1 /* $NetBSD: if.c,v 1.531 2024/12/16 05:18:37 ozaki-r Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.531 2024/12/16 05:18:37 ozaki-r Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 #include "opt_atalk.h" 99 #include "opt_wlan.h" 100 #include "opt_net_mpsafe.h" 101 #include "opt_mrouting.h" 102 #endif 103 104 #include <sys/param.h> 105 #include <sys/mbuf.h> 106 #include <sys/systm.h> 107 #include <sys/callout.h> 108 #include <sys/proc.h> 109 #include <sys/socket.h> 110 #include <sys/socketvar.h> 111 #include <sys/domain.h> 112 #include <sys/protosw.h> 113 #include <sys/kernel.h> 114 #include <sys/ioctl.h> 115 #include <sys/sysctl.h> 116 #include <sys/syslog.h> 117 #include <sys/kauth.h> 118 #include <sys/kmem.h> 119 #include <sys/xcall.h> 120 #include <sys/cpu.h> 121 #include <sys/intr.h> 122 #include <sys/module_hook.h> 123 #include <sys/compat_stub.h> 124 #include <sys/msan.h> 125 #include <sys/hook.h> 126 127 #include <net/if.h> 128 #include <net/if_dl.h> 129 #include <net/if_ether.h> 130 #include <net/if_media.h> 131 #include <net80211/ieee80211.h> 132 #include <net80211/ieee80211_ioctl.h> 133 #include <net/if_types.h> 134 #include <net/route.h> 135 #include <sys/module.h> 136 #ifdef NETATALK 137 #include <netatalk/at_extern.h> 138 #include <netatalk/at.h> 139 #endif 140 #include <net/pfil.h> 141 #include <netinet/in.h> 142 #include <netinet/in_var.h> 143 #include <netinet/ip_encap.h> 144 #include <net/bpf.h> 145 146 #ifdef INET6 147 #include <netinet6/in6_var.h> 148 #include <netinet6/nd6.h> 149 #endif 150 151 #include "ether.h" 152 153 #include "bridge.h" 154 #if NBRIDGE > 0 155 #include <net/if_bridgevar.h> 156 #endif 157 158 #include "carp.h" 159 #if NCARP > 0 160 #include <netinet/ip_carp.h> 161 #endif 162 163 #include <compat/sys/sockio.h> 164 165 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 166 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 167 168 /* 169 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex 170 * for each ifnet. It doesn't matter because: 171 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on 172 * ifq_lock don't happen 173 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock 174 * because if_snd, if_link_state_change and if_link_state_change_process 175 * are all called with KERNEL_LOCK 176 */ 177 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \ 178 mutex_enter((ifp)->if_snd.ifq_lock) 179 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \ 180 mutex_exit((ifp)->if_snd.ifq_lock) 181 182 /* 183 * Global list of interfaces. 184 */ 185 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 186 struct ifnet_head ifnet_list; 187 188 struct pslist_head ifnet_pslist; 189 static ifnet_t ** ifindex2ifnet = NULL; 190 static u_int if_index = 1; 191 static size_t if_indexlim = 0; 192 static uint64_t index_gen; 193 /* Mutex to protect the above objects. */ 194 kmutex_t ifnet_mtx __cacheline_aligned; 195 static struct psref_class *ifnet_psref_class __read_mostly; 196 static pserialize_t ifnet_psz; 197 static struct workqueue *ifnet_link_state_wq __read_mostly; 198 199 static struct workqueue *if_slowtimo_wq __read_mostly; 200 201 static kmutex_t if_clone_mtx; 202 203 struct ifnet *lo0ifp; 204 int ifqmaxlen = IFQ_MAXLEN; 205 206 struct psref_class *ifa_psref_class __read_mostly; 207 208 static int if_delroute_matcher(struct rtentry *, void *); 209 210 static bool if_is_unit(const char *); 211 static struct if_clone *if_clone_lookup(const char *, int *); 212 213 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 214 static int if_cloners_count; 215 216 /* Packet filtering hook for interfaces. */ 217 pfil_head_t * if_pfil __read_mostly; 218 219 static kauth_listener_t if_listener; 220 221 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 222 static void sysctl_sndq_setup(struct sysctllog **, const char *, 223 struct ifaltq *); 224 static void if_slowtimo_intr(void *); 225 static void if_slowtimo_work(struct work *, void *); 226 static int sysctl_if_watchdog(SYSCTLFN_PROTO); 227 static void sysctl_watchdog_setup(struct ifnet *); 228 static void if_attachdomain1(struct ifnet *); 229 static int ifconf(u_long, void *); 230 static int if_transmit(struct ifnet *, struct mbuf *); 231 static int if_clone_create(const char *); 232 static int if_clone_destroy(const char *); 233 static void if_link_state_change_work(struct work *, void *); 234 static void if_up_locked(struct ifnet *); 235 static void _if_down(struct ifnet *); 236 static void if_down_deactivated(struct ifnet *); 237 238 struct if_percpuq { 239 struct ifnet *ipq_ifp; 240 void *ipq_si; 241 struct percpu *ipq_ifqs; /* struct ifqueue */ 242 }; 243 244 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 245 246 static void if_percpuq_drops(void *, void *, struct cpu_info *); 247 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 248 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 249 struct if_percpuq *); 250 251 struct if_deferred_start { 252 struct ifnet *ids_ifp; 253 void (*ids_if_start)(struct ifnet *); 254 void *ids_si; 255 }; 256 257 static void if_deferred_start_softint(void *); 258 static void if_deferred_start_common(struct ifnet *); 259 static void if_deferred_start_destroy(struct ifnet *); 260 261 struct if_slowtimo_data { 262 kmutex_t isd_lock; 263 struct callout isd_ch; 264 struct work isd_work; 265 struct ifnet *isd_ifp; 266 bool isd_queued; 267 bool isd_dying; 268 bool isd_trigger; 269 }; 270 271 /* 272 * Hook for if_vlan - needed by if_agr 273 */ 274 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook; 275 276 static void if_sysctl_setup(struct sysctllog **); 277 278 static int 279 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 280 void *arg0, void *arg1, void *arg2, void *arg3) 281 { 282 int result; 283 enum kauth_network_req req; 284 285 result = KAUTH_RESULT_DEFER; 286 req = (enum kauth_network_req)(uintptr_t)arg1; 287 288 if (action != KAUTH_NETWORK_INTERFACE) 289 return result; 290 291 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 292 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 293 result = KAUTH_RESULT_ALLOW; 294 295 return result; 296 } 297 298 /* 299 * Network interface utility routines. 300 * 301 * Routines with ifa_ifwith* names take sockaddr *'s as 302 * parameters. 303 */ 304 void 305 ifinit(void) 306 { 307 308 #if (defined(INET) || defined(INET6)) 309 encapinit(); 310 #endif 311 312 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 313 if_listener_cb, NULL); 314 315 /* interfaces are available, inform socket code */ 316 ifioctl = doifioctl; 317 } 318 319 /* 320 * XXX Initialization before configure(). 321 * XXX hack to get pfil_add_hook working in autoconf. 322 */ 323 void 324 ifinit1(void) 325 { 326 int error __diagused; 327 328 #ifdef NET_MPSAFE 329 printf("NET_MPSAFE enabled\n"); 330 #endif 331 332 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 333 334 TAILQ_INIT(&ifnet_list); 335 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 336 ifnet_psz = pserialize_create(); 337 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 338 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 339 error = workqueue_create(&ifnet_link_state_wq, "iflnkst", 340 if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET, 341 WQ_MPSAFE); 342 KASSERT(error == 0); 343 PSLIST_INIT(&ifnet_pslist); 344 345 error = workqueue_create(&if_slowtimo_wq, "ifwdog", 346 if_slowtimo_work, NULL, PRI_SOFTNET, IPL_SOFTCLOCK, WQ_MPSAFE); 347 KASSERTMSG(error == 0, "error=%d", error); 348 349 if_indexlim = 8; 350 351 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 352 KASSERT(if_pfil != NULL); 353 354 #if NETHER > 0 || defined(NETATALK) || defined(WLAN) 355 etherinit(); 356 #endif 357 } 358 359 /* XXX must be after domaininit() */ 360 void 361 ifinit_post(void) 362 { 363 364 if_sysctl_setup(NULL); 365 } 366 367 ifnet_t * 368 if_alloc(u_char type) 369 { 370 371 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 372 } 373 374 void 375 if_free(ifnet_t *ifp) 376 { 377 378 kmem_free(ifp, sizeof(ifnet_t)); 379 } 380 381 void 382 if_initname(struct ifnet *ifp, const char *name, int unit) 383 { 384 385 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 386 "%s%d", name, unit); 387 } 388 389 /* 390 * Null routines used while an interface is going away. These routines 391 * just return an error. 392 */ 393 394 int 395 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 396 const struct sockaddr *so, const struct rtentry *rt) 397 { 398 399 return ENXIO; 400 } 401 402 void 403 if_nullinput(struct ifnet *ifp, struct mbuf *m) 404 { 405 406 /* Nothing. */ 407 } 408 409 void 410 if_nullstart(struct ifnet *ifp) 411 { 412 413 /* Nothing. */ 414 } 415 416 int 417 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 418 { 419 420 m_freem(m); 421 return ENXIO; 422 } 423 424 int 425 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 426 { 427 428 return ENXIO; 429 } 430 431 int 432 if_nullinit(struct ifnet *ifp) 433 { 434 435 return ENXIO; 436 } 437 438 void 439 if_nullstop(struct ifnet *ifp, int disable) 440 { 441 442 /* Nothing. */ 443 } 444 445 void 446 if_nullslowtimo(struct ifnet *ifp) 447 { 448 449 /* Nothing. */ 450 } 451 452 void 453 if_nulldrain(struct ifnet *ifp) 454 { 455 456 /* Nothing. */ 457 } 458 459 void 460 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 461 { 462 struct ifaddr *ifa; 463 struct sockaddr_dl *sdl; 464 465 ifp->if_addrlen = addrlen; 466 if_alloc_sadl(ifp); 467 ifa = ifp->if_dl; 468 sdl = satosdl(ifa->ifa_addr); 469 470 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 471 if (factory) { 472 KASSERT(ifp->if_hwdl == NULL); 473 ifp->if_hwdl = ifp->if_dl; 474 ifaref(ifp->if_hwdl); 475 } 476 /* TBD routing socket */ 477 } 478 479 struct ifaddr * 480 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 481 { 482 unsigned socksize, ifasize; 483 int addrlen, namelen; 484 struct sockaddr_dl *mask, *sdl; 485 struct ifaddr *ifa; 486 487 namelen = strlen(ifp->if_xname); 488 addrlen = ifp->if_addrlen; 489 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), 490 sizeof(long)); 491 ifasize = sizeof(*ifa) + 2 * socksize; 492 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO); 493 494 sdl = (struct sockaddr_dl *)(ifa + 1); 495 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 496 497 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 498 ifp->if_xname, namelen, NULL, addrlen); 499 mask->sdl_family = AF_LINK; 500 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 501 memset(&mask->sdl_data[0], 0xff, namelen); 502 ifa->ifa_rtrequest = link_rtrequest; 503 ifa->ifa_addr = (struct sockaddr *)sdl; 504 ifa->ifa_netmask = (struct sockaddr *)mask; 505 ifa_psref_init(ifa); 506 507 *sdlp = sdl; 508 509 return ifa; 510 } 511 512 static void 513 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 514 { 515 const struct sockaddr_dl *sdl; 516 517 ifp->if_dl = ifa; 518 ifaref(ifa); 519 sdl = satosdl(ifa->ifa_addr); 520 ifp->if_sadl = sdl; 521 } 522 523 /* 524 * Allocate the link level name for the specified interface. This 525 * is an attachment helper. It must be called after ifp->if_addrlen 526 * is initialized, which may not be the case when if_attach() is 527 * called. 