1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
31 #include "llvm/CodeGen/MIRFormatter.h"
32 #include "llvm/CodeGen/MIRPrinter.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/LaneBitmask.h"
60 #include "llvm/MC/MCContext.h"
61 #include "llvm/MC/MCDwarf.h"
62 #include "llvm/MC/MCInstrDesc.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/LowLevelTypeImpl.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Support/SourceMgr.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <cstdint>
80 #include <limits>
81 #include <string>
82 #include <utility>
83
84 using namespace llvm;
85
setTarget(const TargetSubtargetInfo & NewSubtarget)86 void PerTargetMIParsingState::setTarget(
87 const TargetSubtargetInfo &NewSubtarget) {
88
89 // If the subtarget changed, over conservatively assume everything is invalid.
90 if (&Subtarget == &NewSubtarget)
91 return;
92
93 Names2InstrOpCodes.clear();
94 Names2Regs.clear();
95 Names2RegMasks.clear();
96 Names2SubRegIndices.clear();
97 Names2TargetIndices.clear();
98 Names2DirectTargetFlags.clear();
99 Names2BitmaskTargetFlags.clear();
100 Names2MMOTargetFlags.clear();
101
102 initNames2RegClasses();
103 initNames2RegBanks();
104 }
105
initNames2Regs()106 void PerTargetMIParsingState::initNames2Regs() {
107 if (!Names2Regs.empty())
108 return;
109
110 // The '%noreg' register is the register 0.
111 Names2Regs.insert(std::make_pair("noreg", 0));
112 const auto *TRI = Subtarget.getRegisterInfo();
113 assert(TRI && "Expected target register info");
114
115 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
116 bool WasInserted =
117 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
118 .second;
119 (void)WasInserted;
120 assert(WasInserted && "Expected registers to be unique case-insensitively");
121 }
122 }
123
getRegisterByName(StringRef RegName,Register & Reg)124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
125 Register &Reg) {
126 initNames2Regs();
127 auto RegInfo = Names2Regs.find(RegName);
128 if (RegInfo == Names2Regs.end())
129 return true;
130 Reg = RegInfo->getValue();
131 return false;
132 }
133
initNames2InstrOpCodes()134 void PerTargetMIParsingState::initNames2InstrOpCodes() {
135 if (!Names2InstrOpCodes.empty())
136 return;
137 const auto *TII = Subtarget.getInstrInfo();
138 assert(TII && "Expected target instruction info");
139 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
140 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
141 }
142
parseInstrName(StringRef InstrName,unsigned & OpCode)143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
144 unsigned &OpCode) {
145 initNames2InstrOpCodes();
146 auto InstrInfo = Names2InstrOpCodes.find(InstrName);
147 if (InstrInfo == Names2InstrOpCodes.end())
148 return true;
149 OpCode = InstrInfo->getValue();
150 return false;
151 }
152
initNames2RegMasks()153 void PerTargetMIParsingState::initNames2RegMasks() {
154 if (!Names2RegMasks.empty())
155 return;
156 const auto *TRI = Subtarget.getRegisterInfo();
157 assert(TRI && "Expected target register info");
158 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
159 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
160 assert(RegMasks.size() == RegMaskNames.size());
161 for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
162 Names2RegMasks.insert(
163 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
164 }
165
getRegMask(StringRef Identifier)166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
167 initNames2RegMasks();
168 auto RegMaskInfo = Names2RegMasks.find(Identifier);
169 if (RegMaskInfo == Names2RegMasks.end())
170 return nullptr;
171 return RegMaskInfo->getValue();
172 }
173
initNames2SubRegIndices()174 void PerTargetMIParsingState::initNames2SubRegIndices() {
175 if (!Names2SubRegIndices.empty())
176 return;
177 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
178 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
179 Names2SubRegIndices.insert(
180 std::make_pair(TRI->getSubRegIndexName(I), I));
181 }
182
getSubRegIndex(StringRef Name)183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
184 initNames2SubRegIndices();
185 auto SubRegInfo = Names2SubRegIndices.find(Name);
186 if (SubRegInfo == Names2SubRegIndices.end())
187 return 0;
188 return SubRegInfo->getValue();
189 }
190
initNames2TargetIndices()191 void PerTargetMIParsingState::initNames2TargetIndices() {
192 if (!Names2TargetIndices.empty())
193 return;
194 const auto *TII = Subtarget.getInstrInfo();
195 assert(TII && "Expected target instruction info");
196 auto Indices = TII->getSerializableTargetIndices();
197 for (const auto &I : Indices)
198 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
199 }
200
getTargetIndex(StringRef Name,int & Index)201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
202 initNames2TargetIndices();
203 auto IndexInfo = Names2TargetIndices.find(Name);
204 if (IndexInfo == Names2TargetIndices.end())
205 return true;
206 Index = IndexInfo->second;
207 return false;
208 }
209
initNames2DirectTargetFlags()210 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
211 if (!Names2DirectTargetFlags.empty())
212 return;
213
214 const auto *TII = Subtarget.getInstrInfo();
215 assert(TII && "Expected target instruction info");
216 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
217 for (const auto &I : Flags)
218 Names2DirectTargetFlags.insert(
219 std::make_pair(StringRef(I.second), I.first));
220 }
221
getDirectTargetFlag(StringRef Name,unsigned & Flag)222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
223 unsigned &Flag) {
224 initNames2DirectTargetFlags();
225 auto FlagInfo = Names2DirectTargetFlags.find(Name);
226 if (FlagInfo == Names2DirectTargetFlags.end())
227 return true;
228 Flag = FlagInfo->second;
229 return false;
230 }
231
initNames2BitmaskTargetFlags()232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
233 if (!Names2BitmaskTargetFlags.empty())
234 return;
235
236 const auto *TII = Subtarget.getInstrInfo();
237 assert(TII && "Expected target instruction info");
238 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
239 for (const auto &I : Flags)
240 Names2BitmaskTargetFlags.insert(
241 std::make_pair(StringRef(I.second), I.first));
242 }
243
getBitmaskTargetFlag(StringRef Name,unsigned & Flag)244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
245 unsigned &Flag) {
246 initNames2BitmaskTargetFlags();
247 auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
248 if (FlagInfo == Names2BitmaskTargetFlags.end())
249 return true;
250 Flag = FlagInfo->second;
251 return false;
252 }
253
initNames2MMOTargetFlags()254 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
255 if (!Names2MMOTargetFlags.empty())
256 return;
257
258 const auto *TII = Subtarget.getInstrInfo();
259 assert(TII && "Expected target instruction info");
260 auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
261 for (const auto &I : Flags)
262 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
263 }
264
getMMOTargetFlag(StringRef Name,MachineMemOperand::Flags & Flag)265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
266 MachineMemOperand::Flags &Flag) {
267 initNames2MMOTargetFlags();
268 auto FlagInfo = Names2MMOTargetFlags.find(Name);
269 if (FlagInfo == Names2MMOTargetFlags.end())
270 return true;
271 Flag = FlagInfo->second;
272 return false;
273 }
274
initNames2RegClasses()275 void PerTargetMIParsingState::initNames2RegClasses() {
276 if (!Names2RegClasses.empty())
277 return;
278
279 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
280 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
281 const auto *RC = TRI->getRegClass(I);
282 Names2RegClasses.insert(
283 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
284 }
285 }
286
initNames2RegBanks()287 void PerTargetMIParsingState::initNames2RegBanks() {
288 if (!Names2RegBanks.empty())
289 return;
290
291 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
292 // If the target does not support GlobalISel, we may not have a
293 // register bank info.
294 if (!RBI)
295 return;
296
297 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
298 const auto &RegBank = RBI->getRegBank(I);
299 Names2RegBanks.insert(
300 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
301 }
302 }
303
304 const TargetRegisterClass *
getRegClass(StringRef Name)305 PerTargetMIParsingState::getRegClass(StringRef Name) {
306 auto RegClassInfo = Names2RegClasses.find(Name);
307 if (RegClassInfo == Names2RegClasses.end())
308 return nullptr;
309 return RegClassInfo->getValue();
310 }
311
getRegBank(StringRef Name)312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
313 auto RegBankInfo = Names2RegBanks.find(Name);
314 if (RegBankInfo == Names2RegBanks.end())
315 return nullptr;
316 return RegBankInfo->getValue();
317 }
318
PerFunctionMIParsingState(MachineFunction & MF,SourceMgr & SM,const SlotMapping & IRSlots,PerTargetMIParsingState & T)319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
320 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
321 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
322 }
323
getVRegInfo(Register Num)324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) {
325 auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
326 if (I.second) {
327 MachineRegisterInfo &MRI = MF.getRegInfo();
328 VRegInfo *Info = new (Allocator) VRegInfo;
329 Info->VReg = MRI.createIncompleteVirtualRegister();
330 I.first->second = Info;
331 }
332 return *I.first->second;
333 }
334
getVRegInfoNamed(StringRef RegName)335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
336 assert(RegName != "" && "Expected named reg.");
337
338 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
339 if (I.second) {
340 VRegInfo *Info = new (Allocator) VRegInfo;
341 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
342 I.first->second = Info;
343 }
344 return *I.first->second;
345 }
346
mapValueToSlot(const Value * V,ModuleSlotTracker & MST,DenseMap<unsigned,const Value * > & Slots2Values)347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
348 DenseMap<unsigned, const Value *> &Slots2Values) {
349 int Slot = MST.getLocalSlot(V);
350 if (Slot == -1)
351 return;
352 Slots2Values.insert(std::make_pair(unsigned(Slot), V));
353 }
354
355 /// Creates the mapping from slot numbers to function's unnamed IR values.
initSlots2Values(const Function & F,DenseMap<unsigned,const Value * > & Slots2Values)356 static void initSlots2Values(const Function &F,
357 DenseMap<unsigned, const Value *> &Slots2Values) {
358 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
359 MST.incorporateFunction(F);
360 for (const auto &Arg : F.args())
361 mapValueToSlot(&Arg, MST, Slots2Values);
362 for (const auto &BB : F) {
363 mapValueToSlot(&BB, MST, Slots2Values);
364 for (const auto &I : BB)
365 mapValueToSlot(&I, MST, Slots2Values);
366 }
367 }
368
getIRValue(unsigned Slot)369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
370 if (Slots2Values.empty())
371 initSlots2Values(MF.getFunction(), Slots2Values);
372 return Slots2Values.lookup(Slot);
373 }
374
375 namespace {
376
377 /// A wrapper struct around the 'MachineOperand' struct that includes a source
378 /// range and other attributes.
379 struct ParsedMachineOperand {
380 MachineOperand Operand;
381 StringRef::iterator Begin;
382 StringRef::iterator End;
383 Optional<unsigned> TiedDefIdx;
384
ParsedMachineOperand__anondd7cfb660111::ParsedMachineOperand385 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
386 StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
387 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
388 if (TiedDefIdx)
389 assert(Operand.isReg() && Operand.isUse() &&
390 "Only used register operands can be tied");
391 }
392 };
393
394 class MIParser {
395 MachineFunction &MF;
396 SMDiagnostic &Error;
397 StringRef Source, CurrentSource;
398 MIToken Token;
399 PerFunctionMIParsingState &PFS;
400 /// Maps from slot numbers to function's unnamed basic blocks.
401 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
402
403 public:
404 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
405 StringRef Source);
406
407 /// \p SkipChar gives the number of characters to skip before looking
408 /// for the next token.
409 void lex(unsigned SkipChar = 0);
410
411 /// Report an error at the current location with the given message.
412 ///
413 /// This function always return true.
414 bool error(const Twine &Msg);
415
416 /// Report an error at the given location with the given message.
417 ///
418 /// This function always return true.
419 bool error(StringRef::iterator Loc, const Twine &Msg);
420
421 bool
422 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
423 bool parseBasicBlocks();
424 bool parse(MachineInstr *&MI);
425 bool parseStandaloneMBB(MachineBasicBlock *&MBB);
426 bool parseStandaloneNamedRegister(Register &Reg);
427 bool parseStandaloneVirtualRegister(VRegInfo *&Info);
428 bool parseStandaloneRegister(Register &Reg);
429 bool parseStandaloneStackObject(int &FI);
430 bool parseStandaloneMDNode(MDNode *&Node);
431
432 bool
433 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
434 bool parseBasicBlock(MachineBasicBlock &MBB,
435 MachineBasicBlock *&AddFalthroughFrom);
436 bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
437 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
438
439 bool parseNamedRegister(Register &Reg);
440 bool parseVirtualRegister(VRegInfo *&Info);
441 bool parseNamedVirtualRegister(VRegInfo *&Info);
442 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo);
443 bool parseRegisterFlag(unsigned &Flags);
444 bool parseRegisterClassOrBank(VRegInfo &RegInfo);
445 bool parseSubRegisterIndex(unsigned &SubReg);
446 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
447 bool parseRegisterOperand(MachineOperand &Dest,
448 Optional<unsigned> &TiedDefIdx, bool IsDef = false);
449 bool parseImmediateOperand(MachineOperand &Dest);
450 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
451 const Constant *&C);
452 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
453 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
454 bool parseTypedImmediateOperand(MachineOperand &Dest);
455 bool parseFPImmediateOperand(MachineOperand &Dest);
456 bool parseMBBReference(MachineBasicBlock *&MBB);
457 bool parseMBBOperand(MachineOperand &Dest);
458 bool parseStackFrameIndex(int &FI);
459 bool parseStackObjectOperand(MachineOperand &Dest);
460 bool parseFixedStackFrameIndex(int &FI);
461 bool parseFixedStackObjectOperand(MachineOperand &Dest);
462 bool parseGlobalValue(GlobalValue *&GV);
463 bool parseGlobalAddressOperand(MachineOperand &Dest);
464 bool parseConstantPoolIndexOperand(MachineOperand &Dest);
465 bool parseSubRegisterIndexOperand(MachineOperand &Dest);
466 bool parseJumpTableIndexOperand(MachineOperand &Dest);
467 bool parseExternalSymbolOperand(MachineOperand &Dest);
468 bool parseMCSymbolOperand(MachineOperand &Dest);
469 bool parseMDNode(MDNode *&Node);
470 bool parseDIExpression(MDNode *&Expr);
471 bool parseDILocation(MDNode *&Expr);
472 bool parseMetadataOperand(MachineOperand &Dest);
473 bool parseCFIOffset(int &Offset);
474 bool parseCFIRegister(Register &Reg);
475 bool parseCFIEscapeValues(std::string& Values);
476 bool parseCFIOperand(MachineOperand &Dest);
477 bool parseIRBlock(BasicBlock *&BB, const Function &F);
478 bool parseBlockAddressOperand(MachineOperand &Dest);
479 bool parseIntrinsicOperand(MachineOperand &Dest);
480 bool parsePredicateOperand(MachineOperand &Dest);
481 bool parseShuffleMaskOperand(MachineOperand &Dest);
482 bool parseTargetIndexOperand(MachineOperand &Dest);
483 bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
484 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
485 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
486 MachineOperand &Dest,
487 Optional<unsigned> &TiedDefIdx);
488 bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
489 const unsigned OpIdx,
490 MachineOperand &Dest,
491 Optional<unsigned> &TiedDefIdx);
492 bool parseOffset(int64_t &Offset);
493 bool parseAlignment(unsigned &Alignment);
494 bool parseAddrspace(unsigned &Addrspace);
495 bool parseSectionID(Optional<MBBSectionID> &SID);
496 bool parseOperandsOffset(MachineOperand &Op);
497 bool parseIRValue(const Value *&V);
498 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
499 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
500 bool parseMachinePointerInfo(MachinePointerInfo &Dest);
501 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
502 bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
503 bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
504 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
505 bool parseHeapAllocMarker(MDNode *&Node);
506
507 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
508 MachineOperand &Dest, const MIRFormatter &MF);
509
510 private:
511 /// Convert the integer literal in the current token into an unsigned integer.
