 	}
3129 }
3130 #endif
3131 
3132 /*
3133  * Transmit raw IPv4/IPv6 packet. No encapsulation necessary.
3134  */
3135 static int
wwan_if_output(struct ifnet * ifp,struct mbuf * m,IF_OUTPUT_CONST struct sockaddr * dst,IF_OUTPUT_CONST struct rtentry * rt)3136 wwan_if_output(struct ifnet *ifp, struct mbuf *m,
3137     IF_OUTPUT_CONST struct sockaddr *dst, IF_OUTPUT_CONST struct rtentry *rt)
3138 {
3139 	// there is no ethernet frame, this means no bridge(4) handling
3140 	return (if_enqueue(ifp, m));
3141 }
3142 
3143 static int
wwan_if_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)3144 wwan_if_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3145 {
3146 	struct wwan_softc *sc_if = ifp->if_softc;
3147 	int error = 0;
3148 	int s;
3149 
3150 	s = splnet();
3151 
3152 	switch (cmd) {
3153 #ifdef __NetBSD__
3154 	case SIOCINITIFADDR:
3155 #endif
3156 #ifdef __OpenBSD__
3157 	case SIOCAIFADDR:
3158 	case SIOCAIFADDR_IN6:
3159 	case SIOCSIFADDR:
3160 #endif
3161 		/* Make interface ready to run if address is assigned */
3162 		ifp->if_flags |= IFF_UP;
3163 		if (!(ifp->if_flags & IFF_RUNNING)) {
3164 			ifp->if_flags |= IFF_RUNNING;
3165 			xmm7360_mux_control(&sc_if->sc_xmm_net, 1, 0, 0, 0);
3166 		}
3167 		break;
3168 	case SIOCSIFFLAGS:
3169 	case SIOCADDMULTI:
3170 	case SIOCDELMULTI:
3171 		/* nothing special to do */
3172 		break;
3173 	case SIOCSIFMTU:
3174 		error = ENOTTY;
3175 		break;
3176 	default:
3177 #ifdef __NetBSD__
3178 		/*
3179 		 * Call common code for SIOCG* ioctls. In OpenBSD those ioctls
3180 		 * are handled in ifioctl(), and the if_ioctl is not called
3181 		 * for them at all.
3182 		 */
3183 		error = ifioctl_common(ifp, cmd, data);
3184 		if (error == ENETRESET)
3185 			error = 0;
3186 #endif
3187 #ifdef __OpenBSD__
3188 		error = ENOTTY;
3189 #endif
3190 		break;
3191 	}
3192 
3193 	splx(s);
3194 
3195 	return error;
3196 }
3197 
3198 static void
wwan_if_start(struct ifnet * ifp)3199 wwan_if_start(struct ifnet *ifp)
3200 {
3201 	struct wwan_softc *sc = ifp->if_softc;
3202 
3203 	mutex_lock(&sc->sc_xmm_net.lock);
3204 	while (!ifq_empty(&ifp->if_snd)) {
3205 		if (!xmm7360_qp_can_write(sc->sc_xmm_net.qp)) {
3206 			break;
3207 		}
3208 		xmm7360_net_flush(&sc->sc_xmm_net);
3209 	}
3210 	mutex_unlock(&sc->sc_xmm_net.lock);
3211 }
3212 
3213 static int
wwan_match(struct device * parent,cfdata_t match,void * aux)3214 wwan_match(struct device *parent, cfdata_t match, void *aux)
3215 {
3216 	struct wwanc_attach_args *wa = aux;
3217 
3218 	return (wa->aa_type == WWMC_TYPE_NET);
3219 }
3220 
3221 static void
wwan_attach(struct device * parent,struct device * self,void * aux)3222 wwan_attach(struct device *parent, struct device *self, void *aux)
3223 {
3224 	struct wwan_softc *sc_if = device_private(self);
3225 	struct ifnet *ifp = &sc_if->sc_ifnet;
3226 	struct xmm_dev *xmm;
3227 	struct xmm_net *xn;
3228 
3229 	sc_if->sc_dev = self;
3230 	sc_if->sc_parent = device_private(parent);
3231 	xmm = sc_if->sc_xmm_net.xmm = &sc_if->sc_parent->sc_xmm;
3232 	xn = &sc_if->sc_xmm_net;
3233 	mutex_init(&xn->lock);
3234 
3235 	/* QP already initialized in parent, just set pointers and start */
3236 	xn->qp = &xmm->qp[0];
3237 	xmm7360_qp_start(xn->qp);
3238 	xmm->net = xn;
3239 
3240 	ifp->if_softc = sc_if;
3241 	ifp->if_flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST \
3242 		| IFF_SIMPLEX;
3243 	ifp->if_ioctl = wwan_if_ioctl;
3244 	ifp->if_start = wwan_if_start;
3245 	ifp->if_mtu = 1500;
3246 	ifp->if_hardmtu = 1500;
3247 	ifp->if_type = IFT_OTHER;
3248 	IFQ_SET_MAXLEN(&ifp->if_snd, xn->qp->depth);
3249 	IFQ_SET_READY(&ifp->if_snd);
3250 	CTASSERT(DEVICE_XNAME_SIZE == IFNAMSIZ);
3251 	bcopy(device_xname(sc_if->sc_dev), ifp->if_xname, IFNAMSIZ);
3252 
3253 	/* Call MI attach routines. */
3254 	if_attach(ifp);
3255 
3256 	/* Hook custom input and output processing, and dummy sadl */
3257 	ifp->if_output = wwan_if_output;
3258 	if_ih_insert(ifp, wwan_if_input, NULL);
3259 	if_deferred_start_init(ifp, NULL);
3260 	if_alloc_sadl(ifp);
3261 #if NBPFILTER > 0
3262 #ifdef __OpenBSD__
3263 	bpfattach(&ifp->if_bpf, ifp, DLT_LOOP, sizeof(u_int32_t));
3264 #endif
3265 #ifdef __NetBSD__
3266 	bpfattach(&ifp->if_bpf, ifp, DLT_RAW, 0);
3267 #endif
3268 #endif
3269 
3270 	printf("\n");
3271 
3272 #ifdef __NetBSD__
3273 	xmm7360_pktq_rps_hash_p = pktq_rps_hash_default;
3274 
3275 	if (pmf_device_register(self, wwan_pmf_suspend, NULL))
3276 		pmf_class_network_register(self, ifp);
3277 	else
3278 		aprint_error_dev(self, "couldn't establish power handler\n");
3279 #endif
3280 }
3281 
3282 static int
wwan_detach(struct device * self,int flags)3283 wwan_detach(struct device *self, int flags)
3284 {
3285 	struct wwan_softc *sc_if = device_private(self);
3286 	struct ifnet *ifp = &sc_if->sc_ifnet;
3287 
3288 	if (ifp->if_flags & (IFF_UP|IFF_RUNNING))
3289 		ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
3290 
3291 	pmf_device_deregister(self);
3292 
3293 	if_ih_remove(ifp, wwan_if_input, NULL);
3294 	if_detach(ifp);
3295 
3296 	xmm7360_qp_stop(sc_if->sc_xmm_net.qp);
3297 
3298 	sc_if->sc_xmm_net.xmm->net = NULL;
3299 
3300 	return 0;
3301 }
3302 
3303 static void
wwan_suspend(struct device * self)3304 wwan_suspend(struct device *self)
3305 {
3306 	struct wwan_softc *sc_if = device_private(self);
3307 	struct ifnet *ifp = &sc_if->sc_ifnet;
3308 
3309 	/*
3310 	 * Interface is marked down on suspend, and needs to be reconfigured
3311 	 * after resume.
3312 	 */
3313 	if (ifp->if_flags & (IFF_UP|IFF_RUNNING))
3314 		ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
3315 
3316 	ifq_purge(&ifp->if_snd);
3317 }
3318 
3319 #ifdef __OpenBSD__
3320 static int
wwan_activate(struct device * self,int act)3321 wwan_activate(struct device *self, int act)
3322 {
3323 	switch (act) {
3324 	case DVACT_QUIESCE:
3325 	case DVACT_SUSPEND:
3326 		wwan_suspend(self);
3327 		break;
3328 	case DVACT_RESUME:
3329 		/* Nothing to do */
3330 		break;
3331 	}
3332 
3333 	return 0;
3334 }
3335 
3336 struct cfattach wwan_ca = {
3337         sizeof(struct wwan_softc), wwan_match, wwan_attach,
3338         wwan_detach, wwan_activate
3339 };
3340 
3341 struct cfdriver wwan_cd = {
3342         NULL, "wwan", DV_IFNET
3343 };
3344 #endif /* __OpenBSD__ */
3345 
3346 #ifdef __NetBSD__
3347 static bool
wwan_pmf_suspend(device_t self,const pmf_qual_t * qual)3348 wwan_pmf_suspend(device_t self, const pmf_qual_t *qual)
3349 {
3350 	wwan_suspend(self);
3351 	return true;
3352 }
3353 
3354 CFATTACH_DECL3_NEW(wwan, sizeof(struct wwan_softc),
3355    wwan_match, wwan_attach, wwan_detach, NULL,
3356    NULL, NULL, DVF_DETACH_SHUTDOWN);
3357 #endif /* __NetBSD__ */
3358 
3359 #endif /* __OpenBSD__ || __NetBSD__ */
3360