528 */ 529 void 530 if_alloc_sadl(struct ifnet *ifp) 531 { 532 struct ifaddr *ifa; 533 const struct sockaddr_dl *sdl; 534 535 /* 536 * If the interface already has a link name, release it 537 * now. This is useful for interfaces that can change 538 * link types, and thus switch link names often. 539 */ 540 if (ifp->if_sadl != NULL) 541 if_free_sadl(ifp, 0); 542 543 ifa = if_dl_create(ifp, &sdl); 544 545 ifa_insert(ifp, ifa); 546 if_sadl_setrefs(ifp, ifa); 547 } 548 549 static void 550 if_deactivate_sadl(struct ifnet *ifp) 551 { 552 struct ifaddr *ifa; 553 554 KASSERT(ifp->if_dl != NULL); 555 556 ifa = ifp->if_dl; 557 558 ifp->if_sadl = NULL; 559 560 ifp->if_dl = NULL; 561 ifafree(ifa); 562 } 563 564 static void 565 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa) 566 { 567 struct ifaddr *old; 568 569 KASSERT(ifp->if_dl != NULL); 570 571 old = ifp->if_dl; 572 573 ifaref(ifa); 574 /* XXX Update if_dl and if_sadl atomically */ 575 ifp->if_dl = ifa; 576 ifp->if_sadl = satosdl(ifa->ifa_addr); 577 578 ifafree(old); 579 } 580 581 void 582 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 583 const struct sockaddr_dl *sdl) 584 { 585 struct ifaddr *ifa; 586 const int bound = curlwp_bind(); 587 588 KASSERT(ifa_held(ifa0)); 589 590 const int s = splsoftnet(); 591 592 if_replace_sadl(ifp, ifa0); 593 594 int ss = pserialize_read_enter(); 595 IFADDR_READER_FOREACH(ifa, ifp) { 596 struct psref psref; 597 ifa_acquire(ifa, &psref); 598 pserialize_read_exit(ss); 599 600 rtinit(ifa, RTM_LLINFO_UPD, 0); 601 602 ss = pserialize_read_enter(); 603 ifa_release(ifa, &psref); 604 } 605 pserialize_read_exit(ss); 606 607 splx(s); 608 curlwp_bindx(bound); 609 } 610 611 /* 612 * Free the link level name for the specified interface. This is 613 * a detach helper. This is called from if_detach(). 614 */ 615 void 616 if_free_sadl(struct ifnet *ifp, int factory) 617 { 618 struct ifaddr *ifa; 619 620 if (factory && ifp->if_hwdl != NULL) { 621 ifa = ifp->if_hwdl; 622 ifp->if_hwdl = NULL; 623 ifafree(ifa); 624 } 625 626 ifa = ifp->if_dl; 627 if (ifa == NULL) { 628 KASSERT(ifp->if_sadl == NULL); 629 return; 630 } 631 632 KASSERT(ifp->if_sadl != NULL); 633 634 const int s = splsoftnet(); 635 KASSERT(ifa->ifa_addr->sa_family == AF_LINK); 636 ifa_remove(ifp, ifa); 637 if_deactivate_sadl(ifp); 638 splx(s); 639 } 640 641 static void 642 if_getindex(ifnet_t *ifp) 643 { 644 bool hitlimit = false; 645 char xnamebuf[HOOKNAMSIZ]; 646 647 ifp->if_index_gen = index_gen++; 648 snprintf(xnamebuf, sizeof(xnamebuf), "%s-lshk", ifp->if_xname); 649 ifp->if_linkstate_hooks = simplehook_create(IPL_NET, 650 xnamebuf); 651 652 ifp->if_index = if_index; 653 if (ifindex2ifnet == NULL) { 654 if_index++; 655 goto skip; 656 } 657 while (if_byindex(ifp->if_index)) { 658 /* 659 * If we hit USHRT_MAX, we skip back to 0 since 660 * there are a number of places where the value 661 * of if_index or if_index itself is compared 662 * to or stored in an unsigned short. By 663 * jumping back, we won't botch those assignments 664 * or comparisons. 665 */ 666 if (++if_index == 0) { 667 if_index = 1; 668 } else if (if_index == USHRT_MAX) { 669 /* 670 * However, if we have to jump back to 671 * zero *twice* without finding an empty 672 * slot in ifindex2ifnet[], then there 673 * there are too many (>65535) interfaces. 674 */ 675 if (hitlimit) 676 panic("too many interfaces"); 677 hitlimit = true; 678 if_index = 1; 679 } 680 ifp->if_index = if_index; 681 } 682 skip: 683 /* 684 * ifindex2ifnet is indexed by if_index. Since if_index will 685 * grow dynamically, it should grow too. 686 */ 687 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 688 size_t m, n, oldlim; 689 void *q; 690 691 oldlim = if_indexlim; 692 while (ifp->if_index >= if_indexlim) 693 if_indexlim <<= 1; 694 695 /* grow ifindex2ifnet */ 696 m = oldlim * sizeof(struct ifnet *); 697 n = if_indexlim * sizeof(struct ifnet *); 698 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO); 699 if (ifindex2ifnet != NULL) { 700 memcpy(q, ifindex2ifnet, m); 701 free(ifindex2ifnet, M_IFADDR); 702 } 703 ifindex2ifnet = (struct ifnet **)q; 704 } 705 ifindex2ifnet[ifp->if_index] = ifp; 706 } 707 708 /* 709 * Initialize an interface and assign an index for it. 710 * 711 * It must be called prior to a device specific attach routine 712 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 713 * and be followed by if_register: 714 * 715 * if_initialize(ifp); 716 * ether_ifattach(ifp, enaddr); 717 * if_register(ifp); 718 */ 719 void 720 if_initialize(ifnet_t *ifp) 721 { 722 723 KASSERT(if_indexlim > 0); 724 TAILQ_INIT(&ifp->if_addrlist); 725 726 /* 727 * Link level name is allocated later by a separate call to 728 * if_alloc_sadl(). 729 */ 730 731 if (ifp->if_snd.ifq_maxlen == 0) 732 ifp->if_snd.ifq_maxlen = ifqmaxlen; 733 734 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 735 736 ifp->if_link_state = LINK_STATE_UNKNOWN; 737 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 738 ifp->if_link_scheduled = false; 739 740 ifp->if_capenable = 0; 741 ifp->if_csum_flags_tx = 0; 742 ifp->if_csum_flags_rx = 0; 743 744 #ifdef ALTQ 745 ifp->if_snd.altq_type = 0; 746 ifp->if_snd.altq_disc = NULL; 747 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 748 ifp->if_snd.altq_tbr = NULL; 749 ifp->if_snd.altq_ifp = ifp; 750 #endif 751 752 IFQ_LOCK_INIT(&ifp->if_snd); 753 754 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 755 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 756 757 IF_AFDATA_LOCK_INIT(ifp); 758 759 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 760 PSLIST_INIT(&ifp->if_addr_pslist); 761 psref_target_init(&ifp->if_psref, ifnet_psref_class); 762 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 763 LIST_INIT(&ifp->if_multiaddrs); 764 if_stats_init(ifp); 765 766 IFNET_GLOBAL_LOCK(); 767 if_getindex(ifp); 768 IFNET_GLOBAL_UNLOCK(); 769 } 770 771 /* 772 * Register an interface to the list of "active" interfaces. 773 */ 774 void 775 if_register(ifnet_t *ifp) 776 { 777 /* 778 * If the driver has not supplied its own if_ioctl or if_stop, 779 * then supply the default. 780 */ 781 if (ifp->if_ioctl == NULL) 782 ifp->if_ioctl = ifioctl_common; 783 if (ifp->if_stop == NULL) 784 ifp->if_stop = if_nullstop; 785 786 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 787 788 if (!STAILQ_EMPTY(&domains)) 789 if_attachdomain1(ifp); 790 791 /* Announce the interface. */ 792 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 793 794 if (ifp->if_slowtimo != NULL) { 795 struct if_slowtimo_data *isd; 796 797 isd = kmem_zalloc(sizeof(*isd), KM_SLEEP); 798 mutex_init(&isd->isd_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK); 799 callout_init(&isd->isd_ch, CALLOUT_MPSAFE); 800 callout_setfunc(&isd->isd_ch, if_slowtimo_intr, ifp); 801 isd->isd_ifp = ifp; 802 803 ifp->if_slowtimo_data = isd; 804 805 if_slowtimo_intr(ifp); 806 807 sysctl_watchdog_setup(ifp); 808 } 809 810 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 811 ifp->if_transmit = if_transmit; 812 813 IFNET_GLOBAL_LOCK(); 814 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 815 IFNET_WRITER_INSERT_TAIL(ifp); 816 IFNET_GLOBAL_UNLOCK(); 817 } 818 819 /* 820 * The if_percpuq framework 821 * 822 * It allows network device drivers to execute the network stack 823 * in softint (so called softint-based if_input). It utilizes 824 * softint and percpu ifqueue. It doesn't distribute any packets 825 * between CPUs, unlike pktqueue(9). 826 * 827 * Currently we support two options for device drivers to apply the framework: 828 * - Use it implicitly with less changes 829 * - If you use if_attach in driver's _attach function and if_input in 830 * driver's Rx interrupt handler, a packet is queued and a softint handles 831 * the packet implicitly 832 * - Use it explicitly in each driver (recommended) 833 * - You can use if_percpuq_* directly in your driver 834 * - In this case, you need to allocate struct if_percpuq in driver's softc 835 * - See wm(4) as a reference implementation 836 */ 837 838 static void 839 if_percpuq_softint(void *arg) 840 { 841 struct if_percpuq *ipq = arg; 842 struct ifnet *ifp = ipq->ipq_ifp; 843 struct mbuf *m; 844 845 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 846 if_statinc(ifp, if_ipackets); 847 bpf_mtap(ifp, m, BPF_D_IN); 848 849 ifp->_if_input(ifp, m); 850 } 851 } 852 853 static void 854 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 855 { 856 struct ifqueue *const ifq = p; 857 858 memset(ifq, 0, sizeof(*ifq)); 859 ifq->ifq_maxlen = IFQ_MAXLEN; 860 } 861 862 struct if_percpuq * 863 if_percpuq_create(struct ifnet *ifp) 864 { 865 struct if_percpuq *ipq; 866 u_int flags = SOFTINT_NET; 867 868 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 869 870 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 871 ipq->ipq_ifp = ifp; 872 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq); 873 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 874 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 875 876 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 877 878 return ipq; 879 } 880 881 static struct mbuf * 882 if_percpuq_dequeue(struct if_percpuq *ipq) 883 { 884 struct mbuf *m; 885 struct ifqueue *ifq; 886 887 const int s = splnet(); 888 ifq = percpu_getref(ipq->ipq_ifqs); 889 IF_DEQUEUE(ifq, m); 890 percpu_putref(ipq->ipq_ifqs); 