512 ///
513 /// Return true if an error occurred.
514 bool getUnsigned(unsigned &Result);
515
516 /// Convert the integer literal in the current token into an uint64.
517 ///
518 /// Return true if an error occurred.
519 bool getUint64(uint64_t &Result);
520
521 /// Convert the hexadecimal literal in the current token into an unsigned
522 /// APInt with a minimum bitwidth required to represent the value.
523 ///
524 /// Return true if the literal does not represent an integer value.
525 bool getHexUint(APInt &Result);
526
527 /// If the current token is of the given kind, consume it and return false.
528 /// Otherwise report an error and return true.
529 bool expectAndConsume(MIToken::TokenKind TokenKind);
530
531 /// If the current token is of the given kind, consume it and return true.
532 /// Otherwise return false.
533 bool consumeIfPresent(MIToken::TokenKind TokenKind);
534
535 bool parseInstruction(unsigned &OpCode, unsigned &Flags);
536
537 bool assignRegisterTies(MachineInstr &MI,
538 ArrayRef<ParsedMachineOperand> Operands);
539
540 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
541 const MCInstrDesc &MCID);
542
543 const BasicBlock *getIRBlock(unsigned Slot);
544 const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
545
546 /// Get or create an MCSymbol for a given name.
547 MCSymbol *getOrCreateMCSymbol(StringRef Name);
548
549 /// parseStringConstant
550 /// ::= StringConstant
551 bool parseStringConstant(std::string &Result);
552 };
553
554 } // end anonymous namespace
555
MIParser(PerFunctionMIParsingState & PFS,SMDiagnostic & Error,StringRef Source)556 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
557 StringRef Source)
558 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
559 {}
560
lex(unsigned SkipChar)561 void MIParser::lex(unsigned SkipChar) {
562 CurrentSource = lexMIToken(
563 CurrentSource.slice(SkipChar, StringRef::npos), Token,
564 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
565 }
566
error(const Twine & Msg)567 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
568
error(StringRef::iterator Loc,const Twine & Msg)569 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
570 const SourceMgr &SM = *PFS.SM;
571 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
572 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
573 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
574 // Create an ordinary diagnostic when the source manager's buffer is the
575 // source string.
576 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
577 return true;
578 }
579 // Create a diagnostic for a YAML string literal.
580 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
581 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
582 Source, None, None);
583 return true;
584 }
585
586 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
587 ErrorCallbackType;
588
toString(MIToken::TokenKind TokenKind)589 static const char *toString(MIToken::TokenKind TokenKind) {
590 switch (TokenKind) {
591 case MIToken::comma:
592 return "','";
593 case MIToken::equal:
594 return "'='";
595 case MIToken::colon:
596 return "':'";
597 case MIToken::lparen:
598 return "'('";
599 case MIToken::rparen:
600 return "')'";
601 default:
602 return "<unknown token>";
603 }
604 }
605
expectAndConsume(MIToken::TokenKind TokenKind)606 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
607 if (Token.isNot(TokenKind))
608 return error(Twine("expected ") + toString(TokenKind));
609 lex();
610 return false;
611 }
612
consumeIfPresent(MIToken::TokenKind TokenKind)613 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
614 if (Token.isNot(TokenKind))
615 return false;
616 lex();
617 return true;
618 }
619
620 // Parse Machine Basic Block Section ID.
parseSectionID(Optional<MBBSectionID> & SID)621 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) {
622 assert(Token.is(MIToken::kw_bbsections));
623 lex();
624 if (Token.is(MIToken::IntegerLiteral)) {
625 unsigned Value = 0;
626 if (getUnsigned(Value))
627 return error("Unknown Section ID");
628 SID = MBBSectionID{Value};
629 } else {
630 const StringRef &S = Token.stringValue();
631 if (S == "Exception")
632 SID = MBBSectionID::ExceptionSectionID;
633 else if (S == "Cold")
634 SID = MBBSectionID::ColdSectionID;
635 else
636 return error("Unknown Section ID");
637 }
638 lex();
639 return false;
640 }
641
parseBasicBlockDefinition(DenseMap<unsigned,MachineBasicBlock * > & MBBSlots)642 bool MIParser::parseBasicBlockDefinition(
643 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
644 assert(Token.is(MIToken::MachineBasicBlockLabel));
645 unsigned ID = 0;
646 if (getUnsigned(ID))
647 return true;
648 auto Loc = Token.location();
649 auto Name = Token.stringValue();
650 lex();
651 bool HasAddressTaken = false;
652 bool IsLandingPad = false;
653 bool IsEHFuncletEntry = false;
654 Optional<MBBSectionID> SectionID;
655 unsigned Alignment = 0;
656 BasicBlock *BB = nullptr;
657 if (consumeIfPresent(MIToken::lparen)) {
658 do {
659 // TODO: Report an error when multiple same attributes are specified.
660 switch (Token.kind()) {
661 case MIToken::kw_address_taken:
662 HasAddressTaken = true;
663 lex();
664 break;
665 case MIToken::kw_landing_pad:
666 IsLandingPad = true;
667 lex();
668 break;
669 case MIToken::kw_ehfunclet_entry:
670 IsEHFuncletEntry = true;
671 lex();
672 break;
673 case MIToken::kw_align:
674 if (parseAlignment(Alignment))
675 return true;
676 break;
677 case MIToken::IRBlock:
678 // TODO: Report an error when both name and ir block are specified.
679 if (parseIRBlock(BB, MF.getFunction()))
680 return true;
681 lex();
682 break;
683 case MIToken::kw_bbsections:
684 if (parseSectionID(SectionID))
685 return true;
686 break;
687 default:
688 break;
689 }
690 } while (consumeIfPresent(MIToken::comma));
691 if (expectAndConsume(MIToken::rparen))
692 return true;
693 }
694 if (expectAndConsume(MIToken::colon))
695 return true;
696
697 if (!Name.empty()) {
698 BB = dyn_cast_or_null<BasicBlock>(
699 MF.getFunction().getValueSymbolTable()->lookup(Name));
700 if (!BB)
701 return error(Loc, Twine("basic block '") + Name +
702 "' is not defined in the function '" +
703 MF.getName() + "'");
704 }
705 auto *MBB = MF.CreateMachineBasicBlock(BB);
706 MF.insert(MF.end(), MBB);
707 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
708 if (!WasInserted)
709 return error(Loc, Twine("redefinition of machine basic block with id #") +
710 Twine(ID));
711 if (Alignment)
712 MBB->setAlignment(Align(Alignment));
713 if (HasAddressTaken)
714 MBB->setHasAddressTaken();
715 MBB->setIsEHPad(IsLandingPad);
716 MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
717 if (SectionID.hasValue()) {
718 MBB->setSectionID(SectionID.getValue());
719 MF.setBBSectionsType(BasicBlockSection::List);
720 }
721 return false;
722 }
723
parseBasicBlockDefinitions(DenseMap<unsigned,MachineBasicBlock * > & MBBSlots)724 bool MIParser::parseBasicBlockDefinitions(
725 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
726 lex();
727 // Skip until the first machine basic block.
728 while (Token.is(MIToken::Newline))
729 lex();
730 if (Token.isErrorOrEOF())
731 return Token.isError();
732 if (Token.isNot(MIToken::MachineBasicBlockLabel))
733 return error("expected a basic block definition before instructions");
734 unsigned BraceDepth = 0;
735 do {
736 if (parseBasicBlockDefinition(MBBSlots))
737 return true;
738 bool IsAfterNewline = false;
739 // Skip until the next machine basic block.
740 while (true) {
741 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
742 Token.isErrorOrEOF())
743 break;
744 else if (Token.is(MIToken::MachineBasicBlockLabel))
745 return error("basic block definition should be located at the start of "
746 "the line");
747 else if (consumeIfPresent(MIToken::Newline)) {
748 IsAfterNewline = true;
749 continue;
750 }
751 IsAfterNewline = false;
752 if (Token.is(MIToken::lbrace))
753 ++BraceDepth;
754 if (Token.is(MIToken::rbrace)) {
755 if (!BraceDepth)
756 return error("extraneous closing brace ('}')");
757 --BraceDepth;
758 }
759 lex();
760 }
761 // Verify that we closed all of the '{' at the end of a file or a block.
762 if (!Token.isError() && BraceDepth)
763 return error("expected '}'"); // FIXME: Report a note that shows '{'.
764 } while (!Token.isErrorOrEOF());
765 return Token.isError();
766 }
767
parseBasicBlockLiveins(MachineBasicBlock & MBB)768 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
769 assert(Token.is(MIToken::kw_liveins));
770 lex();
771 if (expectAndConsume(MIToken::colon))
772 return true;
773 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
774 return false;
775 do {
776 if (Token.isNot(MIToken::NamedRegister))
777 return error("expected a named register");
778 Register Reg;
779 if (parseNamedRegister(Reg))
780 return true;
781 lex();
782 LaneBitmask Mask = LaneBitmask::getAll();
783 if (consumeIfPresent(MIToken::colon)) {
784 // Parse lane mask.
785 if (Token.isNot(MIToken::IntegerLiteral) &&
786 Token.isNot(MIToken::HexLiteral))
787 return error("expected a lane mask");
788 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
789 "Use correct get-function for lane mask");
790 LaneBitmask::Type V;
791 if (getUint64(V))
792 return error("invalid lane mask value");
793 Mask = LaneBitmask(V);
794 lex();
795 }
796 MBB.addLiveIn(Reg, Mask);
797 } while (consumeIfPresent(MIToken::comma));
798 return false;
799 }
800
parseBasicBlockSuccessors(MachineBasicBlock & MBB)801 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
802 assert(Token.is(MIToken::kw_successors));
803 lex();
804 if (expectAndConsume(MIToken::colon))
805 return true;
806 if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
807 return false;
808 do {
809 if (Token.isNot(MIToken::MachineBasicBlock))
810 return error("expected a machine basic block reference");
811 MachineBasicBlock *SuccMBB = nullptr;
812 if (parseMBBReference(SuccMBB))
813 return true;
814 lex();
815 unsigned Weight = 0;
816 if (consumeIfPresent(MIToken::lparen)) {
817 if (Token.isNot(MIToken::IntegerLiteral) &&
818 Token.isNot(MIToken::HexLiteral))
819 return error("expected an integer literal after '('");
820 if (getUnsigned(Weight))
821 return true;
822 lex();
823 if (expectAndConsume(MIToken::rparen))
824 return true;
825 }
826 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
827 } while (consumeIfPresent(MIToken::comma));
828 MBB.normalizeSuccProbs();
829 return false;
830 }
831
parseBasicBlock(MachineBasicBlock & MBB,MachineBasicBlock * & AddFalthroughFrom)832 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
833 MachineBasicBlock *&AddFalthroughFrom) {
834 // Skip the definition.
835 assert(Token.is(MIToken::MachineBasicBlockLabel));
836 lex();
837 if (consumeIfPresent(MIToken::lparen)) {
838 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
839 lex();
840 consumeIfPresent(MIToken::rparen);
841 }
842 consumeIfPresent(MIToken::colon);
843
844 // Parse the liveins and successors.
845 // N.B: Multiple lists of successors and liveins are allowed and they're
846 // merged into one.
847 // Example:
848 // liveins: %edi
849 // liveins: %esi
850 //
851 // is equivalent to
852 // liveins: %edi, %esi
853 bool ExplicitSuccessors = false;
854 while (true) {
855 if (Token.is(MIToken::kw_successors)) {
856 if (parseBasicBlockSuccessors(MBB))
857 return true;
858 ExplicitSuccessors = true;
859 } else if (Token.is(MIToken::kw_liveins)) {
860 if (parseBasicBlockLiveins(MBB))
861 return true;
862 } else if (consumeIfPresent(MIToken::Newline)) {
863 continue;
864 } else
865 break;
866 if (!Token.isNewlineOrEOF())
867 return error("expected line break at the end of a list");
868 lex();
869 }
870
871 // Parse the instructions.
872 bool IsInBundle = false;
873 MachineInstr *PrevMI = nullptr;
874 while (!Token.is(MIToken::MachineBasicBlockLabel) &&
875 !Token.is(MIToken::Eof)) {
876 if (consumeIfPresent(MIToken::Newline))
877 continue;
878 if (consumeIfPresent(MIToken::rbrace)) {
879 // The first parsing pass should verify that all closing '}' have an
880 // opening '{'.
881 assert(IsInBundle);
882 IsInBundle = false;
883 continue;
884 }
885 MachineInstr *MI = nullptr;
886 if (parse(MI))
887 return true;
888 MBB.insert(MBB.end(), MI);
889 if (IsInBundle) {
890 PrevMI->setFlag(MachineInstr::BundledSucc);
891 MI->setFlag(MachineInstr::BundledPred);
892 }
893 PrevMI = MI;
894 if (Token.is(MIToken::lbrace)) {
895 if (IsInBundle)
896 return error("nested instruction bundles are not allowed");
897 lex();
898 // This instruction is the start of the bundle.