891 splx(s); 892 893 return m; 894 } 895 896 static void 897 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 898 { 899 struct ifqueue *const ifq = p; 900 901 IF_PURGE(ifq); 902 } 903 904 void 905 if_percpuq_destroy(struct if_percpuq *ipq) 906 { 907 908 /* if_detach may already destroy it */ 909 if (ipq == NULL) 910 return; 911 912 softint_disestablish(ipq->ipq_si); 913 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 914 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 915 kmem_free(ipq, sizeof(*ipq)); 916 } 917 918 void 919 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 920 { 921 struct ifqueue *ifq; 922 923 KASSERT(ipq != NULL); 924 925 const int s = splnet(); 926 ifq = percpu_getref(ipq->ipq_ifqs); 927 if (IF_QFULL(ifq)) { 928 IF_DROP(ifq); 929 percpu_putref(ipq->ipq_ifqs); 930 if_statinc(ipq->ipq_ifp, if_iqdrops); 931 m_freem(m); 932 goto out; 933 } 934 IF_ENQUEUE(ifq, m); 935 percpu_putref(ipq->ipq_ifqs); 936 937 softint_schedule(ipq->ipq_si); 938 out: 939 splx(s); 940 } 941 942 static void 943 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 944 { 945 struct ifqueue *const ifq = p; 946 uint64_t *sum = arg; 947 948 *sum += ifq->ifq_drops; 949 } 950 951 static int 952 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 953 { 954 struct sysctlnode node; 955 struct if_percpuq *ipq; 956 uint64_t sum = 0; 957 int error; 958 959 node = *rnode; 960 ipq = node.sysctl_data; 961 962 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 963 964 node.sysctl_data = ∑ 965 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 966 if (error != 0 || newp == NULL) 967 return error; 968 969 return 0; 970 } 971 972 static void 973 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 974 struct if_percpuq *ipq) 975 { 976 const struct sysctlnode *cnode, *rnode; 977 978 if (sysctl_createv(clog, 0, NULL, &rnode, 979 CTLFLAG_PERMANENT, 980 CTLTYPE_NODE, "interfaces", 981 SYSCTL_DESCR("Per-interface controls"), 982 NULL, 0, NULL, 0, 983 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 984 goto bad; 985 986 if (sysctl_createv(clog, 0, &rnode, &rnode, 987 CTLFLAG_PERMANENT, 988 CTLTYPE_NODE, ifname, 989 SYSCTL_DESCR("Interface controls"), 990 NULL, 0, NULL, 0, 991 CTL_CREATE, CTL_EOL) != 0) 992 goto bad; 993 994 if (sysctl_createv(clog, 0, &rnode, &rnode, 995 CTLFLAG_PERMANENT, 996 CTLTYPE_NODE, "rcvq", 997 SYSCTL_DESCR("Interface input queue controls"), 998 NULL, 0, NULL, 0, 999 CTL_CREATE, CTL_EOL) != 0) 1000 goto bad; 1001 1002 #ifdef NOTYET 1003 /* XXX Should show each per-CPU queue length? */ 1004 if (sysctl_createv(clog, 0, &rnode, &rnode, 1005 CTLFLAG_PERMANENT, 1006 CTLTYPE_INT, "len", 1007 SYSCTL_DESCR("Current input queue length"), 1008 sysctl_percpuq_len, 0, NULL, 0, 1009 CTL_CREATE, CTL_EOL) != 0) 1010 goto bad; 1011 1012 if (sysctl_createv(clog, 0, &rnode, &cnode, 1013 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1014 CTLTYPE_INT, "maxlen", 1015 SYSCTL_DESCR("Maximum allowed input queue length"), 1016 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 1017 CTL_CREATE, CTL_EOL) != 0) 1018 goto bad; 1019 #endif 1020 1021 if (sysctl_createv(clog, 0, &rnode, &cnode, 1022 CTLFLAG_PERMANENT, 1023 CTLTYPE_QUAD, "drops", 1024 SYSCTL_DESCR("Total packets dropped due to full input queue"), 1025 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 1026 CTL_CREATE, CTL_EOL) != 0) 1027 goto bad; 1028 1029 return; 1030 bad: 1031 printf("%s: could not attach sysctl nodes\n", ifname); 1032 return; 1033 } 1034 1035 /* 1036 * The deferred if_start framework 1037 * 1038 * The common APIs to defer if_start to softint when if_start is requested 1039 * from a device driver running in hardware interrupt context. 1040 */ 1041 /* 1042 * Call ifp->if_start (or equivalent) in a dedicated softint for 1043 * deferred if_start. 1044 */ 1045 static void 1046 if_deferred_start_softint(void *arg) 1047 { 1048 struct if_deferred_start *ids = arg; 1049 struct ifnet *ifp = ids->ids_ifp; 1050 1051 ids->ids_if_start(ifp); 1052 } 1053 1054 /* 1055 * The default callback function for deferred if_start. 1056 */ 1057 static void 1058 if_deferred_start_common(struct ifnet *ifp) 1059 { 1060 const int s = splnet(); 1061 if_start_lock(ifp); 1062 splx(s); 1063 } 1064 1065 static inline bool 1066 if_snd_is_used(struct ifnet *ifp) 1067 { 1068 1069 return ALTQ_IS_ENABLED(&ifp->if_snd) || 1070 ifp->if_transmit == if_transmit || 1071 ifp->if_transmit == NULL || 1072 ifp->if_transmit == if_nulltransmit; 1073 } 1074 1075 /* 1076 * Schedule deferred if_start. 1077 */ 1078 void 1079 if_schedule_deferred_start(struct ifnet *ifp) 1080 { 1081 1082 KASSERT(ifp->if_deferred_start != NULL); 1083 1084 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1085 return; 1086 1087 softint_schedule(ifp->if_deferred_start->ids_si); 1088 } 1089 1090 /* 1091 * Create an instance of deferred if_start. A driver should call the function 1092 * only if the driver needs deferred if_start. Drivers can setup their own 1093 * deferred if_start function via 2nd argument. 1094 */ 1095 void 1096 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1097 { 1098 struct if_deferred_start *ids; 1099 u_int flags = SOFTINT_NET; 1100 1101 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 1102 1103 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1104 ids->ids_ifp = ifp; 1105 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids); 1106 if (func != NULL) 1107 ids->ids_if_start = func; 1108 else 1109 ids->ids_if_start = if_deferred_start_common; 1110 1111 ifp->if_deferred_start = ids; 1112 } 1113 1114 static void 1115 if_deferred_start_destroy(struct ifnet *ifp) 1116 { 1117 1118 if (ifp->if_deferred_start == NULL) 1119 return; 1120 1121 softint_disestablish(ifp->if_deferred_start->ids_si); 1122 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1123 ifp->if_deferred_start = NULL; 1124 } 1125 1126 /* 1127 * The common interface input routine that is called by device drivers, 1128 * which should be used only when the driver's rx handler already runs 1129 * in softint. 1130 */ 1131 void 1132 if_input(struct ifnet *ifp, struct mbuf *m) 1133 { 1134 1135 KASSERT(ifp->if_percpuq == NULL); 1136 KASSERT(!cpu_intr_p()); 1137 1138 if_statinc(ifp, if_ipackets); 1139 bpf_mtap(ifp, m, BPF_D_IN); 1140 1141 ifp->_if_input(ifp, m); 1142 } 1143 1144 /* 1145 * DEPRECATED. Use if_initialize and if_register instead. 1146 * See the above comment of if_initialize. 1147 * 1148 * Note that it implicitly enables if_percpuq to make drivers easy to 1149 * migrate softint-based if_input without much changes. If you don't 1150 * want to enable it, use if_initialize instead. 1151 */ 1152 void 1153 if_attach(ifnet_t *ifp) 1154 { 1155 1156 if_initialize(ifp); 1157 ifp->if_percpuq = if_percpuq_create(ifp); 1158 if_register(ifp); 1159 } 1160 1161 void 1162 if_attachdomain(void) 1163 { 1164 struct ifnet *ifp; 1165 const int bound = curlwp_bind(); 1166 1167 int s = pserialize_read_enter(); 1168 IFNET_READER_FOREACH(ifp) { 1169 struct psref psref; 1170 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1171 pserialize_read_exit(s); 1172 if_attachdomain1(ifp); 1173 s = pserialize_read_enter(); 1174 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1175 } 1176 pserialize_read_exit(s); 1177 curlwp_bindx(bound); 1178 } 1179 1180 static void 1181 if_attachdomain1(struct ifnet *ifp) 1182 { 1183 struct domain *dp; 1184 const int s = splsoftnet(); 1185 1186 /* address family dependent data region */ 1187 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1188 DOMAIN_FOREACH(dp) { 1189 if (dp->dom_ifattach != NULL) 1190 ifp->if_afdata[dp->dom_family] = 1191 (*dp->dom_ifattach)(ifp); 1192 } 1193 1194 splx(s); 1195 } 1196 1197 /* 1198 * Deactivate an interface. This points all of the procedure 1199 * handles at error stubs. May be called from interrupt context. 1200 */ 1201 void 1202 if_deactivate(struct ifnet *ifp) 1203 { 1204 const int s = splsoftnet(); 1205 1206 ifp->if_output = if_nulloutput; 1207 ifp->_if_input = if_nullinput; 1208 ifp->if_start = if_nullstart; 1209 ifp->if_transmit = if_nulltransmit; 1210 ifp->if_ioctl = if_nullioctl; 1211 ifp->if_init = if_nullinit; 1212 ifp->if_stop = if_nullstop; 1213 if (ifp->if_slowtimo) 1214 ifp->if_slowtimo = if_nullslowtimo; 1215 ifp->if_drain = if_nulldrain; 1216 1217 /* No more packets may be enqueued. */ 1218 ifp->if_snd.ifq_maxlen = 0; 1219 1220 splx(s); 1221 } 1222 1223 bool 1224 if_is_deactivated(const struct ifnet *ifp) 1225 { 1226 1227 return ifp->if_output == if_nulloutput; 1228 } 1229 1230 void 1231 if_purgeaddrs(struct ifnet *ifp, int family, 1232 void (*purgeaddr)(struct ifaddr *)) 1233 { 1234 struct ifaddr *ifa, *nifa; 1235 int s; 1236 1237 s = pserialize_read_enter(); 1238 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1239 nifa = IFADDR_READER_NEXT(ifa); 1240 if (ifa->ifa_addr->sa_family != family) 1241 continue; 1242 pserialize_read_exit(s); 1243 1244 (*purgeaddr)(ifa); 1245 1246 s = pserialize_read_enter(); 1247 } 1248 pserialize_read_exit(s); 1249 } 1250 1251 #ifdef IFAREF_DEBUG 1252 static struct ifaddr **ifa_list; 1253 static int ifa_list_size; 1254 1255 /* Depends on only one if_attach runs at once */ 1256 static void 1257 if_build_ifa_list(struct ifnet *ifp) 1258 { 1259 struct ifaddr *ifa; 1260 int i; 1261 1262 KASSERT(ifa_list == NULL); 1263 KASSERT(ifa_list_size == 0); 1264 1265 IFADDR_READER_FOREACH(ifa, ifp) 1266 ifa_list_size++; 1267 1268 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1269 i = 0; 1270 IFADDR_READER_FOREACH(ifa, ifp) { 1271 ifa_list[i++] = ifa; 1272 ifaref(ifa); 1273 } 1274 } 1275 1276 static void 1277 if_check_and_free_ifa_list(struct ifnet *ifp) 1278 { 1279 int i; 1280 struct ifaddr *ifa; 1281 1282 if (ifa_list == NULL) 1283 return; 1284 1285 for (i = 0; i < ifa_list_size; i++) { 1286 char buf[64]; 1287 1288 ifa = ifa_list[i]; 1289 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1290 if (ifa->ifa_refcnt > 1) { 1291 log(LOG_WARNING, 1292 "ifa(%s) still referenced (refcnt=%d)\n", 1293 buf, ifa->ifa_refcnt - 1); 1294 } else 1295 log(LOG_DEBUG, 1296 "ifa(%s) not referenced (refcnt=%d)\n", 1297 buf, ifa->ifa_refcnt - 1); 1298 ifafree(ifa); 1299 } 1300 1301 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1302 ifa_list = NULL; 1303 ifa_list_size = 0; 1304 } 1305 #endif 1306 1307 /* 1308 * Detach an interface from the list of "active" interfaces, 1309 * freeing any resources as we go along. 