899 MI->setFlag(MachineInstr::BundledSucc);
900 IsInBundle = true;
901 if (!Token.is(MIToken::Newline))
902 // The next instruction can be on the same line.
903 continue;
904 }
905 assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
906 lex();
907 }
908
909 // Construct successor list by searching for basic block machine operands.
910 if (!ExplicitSuccessors) {
911 SmallVector<MachineBasicBlock*,4> Successors;
912 bool IsFallthrough;
913 guessSuccessors(MBB, Successors, IsFallthrough);
914 for (MachineBasicBlock *Succ : Successors)
915 MBB.addSuccessor(Succ);
916
917 if (IsFallthrough) {
918 AddFalthroughFrom = &MBB;
919 } else {
920 MBB.normalizeSuccProbs();
921 }
922 }
923
924 return false;
925 }
926
parseBasicBlocks()927 bool MIParser::parseBasicBlocks() {
928 lex();
929 // Skip until the first machine basic block.
930 while (Token.is(MIToken::Newline))
931 lex();
932 if (Token.isErrorOrEOF())
933 return Token.isError();
934 // The first parsing pass should have verified that this token is a MBB label
935 // in the 'parseBasicBlockDefinitions' method.
936 assert(Token.is(MIToken::MachineBasicBlockLabel));
937 MachineBasicBlock *AddFalthroughFrom = nullptr;
938 do {
939 MachineBasicBlock *MBB = nullptr;
940 if (parseMBBReference(MBB))
941 return true;
942 if (AddFalthroughFrom) {
943 if (!AddFalthroughFrom->isSuccessor(MBB))
944 AddFalthroughFrom->addSuccessor(MBB);
945 AddFalthroughFrom->normalizeSuccProbs();
946 AddFalthroughFrom = nullptr;
947 }
948 if (parseBasicBlock(*MBB, AddFalthroughFrom))
949 return true;
950 // The method 'parseBasicBlock' should parse the whole block until the next
951 // block or the end of file.
952 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
953 } while (Token.isNot(MIToken::Eof));
954 return false;
955 }
956
parse(MachineInstr * & MI)957 bool MIParser::parse(MachineInstr *&MI) {
958 // Parse any register operands before '='
959 MachineOperand MO = MachineOperand::CreateImm(0);
960 SmallVector<ParsedMachineOperand, 8> Operands;
961 while (Token.isRegister() || Token.isRegisterFlag()) {
962 auto Loc = Token.location();
963 Optional<unsigned> TiedDefIdx;
964 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
965 return true;
966 Operands.push_back(
967 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
968 if (Token.isNot(MIToken::comma))
969 break;
970 lex();
971 }
972 if (!Operands.empty() && expectAndConsume(MIToken::equal))
973 return true;
974
975 unsigned OpCode, Flags = 0;
976 if (Token.isError() || parseInstruction(OpCode, Flags))
977 return true;
978
979 // Parse the remaining machine operands.
980 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
981 Token.isNot(MIToken::kw_post_instr_symbol) &&
982 Token.isNot(MIToken::kw_heap_alloc_marker) &&
983 Token.isNot(MIToken::kw_debug_location) &&
984 Token.isNot(MIToken::kw_debug_instr_number) &&
985 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
986 auto Loc = Token.location();
987 Optional<unsigned> TiedDefIdx;
988 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
989 return true;
990 if ((OpCode == TargetOpcode::DBG_VALUE ||
991 OpCode == TargetOpcode::DBG_VALUE_LIST) &&
992 MO.isReg())
993 MO.setIsDebug();
994 Operands.push_back(
995 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
996 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
997 Token.is(MIToken::lbrace))
998 break;
999 if (Token.isNot(MIToken::comma))
1000 return error("expected ',' before the next machine operand");
1001 lex();
1002 }
1003
1004 MCSymbol *PreInstrSymbol = nullptr;
1005 if (Token.is(MIToken::kw_pre_instr_symbol))
1006 if (parsePreOrPostInstrSymbol(PreInstrSymbol))
1007 return true;
1008 MCSymbol *PostInstrSymbol = nullptr;
1009 if (Token.is(MIToken::kw_post_instr_symbol))
1010 if (parsePreOrPostInstrSymbol(PostInstrSymbol))
1011 return true;
1012 MDNode *HeapAllocMarker = nullptr;
1013 if (Token.is(MIToken::kw_heap_alloc_marker))
1014 if (parseHeapAllocMarker(HeapAllocMarker))
1015 return true;
1016
1017 unsigned InstrNum = 0;
1018 if (Token.is(MIToken::kw_debug_instr_number)) {
1019 lex();
1020 if (Token.isNot(MIToken::IntegerLiteral))
1021 return error("expected an integer literal after 'debug-instr-number'");
1022 if (getUnsigned(InstrNum))
1023 return true;
1024 lex();
1025 // Lex past trailing comma if present.
1026 if (Token.is(MIToken::comma))
1027 lex();
1028 }
1029
1030 DebugLoc DebugLocation;
1031 if (Token.is(MIToken::kw_debug_location)) {
1032 lex();
1033 MDNode *Node = nullptr;
1034 if (Token.is(MIToken::exclaim)) {
1035 if (parseMDNode(Node))
1036 return true;
1037 } else if (Token.is(MIToken::md_dilocation)) {
1038 if (parseDILocation(Node))
1039 return true;
1040 } else
1041 return error("expected a metadata node after 'debug-location'");
1042 if (!isa<DILocation>(Node))
1043 return error("referenced metadata is not a DILocation");
1044 DebugLocation = DebugLoc(Node);
1045 }
1046
1047 // Parse the machine memory operands.
1048 SmallVector<MachineMemOperand *, 2> MemOperands;
1049 if (Token.is(MIToken::coloncolon)) {
1050 lex();
1051 while (!Token.isNewlineOrEOF()) {
1052 MachineMemOperand *MemOp = nullptr;
1053 if (parseMachineMemoryOperand(MemOp))
1054 return true;
1055 MemOperands.push_back(MemOp);
1056 if (Token.isNewlineOrEOF())
1057 break;
1058 if (Token.isNot(MIToken::comma))
1059 return error("expected ',' before the next machine memory operand");
1060 lex();
1061 }
1062 }
1063
1064 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1065 if (!MCID.isVariadic()) {
1066 // FIXME: Move the implicit operand verification to the machine verifier.
1067 if (verifyImplicitOperands(Operands, MCID))
1068 return true;
1069 }
1070
1071 // TODO: Check for extraneous machine operands.
1072 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1073 MI->setFlags(Flags);
1074 for (const auto &Operand : Operands)
1075 MI->addOperand(MF, Operand.Operand);
1076 if (assignRegisterTies(*MI, Operands))
1077 return true;
1078 if (PreInstrSymbol)
1079 MI->setPreInstrSymbol(MF, PreInstrSymbol);
1080 if (PostInstrSymbol)
1081 MI->setPostInstrSymbol(MF, PostInstrSymbol);
1082 if (HeapAllocMarker)
1083 MI->setHeapAllocMarker(MF, HeapAllocMarker);
1084 if (!MemOperands.empty())
1085 MI->setMemRefs(MF, MemOperands);
1086 if (InstrNum)
1087 MI->setDebugInstrNum(InstrNum);
1088 return false;
1089 }
1090
parseStandaloneMBB(MachineBasicBlock * & MBB)1091 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1092 lex();
1093 if (Token.isNot(MIToken::MachineBasicBlock))
1094 return error("expected a machine basic block reference");
1095 if (parseMBBReference(MBB))
1096 return true;
1097 lex();
1098 if (Token.isNot(MIToken::Eof))
1099 return error(
1100 "expected end of string after the machine basic block reference");
1101 return false;
1102 }
1103
parseStandaloneNamedRegister(Register & Reg)1104 bool MIParser::parseStandaloneNamedRegister(Register &Reg) {
1105 lex();
1106 if (Token.isNot(MIToken::NamedRegister))
1107 return error("expected a named register");
1108 if (parseNamedRegister(Reg))
1109 return true;
1110 lex();
1111 if (Token.isNot(MIToken::Eof))
1112 return error("expected end of string after the register reference");
1113 return false;
1114 }
1115
parseStandaloneVirtualRegister(VRegInfo * & Info)1116 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1117 lex();
1118 if (Token.isNot(MIToken::VirtualRegister))
1119 return error("expected a virtual register");
1120 if (parseVirtualRegister(Info))
1121 return true;
1122 lex();
1123 if (Token.isNot(MIToken::Eof))
1124 return error("expected end of string after the register reference");
1125 return false;
1126 }
1127
parseStandaloneRegister(Register & Reg)1128 bool MIParser::parseStandaloneRegister(Register &Reg) {
1129 lex();
1130 if (Token.isNot(MIToken::NamedRegister) &&
1131 Token.isNot(MIToken::VirtualRegister))
1132 return error("expected either a named or virtual register");
1133
1134 VRegInfo *Info;
1135 if (parseRegister(Reg, Info))
1136 return true;
1137
1138 lex();
1139 if (Token.isNot(MIToken::Eof))
1140 return error("expected end of string after the register reference");
1141 return false;
1142 }
1143
parseStandaloneStackObject(int & FI)1144 bool MIParser::parseStandaloneStackObject(int &FI) {
1145 lex();
1146 if (Token.isNot(MIToken::StackObject))
1147 return error("expected a stack object");
1148 if (parseStackFrameIndex(FI))
1149 return true;
1150 if (Token.isNot(MIToken::Eof))
1151 return error("expected end of string after the stack object reference");
1152 return false;
1153 }
1154
parseStandaloneMDNode(MDNode * & Node)1155 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1156 lex();
1157 if (Token.is(MIToken::exclaim)) {
1158 if (parseMDNode(Node))
1159 return true;
1160 } else if (Token.is(MIToken::md_diexpr)) {
1161 if (parseDIExpression(Node))
1162 return true;
1163 } else if (Token.is(MIToken::md_dilocation)) {
1164 if (parseDILocation(Node))
1165 return true;
1166 } else
1167 return error("expected a metadata node");
1168 if (Token.isNot(MIToken::Eof))
1169 return error("expected end of string after the metadata node");
1170 return false;
1171 }
1172
printImplicitRegisterFlag(const MachineOperand & MO)1173 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1174 assert(MO.isImplicit());
1175 return MO.isDef() ? "implicit-def" : "implicit";
1176 }
1177
getRegisterName(const TargetRegisterInfo * TRI,Register Reg)1178 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1179 Register Reg) {
1180 assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
1181 return StringRef(TRI->getName(Reg)).lower();
1182 }
1183
1184 /// Return true if the parsed machine operands contain a given machine operand.
isImplicitOperandIn(const MachineOperand & ImplicitOperand,ArrayRef<ParsedMachineOperand> Operands)1185 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1186 ArrayRef<ParsedMachineOperand> Operands) {
1187 for (const auto &I : Operands) {
1188 if (ImplicitOperand.isIdenticalTo(I.Operand))
1189 return true;
1190 }
1191 return false;
1192 }
1193
verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,const MCInstrDesc & MCID)1194 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1195 const MCInstrDesc &MCID) {
1196 if (MCID.isCall())
1197 // We can't verify call instructions as they can contain arbitrary implicit
1198 // register and register mask operands.
1199 return false;
1200
1201 // Gather all the expected implicit operands.
1202 SmallVector<MachineOperand, 4> ImplicitOperands;
1203 if (MCID.ImplicitDefs)
1204 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1205 ImplicitOperands.push_back(
1206 MachineOperand::CreateReg(*ImpDefs, true, true));
1207 if (MCID.ImplicitUses)
1208 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1209 ImplicitOperands.push_back(
1210 MachineOperand::CreateReg(*ImpUses, false, true));
1211
1212 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1213 assert(TRI && "Expected target register info");
1214 for (const auto &I : ImplicitOperands) {
1215 if (isImplicitOperandIn(I, Operands))
1216 continue;
1217 return error(Operands.empty() ? Token.location() : Operands.back().End,
1218 Twine("missing implicit register operand '") +
1219 printImplicitRegisterFlag(I) + " $" +
1220 getRegisterName(TRI, I.getReg()) + "'");
1221 }
1222 return false;
1223 }
1224
parseInstruction(unsigned & OpCode,unsigned & Flags)1225 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1226 // Allow frame and fast math flags for OPCODE
1227 while (Token.is(MIToken::kw_frame_setup) ||
1228 Token.is(MIToken::kw_frame_destroy) ||
1229 Token.is(MIToken::kw_nnan) ||
1230 Token.is(MIToken::kw_ninf) ||
1231 Token.is(MIToken::kw_nsz) ||
1232 Token.is(MIToken::kw_arcp) ||
1233 Token.is(MIToken::kw_contract) ||
1234 Token.is(MIToken::kw_afn) ||
1235 Token.is(MIToken::kw_reassoc) ||
1236 Token.is(MIToken::kw_nuw) ||
1237 Token.is(MIToken::kw_nsw) ||
1238 Token.is(MIToken::kw_exact) ||
1239 Token.is(MIToken::kw_nofpexcept)) {
1240 // Mine frame and fast math flags
1241 if (Token.is(MIToken::kw_frame_setup))
1242 Flags |= MachineInstr::FrameSetup;
1243 if (Token.is(MIToken::kw_frame_destroy))
1244 Flags |= MachineInstr::FrameDestroy;
1245 if (Token.is(MIToken::kw_nnan))
1246 Flags |= MachineInstr::FmNoNans;
1247 if (Token.is(MIToken::kw_ninf))
1248 Flags |= MachineInstr::FmNoInfs;
1249 if (Token.is(MIToken::kw_nsz))
1250 Flags |= MachineInstr::FmNsz;
1251 if (Token.is(MIToken::kw_arcp))
1252 Flags |= MachineInstr::FmArcp;
1253 if (Token.is(MIToken::kw_contract))
1254 Flags |= MachineInstr::FmContract;
1255 if (Token.is(MIToken::kw_afn))
1256 Flags |= MachineInstr::FmAfn;
1257 if (Token.is(MIToken::kw_reassoc))
1258 Flags |= MachineInstr::FmReassoc;
1259 if (Token.is(MIToken::kw_nuw))
1260 Flags |= MachineInstr::NoUWrap;
1261 if (Token.is(MIToken::kw_nsw))
1262 Flags |= MachineInstr::NoSWrap;
1263 if (Token.is(MIToken::kw_exact))
1264 Flags |= MachineInstr::IsExact;
1265 if (Token.is(MIToken::kw_nofpexcept))
1266 Flags |= MachineInstr::NoFPExcept;
1267
1268 lex();
1269 }
1270 if (Token.isNot(MIToken::Identifier))
1271 return error("expected a machine instruction");
1272 StringRef InstrName = Token.stringValue();
1273 if (PFS.Target.parseInstrName(InstrName, OpCode))
1274 return error(Twine("unknown machine instruction name '") + InstrName + "'");
1275 lex();
1276 return false;
1277 }
1278
parseNamedRegister(Register & Reg)1279 bool MIParser::parseNamedRegister(Register &Reg) {
1280 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1281 StringRef Name = Token.stringValue();
1282 if (PFS.Target.getRegisterByName(Name, Reg))
1283 return error(Twine("unknown register name '") + Name + "'");
1284 return false;
1285 }
1286
parseNamedVirtualRegister(VRegInfo * & Info)1287 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1288 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1289 StringRef Name = Token.stringValue();
1290 // TODO: Check that the VReg name is not the same as a physical register name.