1310 * 1311 * NOTE: This routine must be called with a valid thread context, 1312 * as it may block. 1313 */ 1314 void 1315 if_detach(struct ifnet *ifp) 1316 { 1317 struct socket so; 1318 struct ifaddr *ifa; 1319 #ifdef IFAREF_DEBUG 1320 struct ifaddr *last_ifa = NULL; 1321 #endif 1322 struct domain *dp; 1323 const struct protosw *pr; 1324 int i, family, purged; 1325 1326 #ifdef IFAREF_DEBUG 1327 if_build_ifa_list(ifp); 1328 #endif 1329 /* 1330 * XXX It's kind of lame that we have to have the 1331 * XXX socket structure... 1332 */ 1333 memset(&so, 0, sizeof(so)); 1334 1335 const int s = splnet(); 1336 1337 sysctl_teardown(&ifp->if_sysctl_log); 1338 1339 IFNET_LOCK(ifp); 1340 1341 /* 1342 * Unset all queued link states and pretend a 1343 * link state change is scheduled. 1344 * This stops any more link state changes occurring for this 1345 * interface while it's being detached so it's safe 1346 * to drain the workqueue. 1347 */ 1348 IF_LINK_STATE_CHANGE_LOCK(ifp); 1349 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 1350 ifp->if_link_scheduled = true; 1351 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 1352 workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work); 1353 1354 if_deactivate(ifp); 1355 IFNET_UNLOCK(ifp); 1356 1357 /* 1358 * Unlink from the list and wait for all readers to leave 1359 * from pserialize read sections. Note that we can't do 1360 * psref_target_destroy here. See below. 1361 */ 1362 IFNET_GLOBAL_LOCK(); 1363 ifindex2ifnet[ifp->if_index] = NULL; 1364 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1365 IFNET_WRITER_REMOVE(ifp); 1366 pserialize_perform(ifnet_psz); 1367 IFNET_GLOBAL_UNLOCK(); 1368 1369 if (ifp->if_slowtimo != NULL) { 1370 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 1371 1372 mutex_enter(&isd->isd_lock); 1373 isd->isd_dying = true; 1374 mutex_exit(&isd->isd_lock); 1375 callout_halt(&isd->isd_ch, NULL); 1376 workqueue_wait(if_slowtimo_wq, &isd->isd_work); 1377 callout_destroy(&isd->isd_ch); 1378 mutex_destroy(&isd->isd_lock); 1379 kmem_free(isd, sizeof(*isd)); 1380 1381 ifp->if_slowtimo_data = NULL; /* paraonia */ 1382 ifp->if_slowtimo = NULL; /* paranoia */ 1383 } 1384 if_deferred_start_destroy(ifp); 1385 1386 /* 1387 * Do an if_down() to give protocols a chance to do something. 1388 */ 1389 if_down_deactivated(ifp); 1390 1391 #ifdef ALTQ 1392 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1393 altq_disable(&ifp->if_snd); 1394 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1395 altq_detach(&ifp->if_snd); 1396 #endif 1397 1398 #if NCARP > 0 1399 /* Remove the interface from any carp group it is a part of. */ 1400 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1401 carp_ifdetach(ifp); 1402 #endif 1403 1404 /* 1405 * Ensure that all packets on protocol input pktqueues have been 1406 * processed, or, at least, removed from the queues. 1407 * 1408 * A cross-call will ensure that the interrupts have completed. 1409 * FIXME: not quite.. 1410 */ 1411 pktq_ifdetach(); 1412 xc_barrier(0); 1413 1414 /* 1415 * Rip all the addresses off the interface. This should make 1416 * all of the routes go away. 1417 * 1418 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1419 * from the list, including our "cursor", ifa. For safety, 1420 * and to honor the TAILQ abstraction, I just restart the 1421 * loop after each removal. Note that the loop will exit 1422 * when all of the remaining ifaddrs belong to the AF_LINK 1423 * family. I am counting on the historical fact that at 1424 * least one pr_usrreq in each address domain removes at 1425 * least one ifaddr. 1426 */ 1427 again: 1428 /* 1429 * At this point, no other one tries to remove ifa in the list, 1430 * so we don't need to take a lock or psref. Avoid using 1431 * IFADDR_READER_FOREACH to pass over an inspection of contract 1432 * violations of pserialize. 1433 */ 1434 IFADDR_WRITER_FOREACH(ifa, ifp) { 1435 family = ifa->ifa_addr->sa_family; 1436 #ifdef IFAREF_DEBUG 1437 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1438 ifa, family, ifa->ifa_refcnt); 1439 if (last_ifa != NULL && ifa == last_ifa) 1440 panic("if_detach: loop detected"); 1441 last_ifa = ifa; 1442 #endif 1443 if (family == AF_LINK) 1444 continue; 1445 dp = pffinddomain(family); 1446 KASSERTMSG(dp != NULL, "no domain for AF %d", family); 1447 /* 1448 * XXX These PURGEIF calls are redundant with the 1449 * purge-all-families calls below, but are left in for 1450 * now both to make a smaller change, and to avoid 1451 * unplanned interactions with clearing of 1452 * ifp->if_addrlist. 1453 */ 1454 purged = 0; 1455 for (pr = dp->dom_protosw; 1456 pr < dp->dom_protoswNPROTOSW; pr++) { 1457 so.so_proto = pr; 1458 if (pr->pr_usrreqs) { 1459 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1460 purged = 1; 1461 } 1462 } 1463 if (purged == 0) { 1464 /* 1465 * XXX What's really the best thing to do 1466 * XXX here? --thorpej@NetBSD.org 1467 */ 1468 printf("if_detach: WARNING: AF %d not purged\n", 1469 family); 1470 ifa_remove(ifp, ifa); 1471 } 1472 goto again; 1473 } 1474 1475 if_free_sadl(ifp, 1); 1476 1477 restart: 1478 IFADDR_WRITER_FOREACH(ifa, ifp) { 1479 family = ifa->ifa_addr->sa_family; 1480 KASSERT(family == AF_LINK); 1481 ifa_remove(ifp, ifa); 1482 goto restart; 1483 } 1484 1485 /* Delete stray routes from the routing table. */ 1486 for (i = 0; i <= AF_MAX; i++) 1487 rt_delete_matched_entries(i, if_delroute_matcher, ifp, false); 1488 1489 DOMAIN_FOREACH(dp) { 1490 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1491 { 1492 void *p = ifp->if_afdata[dp->dom_family]; 1493 if (p) { 1494 ifp->if_afdata[dp->dom_family] = NULL; 1495 (*dp->dom_ifdetach)(ifp, p); 1496 } 1497 } 1498 1499 /* 1500 * One would expect multicast memberships (INET and 1501 * INET6) on UDP sockets to be purged by the PURGEIF 1502 * calls above, but if all addresses were removed from 1503 * the interface prior to destruction, the calls will 1504 * not be made (e.g. ppp, for which pppd(8) generally 1505 * removes addresses before destroying the interface). 1506 * Because there is no invariant that multicast 1507 * memberships only exist for interfaces with IPv4 1508 * addresses, we must call PURGEIF regardless of 1509 * addresses. (Protocols which might store ifnet 1510 * pointers are marked with PR_PURGEIF.) 1511 */ 1512 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) 1513 { 1514 so.so_proto = pr; 1515 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1516 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1517 } 1518 } 1519 1520 /* 1521 * Must be done after the above pr_purgeif because if_psref may be 1522 * still used in pr_purgeif. 1523 */ 1524 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1525 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1526 1527 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1528 (void)pfil_head_destroy(ifp->if_pfil); 1529 1530 /* Announce that the interface is gone. */ 1531 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1532 1533 IF_AFDATA_LOCK_DESTROY(ifp); 1534 1535 if (ifp->if_percpuq != NULL) { 1536 if_percpuq_destroy(ifp->if_percpuq); 1537 ifp->if_percpuq = NULL; 1538 } 1539 1540 mutex_obj_free(ifp->if_ioctl_lock); 1541 ifp->if_ioctl_lock = NULL; 1542 mutex_obj_free(ifp->if_snd.ifq_lock); 1543 if_stats_fini(ifp); 1544 KASSERT(!simplehook_has_hooks(ifp->if_linkstate_hooks)); 1545 simplehook_destroy(ifp->if_linkstate_hooks); 1546 1547 splx(s); 1548 1549 #ifdef IFAREF_DEBUG 1550 if_check_and_free_ifa_list(ifp); 1551 #endif 1552 } 1553 1554 /* 1555 * Callback for a radix tree walk to delete all references to an 1556 * ifnet. 1557 */ 1558 static int 1559 if_delroute_matcher(struct rtentry *rt, void *v) 1560 { 1561 struct ifnet *ifp = (struct ifnet *)v; 1562 1563 if (rt->rt_ifp == ifp) 1564 return 1; 1565 else 1566 return 0; 1567 } 1568 1569 /* 1570 * Create a clone network interface. 1571 */ 1572 static int 1573 if_clone_create(const char *name) 1574 { 1575 struct if_clone *ifc; 1576 struct ifnet *ifp; 1577 struct psref psref; 1578 int unit; 1579 1580 KASSERT(mutex_owned(&if_clone_mtx)); 1581 1582 ifc = if_clone_lookup(name, &unit); 1583 if (ifc == NULL) 1584 return EINVAL; 1585 1586 ifp = if_get(name, &psref); 1587 if (ifp != NULL) { 1588 if_put(ifp, &psref); 1589 return EEXIST; 1590 } 1591 1592 return (*ifc->ifc_create)(ifc, unit); 1593 } 1594 1595 /* 1596 * Destroy a clone network interface. 1597 */ 1598 static int 1599 if_clone_destroy(const char *name) 1600 { 1601 struct if_clone *ifc; 1602 struct ifnet *ifp; 1603 struct psref psref; 1604 int error; 1605 int (*if_ioctlfn)(struct ifnet *, u_long, void *); 1606 1607 KASSERT(mutex_owned(&if_clone_mtx)); 1608 1609 ifc = if_clone_lookup(name, NULL); 1610 if (ifc == NULL) 1611 return EINVAL; 1612 1613 if (ifc->ifc_destroy == NULL) 1614 return EOPNOTSUPP; 1615 1616 ifp = if_get(name, &psref); 1617 if (ifp == NULL) 1618 return ENXIO; 1619 1620 /* We have to disable ioctls here */ 1621 IFNET_LOCK(ifp); 1622 if_ioctlfn = ifp->if_ioctl; 1623 ifp->if_ioctl = if_nullioctl; 1624 IFNET_UNLOCK(ifp); 1625 1626 /* 1627 * We cannot call ifc_destroy with holding ifp. 1628 * Releasing ifp here is safe thanks to if_clone_mtx. 1629 */ 1630 if_put(ifp, &psref); 1631 1632 error = (*ifc->ifc_destroy)(ifp); 1633 1634 if (error != 0) { 1635 /* We have to restore if_ioctl on error */ 1636 IFNET_LOCK(ifp); 1637 ifp->if_ioctl = if_ioctlfn; 1638 IFNET_UNLOCK(ifp); 1639 } 1640 1641 return error; 1642 } 1643 1644 static bool 1645 if_is_unit(const char *name) 1646 { 1647 1648 while (*name != '\0') { 1649 if (*name < '0' || *name > '9') 1650 return false; 1651 name++; 1652 } 1653 1654 return true; 1655 } 1656 1657 /* 1658 * Look up a network interface cloner. 