1291 // If it is, then print a warning (when warnings are implemented).
1292 Info = &PFS.getVRegInfoNamed(Name);
1293 return false;
1294 }
1295
parseVirtualRegister(VRegInfo * & Info)1296 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1297 if (Token.is(MIToken::NamedVirtualRegister))
1298 return parseNamedVirtualRegister(Info);
1299 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1300 unsigned ID;
1301 if (getUnsigned(ID))
1302 return true;
1303 Info = &PFS.getVRegInfo(ID);
1304 return false;
1305 }
1306
parseRegister(Register & Reg,VRegInfo * & Info)1307 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) {
1308 switch (Token.kind()) {
1309 case MIToken::underscore:
1310 Reg = 0;
1311 return false;
1312 case MIToken::NamedRegister:
1313 return parseNamedRegister(Reg);
1314 case MIToken::NamedVirtualRegister:
1315 case MIToken::VirtualRegister:
1316 if (parseVirtualRegister(Info))
1317 return true;
1318 Reg = Info->VReg;
1319 return false;
1320 // TODO: Parse other register kinds.
1321 default:
1322 llvm_unreachable("The current token should be a register");
1323 }
1324 }
1325
parseRegisterClassOrBank(VRegInfo & RegInfo)1326 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1327 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1328 return error("expected '_', register class, or register bank name");
1329 StringRef::iterator Loc = Token.location();
1330 StringRef Name = Token.stringValue();
1331
1332 // Was it a register class?
1333 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1334 if (RC) {
1335 lex();
1336
1337 switch (RegInfo.Kind) {
1338 case VRegInfo::UNKNOWN:
1339 case VRegInfo::NORMAL:
1340 RegInfo.Kind = VRegInfo::NORMAL;
1341 if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1342 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1343 return error(Loc, Twine("conflicting register classes, previously: ") +
1344 Twine(TRI.getRegClassName(RegInfo.D.RC)));
1345 }
1346 RegInfo.D.RC = RC;
1347 RegInfo.Explicit = true;
1348 return false;
1349
1350 case VRegInfo::GENERIC:
1351 case VRegInfo::REGBANK:
1352 return error(Loc, "register class specification on generic register");
1353 }
1354 llvm_unreachable("Unexpected register kind");
1355 }
1356
1357 // Should be a register bank or a generic register.
1358 const RegisterBank *RegBank = nullptr;
1359 if (Name != "_") {
1360 RegBank = PFS.Target.getRegBank(Name);
1361 if (!RegBank)
1362 return error(Loc, "expected '_', register class, or register bank name");
1363 }
1364
1365 lex();
1366
1367 switch (RegInfo.Kind) {
1368 case VRegInfo::UNKNOWN:
1369 case VRegInfo::GENERIC:
1370 case VRegInfo::REGBANK:
1371 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1372 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1373 return error(Loc, "conflicting generic register banks");
1374 RegInfo.D.RegBank = RegBank;
1375 RegInfo.Explicit = true;
1376 return false;
1377
1378 case VRegInfo::NORMAL:
1379 return error(Loc, "register bank specification on normal register");
1380 }
1381 llvm_unreachable("Unexpected register kind");
1382 }
1383
parseRegisterFlag(unsigned & Flags)1384 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1385 const unsigned OldFlags = Flags;
1386 switch (Token.kind()) {
1387 case MIToken::kw_implicit:
1388 Flags |= RegState::Implicit;
1389 break;
1390 case MIToken::kw_implicit_define:
1391 Flags |= RegState::ImplicitDefine;
1392 break;
1393 case MIToken::kw_def:
1394 Flags |= RegState::Define;
1395 break;
1396 case MIToken::kw_dead:
1397 Flags |= RegState::Dead;
1398 break;
1399 case MIToken::kw_killed:
1400 Flags |= RegState::Kill;
1401 break;
1402 case MIToken::kw_undef:
1403 Flags |= RegState::Undef;
1404 break;
1405 case MIToken::kw_internal:
1406 Flags |= RegState::InternalRead;
1407 break;
1408 case MIToken::kw_early_clobber:
1409 Flags |= RegState::EarlyClobber;
1410 break;
1411 case MIToken::kw_debug_use:
1412 Flags |= RegState::Debug;
1413 break;
1414 case MIToken::kw_renamable:
1415 Flags |= RegState::Renamable;
1416 break;
1417 default:
1418 llvm_unreachable("The current token should be a register flag");
1419 }
1420 if (OldFlags == Flags)
1421 // We know that the same flag is specified more than once when the flags
1422 // weren't modified.
1423 return error("duplicate '" + Token.stringValue() + "' register flag");
1424 lex();
1425 return false;
1426 }
1427
parseSubRegisterIndex(unsigned & SubReg)1428 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1429 assert(Token.is(MIToken::dot));
1430 lex();
1431 if (Token.isNot(MIToken::Identifier))
1432 return error("expected a subregister index after '.'");
1433 auto Name = Token.stringValue();
1434 SubReg = PFS.Target.getSubRegIndex(Name);
1435 if (!SubReg)
1436 return error(Twine("use of unknown subregister index '") + Name + "'");
1437 lex();
1438 return false;
1439 }
1440
parseRegisterTiedDefIndex(unsigned & TiedDefIdx)1441 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1442 if (!consumeIfPresent(MIToken::kw_tied_def))
1443 return true;
1444 if (Token.isNot(MIToken::IntegerLiteral))
1445 return error("expected an integer literal after 'tied-def'");
1446 if (getUnsigned(TiedDefIdx))
1447 return true;
1448 lex();
1449 if (expectAndConsume(MIToken::rparen))
1450 return true;
1451 return false;
1452 }
1453
assignRegisterTies(MachineInstr & MI,ArrayRef<ParsedMachineOperand> Operands)1454 bool MIParser::assignRegisterTies(MachineInstr &MI,
1455 ArrayRef<ParsedMachineOperand> Operands) {
1456 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1457 for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1458 if (!Operands[I].TiedDefIdx)
1459 continue;
1460 // The parser ensures that this operand is a register use, so we just have
1461 // to check the tied-def operand.
1462 unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1463 if (DefIdx >= E)
1464 return error(Operands[I].Begin,
1465 Twine("use of invalid tied-def operand index '" +
1466 Twine(DefIdx) + "'; instruction has only ") +
1467 Twine(E) + " operands");
1468 const auto &DefOperand = Operands[DefIdx].Operand;
1469 if (!DefOperand.isReg() || !DefOperand.isDef())
1470 // FIXME: add note with the def operand.
1471 return error(Operands[I].Begin,
1472 Twine("use of invalid tied-def operand index '") +
1473 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1474 " isn't a defined register");
1475 // Check that the tied-def operand wasn't tied elsewhere.
1476 for (const auto &TiedPair : TiedRegisterPairs) {
1477 if (TiedPair.first == DefIdx)
1478 return error(Operands[I].Begin,
1479 Twine("the tied-def operand #") + Twine(DefIdx) +
1480 " is already tied with another register operand");
1481 }
1482 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1483 }
1484 // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1485 // indices must be less than tied max.
1486 for (const auto &TiedPair : TiedRegisterPairs)
1487 MI.tieOperands(TiedPair.first, TiedPair.second);
1488 return false;
1489 }
1490
parseRegisterOperand(MachineOperand & Dest,Optional<unsigned> & TiedDefIdx,bool IsDef)1491 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1492 Optional<unsigned> &TiedDefIdx,
1493 bool IsDef) {
1494 unsigned Flags = IsDef ? RegState::Define : 0;
1495 while (Token.isRegisterFlag()) {
1496 if (parseRegisterFlag(Flags))
1497 return true;
1498 }
1499 if (!Token.isRegister())
1500 return error("expected a register after register flags");
1501 Register Reg;
1502 VRegInfo *RegInfo;
1503 if (parseRegister(Reg, RegInfo))
1504 return true;
1505 lex();
1506 unsigned SubReg = 0;
1507 if (Token.is(MIToken::dot)) {
1508 if (parseSubRegisterIndex(SubReg))
1509 return true;
1510 if (!Register::isVirtualRegister(Reg))
1511 return error("subregister index expects a virtual register");
1512 }
1513 if (Token.is(MIToken::colon)) {
1514 if (!Register::isVirtualRegister(Reg))
1515 return error("register class specification expects a virtual register");
1516 lex();
1517 if (parseRegisterClassOrBank(*RegInfo))
1518 return true;
1519 }
1520 MachineRegisterInfo &MRI = MF.getRegInfo();
1521 if ((Flags & RegState::Define) == 0) {
1522 if (consumeIfPresent(MIToken::lparen)) {
1523 unsigned Idx;
1524 if (!parseRegisterTiedDefIndex(Idx))
1525 TiedDefIdx = Idx;
1526 else {
1527 // Try a redundant low-level type.
1528 LLT Ty;
1529 if (parseLowLevelType(Token.location(), Ty))
1530 return error("expected tied-def or low-level type after '('");
1531
1532 if (expectAndConsume(MIToken::rparen))
1533 return true;
1534
1535 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1536 return error("inconsistent type for generic virtual register");
1537
1538 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1539 MRI.setType(Reg, Ty);
1540 }
1541 }
1542 } else if (consumeIfPresent(MIToken::lparen)) {
1543 // Virtual registers may have a tpe with GlobalISel.
1544 if (!Register::isVirtualRegister(Reg))
1545 return error("unexpected type on physical register");
1546
1547 LLT Ty;
1548 if (parseLowLevelType(Token.location(), Ty))
1549 return true;
1550
1551 if (expectAndConsume(MIToken::rparen))
1552 return true;
1553
1554 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1555 return error("inconsistent type for generic virtual register");
1556
1557 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1558 MRI.setType(Reg, Ty);
1559 } else if (Register::isVirtualRegister(Reg)) {
1560 // Generic virtual registers must have a type.
1561 // If we end up here this means the type hasn't been specified and
1562 // this is bad!
1563 if (RegInfo->Kind == VRegInfo::GENERIC ||
1564 RegInfo->Kind == VRegInfo::REGBANK)
1565 return error("generic virtual registers must have a type");
1566 }
1567 Dest = MachineOperand::CreateReg(
1568 Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1569 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1570 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1571 Flags & RegState::InternalRead, Flags & RegState::Renamable);
1572
1573 return false;
1574 }
1575
parseImmediateOperand(MachineOperand & Dest)1576 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1577 assert(Token.is(MIToken::IntegerLiteral));
1578 const APSInt &Int = Token.integerValue();
1579 if (Int.getMinSignedBits() > 64)
1580 return error("integer literal is too large to be an immediate operand");
1581 Dest = MachineOperand::CreateImm(Int.getExtValue());
1582 lex();
1583 return false;
1584 }
1585
parseTargetImmMnemonic(const unsigned OpCode,const unsigned OpIdx,MachineOperand & Dest,const MIRFormatter & MF)1586 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1587 const unsigned OpIdx,
1588 MachineOperand &Dest,
1589 const MIRFormatter &MF) {
1590 assert(Token.is(MIToken::dot));
1591 auto Loc = Token.location(); // record start position
1592 size_t Len = 1; // for "."
1593 lex();
1594
1595 // Handle the case that mnemonic starts with number.
1596 if (Token.is(MIToken::IntegerLiteral)) {
1597 Len += Token.range().size();
1598 lex();
1599 }
1600
1601 StringRef Src;
1602 if (Token.is(MIToken::comma))
1603 Src = StringRef(Loc, Len);
1604 else {
1605 assert(Token.is(MIToken::Identifier));
1606 Src = StringRef(Loc, Len + Token.stringValue().size());
1607 }
1608 int64_t Val;
1609 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1610 [this](StringRef::iterator Loc, const Twine &Msg)
1611 -> bool { return error(Loc, Msg); }))
1612 return true;
1613
1614 Dest = MachineOperand::CreateImm(Val);
1615 if (!Token.is(MIToken::comma))
1616 lex();
1617 return false;
1618 }
1619
parseIRConstant(StringRef::iterator Loc,StringRef StringValue,PerFunctionMIParsingState & PFS,const Constant * & C,ErrorCallbackType ErrCB)1620 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1621 PerFunctionMIParsingState &PFS, const Constant *&C,
1622 ErrorCallbackType ErrCB) {
1623 auto Source = StringValue.str(); // The source has to be null terminated.