1659 */ 1660 static struct if_clone * 1661 if_clone_lookup(const char *name, int *unitp) 1662 { 1663 struct if_clone *ifc; 1664 const char *cp; 1665 char *dp, ifname[IFNAMSIZ + 3]; 1666 int unit; 1667 1668 KASSERT(mutex_owned(&if_clone_mtx)); 1669 1670 strcpy(ifname, "if_"); 1671 /* separate interface name from unit */ 1672 /* TODO: search unit number from backward */ 1673 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1674 *cp && !if_is_unit(cp);) 1675 *dp++ = *cp++; 1676 1677 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1678 return NULL; /* No name or unit number */ 1679 *dp++ = '\0'; 1680 1681 again: 1682 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1683 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1684 break; 1685 } 1686 1687 if (ifc == NULL) { 1688 int error; 1689 if (*ifname == '\0') 1690 return NULL; 1691 mutex_exit(&if_clone_mtx); 1692 error = module_autoload(ifname, MODULE_CLASS_DRIVER); 1693 mutex_enter(&if_clone_mtx); 1694 if (error) 1695 return NULL; 1696 *ifname = '\0'; 1697 goto again; 1698 } 1699 1700 unit = 0; 1701 while (cp - name < IFNAMSIZ && *cp) { 1702 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1703 /* Bogus unit number. */ 1704 return NULL; 1705 } 1706 unit = (unit * 10) + (*cp++ - '0'); 1707 } 1708 1709 if (unitp != NULL) 1710 *unitp = unit; 1711 return ifc; 1712 } 1713 1714 /* 1715 * Register a network interface cloner. 1716 */ 1717 void 1718 if_clone_attach(struct if_clone *ifc) 1719 { 1720 1721 mutex_enter(&if_clone_mtx); 1722 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1723 if_cloners_count++; 1724 mutex_exit(&if_clone_mtx); 1725 } 1726 1727 /* 1728 * Unregister a network interface cloner. 1729 */ 1730 void 1731 if_clone_detach(struct if_clone *ifc) 1732 { 1733 1734 mutex_enter(&if_clone_mtx); 1735 LIST_REMOVE(ifc, ifc_list); 1736 if_cloners_count--; 1737 mutex_exit(&if_clone_mtx); 1738 } 1739 1740 /* 1741 * Provide list of interface cloners to userspace. 1742 */ 1743 int 1744 if_clone_list(int buf_count, char *buffer, int *total) 1745 { 1746 char outbuf[IFNAMSIZ], *dst; 1747 struct if_clone *ifc; 1748 int count, error = 0; 1749 1750 mutex_enter(&if_clone_mtx); 1751 *total = if_cloners_count; 1752 if ((dst = buffer) == NULL) { 1753 /* Just asking how many there are. */ 1754 goto out; 1755 } 1756 1757 if (buf_count < 0) { 1758 error = EINVAL; 1759 goto out; 1760 } 1761 1762 count = (if_cloners_count < buf_count) ? if_cloners_count : buf_count; 1763 1764 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1765 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1766 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1767 if (outbuf[sizeof(outbuf) - 1] != '\0') { 1768 error = ENAMETOOLONG; 1769 goto out; 1770 } 1771 error = copyout(outbuf, dst, sizeof(outbuf)); 1772 if (error != 0) 1773 break; 1774 } 1775 1776 out: 1777 mutex_exit(&if_clone_mtx); 1778 return error; 1779 } 1780 1781 void 1782 ifa_psref_init(struct ifaddr *ifa) 1783 { 1784 1785 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1786 } 1787 1788 void 1789 ifaref(struct ifaddr *ifa) 1790 { 1791 1792 atomic_inc_uint(&ifa->ifa_refcnt); 1793 } 1794 1795 void 1796 ifafree(struct ifaddr *ifa) 1797 { 1798 KASSERT(ifa != NULL); 1799 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt); 1800 1801 membar_release(); 1802 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) != 0) 1803 return; 1804 membar_acquire(); 1805 free(ifa, M_IFADDR); 1806 } 1807 1808 bool 1809 ifa_is_destroying(struct ifaddr *ifa) 1810 { 1811 1812 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1813 } 1814 1815 void 1816 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1817 { 1818 1819 ifa->ifa_ifp = ifp; 1820 1821 /* 1822 * Check MP-safety for IFEF_MPSAFE drivers. 1823 * Check !IFF_RUNNING for initialization routines that normally don't 1824 * take IFNET_LOCK but it's safe because there is no competitor. 1825 * XXX there are false positive cases because IFF_RUNNING can be off on 1826 * if_stop. 1827 */ 1828 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) || 1829 IFNET_LOCKED(ifp)); 1830 1831 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1832 IFADDR_ENTRY_INIT(ifa); 1833 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1834 1835 ifaref(ifa); 1836 } 1837 1838 void 1839 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1840 { 1841 1842 KASSERT(ifa->ifa_ifp == ifp); 1843 /* 1844 * Check MP-safety for IFEF_MPSAFE drivers. 1845 * if_is_deactivated indicates ifa_remove is called from if_detach 1846 * where it is safe even if IFNET_LOCK isn't held. 1847 */ 1848 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || 1849 IFNET_LOCKED(ifp)); 1850 1851 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1852 IFADDR_WRITER_REMOVE(ifa); 1853 #ifdef NET_MPSAFE 1854 IFNET_GLOBAL_LOCK(); 1855 pserialize_perform(ifnet_psz); 1856 IFNET_GLOBAL_UNLOCK(); 1857 #endif 1858 1859 #ifdef NET_MPSAFE 1860 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1861 #endif 1862 IFADDR_ENTRY_DESTROY(ifa); 1863 ifafree(ifa); 1864 } 1865 1866 void 1867 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1868 { 1869 1870 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 1871 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1872 } 1873 1874 void 1875 ifa_release(struct ifaddr *ifa, struct psref *psref) 1876 { 1877 1878 if (ifa == NULL) 1879 return; 1880 1881 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1882 } 1883 1884 bool 1885 ifa_held(struct ifaddr *ifa) 1886 { 1887 1888 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1889 } 1890 1891 static inline int 1892 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1893 { 1894 1895 return sockaddr_cmp(sa1, sa2) == 0; 1896 } 1897 1898 /* 1899 * Locate an interface based on a complete address. 1900 */ 1901 /*ARGSUSED*/ 1902 struct ifaddr * 1903 ifa_ifwithaddr(const struct sockaddr *addr) 1904 { 1905 struct ifnet *ifp; 1906 struct ifaddr *ifa; 1907 1908 IFNET_READER_FOREACH(ifp) { 1909 if (if_is_deactivated(ifp)) 1910 continue; 1911 IFADDR_READER_FOREACH(ifa, ifp) { 1912 if (ifa->ifa_addr->sa_family != addr->sa_family) 1913 continue; 1914 if (equal(addr, ifa->ifa_addr)) 1915 return ifa; 1916 if ((ifp->if_flags & IFF_BROADCAST) && 1917 ifa->ifa_broadaddr && 1918 /* IP6 doesn't have broadcast */ 1919 ifa->ifa_broadaddr->sa_len != 0 && 1920 equal(ifa->ifa_broadaddr, addr)) 1921 return ifa; 1922 } 1923 } 1924 return NULL; 1925 } 1926 1927 struct ifaddr * 1928 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1929 { 1930 struct ifaddr *ifa; 1931 int s = pserialize_read_enter(); 1932 1933 ifa = ifa_ifwithaddr(addr); 1934 if (ifa != NULL) 1935 ifa_acquire(ifa, psref); 1936 pserialize_read_exit(s); 1937 1938 return ifa; 1939 } 1940 1941 /* 1942 * Locate the point to point interface with a given destination address. 1943 */ 1944 /*ARGSUSED*/ 1945 struct ifaddr * 1946 ifa_ifwithdstaddr(const struct sockaddr *addr) 1947 { 1948 struct ifnet *ifp; 1949 struct ifaddr *ifa; 1950 1951 IFNET_READER_FOREACH(ifp) { 1952 if (if_is_deactivated(ifp)) 1953 continue; 1954 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1955 continue; 1956 IFADDR_READER_FOREACH(ifa, ifp) { 1957 if (ifa->ifa_addr->sa_family != addr->sa_family || 1958 ifa->ifa_dstaddr == NULL) 1959 continue; 1960 if (equal(addr, ifa->ifa_dstaddr)) 1961 return ifa; 1962 } 1963 } 1964 1965 return NULL; 1966 } 1967 1968 struct ifaddr * 1969 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1970 { 1971 struct ifaddr *ifa; 1972 int s; 1973 1974 s = pserialize_read_enter(); 1975 ifa = ifa_ifwithdstaddr(addr); 1976 if (ifa != NULL) 1977 ifa_acquire(ifa, psref); 1978 pserialize_read_exit(s); 1979 1980 return ifa; 1981 } 1982 1983 /* 1984 * Find an interface on a specific network. If many, choice 1985 * is most specific found. 1986 */ 1987 struct ifaddr * 1988 ifa_ifwithnet(const struct sockaddr *addr) 1989 { 1990 struct ifnet *ifp; 1991 struct ifaddr *ifa, *ifa_maybe = NULL; 1992 const struct sockaddr_dl *sdl; 1993 u_int af = addr->sa_family; 1994 const char *addr_data = addr->sa_data, *cplim; 1995 1996 if (af == AF_LINK) { 1997 sdl = satocsdl(addr); 1998 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1999 ifindex2ifnet[sdl->sdl_index] && 2000 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 2001 return ifindex2ifnet[sdl->sdl_index]->if_dl; 2002 } 2003 } 2004 #ifdef NETATALK 2005 if (af == AF_APPLETALK) { 2006 const struct sockaddr_at *sat, *sat2; 2007 sat = (const struct sockaddr_at *)addr; 2008 IFNET_READER_FOREACH(ifp) { 2009 if (if_is_deactivated(ifp)) 2010 continue; 2011 ifa = at_ifawithnet((const struct sockaddr_at *)addr, 2012 ifp); 2013 if (ifa == NULL) 2014 continue; 2015 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 2016 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 2017 return ifa; /* exact match */ 2018 if (ifa_maybe == NULL) { 2019 /* else keep the if with the right range */ 2020 ifa_maybe = ifa; 2021 } 2022 } 2023 return ifa_maybe; 2024 } 2025 #endif 2026 IFNET_READER_FOREACH(ifp) { 2027 if (if_is_deactivated(ifp)) 2028 continue; 2029 IFADDR_READER_FOREACH(ifa, ifp) { 2030 const char *cp, *cp2, *cp3; 2031 2032 if (ifa->ifa_addr->sa_family != af || 2033 ifa->ifa_netmask == NULL) 2034 next: continue; 2035 cp = addr_data; 2036 cp2 = ifa->ifa_addr->sa_data; 2037 cp3 = ifa->ifa_netmask->sa_data; 2038 cplim = (const char *)ifa->ifa_netmask + 2039 ifa->ifa_netmask->sa_len; 2040 while (cp3 < cplim) { 2041 if ((*cp++ ^ *cp2++) & *cp3++) { 2042 /* want to continue for() loop */ 2043 goto next; 2044 } 2045 } 2046 if (ifa_maybe == NULL || 2047 rt_refines(ifa->ifa_netmask, 2048 ifa_maybe->ifa_netmask)) 2049 ifa_maybe = ifa; 2050 } 2051 } 2052 return ifa_maybe; 2053 } 2054 2055 struct ifaddr * 2056 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 2057 { 2058 struct ifaddr *ifa; 2059 int s; 2060 2061 s = pserialize_read_enter(); 2062 ifa = ifa_ifwithnet(addr); 2063 if (ifa != NULL) 2064 ifa_acquire(ifa, psref); 2065 pserialize_read_exit(s); 2066 2067 return ifa; 2068 } 2069 2070 /* 2071 * Find the interface of the address. 2072 */ 2073 struct ifaddr * 2074 ifa_ifwithladdr(const struct sockaddr *addr) 2075 { 2076 struct ifaddr *ia; 2077 2078 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 2079 (ia = ifa_ifwithnet(addr))) 2080 return ia; 2081 return NULL; 2082 } 2083 2084 struct ifaddr * 2085 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 2086 { 2087 struct ifaddr *ifa; 2088 int s; 2089 2090 s = pserialize_read_enter(); 2091 ifa = ifa_ifwithladdr(addr); 2092 if (ifa != NULL) 2093 ifa_acquire(ifa, psref); 2094 pserialize_read_exit(s); 2095 2096 return ifa; 2097 } 2098 2099 /* 2100 * Find an interface using a specific address family 2101 */ 2102 struct ifaddr * 2103 ifa_ifwithaf(int af) 2104 { 2105 struct ifnet *ifp; 2106 struct ifaddr *ifa = NULL; 2107 int s; 2108 2109 s = pserialize_read_enter(); 2110 IFNET_READER_FOREACH(ifp) { 2111 if (if_is_deactivated(ifp)) 2112 continue; 2113 IFADDR_READER_FOREACH(ifa, ifp) { 2114 if (ifa->ifa_addr->sa_family == af) 2115 goto out; 2116 } 2117 } 2118 out: 2119 pserialize_read_exit(s); 2120 return ifa; 2121 } 2122 2123 /* 2124 * Find an interface address specific to an interface best matching 2125 * a given address. 2126 */ 2127 struct ifaddr * 2128 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2129 { 2130 struct ifaddr *ifa; 2131 const char *cp, *cp2, *cp3; 2132 const char *cplim; 2133 struct ifaddr *ifa_maybe = 0; 2134 u_int af = addr->sa_family; 2135 2136 if (if_is_deactivated(ifp)) 2137 return NULL; 2138 2139 if (af >= AF_MAX) 2140 return NULL; 2141 2142 IFADDR_READER_FOREACH(ifa, ifp) { 2143 if (ifa->ifa_addr->sa_family != af) 2144 continue; 2145 ifa_maybe = ifa; 2146 if (ifa->ifa_netmask == NULL) { 2147 if (equal(addr, ifa->ifa_addr) || 2148 (ifa->ifa_dstaddr && 2149 equal(addr, ifa->ifa_dstaddr))) 2150 return ifa; 2151 continue; 2152 } 2153 cp = addr->sa_data; 2154 cp2 = ifa->ifa_addr->sa_data; 2155 cp3 = ifa->ifa_netmask->sa_data; 2156 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2157 for (; cp3 < cplim; cp3++) { 2158 if ((*cp++ ^ *cp2++) & *cp3) 2159 break; 2160 } 2161 if (cp3 == cplim) 2162 return ifa; 2163 } 2164 return ifa_maybe; 2165 } 2166 2167 struct ifaddr * 2168 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2169 struct psref *psref) 2170 { 2171 struct ifaddr *ifa; 2172 int s; 2173 2174 s = pserialize_read_enter(); 2175 ifa = ifaof_ifpforaddr(addr, ifp); 2176 if (ifa != NULL) 2177 ifa_acquire(ifa, psref); 2178 pserialize_read_exit(s); 2179 2180 return ifa; 2181 } 2182 2183 /* 2184 * Default action when installing a route with a Link Level gateway. 2185 * Lookup an appropriate real ifa to point to. 2186 * This should be moved to /sys/net/link.c eventually. 2187 */ 2188 void 2189 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2190 { 2191 struct ifaddr *ifa; 2192 const struct sockaddr *dst; 2193 struct ifnet *ifp; 2194 struct psref psref; 2195 2196 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2197 return; 2198 ifp = rt->rt_ifa->ifa_ifp; 2199 dst = rt_getkey(rt); 2200 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2201 rt_replace_ifa(rt, ifa); 2202 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2203 ifa->ifa_rtrequest(cmd, rt, info); 2204 ifa_release(ifa, &psref); 2205 } 2206 } 2207 2208 /* 2209 * bitmask macros to manage a densely packed link_state change queue. 2210 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2211 * LINK_STATE_UP(2) we need 2 bits for each state change. 2212 * As a state change to store is 0, treat all bits set as an unset item. 2213 */ 2214 #define LQ_ITEM_BITS 2 2215 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2216 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2217 #define LINK_STATE_UNSET LQ_ITEM_MASK 2218 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2219 #define LQ_STORE(q, i, v) \ 2220 do { \ 2221 (q) &= ~LQ_MASK((i)); \ 2222 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2223 } while (0 /* CONSTCOND */) 2224 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2225 #define LQ_POP(q, v) \ 2226 do { \ 2227 (v) = LQ_ITEM((q), 0); \ 2228 (q) >>= LQ_ITEM_BITS; \ 2229 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2230 } while (0 /* CONSTCOND */) 2231 #define LQ_PUSH(q, v) \ 2232 do { \ 2233 (q) >>= LQ_ITEM_BITS; \ 2234 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2235 } while (0 /* CONSTCOND */) 2236 #define LQ_FIND_UNSET(q, i) \ 2237 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2238 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2239 break; \ 2240 } 2241 2242 /* 2243 * Handle a change in the interface link state and 2244 * queue notifications. 2245 */ 2246 void 2247 if_link_state_change(struct ifnet *ifp, int link_state) 2248 { 2249 int idx; 2250 2251 /* Ensure change is to a valid state */ 2252 switch (link_state) { 2253 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2254 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2255 case LINK_STATE_UP: 2256 break; 2257 default: 2258 #ifdef DEBUG 2259 printf("%s: invalid link state %d\n", 2260 ifp->if_xname, link_state); 2261 #endif 2262 return; 2263 } 2264 2265 IF_LINK_STATE_CHANGE_LOCK(ifp); 2266 2267 /* Find the last unset event in the queue. */ 2268 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2269 2270 if (idx == 0) { 2271 /* 2272 * There is no queue of link state changes. 2273 * As we have the lock we can safely compare against the 2274 * current link state and return if the same. 2275 * Otherwise, if scheduled is true then the interface is being 2276 * detached and the queue is being drained so we need 2277 * to avoid queuing more work. 2278 */ 2279 if (ifp->if_link_state == link_state || 2280 ifp->if_link_scheduled) 2281 goto out; 2282 } else { 2283 /* Ensure link_state doesn't match the last queued state. */ 2284 if (LQ_ITEM(ifp->if_link_queue, idx - 1) 2285 == (uint8_t)link_state) 2286 goto out; 2287 } 2288 2289 /* Handle queue overflow. */ 2290 if (idx == LQ_MAX(ifp->if_link_queue)) { 2291 uint8_t lost; 2292 2293 /* 2294 * The DOWN state must be protected from being pushed off 2295 * the queue to ensure that userland will always be 2296 * in a sane state. 2297 * Because DOWN is protected, there is no need to protect 2298 * UNKNOWN. 2299 * It should be invalid to change from any other state to 2300 * UNKNOWN anyway ... 2301 */ 2302 lost = LQ_ITEM(ifp->if_link_queue, 0); 2303 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2304 if (lost == LINK_STATE_DOWN) { 2305 lost = LQ_ITEM(ifp->if_link_queue, 0); 2306 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2307 } 2308 printf("%s: lost link state change %s\n", 2309 ifp->if_xname, 2310 lost == LINK_STATE_UP ? "UP" : 2311 lost == LINK_STATE_DOWN ? "DOWN" : 2312 "UNKNOWN"); 2313 } else 2314 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2315 2316 if (ifp->if_link_scheduled) 2317 goto out; 2318 2319 ifp->if_link_scheduled = true; 2320 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL); 2321 2322 out: 2323 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2324 } 2325 2326 /* 2327 * Handle interface link state change notifications. 2328 */ 2329 static void 2330 if_link_state_change_process(struct ifnet *ifp, int link_state) 2331 { 2332 struct domain *dp; 2333 const int s = splnet(); 2334 bool notify; 2335 2336 KASSERT(!cpu_intr_p()); 2337 2338 IF_LINK_STATE_CHANGE_LOCK(ifp); 2339 2340 /* Ensure the change is still valid. */ 2341 if (ifp->if_link_state == link_state) { 2342 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2343 splx(s); 2344 return; 2345 } 2346 2347 #ifdef DEBUG 2348 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2349 link_state == LINK_STATE_UP ? "UP" : 2350 link_state == LINK_STATE_DOWN ? "DOWN" : 2351 "UNKNOWN", 2352 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2353 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2354 "UNKNOWN"); 2355 #endif 2356 2357 /* 2358 * When going from UNKNOWN to UP, we need to mark existing 2359 * addresses as tentative and restart DAD as we may have 2360 * erroneously not found a duplicate. 2361 * 2362 * This needs to happen before rt_ifmsg to avoid a race where 2363 * listeners would have an address and expect it to work right 2364 * away. 2365 */ 2366 notify = (link_state == LINK_STATE_UP && 2367 ifp->if_link_state == LINK_STATE_UNKNOWN); 2368 ifp->if_link_state = link_state; 2369 /* The following routines may sleep so release the spin mutex */ 2370 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2371 2372 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2373 if (notify) { 2374 DOMAIN_FOREACH(dp) { 2375 if (dp->dom_if_link_state_change != NULL) 2376 dp->dom_if_link_state_change(ifp, 2377 LINK_STATE_DOWN); 2378 } 2379 } 2380 2381 /* Notify that the link state has changed. */ 2382 rt_ifmsg(ifp); 2383 2384 simplehook_dohooks(ifp->if_linkstate_hooks); 2385 2386 DOMAIN_FOREACH(dp) { 2387 if (dp->dom_if_link_state_change != NULL) 2388 dp->dom_if_link_state_change(ifp, link_state); 2389 } 2390 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2391 splx(s); 2392 } 2393 2394 /* 2395 * Process the interface link state change queue. 2396 */ 2397 static void 2398 if_link_state_change_work(struct work *work, void *arg) 2399 { 2400 struct ifnet *ifp = container_of(work, struct ifnet, if_link_work); 2401 uint8_t state; 2402 2403 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2404 const int s = splnet(); 2405 2406 /* 2407 * Pop a link state change from the queue and process it. 2408 * If there is nothing to process then if_detach() has been called. 2409 * We keep if_link_scheduled = true so the queue can safely drain 2410 * without more work being queued. 2411 */ 2412 IF_LINK_STATE_CHANGE_LOCK(ifp); 2413 LQ_POP(ifp->if_link_queue, state); 2414 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2415 if (state == LINK_STATE_UNSET) 2416 goto out; 2417 2418 if_link_state_change_process(ifp, state); 2419 2420 /* If there is a link state change to come, schedule it. */ 2421 IF_LINK_STATE_CHANGE_LOCK(ifp); 2422 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) { 2423 ifp->if_link_scheduled = true; 2424 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, 2425 NULL); 2426 } else 2427 ifp->if_link_scheduled = false; 2428 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2429 2430 out: 2431 splx(s); 2432 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2433 } 2434 2435 void * 2436 if_linkstate_change_establish(struct ifnet *ifp, void (*fn)(void *), void *arg) 2437 { 2438 khook_t *hk; 2439 2440 hk = simplehook_establish(ifp->if_linkstate_hooks, fn, arg); 2441 2442 return (void *)hk; 2443 } 2444 2445 void 2446 if_linkstate_change_disestablish(struct ifnet *ifp, void *vhook, 2447 kmutex_t *lock) 2448 { 2449 2450 simplehook_disestablish(ifp->if_linkstate_hooks, vhook, lock); 2451 } 2452 2453 /* 2454 * Used to mark addresses on an interface as DETATCHED or TENTATIVE 2455 * and thus start Duplicate Address Detection without changing the 2456 * real link state. 