1624 SMDiagnostic Err;
1625 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1626 &PFS.IRSlots);
1627 if (!C)
1628 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1629 return false;
1630 }
1631
parseIRConstant(StringRef::iterator Loc,StringRef StringValue,const Constant * & C)1632 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1633 const Constant *&C) {
1634 return ::parseIRConstant(
1635 Loc, StringValue, PFS, C,
1636 [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1637 return error(Loc, Msg);
1638 });
1639 }
1640
parseIRConstant(StringRef::iterator Loc,const Constant * & C)1641 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1642 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1643 return true;
1644 lex();
1645 return false;
1646 }
1647
1648 // See LLT implemntation for bit size limits.
verifyScalarSize(uint64_t Size)1649 static bool verifyScalarSize(uint64_t Size) {
1650 return Size != 0 && isUInt<16>(Size);
1651 }
1652
verifyVectorElementCount(uint64_t NumElts)1653 static bool verifyVectorElementCount(uint64_t NumElts) {
1654 return NumElts != 0 && isUInt<16>(NumElts);
1655 }
1656
verifyAddrSpace(uint64_t AddrSpace)1657 static bool verifyAddrSpace(uint64_t AddrSpace) {
1658 return isUInt<24>(AddrSpace);
1659 }
1660
parseLowLevelType(StringRef::iterator Loc,LLT & Ty)1661 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1662 if (Token.range().front() == 's' || Token.range().front() == 'p') {
1663 StringRef SizeStr = Token.range().drop_front();
1664 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1665 return error("expected integers after 's'/'p' type character");
1666 }
1667
1668 if (Token.range().front() == 's') {
1669 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1670 if (!verifyScalarSize(ScalarSize))
1671 return error("invalid size for scalar type");
1672
1673 Ty = LLT::scalar(ScalarSize);
1674 lex();
1675 return false;
1676 } else if (Token.range().front() == 'p') {
1677 const DataLayout &DL = MF.getDataLayout();
1678 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1679 if (!verifyAddrSpace(AS))
1680 return error("invalid address space number");
1681
1682 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1683 lex();
1684 return false;
1685 }
1686
1687 // Now we're looking for a vector.
1688 if (Token.isNot(MIToken::less))
1689 return error(Loc,
1690 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1691 lex();
1692
1693 if (Token.isNot(MIToken::IntegerLiteral))
1694 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1695 uint64_t NumElements = Token.integerValue().getZExtValue();
1696 if (!verifyVectorElementCount(NumElements))
1697 return error("invalid number of vector elements");
1698
1699 lex();
1700
1701 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1702 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1703 lex();
1704
1705 if (Token.range().front() != 's' && Token.range().front() != 'p')
1706 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1707 StringRef SizeStr = Token.range().drop_front();
1708 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1709 return error("expected integers after 's'/'p' type character");
1710
1711 if (Token.range().front() == 's') {
1712 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1713 if (!verifyScalarSize(ScalarSize))
1714 return error("invalid size for scalar type");
1715 Ty = LLT::scalar(ScalarSize);
1716 } else if (Token.range().front() == 'p') {
1717 const DataLayout &DL = MF.getDataLayout();
1718 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1719 if (!verifyAddrSpace(AS))
1720 return error("invalid address space number");
1721
1722 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1723 } else
1724 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1725 lex();
1726
1727 if (Token.isNot(MIToken::greater))
1728 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1729 lex();
1730
1731 Ty = LLT::vector(NumElements, Ty);
1732 return false;
1733 }
1734
parseTypedImmediateOperand(MachineOperand & Dest)1735 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1736 assert(Token.is(MIToken::Identifier));
1737 StringRef TypeStr = Token.range();
1738 if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1739 TypeStr.front() != 'p')
1740 return error(
1741 "a typed immediate operand should start with one of 'i', 's', or 'p'");
1742 StringRef SizeStr = Token.range().drop_front();
1743 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1744 return error("expected integers after 'i'/'s'/'p' type character");
1745
1746 auto Loc = Token.location();
1747 lex();
1748 if (Token.isNot(MIToken::IntegerLiteral)) {
1749 if (Token.isNot(MIToken::Identifier) ||
1750 !(Token.range() == "true" || Token.range() == "false"))
1751 return error("expected an integer literal");
1752 }
1753 const Constant *C = nullptr;
1754 if (parseIRConstant(Loc, C))
1755 return true;
1756 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1757 return false;
1758 }
1759
parseFPImmediateOperand(MachineOperand & Dest)1760 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1761 auto Loc = Token.location();
1762 lex();
1763 if (Token.isNot(MIToken::FloatingPointLiteral) &&
1764 Token.isNot(MIToken::HexLiteral))
1765 return error("expected a floating point literal");
1766 const Constant *C = nullptr;
1767 if (parseIRConstant(Loc, C))
1768 return true;
1769 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1770 return false;
1771 }
1772
getHexUint(const MIToken & Token,APInt & Result)1773 static bool getHexUint(const MIToken &Token, APInt &Result) {
1774 assert(Token.is(MIToken::HexLiteral));
1775 StringRef S = Token.range();
1776 assert(S[0] == '0' && tolower(S[1]) == 'x');
1777 // This could be a floating point literal with a special prefix.
1778 if (!isxdigit(S[2]))
1779 return true;
1780 StringRef V = S.substr(2);
1781 APInt A(V.size()*4, V, 16);
1782
1783 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
1784 // sure it isn't the case before constructing result.
1785 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
1786 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1787 return false;
1788 }
1789
getUnsigned(const MIToken & Token,unsigned & Result,ErrorCallbackType ErrCB)1790 static bool getUnsigned(const MIToken &Token, unsigned &Result,
1791 ErrorCallbackType ErrCB) {
1792 if (Token.hasIntegerValue()) {
1793 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1794 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1795 if (Val64 == Limit)
1796 return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1797 Result = Val64;
1798 return false;
1799 }
1800 if (Token.is(MIToken::HexLiteral)) {
1801 APInt A;
1802 if (getHexUint(Token, A))
1803 return true;
1804 if (A.getBitWidth() > 32)
1805 return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1806 Result = A.getZExtValue();
1807 return false;
1808 }
1809 return true;
1810 }
1811
getUnsigned(unsigned & Result)1812 bool MIParser::getUnsigned(unsigned &Result) {
1813 return ::getUnsigned(
1814 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1815 return error(Loc, Msg);
1816 });
1817 }
1818
parseMBBReference(MachineBasicBlock * & MBB)1819 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1820 assert(Token.is(MIToken::MachineBasicBlock) ||
1821 Token.is(MIToken::MachineBasicBlockLabel));
1822 unsigned Number;
1823 if (getUnsigned(Number))
1824 return true;
1825 auto MBBInfo = PFS.MBBSlots.find(Number);
1826 if (MBBInfo == PFS.MBBSlots.end())
1827 return error(Twine("use of undefined machine basic block #") +
1828 Twine(Number));
1829 MBB = MBBInfo->second;
1830 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1831 // we drop the <irname> from the bb.<id>.<irname> format.
1832 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1833 return error(Twine("the name of machine basic block #") + Twine(Number) +
1834 " isn't '" + Token.stringValue() + "'");
1835 return false;
1836 }
1837
parseMBBOperand(MachineOperand & Dest)1838 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1839 MachineBasicBlock *MBB;
1840 if (parseMBBReference(MBB))
1841 return true;
1842 Dest = MachineOperand::CreateMBB(MBB);
1843 lex();
1844 return false;
1845 }
1846
parseStackFrameIndex(int & FI)1847 bool MIParser::parseStackFrameIndex(int &FI) {
1848 assert(Token.is(MIToken::StackObject));
1849 unsigned ID;
1850 if (getUnsigned(ID))
1851 return true;
1852 auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1853 if (ObjectInfo == PFS.StackObjectSlots.end())
1854 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1855 "'");
1856 StringRef Name;
1857 if (const auto *Alloca =
1858 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1859 Name = Alloca->getName();
1860 if (!Token.stringValue().empty() && Token.stringValue() != Name)
1861 return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1862 "' isn't '" + Token.stringValue() + "'");
1863 lex();
1864 FI = ObjectInfo->second;
1865 return false;
1866 }
1867
parseStackObjectOperand(MachineOperand & Dest)1868 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1869 int FI;
1870 if (parseStackFrameIndex(FI))
1871 return true;
1872 Dest = MachineOperand::CreateFI(FI);
1873 return false;
1874 }
1875
parseFixedStackFrameIndex(int & FI)1876 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1877 assert(Token.is(MIToken::FixedStackObject));
1878 unsigned ID;
1879 if (getUnsigned(ID))
1880 return true;
1881 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1882 if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1883 return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1884 Twine(ID) + "'");
1885 lex();
1886 FI = ObjectInfo->second;
1887 return false;
1888 }
1889
parseFixedStackObjectOperand(MachineOperand & Dest)1890 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1891 int FI;
1892 if (parseFixedStackFrameIndex(FI))
1893 return true;
1894 Dest = MachineOperand::CreateFI(FI);
1895 return false;
1896 }
1897
parseGlobalValue(const MIToken & Token,PerFunctionMIParsingState & PFS,GlobalValue * & GV,ErrorCallbackType ErrCB)1898 static bool parseGlobalValue(const MIToken &Token,
1899 PerFunctionMIParsingState &PFS, GlobalValue *&GV,
1900 ErrorCallbackType ErrCB) {
1901 switch (Token.kind()) {
1902 case MIToken::NamedGlobalValue: {
1903 const Module *M = PFS.MF.getFunction().getParent();
1904 GV = M->getNamedValue(Token.stringValue());
1905 if (!GV)
1906 return ErrCB(Token.location(), Twine("use of undefined global value '") +
1907 Token.range() + "'");
1908 break;
1909 }
1910 case MIToken::GlobalValue: {
1911 unsigned GVIdx;
1912 if (getUnsigned(Token, GVIdx, ErrCB))
1913 return true;
1914 if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1915 return ErrCB(Token.location(), Twine("use of undefined global value '@") +
1916 Twine(GVIdx) + "'");
1917 GV = PFS.IRSlots.GlobalValues[GVIdx];
1918 break;
1919 }
1920 default:
1921 llvm_unreachable("The current token should be a global value");
1922 }
1923 return false;
1924 }
1925
parseGlobalValue(GlobalValue * & GV)1926 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1927 return ::parseGlobalValue(
1928 Token, PFS, GV,
1929 [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1930 return error(Loc, Msg);
1931 });
1932 }
1933
parseGlobalAddressOperand(MachineOperand & Dest)1934 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1935 GlobalValue *GV = nullptr;
1936 if (parseGlobalValue(GV))
1937 return true;
1938 lex();
1939 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1940 if (parseOperandsOffset(Dest))
1941 return true;
1942 return false;
1943 }
1944
parseConstantPoolIndexOperand(MachineOperand & Dest)1945 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1946 assert(Token.is(MIToken::ConstantPoolItem));
1947 unsigned ID;
1948 if (getUnsigned(ID))
1949 return true;
1950 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1951 if (ConstantInfo == PFS.ConstantPoolSlots.end())
1952 return error("use of undefined constant '%const." + Twine(ID) + "'");
1953 lex();
1954 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1955 if (parseOperandsOffset(Dest))
1956 return true;
1957 return false;
1958 }
1959
parseJumpTableIndexOperand(MachineOperand & Dest)1960 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1961 assert(Token.is(MIToken::JumpTableIndex));
1962 unsigned ID;
1963 if (getUnsigned(ID))
1964 return true;
1965 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1966 if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1967 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1968 lex();
1969 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1970 return false;
1971 }
1972
parseExternalSymbolOperand(MachineOperand & Dest)1973 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1974 assert(Token.is(MIToken::ExternalSymbol));
1975 const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1976 lex();
1977 Dest = MachineOperand::CreateES(Symbol);
1978 if (parseOperandsOffset(Dest))
1979 return true;
1980 return false;
1981 }
1982
parseMCSymbolOperand(MachineOperand & Dest)1983 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1984 assert(Token.is(MIToken::MCSymbol));
1985 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1986 lex();
1987 Dest = MachineOperand::CreateMCSymbol(Symbol);
1988 if (parseOperandsOffset(Dest))
1989 return true;
1990 return false;
1991 }
1992
parseSubRegisterIndexOperand(MachineOperand & Dest)1993 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1994 assert(Token.is(MIToken::SubRegisterIndex));
1995 StringRef Name = Token.stringValue();
1996 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
1997 if (SubRegIndex == 0)
1998 return error(Twine("unknown subregister index '") + Name + "'");
1999 lex();
2000 Dest = MachineOperand::CreateImm(SubRegIndex);
2001 return false;
2002 }
2003
parseMDNode(MDNode * & Node)2004 bool MIParser::parseMDNode(MDNode *&Node) {
2005 assert(Token.is(MIToken::exclaim));
2006
2007 auto Loc = Token.location();
2008 lex();
2009 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2010 return error("expected metadata id after '!'");
2011 unsigned ID;
2012 if (getUnsigned(ID))
2013 return true;
2014 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
2015 if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
2016 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
2017 lex();
2018 Node = NodeInfo->second.get();
2019 return false;
2020 }
2021
parseDIExpression(MDNode * & Expr)2022 bool MIParser::parseDIExpression(MDNode *&Expr) {
2023 assert(Token.is(MIToken::md_diexpr));
2024 lex();
2025
2026 // FIXME: Share this parsing with the IL parser.
2027 SmallVector<uint64_t, 8> Elements;
2028
2029 if (expectAndConsume(MIToken::lparen))
2030 return true;
2031
2032 if (Token.isNot(MIToken::rparen)) {
2033 do {
2034 if (Token.is(MIToken::Identifier)) {
2035 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
2036 lex();
2037 Elements.push_back(Op);
2038 continue;
2039 }
2040 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
2041 lex();
2042 Elements.push_back(Enc);
2043 continue;
2044 }
2045 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
2046 }
2047
2048 if (Token.isNot(MIToken::IntegerLiteral) ||
2049 Token.integerValue().isSigned())
2050 return error("expected unsigned integer");
2051
2052 auto &U = Token.integerValue();
2053 if (U.ugt(UINT64_MAX))
2054 return error("element too large, limit is " + Twine(UINT64_MAX));
2055 Elements.push_back(U.getZExtValue());
2056 lex();
2057
2058 } while (consumeIfPresent(MIToken::comma));
2059 }
2060
2061 if (expectAndConsume(MIToken::rparen))
2062 return true;
2063
2064 Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
2065 return false;
2066 }
2067
parseDILocation(MDNode * & Loc)2068 bool MIParser::parseDILocation(MDNode *&Loc) {
2069 assert(Token.is(MIToken::md_dilocation));
2070 lex();
2071
2072 bool HaveLine = false;
2073 unsigned Line = 0;
2074 unsigned Column = 0;
2075 MDNode *Scope = nullptr;
2076 MDNode *InlinedAt = nullptr;
2077 bool ImplicitCode = false;
2078
2079 if (expectAndConsume(MIToken::lparen))
2080 return true;
2081
2082 if (Token.isNot(MIToken::rparen)) {
2083 do {
2084 if (Token.is(MIToken::Identifier)) {
2085 if (Token.stringValue() == "line") {
2086 lex();
2087 if (expectAndConsume(MIToken::colon))
2088 return true;
2089 if (Token.isNot(MIToken::IntegerLiteral) ||
2090 Token.integerValue().isSigned())
2091 return error("expected unsigned integer");
2092 Line = Token.integerValue().getZExtValue();
2093 HaveLine = true;
2094 lex();
2095 continue;
2096 }
2097 if (Token.stringValue() == "column") {
2098 lex();
2099 if (expectAndConsume(MIToken::colon))
2100 return true;
2101 if (Token.isNot(MIToken::IntegerLiteral) ||
2102 Token.integerValue().isSigned())
2103 return error("expected unsigned integer");
2104 Column = Token.integerValue().getZExtValue();
2105 lex();
2106 continue;
2107 }
2108 if (Token.stringValue() == "scope") {
2109 lex();
2110 if (expectAndConsume(MIToken::colon))
2111 return true;
2112 if (parseMDNode(Scope))
2113 return error("expected metadata node");
2114 if (!isa<DIScope>(Scope))
2115 return error("expected DIScope node");
2116 continue;
2117 }
2118 if (Token.stringValue() == "inlinedAt") {
2119 lex();
2120 if (expectAndConsume(MIToken::colon))
2121 return true;
2122 if (Token.is(MIToken::exclaim)) {
2123 if (parseMDNode(InlinedAt))
2124 return true;
2125 } else if (Token.is(MIToken::md_dilocation)) {
2126 if (parseDILocation(InlinedAt))
2127 return true;
2128 } else
2129 return error("expected metadata node");
2130 if (!isa<DILocation>(InlinedAt))
2131 return error("expected DILocation node");
2132 continue;
2133 }
2134 if (Token.stringValue() == "isImplicitCode") {
2135 lex();
2136 if (expectAndConsume(MIToken::colon))
2137 return true;
2138 if (!Token.is(MIToken::Identifier))
2139 return error("expected true/false");
2140 // As far as I can see, we don't have any existing need for parsing
2141 // true/false in MIR yet. Do it ad-hoc until there's something else
2142 // that needs it.
2143 if (Token.stringValue() == "true")
2144 ImplicitCode = true;
2145 else if (Token.stringValue() == "false")
2146 ImplicitCode = false;
2147 else
2148 return error("expected true/false");
2149 lex();
2150 continue;
2151 }
2152 }
2153 return error(Twine("invalid DILocation argument '") +
2154 Token.stringValue() + "'");
2155 } while (consumeIfPresent(MIToken::comma));
2156 }
2157
2158 if (expectAndConsume(MIToken::rparen))
2159 return true;
2160
2161 if (!HaveLine)
2162 return error("DILocation requires line number");
2163 if (!Scope)
2164 return error("DILocation requires a scope");
2165
2166 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2167 InlinedAt, ImplicitCode);
2168 return false;
2169 }
2170
parseMetadataOperand(MachineOperand & Dest)2171 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2172 MDNode *Node = nullptr;
2173 if (Token.is(MIToken::exclaim)) {
2174 if (parseMDNode(Node))
2175 return true;
2176 } else if (Token.is(MIToken::md_diexpr)) {
2177 if (parseDIExpression(Node))
2178 return true;
2179 }
2180 Dest = MachineOperand::CreateMetadata(Node);
2181 return false;
2182 }
2183
parseCFIOffset(int & Offset)2184 bool MIParser::parseCFIOffset(int &Offset) {
2185 if (Token.isNot(MIToken::IntegerLiteral))
2186 return error("expected a cfi offset");
2187 if (Token.integerValue().getMinSignedBits() > 32)
2188 return error("expected a 32 bit integer (the cfi offset is too large)");
2189 Offset = (int)Token.integerValue().getExtValue();
2190 lex();
2191 return false;
2192 }
2193
parseCFIRegister(Register & Reg)2194 bool MIParser::parseCFIRegister(Register &Reg) {
2195 if (Token.isNot(MIToken::NamedRegister))
2196 return error("expected a cfi register");
2197 Register LLVMReg;
2198 if (parseNamedRegister(LLVMReg))
2199 return true;
2200 const auto *TRI = MF.getSubtarget().getRegisterInfo();
2201 assert(TRI && "Expected target register info");
2202 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2203 if (DwarfReg < 0)
2204 return error("invalid DWARF register");
2205 Reg = (unsigned)DwarfReg;
2206 lex();
2207 return false;
2208 }
2209
parseCFIEscapeValues(std::string & Values)2210 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2211 do {
2212 if (Token.isNot(MIToken::HexLiteral))
2213 return error("expected a hexadecimal literal");
2214 unsigned Value;
2215 if (getUnsigned(Value))
2216 return true;
2217 if (Value > UINT8_MAX)
2218 return error("expected a 8-bit integer (too large)");
2219 Values.push_back(static_cast<uint8_t>(Value));
2220 lex();
2221 } while (consumeIfPresent(MIToken::comma));
2222 return false;
2223 }
2224
parseCFIOperand(MachineOperand & Dest)2225 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2226 auto Kind = Token.kind();
2227 lex();
2228 int Offset;
2229 Register Reg;
2230 unsigned CFIIndex;
2231 switch (Kind) {
2232 case MIToken::kw_cfi_same_value:
2233 if (parseCFIRegister(Reg))
2234 return true;
2235 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2236 break;
2237 case MIToken::kw_cfi_offset:
2238 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2239 parseCFIOffset(Offset))
2240 return true;
2241 CFIIndex =
2242 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2243 break;
2244 case MIToken::kw_cfi_rel_offset:
2245 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2246 parseCFIOffset(Offset))
2247 return true;
2248 CFIIndex = MF.addFrameInst(
2249 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2250 break;
2251 case MIToken::kw_cfi_def_cfa_register:
2252 if (parseCFIRegister(Reg))
2253 return true;
2254 CFIIndex =
2255 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2256 break;
2257 case MIToken::kw_cfi_def_cfa_offset:
2258 if (parseCFIOffset(Offset))
2259 return true;
2260 CFIIndex =
2261 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
2262 break;
2263 case MIToken::kw_cfi_adjust_cfa_offset:
2264 if (parseCFIOffset(Offset))
2265 return true;
2266 CFIIndex = MF.addFrameInst(
2267 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2268 break;
2269 case MIToken::kw_cfi_def_cfa:
2270 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2271 parseCFIOffset(Offset))
2272 return true;
2273 CFIIndex =
2274 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset));
2275 break;
2276 case MIToken::kw_cfi_remember_state:
2277 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2278 break;
2279 case MIToken::kw_cfi_restore:
2280 if (parseCFIRegister(Reg))
2281 return true;
2282 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2283 break;
2284 case MIToken::kw_cfi_restore_state:
2285 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2286 break;
2287 case MIToken::kw_cfi_undefined:
2288 if (parseCFIRegister(Reg))
2289 return true;
2290 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2291 break;
2292 case MIToken::kw_cfi_register: {
2293 Register Reg2;
2294 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2295 parseCFIRegister(Reg2))
2296 return true;
2297
2298 CFIIndex =
2299 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2300 break;
2301 }
2302 case MIToken::kw_cfi_window_save:
2303 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2304 break;
2305 case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2306 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2307 break;
2308 case MIToken::kw_cfi_escape: {
2309 std::string Values;
2310 if (parseCFIEscapeValues(Values))
2311 return true;
2312 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2313 break;
2314 }
2315 default:
2316 // TODO: Parse the other CFI operands.
2317 llvm_unreachable("The current token should be a cfi operand");
2318 }
2319 Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2320 return false;
2321 }
2322
parseIRBlock(BasicBlock * & BB,const Function & F)2323 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2324 switch (Token.kind()) {
2325 case MIToken::NamedIRBlock: {
2326 BB = dyn_cast_or_null<BasicBlock>(
2327 F.getValueSymbolTable()->lookup(Token.stringValue()));
2328 if (!BB)
2329 return error(Twine("use of undefined IR block '") + Token.range() + "'");
2330 break;
2331 }
2332 case MIToken::IRBlock: {
2333 unsigned SlotNumber = 0;
2334 if (getUnsigned(SlotNumber))
2335 return true;
2336 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2337 if (!BB)
2338 return error(Twine("use of undefined IR block '%ir-block.") +
2339 Twine(SlotNumber) + "'");
2340 break;
2341 }
2342 default:
2343 llvm_unreachable("The current token should be an IR block reference");
2344 }
2345 return false;
2346 }
2347
parseBlockAddressOperand(MachineOperand & Dest)2348 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2349 assert(Token.is(MIToken::kw_blockaddress));
2350 lex();
2351 if (expectAndConsume(MIToken::lparen))
2352 return true;
2353 if (Token.isNot(MIToken::GlobalValue) &&
2354 Token.isNot(MIToken::NamedGlobalValue))
2355 return error("expected a global value");
2356 GlobalValue *GV = nullptr;
2357 if (parseGlobalValue(GV))
2358 return true;
2359 auto *F = dyn_cast<Function>(GV);
2360 if (!F)
2361 return error("expected an IR function reference");
2362 lex();
2363 if (expectAndConsume(MIToken::comma))
2364 return true;
2365 BasicBlock *BB = nullptr;
2366 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2367 return error("expected an IR block reference");
2368 if (parseIRBlock(BB, *F))
2369 return true;
2370 lex();
2371 if (expectAndConsume(MIToken::rparen))
2372 return true;
2373 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2374 if (parseOperandsOffset(Dest))
2375 return true;
2376 return false;
2377 }
2378
parseIntrinsicOperand(MachineOperand & Dest)2379 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2380 assert(Token.is(MIToken::kw_intrinsic));
2381 lex();
2382 if (expectAndConsume(MIToken::lparen))
2383 return error("expected syntax intrinsic(@llvm.whatever)");
2384
2385 if (Token.isNot(MIToken::NamedGlobalValue))
2386 return error("expected syntax intrinsic(@llvm.whatever)");
2387
2388 std::string Name = std::string(Token.stringValue());
2389 lex();
2390
2391 if (expectAndConsume(MIToken::rparen))
2392 return error("expected ')' to terminate intrinsic name");
2393
2394 // Find out what intrinsic we're dealing with, first try the global namespace
2395 // and then the target's private intrinsics if that fails.
2396 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2397 Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2398 if (ID == Intrinsic::not_intrinsic && TII)
2399 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2400
2401 if (ID == Intrinsic::not_intrinsic)
2402 return error("unknown intrinsic name");
2403 Dest = MachineOperand::CreateIntrinsicID(ID);
2404
2405 return false;
2406 }
2407
parsePredicateOperand(MachineOperand & Dest)2408 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2409 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2410 bool IsFloat = Token.is(MIToken::kw_floatpred);
2411 lex();
2412
2413 if (expectAndConsume(MIToken::lparen))
2414 return error("expected syntax intpred(whatever) or floatpred(whatever");
2415
2416 if (Token.isNot(MIToken::Identifier))
2417 return error("whatever");
2418
2419 CmpInst::Predicate Pred;
2420 if (IsFloat) {
2421 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2422 .Case("false", CmpInst::FCMP_FALSE)
2423 .Case("oeq", CmpInst::FCMP_OEQ)
2424 .Case("ogt", CmpInst::FCMP_OGT)
2425 .Case("oge", CmpInst::FCMP_OGE)
2426 .Case("olt", CmpInst::FCMP_OLT)
2427 .Case("ole", CmpInst::FCMP_OLE)
2428 .Case("one", CmpInst::FCMP_ONE)
2429 .Case("ord", CmpInst::FCMP_ORD)
2430 .Case("uno", CmpInst::FCMP_UNO)
2431 .Case("ueq", CmpInst::FCMP_UEQ)
2432 .Case("ugt", CmpInst::FCMP_UGT)
2433 .Case("uge", CmpInst::FCMP_UGE)
2434 .Case("ult", CmpInst::FCMP_ULT)
2435 .Case("ule", CmpInst::FCMP_ULE)
2436 .Case("une", CmpInst::FCMP_UNE)
2437 .Case("true", CmpInst::FCMP_TRUE)
2438 .Default(CmpInst::BAD_FCMP_PREDICATE);
2439 if (!CmpInst::isFPPredicate(Pred))
2440 return error("invalid floating-point predicate");
2441 } else {
2442 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2443 .Case("eq", CmpInst::ICMP_EQ)
2444 .Case("ne", CmpInst::ICMP_NE)
2445 .Case("sgt", CmpInst::ICMP_SGT)
2446 .Case("sge", CmpInst::ICMP_SGE)
2447 .Case("slt", CmpInst::ICMP_SLT)
2448 .Case("sle", CmpInst::ICMP_SLE)
2449 .Case("ugt", CmpInst::ICMP_UGT)
2450 .Case("uge", CmpInst::ICMP_UGE)
2451 .Case("ult", CmpInst::ICMP_ULT)
2452 .Case("ule", CmpInst::ICMP_ULE)
2453 .Default(CmpInst::BAD_ICMP_PREDICATE);
2454 if (!CmpInst::isIntPredicate(Pred))
2455 return error("invalid integer predicate");
2456 }
2457
2458 lex();
2459 Dest = MachineOperand::CreatePredicate(Pred);
2460 if (expectAndConsume(MIToken::rparen))
2461 return error("predicate should be terminated by ')'.");
2462
2463 return false;
2464 }
2465
parseShuffleMaskOperand(MachineOperand & Dest)2466 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2467 assert(Token.is(MIToken::kw_shufflemask));
2468
2469 lex();
2470 if (expectAndConsume(MIToken::lparen))
2471 return error("expected syntax shufflemask(<integer or undef>, ...)");
2472
2473 SmallVector<int, 32> ShufMask;
2474 do {
2475 if (Token.is(MIToken::kw_undef)) {
2476 ShufMask.push_back(-1);
2477 } else if (Token.is(MIToken::IntegerLiteral)) {
2478 const APSInt &Int = Token.integerValue();
2479 ShufMask.push_back(Int.getExtValue());
2480 } else
2481 return error("expected integer constant");
2482
2483 lex();
2484 } while (consumeIfPresent(MIToken::comma));
2485
2486 if (expectAndConsume(MIToken::rparen))
2487 return error("shufflemask should be terminated by ')'.");
2488
2489 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask);
2490 Dest = MachineOperand::CreateShuffleMask(MaskAlloc);
2491 return false;
2492 }
2493
parseTargetIndexOperand(MachineOperand & Dest)2494 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2495 assert(Token.is(MIToken::kw_target_index));
2496 lex();
2497 if (expectAndConsume(MIToken::lparen))
2498 return true;
2499 if (Token.isNot(MIToken::Identifier))
2500 return error("expected the name of the target index");
2501 int Index = 0;
2502 if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2503 return error("use of undefined target index '" + Token.stringValue() + "'");
2504 lex();
2505 if (expectAndConsume(MIToken::rparen))
2506 return true;
2507 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2508 if (parseOperandsOffset(Dest))
2509 return true;
2510 return false;
2511 }
2512
parseCustomRegisterMaskOperand(MachineOperand & Dest)2513 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2514 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2515 lex();
2516 if (expectAndConsume(MIToken::lparen))
2517 return true;
2518
2519 uint32_t *Mask = MF.allocateRegMask();
2520 while (true) {
2521 if (Token.isNot(MIToken::NamedRegister))
2522 return error("expected a named register");
2523 Register Reg;
2524 if (parseNamedRegister(Reg))
2525 return true;
2526 lex();
2527 Mask[Reg / 32] |= 1U << (Reg % 32);
2528 // TODO: Report an error if the same register is used more than once.