2457 */ 2458 void 2459 if_domain_link_state_change(struct ifnet *ifp, int link_state) 2460 { 2461 struct domain *dp; 2462 2463 const int s = splnet(); 2464 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2465 2466 DOMAIN_FOREACH(dp) { 2467 if (dp->dom_if_link_state_change != NULL) 2468 dp->dom_if_link_state_change(ifp, link_state); 2469 } 2470 2471 splx(s); 2472 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2473 } 2474 2475 /* 2476 * Default action when installing a local route on a point-to-point 2477 * interface. 2478 */ 2479 void 2480 p2p_rtrequest(int req, struct rtentry *rt, 2481 __unused const struct rt_addrinfo *info) 2482 { 2483 struct ifnet *ifp = rt->rt_ifp; 2484 struct ifaddr *ifa, *lo0ifa; 2485 int s = pserialize_read_enter(); 2486 2487 switch (req) { 2488 case RTM_ADD: 2489 if ((rt->rt_flags & RTF_LOCAL) == 0) 2490 break; 2491 2492 rt->rt_ifp = lo0ifp; 2493 2494 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2495 break; 2496 2497 IFADDR_READER_FOREACH(ifa, ifp) { 2498 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2499 break; 2500 } 2501 if (ifa == NULL) 2502 break; 2503 2504 /* 2505 * Ensure lo0 has an address of the same family. 2506 */ 2507 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2508 if (lo0ifa->ifa_addr->sa_family == 2509 ifa->ifa_addr->sa_family) 2510 break; 2511 } 2512 if (lo0ifa == NULL) 2513 break; 2514 2515 /* 2516 * Make sure to set rt->rt_ifa to the interface 2517 * address we are using, otherwise we will have trouble 2518 * with source address selection. 2519 */ 2520 if (ifa != rt->rt_ifa) 2521 rt_replace_ifa(rt, ifa); 2522 break; 2523 case RTM_DELETE: 2524 default: 2525 break; 2526 } 2527 pserialize_read_exit(s); 2528 } 2529 2530 static void 2531 _if_down(struct ifnet *ifp) 2532 { 2533 struct ifaddr *ifa; 2534 struct domain *dp; 2535 struct psref psref; 2536 2537 ifp->if_flags &= ~IFF_UP; 2538 nanotime(&ifp->if_lastchange); 2539 2540 const int bound = curlwp_bind(); 2541 int s = pserialize_read_enter(); 2542 IFADDR_READER_FOREACH(ifa, ifp) { 2543 ifa_acquire(ifa, &psref); 2544 pserialize_read_exit(s); 2545 2546 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2547 2548 s = pserialize_read_enter(); 2549 ifa_release(ifa, &psref); 2550 } 2551 pserialize_read_exit(s); 2552 curlwp_bindx(bound); 2553 2554 IFQ_PURGE(&ifp->if_snd); 2555 #if NCARP > 0 2556 if (ifp->if_carp) 2557 carp_carpdev_state(ifp); 2558 #endif 2559 rt_ifmsg(ifp); 2560 DOMAIN_FOREACH(dp) { 2561 if (dp->dom_if_down) 2562 dp->dom_if_down(ifp); 2563 } 2564 } 2565 2566 static void 2567 if_down_deactivated(struct ifnet *ifp) 2568 { 2569 2570 KASSERT(if_is_deactivated(ifp)); 2571 _if_down(ifp); 2572 } 2573 2574 void 2575 if_down_locked(struct ifnet *ifp) 2576 { 2577 2578 KASSERT(IFNET_LOCKED(ifp)); 2579 _if_down(ifp); 2580 } 2581 2582 /* 2583 * Mark an interface down and notify protocols of 2584 * the transition. 2585 * NOTE: must be called at splsoftnet or equivalent. 2586 */ 2587 void 2588 if_down(struct ifnet *ifp) 2589 { 2590 2591 IFNET_LOCK(ifp); 2592 if_down_locked(ifp); 2593 IFNET_UNLOCK(ifp); 2594 } 2595 2596 /* 2597 * Must be called with holding if_ioctl_lock. 2598 */ 2599 static void 2600 if_up_locked(struct ifnet *ifp) 2601 { 2602 #ifdef notyet 2603 struct ifaddr *ifa; 2604 #endif 2605 struct domain *dp; 2606 2607 KASSERT(IFNET_LOCKED(ifp)); 2608 2609 KASSERT(!if_is_deactivated(ifp)); 2610 ifp->if_flags |= IFF_UP; 2611 nanotime(&ifp->if_lastchange); 2612 #ifdef notyet 2613 /* this has no effect on IP, and will kill all ISO connections XXX */ 2614 IFADDR_READER_FOREACH(ifa, ifp) 2615 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2616 #endif 2617 #if NCARP > 0 2618 if (ifp->if_carp) 2619 carp_carpdev_state(ifp); 2620 #endif 2621 rt_ifmsg(ifp); 2622 DOMAIN_FOREACH(dp) { 2623 if (dp->dom_if_up) 2624 dp->dom_if_up(ifp); 2625 } 2626 } 2627 2628 /* 2629 * Handle interface slowtimo timer routine. Called 2630 * from softclock, we decrement timer (if set) and 2631 * call the appropriate interface routine on expiration. 2632 */ 2633 static bool 2634 if_slowtimo_countdown(struct ifnet *ifp) 2635 { 2636 bool fire = false; 2637 const int s = splnet(); 2638 2639 KERNEL_LOCK(1, NULL); 2640 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2641 fire = true; 2642 KERNEL_UNLOCK_ONE(NULL); 2643 splx(s); 2644 2645 return fire; 2646 } 2647 2648 static void 2649 if_slowtimo_intr(void *arg) 2650 { 2651 struct ifnet *ifp = arg; 2652 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 2653 2654 mutex_enter(&isd->isd_lock); 2655 if (!isd->isd_dying) { 2656 if (isd->isd_trigger || if_slowtimo_countdown(ifp)) { 2657 if (!isd->isd_queued) { 2658 isd->isd_queued = true; 2659 workqueue_enqueue(if_slowtimo_wq, 2660 &isd->isd_work, NULL); 2661 } 2662 } else 2663 callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ); 2664 } 2665 mutex_exit(&isd->isd_lock); 2666 } 2667 2668 static void 2669 if_slowtimo_work(struct work *work, void *arg) 2670 { 2671 struct if_slowtimo_data *isd = 2672 container_of(work, struct if_slowtimo_data, isd_work); 2673 struct ifnet *ifp = isd->isd_ifp; 2674 const int s = splnet(); 2675 2676 KERNEL_LOCK(1, NULL); 2677 (*ifp->if_slowtimo)(ifp); 2678 KERNEL_UNLOCK_ONE(NULL); 2679 splx(s); 2680 2681 mutex_enter(&isd->isd_lock); 2682 if (isd->isd_trigger) { 2683 isd->isd_trigger = false; 2684 printf("%s: watchdog triggered\n", ifp->if_xname); 2685 } 2686 isd->isd_queued = false; 2687 if (!isd->isd_dying) 2688 callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ); 2689 mutex_exit(&isd->isd_lock); 2690 } 2691 2692 static int 2693 sysctl_if_watchdog(SYSCTLFN_ARGS) 2694 { 2695 struct sysctlnode node = *rnode; 2696 struct ifnet *ifp = node.sysctl_data; 2697 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 2698 int arg = 0; 2699 int error; 2700 2701 node.sysctl_data = &arg; 2702 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2703 if (error || newp == NULL) 2704 return error; 2705 if (arg) { 2706 mutex_enter(&isd->isd_lock); 2707 KASSERT(!isd->isd_dying); 2708 isd->isd_trigger = true; 2709 callout_schedule(&isd->isd_ch, 0); 2710 mutex_exit(&isd->isd_lock); 2711 } 2712 2713 return 0; 2714 } 2715 2716 static void 2717 sysctl_watchdog_setup(struct ifnet *ifp) 2718 { 2719 struct sysctllog **clog = &ifp->if_sysctl_log; 2720 const struct sysctlnode *rnode; 2721 2722 if (sysctl_createv(clog, 0, NULL, &rnode, 2723 CTLFLAG_PERMANENT, CTLTYPE_NODE, "interfaces", 2724 SYSCTL_DESCR("Per-interface controls"), 2725 NULL, 0, NULL, 0, 2726 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 2727 goto bad; 2728 if (sysctl_createv(clog, 0, &rnode, &rnode, 2729 CTLFLAG_PERMANENT, CTLTYPE_NODE, ifp->if_xname, 2730 SYSCTL_DESCR("Interface controls"), 2731 NULL, 0, NULL, 0, 2732 CTL_CREATE, CTL_EOL) != 0) 2733 goto bad; 2734 if (sysctl_createv(clog, 0, &rnode, &rnode, 2735 CTLFLAG_PERMANENT, CTLTYPE_NODE, "watchdog", 2736 SYSCTL_DESCR("Interface watchdog controls"), 2737 NULL, 0, NULL, 0, 2738 CTL_CREATE, CTL_EOL) != 0) 2739 goto bad; 2740 if (sysctl_createv(clog, 0, &rnode, NULL, 2741 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "trigger", 2742 SYSCTL_DESCR("Trigger watchdog timeout"), 2743 sysctl_if_watchdog, 0, (int *)ifp, 0, 2744 CTL_CREATE, CTL_EOL) != 0) 2745 goto bad; 2746 2747 return; 2748 2749 bad: 2750 printf("%s: could not attach sysctl watchdog nodes\n", ifp->if_xname); 2751 } 2752 2753 /* 2754 * Mark an interface up and notify protocols of 2755 * the transition. 2756 * NOTE: must be called at splsoftnet or equivalent. 2757 */ 2758 void 2759 if_up(struct ifnet *ifp) 2760 { 2761 2762 IFNET_LOCK(ifp); 2763 if_up_locked(ifp); 2764 IFNET_UNLOCK(ifp); 2765 } 2766 2767 /* 2768 * Set/clear promiscuous mode on interface ifp based on the truth value 2769 * of pswitch. The calls are reference counted so that only the first 2770 * "on" request actually has an effect, as does the final "off" request. 2771 * Results are undefined if the "off" and "on" requests are not matched. 2772 */ 2773 int 2774 ifpromisc_locked(struct ifnet *ifp, int pswitch) 2775 { 2776 int pcount, ret = 0; 2777 u_short nflags; 2778 2779 KASSERT(IFNET_LOCKED(ifp)); 2780 2781 pcount = ifp->if_pcount; 2782 if (pswitch) { 2783 /* 2784 * Allow the device to be "placed" into promiscuous 2785 * mode even if it is not configured up. It will 2786 * consult IFF_PROMISC when it is brought up. 2787 */ 2788 if (ifp->if_pcount++ != 0) 2789 goto out; 2790 nflags = ifp->if_flags | IFF_PROMISC; 2791 } else { 2792 if (--ifp->if_pcount > 0) 2793 goto out; 2794 nflags = ifp->if_flags & ~IFF_PROMISC; 2795 } 2796 ret = if_flags_set(ifp, nflags); 2797 /* Restore interface state if not successful. */ 2798 if (ret != 0) 2799 ifp->if_pcount = pcount; 2800 2801 out: 2802 return ret; 2803 } 2804 2805 int 2806 ifpromisc(struct ifnet *ifp, int pswitch) 2807 { 2808 int e; 2809 2810 IFNET_LOCK(ifp); 2811 e = ifpromisc_locked(ifp, pswitch); 2812 IFNET_UNLOCK(ifp); 2813 2814 return e; 2815 } 2816 2817 /* 2818 * if_ioctl(ifp, cmd, data) 2819 * 2820 * Apply an ioctl command to the interface. Returns 0 on success, 2821 * nonzero errno(3) number on failure. 2822 * 2823 * For SIOCADDMULTI/SIOCDELMULTI, caller need not hold locks -- it 2824 * is the driver's responsibility to take any internal locks. 2825 * (Kernel logic should generally invoke these only through 2826 * if_mcast_op.) 2827 * 2828 * For all other ioctls, caller must hold ifp->if_ioctl_lock, 2829 * a.k.a. IFNET_LOCK. May sleep. 2830 */ 2831 int 2832 if_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2833 { 2834 2835 switch (cmd) { 2836 case SIOCADDMULTI: 2837 case SIOCDELMULTI: 2838 break; 2839 default: 2840 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2841 } 2842 2843 return (*ifp->if_ioctl)(ifp, cmd, data); 2844 } 2845 2846 /* 2847 * if_init(ifp) 2848 * 2849 * Prepare the hardware underlying ifp to process packets 2850 * according to its current configuration. Returns 0 on success, 2851 * nonzero errno(3) number on failure. 