2529 if (Token.isNot(MIToken::comma))
2530 break;
2531 lex();
2532 }
2533
2534 if (expectAndConsume(MIToken::rparen))
2535 return true;
2536 Dest = MachineOperand::CreateRegMask(Mask);
2537 return false;
2538 }
2539
parseLiveoutRegisterMaskOperand(MachineOperand & Dest)2540 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2541 assert(Token.is(MIToken::kw_liveout));
2542 uint32_t *Mask = MF.allocateRegMask();
2543 lex();
2544 if (expectAndConsume(MIToken::lparen))
2545 return true;
2546 while (true) {
2547 if (Token.isNot(MIToken::NamedRegister))
2548 return error("expected a named register");
2549 Register Reg;
2550 if (parseNamedRegister(Reg))
2551 return true;
2552 lex();
2553 Mask[Reg / 32] |= 1U << (Reg % 32);
2554 // TODO: Report an error if the same register is used more than once.
2555 if (Token.isNot(MIToken::comma))
2556 break;
2557 lex();
2558 }
2559 if (expectAndConsume(MIToken::rparen))
2560 return true;
2561 Dest = MachineOperand::CreateRegLiveOut(Mask);
2562 return false;
2563 }
2564
parseMachineOperand(const unsigned OpCode,const unsigned OpIdx,MachineOperand & Dest,Optional<unsigned> & TiedDefIdx)2565 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2566 MachineOperand &Dest,
2567 Optional<unsigned> &TiedDefIdx) {
2568 switch (Token.kind()) {
2569 case MIToken::kw_implicit:
2570 case MIToken::kw_implicit_define:
2571 case MIToken::kw_def:
2572 case MIToken::kw_dead:
2573 case MIToken::kw_killed:
2574 case MIToken::kw_undef:
2575 case MIToken::kw_internal:
2576 case MIToken::kw_early_clobber:
2577 case MIToken::kw_debug_use:
2578 case MIToken::kw_renamable:
2579 case MIToken::underscore:
2580 case MIToken::NamedRegister:
2581 case MIToken::VirtualRegister:
2582 case MIToken::NamedVirtualRegister:
2583 return parseRegisterOperand(Dest, TiedDefIdx);
2584 case MIToken::IntegerLiteral:
2585 return parseImmediateOperand(Dest);
2586 case MIToken::kw_half:
2587 case MIToken::kw_float:
2588 case MIToken::kw_double:
2589 case MIToken::kw_x86_fp80:
2590 case MIToken::kw_fp128:
2591 case MIToken::kw_ppc_fp128:
2592 return parseFPImmediateOperand(Dest);
2593 case MIToken::MachineBasicBlock:
2594 return parseMBBOperand(Dest);
2595 case MIToken::StackObject:
2596 return parseStackObjectOperand(Dest);
2597 case MIToken::FixedStackObject:
2598 return parseFixedStackObjectOperand(Dest);
2599 case MIToken::GlobalValue:
2600 case MIToken::NamedGlobalValue:
2601 return parseGlobalAddressOperand(Dest);
2602 case MIToken::ConstantPoolItem:
2603 return parseConstantPoolIndexOperand(Dest);
2604 case MIToken::JumpTableIndex:
2605 return parseJumpTableIndexOperand(Dest);
2606 case MIToken::ExternalSymbol:
2607 return parseExternalSymbolOperand(Dest);
2608 case MIToken::MCSymbol:
2609 return parseMCSymbolOperand(Dest);
2610 case MIToken::SubRegisterIndex:
2611 return parseSubRegisterIndexOperand(Dest);
2612 case MIToken::md_diexpr:
2613 case MIToken::exclaim:
2614 return parseMetadataOperand(Dest);
2615 case MIToken::kw_cfi_same_value:
2616 case MIToken::kw_cfi_offset:
2617 case MIToken::kw_cfi_rel_offset:
2618 case MIToken::kw_cfi_def_cfa_register:
2619 case MIToken::kw_cfi_def_cfa_offset:
2620 case MIToken::kw_cfi_adjust_cfa_offset:
2621 case MIToken::kw_cfi_escape:
2622 case MIToken::kw_cfi_def_cfa:
2623 case MIToken::kw_cfi_register:
2624 case MIToken::kw_cfi_remember_state:
2625 case MIToken::kw_cfi_restore:
2626 case MIToken::kw_cfi_restore_state:
2627 case MIToken::kw_cfi_undefined:
2628 case MIToken::kw_cfi_window_save:
2629 case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2630 return parseCFIOperand(Dest);
2631 case MIToken::kw_blockaddress:
2632 return parseBlockAddressOperand(Dest);
2633 case MIToken::kw_intrinsic:
2634 return parseIntrinsicOperand(Dest);
2635 case MIToken::kw_target_index:
2636 return parseTargetIndexOperand(Dest);
2637 case MIToken::kw_liveout:
2638 return parseLiveoutRegisterMaskOperand(Dest);
2639 case MIToken::kw_floatpred:
2640 case MIToken::kw_intpred:
2641 return parsePredicateOperand(Dest);
2642 case MIToken::kw_shufflemask:
2643 return parseShuffleMaskOperand(Dest);
2644 case MIToken::Error:
2645 return true;
2646 case MIToken::Identifier:
2647 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2648 Dest = MachineOperand::CreateRegMask(RegMask);
2649 lex();
2650 break;
2651 } else if (Token.stringValue() == "CustomRegMask") {
2652 return parseCustomRegisterMaskOperand(Dest);
2653 } else
2654 return parseTypedImmediateOperand(Dest);
2655 case MIToken::dot: {
2656 const auto *TII = MF.getSubtarget().getInstrInfo();
2657 if (const auto *Formatter = TII->getMIRFormatter()) {
2658 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2659 }
2660 LLVM_FALLTHROUGH;
2661 }
2662 default:
2663 // FIXME: Parse the MCSymbol machine operand.
2664 return error("expected a machine operand");
2665 }
2666 return false;
2667 }
2668
parseMachineOperandAndTargetFlags(const unsigned OpCode,const unsigned OpIdx,MachineOperand & Dest,Optional<unsigned> & TiedDefIdx)2669 bool MIParser::parseMachineOperandAndTargetFlags(
2670 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2671 Optional<unsigned> &TiedDefIdx) {
2672 unsigned TF = 0;
2673 bool HasTargetFlags = false;
2674 if (Token.is(MIToken::kw_target_flags)) {
2675 HasTargetFlags = true;
2676 lex();
2677 if (expectAndConsume(MIToken::lparen))
2678 return true;
2679 if (Token.isNot(MIToken::Identifier))
2680 return error("expected the name of the target flag");
2681 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2682 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2683 return error("use of undefined target flag '" + Token.stringValue() +
2684 "'");
2685 }
2686 lex();
2687 while (Token.is(MIToken::comma)) {
2688 lex();
2689 if (Token.isNot(MIToken::Identifier))
2690 return error("expected the name of the target flag");
2691 unsigned BitFlag = 0;
2692 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2693 return error("use of undefined target flag '" + Token.stringValue() +
2694 "'");
2695 // TODO: Report an error when using a duplicate bit target flag.
2696 TF |= BitFlag;
2697 lex();
2698 }
2699 if (expectAndConsume(MIToken::rparen))
2700 return true;
2701 }
2702 auto Loc = Token.location();
2703 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
2704 return true;
2705 if (!HasTargetFlags)
2706 return false;
2707 if (Dest.isReg())
2708 return error(Loc, "register operands can't have target flags");
2709 Dest.setTargetFlags(TF);
2710 return false;
2711 }
2712
parseOffset(int64_t & Offset)2713 bool MIParser::parseOffset(int64_t &Offset) {
2714 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2715 return false;
2716 StringRef Sign = Token.range();
2717 bool IsNegative = Token.is(MIToken::minus);
2718 lex();
2719 if (Token.isNot(MIToken::IntegerLiteral))
2720 return error("expected an integer literal after '" + Sign + "'");
2721 if (Token.integerValue().getMinSignedBits() > 64)
2722 return error("expected 64-bit integer (too large)");
2723 Offset = Token.integerValue().getExtValue();
2724 if (IsNegative)
2725 Offset = -Offset;
2726 lex();
2727 return false;
2728 }
2729
parseAlignment(unsigned & Alignment)2730 bool MIParser::parseAlignment(unsigned &Alignment) {
2731 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign));
2732 lex();
2733 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2734 return error("expected an integer literal after 'align'");
2735 if (getUnsigned(Alignment))
2736 return true;
2737 lex();
2738
2739 if (!isPowerOf2_32(Alignment))
2740 return error("expected a power-of-2 literal after 'align'");
2741
2742 return false;
2743 }
2744
parseAddrspace(unsigned & Addrspace)2745 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2746 assert(Token.is(MIToken::kw_addrspace));
2747 lex();
2748 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2749 return error("expected an integer literal after 'addrspace'");
2750 if (getUnsigned(Addrspace))
2751 return true;
2752 lex();
2753 return false;
2754 }
2755
parseOperandsOffset(MachineOperand & Op)2756 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2757 int64_t Offset = 0;
2758 if (parseOffset(Offset))
2759 return true;
2760 Op.setOffset(Offset);
2761 return false;
2762 }
2763
parseIRValue(const MIToken & Token,PerFunctionMIParsingState & PFS,const Value * & V,ErrorCallbackType ErrCB)2764 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
2765 const Value *&V, ErrorCallbackType ErrCB) {
2766 switch (Token.kind()) {
2767 case MIToken::NamedIRValue: {
2768 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2769 break;
2770 }
2771 case MIToken::IRValue: {
2772 unsigned SlotNumber = 0;
2773 if (getUnsigned(Token, SlotNumber, ErrCB))
2774 return true;
2775 V = PFS.getIRValue(SlotNumber);
2776 break;
2777 }
2778 case MIToken::NamedGlobalValue:
2779 case MIToken::GlobalValue: {
2780 GlobalValue *GV = nullptr;
2781 if (parseGlobalValue(Token, PFS, GV, ErrCB))
2782 return true;
2783 V = GV;
2784 break;
2785 }
2786 case MIToken::QuotedIRValue: {
2787 const Constant *C = nullptr;
2788 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
2789 return true;
2790 V = C;
2791 break;
2792 }
2793 case MIToken::kw_unknown_address:
2794 V = nullptr;
2795 return false;
2796 default:
2797 llvm_unreachable("The current token should be an IR block reference");
2798 }
2799 if (!V)
2800 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
2801 return false;
2802 }
2803
parseIRValue(const Value * & V)2804 bool MIParser::parseIRValue(const Value *&V) {
2805 return ::parseIRValue(
2806 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2807 return error(Loc, Msg);
2808 });
2809 }
2810
getUint64(uint64_t & Result)2811 bool MIParser::getUint64(uint64_t &Result) {
2812 if (Token.hasIntegerValue()) {
2813 if (Token.integerValue().getActiveBits() > 64)
2814 return error("expected 64-bit integer (too large)");
2815 Result = Token.integerValue().getZExtValue();
2816 return false;
2817 }
2818 if (Token.is(MIToken::HexLiteral)) {
2819 APInt A;
2820 if (getHexUint(A))
2821 return true;
2822 if (A.getBitWidth() > 64)
2823 return error("expected 64-bit integer (too large)");
2824 Result = A.getZExtValue();
2825 return false;
2826 }
2827 return true;
2828 }
2829
getHexUint(APInt & Result)2830 bool MIParser::getHexUint(APInt &Result) {
2831 return ::getHexUint(Token, Result);
2832 }
2833
parseMemoryOperandFlag(MachineMemOperand::Flags & Flags)2834 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2835 const auto OldFlags = Flags;
2836 switch (Token.kind()) {
2837 case MIToken::kw_volatile:
2838 Flags |= MachineMemOperand::MOVolatile;
2839 break;
2840 case MIToken::kw_non_temporal:
2841 Flags |= MachineMemOperand::MONonTemporal;
2842 break;
2843 case MIToken::kw_dereferenceable:
2844 Flags |= MachineMemOperand::MODereferenceable;
2845 break;
2846 case MIToken::kw_invariant:
2847 Flags |= MachineMemOperand::MOInvariant;
2848 break;
2849 case MIToken::StringConstant: {
2850 MachineMemOperand::Flags TF;
2851 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
2852 return error("use of undefined target MMO flag '" + Token.stringValue() +
2853 "'");
2854 Flags |= TF;
2855 break;
2856 }
2857 default:
2858 llvm_unreachable("The current token should be a memory operand flag");
2859 }
2860 if (OldFlags == Flags)
2861 // We know that the same flag is specified more than once when the flags
2862 // weren't modified.
2863 return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2864 lex();
2865 return false;
2866 }
2867
parseMemoryPseudoSourceValue(const PseudoSourceValue * & PSV)2868 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2869 switch (Token.kind()) {
2870 case MIToken::kw_stack:
2871 PSV = MF.getPSVManager().getStack();
2872 break;
2873 case MIToken::kw_got:
2874 PSV = MF.getPSVManager().getGOT();
2875 break;
2876 case MIToken::kw_jump_table:
2877 PSV = MF.getPSVManager().getJumpTable();
2878 break;
2879 case MIToken::kw_constant_pool:
2880 PSV = MF.getPSVManager().getConstantPool();
2881 break;
2882 case MIToken::FixedStackObject: {
2883 int FI;
2884 if (parseFixedStackFrameIndex(FI))
2885 return true;
2886 PSV = MF.getPSVManager().getFixedStack(FI);
2887 // The token was already consumed, so use return here instead of break.
2888 return false;
2889 }
2890 case MIToken::StackObject: {
2891 int FI;
2892 if (parseStackFrameIndex(FI))
2893 return true;
2894 PSV = MF.getPSVManager().getFixedStack(FI);
2895 // The token was already consumed, so use return here instead of break.
2896 return false;
2897 }
2898 case MIToken::kw_call_entry:
2899 lex();
2900 switch (Token.kind()) {
2901 case MIToken::GlobalValue:
2902 case MIToken::NamedGlobalValue: {
2903 GlobalValue *GV = nullptr;
2904 if (parseGlobalValue(GV))
2905 return true;
2906 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2907 break;
2908 }
2909 case MIToken::ExternalSymbol:
2910 PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2911 MF.createExternalSymbolName(Token.stringValue()));
2912 break;
2913 default:
2914 return error(
2915 "expected a global value or an external symbol after 'call-entry'");
2916 }
2917 break;
2918 case MIToken::kw_custom: {
2919 lex();
2920 const auto *TII = MF.getSubtarget().getInstrInfo();
2921 if (const auto *Formatter = TII->getMIRFormatter()) {
2922 if (Formatter->parseCustomPseudoSourceValue(
2923 Token.stringValue(), MF, PFS, PSV,
2924 [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2925 return error(Loc, Msg);
2926 }))
2927 return true;
2928 } else
2929 return error("unable to parse target custom pseudo source value");
2930 break;
2931 }
2932 default:
2933 llvm_unreachable("The current token should be pseudo source value");
2934 }
2935 lex();
2936 return false;
2937 }
2938
parseMachinePointerInfo(MachinePointerInfo & Dest)2939 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2940 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2941 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2942 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2943 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
2944 const PseudoSourceValue *PSV = nullptr;
2945 if (parseMemoryPseudoSourceValue(PSV))
2946 return true;
2947 int64_t Offset = 0;
2948 if (parseOffset(Offset))
2949 return true;
2950 Dest = MachinePointerInfo(PSV, Offset);
2951 return false;
2952 }
2953 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2954 Token.isNot(MIToken::GlobalValue) &&
2955 Token.isNot(MIToken::NamedGlobalValue) &&
2956 Token.isNot(MIToken::QuotedIRValue) &&
2957 Token.isNot(MIToken::kw_unknown_address))
2958 return error("expected an IR value reference");
2959 const Value *V = nullptr;
2960 if (parseIRValue(V))
2961 return true;
2962 if (V && !V->getType()->isPointerTy())
2963 return error("expected a pointer IR value");
2964 lex();
2965 int64_t Offset = 0;
2966 if (parseOffset(Offset))
2967 return true;
2968 Dest = MachinePointerInfo(V, Offset);
2969 return false;
2970 }
2971
parseOptionalScope(LLVMContext & Context,SyncScope::ID & SSID)2972 bool MIParser::parseOptionalScope(LLVMContext &Context,
2973 SyncScope::ID &SSID) {
2974 SSID = SyncScope::System;
2975 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2976 lex();
2977 if (expectAndConsume(MIToken::lparen))
2978 return error("expected '(' in syncscope");
2979
2980 std::string SSN;
2981 if (parseStringConstant(SSN))
2982 return true;
2983
2984 SSID = Context.getOrInsertSyncScopeID(SSN);
2985 if (expectAndConsume(MIToken::rparen))
2986 return error("expected ')' in syncscope");
2987 }
2988
2989 return false;
2990 }
2991
parseOptionalAtomicOrdering(AtomicOrdering & Order)2992 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2993 Order = AtomicOrdering::NotAtomic;
2994 if (Token.isNot(MIToken::Identifier))
2995 return false;
2996
2997 Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2998 .Case("unordered", AtomicOrdering::Unordered)
2999 .Case("monotonic", AtomicOrdering::Monotonic)
3000 .Case("acquire", AtomicOrdering::Acquire)
3001 .Case("release", AtomicOrdering::Release)
3002 .Case("acq_rel", AtomicOrdering::AcquireRelease)
3003 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
3004 .Default(AtomicOrdering::NotAtomic);
3005
3006 if (Order != AtomicOrdering::NotAtomic) {
3007 lex();
3008 return false;
3009 }
3010
3011 return error("expected an atomic scope, ordering or a size specification");
3012 }
3013
parseMachineMemoryOperand(MachineMemOperand * & Dest)3014 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
3015 if (expectAndConsume(MIToken::lparen))
3016 return true;
3017 MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
3018 while (Token.isMemoryOperandFlag()) {
3019 if (parseMemoryOperandFlag(Flags))
3020 return true;
3021 }
3022 if (Token.isNot(MIToken::Identifier) ||
3023 (Token.stringValue() != "load" && Token.stringValue() != "store"))
3024 return error("expected 'load' or 'store' memory operation");
3025 if (Token.stringValue() == "load")
3026 Flags |= MachineMemOperand::MOLoad;
3027 else
3028 Flags |= MachineMemOperand::MOStore;
3029 lex();
3030
3031 // Optional 'store' for operands that both load and store.
3032 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
3033 Flags |= MachineMemOperand::MOStore;
3034 lex();
3035 }
3036
3037 // Optional synchronization scope.
3038 SyncScope::ID SSID;
3039 if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3040 return true;
3041
3042 // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3043 AtomicOrdering Order, FailureOrder;
3044 if (parseOptionalAtomicOrdering(Order))
3045 return true;
3046
3047 if (parseOptionalAtomicOrdering(FailureOrder))
3048 return true;
3049
3050 if (Token.isNot(MIToken::IntegerLiteral) &&
3051 Token.isNot(MIToken::kw_unknown_size))
3052 return error("expected the size integer literal or 'unknown-size' after "
3053 "memory operation");
3054 uint64_t Size;
3055 if (Token.is(MIToken::IntegerLiteral)) {
3056 if (getUint64(Size))
3057 return true;
3058 } else if (Token.is(MIToken::kw_unknown_size)) {
3059 Size = MemoryLocation::UnknownSize;
3060 }
3061 lex();
3062
3063 MachinePointerInfo Ptr = MachinePointerInfo();
3064 if (Token.is(MIToken::Identifier)) {
3065 const char *Word =
3066 ((Flags & MachineMemOperand::MOLoad) &&
3067 (Flags & MachineMemOperand::MOStore))
3068 ? "on"
3069 : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3070 if (Token.stringValue() != Word)
3071 return error(Twine("expected '") + Word + "'");
3072 lex();
3073
3074 if (parseMachinePointerInfo(Ptr))
3075 return true;
3076 }
3077 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
3078 AAMDNodes AAInfo;
3079 MDNode *Range = nullptr;
3080 while (consumeIfPresent(MIToken::comma)) {
3081 switch (Token.kind()) {
3082 case MIToken::kw_align:
3083 // align is printed if it is different than size.
3084 if (parseAlignment(BaseAlignment))
3085 return true;
3086 break;
3087 case MIToken::kw_basealign:
3088 // basealign is printed if it is different than align.
3089 if (parseAlignment(BaseAlignment))
3090 return true;
3091 break;
3092 case MIToken::kw_addrspace:
3093 if (parseAddrspace(Ptr.AddrSpace))
3094 return true;
3095 break;
3096 case MIToken::md_tbaa:
3097 lex();
3098 if (parseMDNode(AAInfo.TBAA))
3099 return true;
3100 break;
3101 case MIToken::md_alias_scope:
3102 lex();
3103 if (parseMDNode(AAInfo.Scope))
3104 return true;
3105 break;
3106 case MIToken::md_noalias:
3107 lex();
3108 if (parseMDNode(AAInfo.NoAlias))
3109 return true;
3110 break;
3111 case MIToken::md_range:
3112 lex();
3113 if (parseMDNode(Range))
3114 return true;
3115 break;
3116 // TODO: Report an error on duplicate metadata nodes.
3117 default:
3118 return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3119 "'!noalias' or '!range'");
3120 }
3121 }
3122 if (expectAndConsume(MIToken::rparen))
3123 return true;
3124 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, Align(BaseAlignment), AAInfo,
3125 Range, SSID, Order, FailureOrder);
3126 return false;
3127 }
3128
parsePreOrPostInstrSymbol(MCSymbol * & Symbol)3129 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3130 assert((Token.is(MIToken::kw_pre_instr_symbol) ||
3131 Token.is(MIToken::kw_post_instr_symbol)) &&
3132 "Invalid token for a pre- post-instruction symbol!");
3133 lex();
3134 if (Token.isNot(MIToken::MCSymbol))
3135 return error("expected a symbol after 'pre-instr-symbol'");
3136 Symbol = getOrCreateMCSymbol(Token.stringValue());
3137 lex();
3138 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3139 Token.is(MIToken::lbrace))
3140 return false;
3141 if (Token.isNot(MIToken::comma))
3142 return error("expected ',' before the next machine operand");
3143 lex();
3144 return false;
3145 }
3146
parseHeapAllocMarker(MDNode * & Node)3147 bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3148 assert(Token.is(MIToken::kw_heap_alloc_marker) &&
3149 "Invalid token for a heap alloc marker!");
3150 lex();
3151 parseMDNode(Node);
3152 if (!Node)
3153 return error("expected a MDNode after 'heap-alloc-marker'");
3154 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3155 Token.is(MIToken::lbrace))
3156 return false;
3157 if (Token.isNot(MIToken::comma))
3158 return error("expected ',' before the next machine operand");
3159 lex();
3160 return false;
3161 }
3162
initSlots2BasicBlocks(const Function & F,DenseMap<unsigned,const BasicBlock * > & Slots2BasicBlocks)3163 static void initSlots2BasicBlocks(
3164 const Function &F,
3165 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3166 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3167 MST.incorporateFunction(F);
3168 for (auto &BB : F) {
3169 if (BB.hasName())
3170 continue;
3171 int Slot = MST.getLocalSlot(&BB);
3172 if (Slot == -1)
3173 continue;
3174 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3175 }
3176 }
3177
getIRBlockFromSlot(unsigned Slot,const DenseMap<unsigned,const BasicBlock * > & Slots2BasicBlocks)3178 static const BasicBlock *getIRBlockFromSlot(
3179 unsigned Slot,
3180 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3181 return Slots2BasicBlocks.lookup(Slot);
3182 }
3183
getIRBlock(unsigned Slot)3184 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3185 if (Slots2BasicBlocks.empty())
3186 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3187 return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3188 }
3189
getIRBlock(unsigned Slot,const Function & F)3190 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3191 if (&F == &MF.getFunction())
3192 return getIRBlock(Slot);
3193 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3194 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3195 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3196 }
3197
getOrCreateMCSymbol(StringRef Name)3198 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3199 // FIXME: Currently we can't recognize temporary or local symbols and call all
3200 // of the appropriate forms to create them. However, this handles basic cases
3201 // well as most of the special aspects are recognized by a prefix on their
3202 // name, and the input names should already be unique. For test cases, keeping
3203 // the symbol name out of the symbol table isn't terribly important.
3204 return MF.getContext().getOrCreateSymbol(Name);
3205 }
3206
parseStringConstant(std::string & Result)3207 bool MIParser::parseStringConstant(std::string &Result) {
3208 if (Token.isNot(MIToken::StringConstant))
3209 return error("expected string constant");
3210 Result = std::string(Token.stringValue());
3211 lex();
3212 return false;
3213 }
3214
parseMachineBasicBlockDefinitions(PerFunctionMIParsingState & PFS,StringRef Src,SMDiagnostic & Error)3215 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3216 StringRef Src,
3217 SMDiagnostic &Error) {
3218 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3219 }
3220
parseMachineInstructions(PerFunctionMIParsingState & PFS,StringRef Src,SMDiagnostic & Error)3221 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3222 StringRef Src, SMDiagnostic &Error) {
3223 return MIParser(PFS, Error, Src).parseBasicBlocks();
3224 }
3225
parseMBBReference(PerFunctionMIParsingState & PFS,MachineBasicBlock * & MBB,StringRef Src,SMDiagnostic & Error)3226 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3227 MachineBasicBlock *&MBB, StringRef Src,
3228 SMDiagnostic &Error) {
3229 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3230 }
3231
parseRegisterReference(PerFunctionMIParsingState & PFS,Register & Reg,StringRef Src,SMDiagnostic & Error)3232 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3233 Register &Reg, StringRef Src,
3234 SMDiagnostic &Error) {
3235 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3236 }
3237
parseNamedRegisterReference(PerFunctionMIParsingState & PFS,Register & Reg,StringRef Src,SMDiagnostic & Error)3238 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3239 Register &Reg, StringRef Src,
3240 SMDiagnostic &Error) {
3241 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3242 }
3243
parseVirtualRegisterReference(PerFunctionMIParsingState & PFS,VRegInfo * & Info,StringRef Src,SMDiagnostic & Error)3244 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3245 VRegInfo *&Info, StringRef Src,
3246 SMDiagnostic &Error) {
3247 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3248 }
3249
parseStackObjectReference(PerFunctionMIParsingState & PFS,int & FI,StringRef Src,SMDiagnostic & Error)3250 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3251 int &FI, StringRef Src,
3252 SMDiagnostic &Error) {
3253 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3254 }
3255
parseMDNode(PerFunctionMIParsingState & PFS,MDNode * & Node,StringRef Src,SMDiagnostic & Error)3256 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3257 MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3258 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3259 }
3260
parseIRValue(StringRef Src,MachineFunction & MF,PerFunctionMIParsingState & PFS,const Value * & V,ErrorCallbackType ErrorCallback)3261 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
3262 PerFunctionMIParsingState &PFS, const Value *&V,
3263 ErrorCallbackType ErrorCallback) {
3264 MIToken Token;
3265 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3266 ErrorCallback(Loc, Msg);
3267 });
3268 V = nullptr;
3269
3270 return ::parseIRValue(Token, PFS, V, ErrorCallback);
3271 }
3272