2852 * 2853 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 2854 * IFNET_LOCK. 2855 */ 2856 int 2857 if_init(struct ifnet *ifp) 2858 { 2859 2860 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2861 2862 return (*ifp->if_init)(ifp); 2863 } 2864 2865 /* 2866 * if_stop(ifp, disable) 2867 * 2868 * Stop the hardware underlying ifp from processing packets. 2869 * 2870 * If disable is true, ... XXX(?) 2871 * 2872 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 2873 * IFNET_LOCK. 2874 */ 2875 void 2876 if_stop(struct ifnet *ifp, int disable) 2877 { 2878 2879 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2880 2881 (*ifp->if_stop)(ifp, disable); 2882 } 2883 2884 /* 2885 * Map interface name to 2886 * interface structure pointer. 2887 */ 2888 struct ifnet * 2889 ifunit(const char *name) 2890 { 2891 struct ifnet *ifp; 2892 const char *cp = name; 2893 u_int unit = 0; 2894 u_int i; 2895 2896 /* 2897 * If the entire name is a number, treat it as an ifindex. 2898 */ 2899 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) 2900 unit = unit * 10 + (*cp - '0'); 2901 2902 /* 2903 * If the number took all of the name, then it's a valid ifindex. 2904 */ 2905 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2906 return if_byindex(unit); 2907 2908 ifp = NULL; 2909 const int s = pserialize_read_enter(); 2910 IFNET_READER_FOREACH(ifp) { 2911 if (if_is_deactivated(ifp)) 2912 continue; 2913 if (strcmp(ifp->if_xname, name) == 0) 2914 goto out; 2915 } 2916 out: 2917 pserialize_read_exit(s); 2918 return ifp; 2919 } 2920 2921 /* 2922 * Get a reference of an ifnet object by an interface name. 2923 * The returned reference is protected by psref(9). The caller 2924 * must release a returned reference by if_put after use. 2925 */ 2926 struct ifnet * 2927 if_get(const char *name, struct psref *psref) 2928 { 2929 struct ifnet *ifp; 2930 const char *cp = name; 2931 u_int unit = 0; 2932 u_int i; 2933 2934 /* 2935 * If the entire name is a number, treat it as an ifindex. 2936 */ 2937 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) 2938 unit = unit * 10 + (*cp - '0'); 2939 2940 /* 2941 * If the number took all of the name, then it's a valid ifindex. 2942 */ 2943 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2944 return if_get_byindex(unit, psref); 2945 2946 ifp = NULL; 2947 const int s = pserialize_read_enter(); 2948 IFNET_READER_FOREACH(ifp) { 2949 if (if_is_deactivated(ifp)) 2950 continue; 2951 if (strcmp(ifp->if_xname, name) == 0) { 2952 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 2953 psref_acquire(psref, &ifp->if_psref, 2954 ifnet_psref_class); 2955 goto out; 2956 } 2957 } 2958 out: 2959 pserialize_read_exit(s); 2960 return ifp; 2961 } 2962 2963 /* 2964 * Release a reference of an ifnet object given by if_get, if_get_byindex 2965 * or if_get_bylla. 2966 */ 2967 void 2968 if_put(const struct ifnet *ifp, struct psref *psref) 2969 { 2970 2971 if (ifp == NULL) 2972 return; 2973 2974 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2975 } 2976 2977 /* 2978 * Return ifp having idx. Return NULL if not found. Normally if_byindex 2979 * should be used. 2980 */ 2981 ifnet_t * 2982 _if_byindex(u_int idx) 2983 { 2984 2985 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2986 } 2987 2988 /* 2989 * Return ifp having idx. Return NULL if not found or the found ifp is 2990 * already deactivated. 2991 */ 2992 ifnet_t * 2993 if_byindex(u_int idx) 2994 { 2995 ifnet_t *ifp; 2996 2997 ifp = _if_byindex(idx); 2998 if (ifp != NULL && if_is_deactivated(ifp)) 2999 ifp = NULL; 3000 return ifp; 3001 } 3002 3003 /* 3004 * Get a reference of an ifnet object by an interface index. 3005 * The returned reference is protected by psref(9). The caller 3006 * must release a returned reference by if_put after use. 3007 */ 3008 ifnet_t * 3009 if_get_byindex(u_int idx, struct psref *psref) 3010 { 3011 ifnet_t *ifp; 3012 3013 const int s = pserialize_read_enter(); 3014 ifp = if_byindex(idx); 3015 if (__predict_true(ifp != NULL)) { 3016 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 3017 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 3018 } 3019 pserialize_read_exit(s); 3020 3021 return ifp; 3022 } 3023 3024 ifnet_t * 3025 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref) 3026 { 3027 ifnet_t *ifp; 3028 3029 const int s = pserialize_read_enter(); 3030 IFNET_READER_FOREACH(ifp) { 3031 if (if_is_deactivated(ifp)) 3032 continue; 3033 if (ifp->if_addrlen != lla_len) 3034 continue; 3035 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) { 3036 psref_acquire(psref, &ifp->if_psref, 3037 ifnet_psref_class); 3038 break; 3039 } 3040 } 3041 pserialize_read_exit(s); 3042 3043 return ifp; 3044 } 3045 3046 /* 3047 * Note that it's safe only if the passed ifp is guaranteed to not be freed, 3048 * for example using pserialize or the ifp is already held or some other 3049 * object is held which guarantes the ifp to not be freed indirectly. 3050 */ 3051 void 3052 if_acquire(struct ifnet *ifp, struct psref *psref) 3053 { 3054 3055 KASSERT(ifp->if_index != 0); 3056 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 3057 } 3058 3059 bool 3060 if_held(struct ifnet *ifp) 3061 { 3062 3063 return psref_held(&ifp->if_psref, ifnet_psref_class); 3064 } 3065 3066 /* 3067 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over 3068 * IPv4. Check the tunnel nesting count. 3069 * Return > 0, if tunnel nesting count is more than limit. 3070 * Return 0, if tunnel nesting count is equal or less than limit. 3071 */ 3072 int 3073 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit) 3074 { 3075 struct m_tag *mtag; 3076 int *count; 3077 3078 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO); 3079 if (mtag != NULL) { 3080 count = (int *)(mtag + 1); 3081 if (++(*count) > limit) { 3082 log(LOG_NOTICE, 3083 "%s: recursively called too many times(%d)\n", 3084 ifp->if_xname, *count); 3085 return EIO; 3086 } 3087 } else { 3088 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count), 3089 M_NOWAIT); 3090 if (mtag != NULL) { 3091 m_tag_prepend(m, mtag); 3092 count = (int *)(mtag + 1); 3093 *count = 0; 3094 } else { 3095 log(LOG_DEBUG, "%s: m_tag_get() failed, " 3096 "recursion calls are not prevented.\n", 3097 ifp->if_xname); 3098 } 3099 } 3100 3101 return 0; 3102 } 3103 3104 static void 3105 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3106 { 3107 struct tunnel_ro *tro = p; 3108 3109 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP); 3110 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 3111 } 3112 3113 static void 3114 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3115 { 3116 struct tunnel_ro *tro = p; 3117 3118 rtcache_free(tro->tr_ro); 3119 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro)); 3120 3121 mutex_obj_free(tro->tr_lock); 3122 } 3123 3124 percpu_t * 3125 if_tunnel_alloc_ro_percpu(void) 3126 { 3127 3128 return percpu_create(sizeof(struct tunnel_ro), 3129 if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL); 3130 } 3131 3132 void 3133 if_tunnel_free_ro_percpu(percpu_t *ro_percpu) 3134 { 3135 3136 percpu_free(ro_percpu, sizeof(struct tunnel_ro)); 3137 } 3138 3139 3140 static void 3141 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, 3142 struct cpu_info *ci __unused) 3143 { 3144 struct tunnel_ro *tro = p; 3145 3146 mutex_enter(tro->tr_lock); 3147 rtcache_free(tro->tr_ro); 3148 mutex_exit(tro->tr_lock); 3149 } 3150 3151 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu) 3152 { 3153 3154 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL); 3155 } 3156 3157 void 3158 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats) 3159 { 3160 3161 /* Collect the volatile stats first; this zeros *ifi. */ 3162 if_stats_to_if_data(ifp, ifi, zero_stats); 3163 3164 ifi->ifi_type = ifp->if_type; 3165 ifi->ifi_addrlen = ifp->if_addrlen; 3166 ifi->ifi_hdrlen = ifp->if_hdrlen; 3167 ifi->ifi_link_state = ifp->if_link_state; 3168 ifi->ifi_mtu = ifp->if_mtu; 3169 ifi->ifi_metric = ifp->if_metric; 3170 ifi->ifi_baudrate = ifp->if_baudrate; 3171 ifi->ifi_lastchange = ifp->if_lastchange; 3172 } 3173 3174 /* common */ 3175 int 3176 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 3177 { 3178 struct ifreq *ifr; 3179 struct ifcapreq *ifcr; 3180 struct ifdatareq *ifdr; 3181 unsigned short flags; 3182 char *descr; 3183 int error; 3184 3185 switch (cmd) { 3186 case SIOCSIFCAP: 3187 ifcr = data; 3188 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 3189 return EINVAL; 3190 3191 if (ifcr->ifcr_capenable == ifp->if_capenable) 3192 return 0; 3193 3194 ifp->if_capenable = ifcr->ifcr_capenable; 3195 3196 /* Pre-compute the checksum flags mask. */ 3197 ifp->if_csum_flags_tx = 0; 3198 ifp->if_csum_flags_rx = 0; 3199 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) 3200 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 3201 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 3202 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 3203 3204 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) 3205 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 3206 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) 3207 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 3208 3209 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) 3210 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 3211 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) 3212 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 3213 3214 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) 3215 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 3216 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) 3217 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 3218 3219 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) 3220 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 3221 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) 3222 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 3223 3224 if (ifp->if_capenable & IFCAP_TSOv4) 3225 ifp->if_csum_flags_tx |= M_CSUM_TSOv4; 3226 if (ifp->if_capenable & IFCAP_TSOv6) 3227 ifp->if_csum_flags_tx |= M_CSUM_TSOv6; 3228 3229 #if NBRIDGE > 0 3230 if (ifp->if_bridge != NULL) 3231 bridge_calc_csum_flags(ifp->if_bridge); 3232 #endif 3233 3234 if (ifp->if_flags & IFF_UP) 3235 return ENETRESET; 3236 return 0; 3237 case SIOCSIFFLAGS: 3238 ifr = data; 3239 /* 3240 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up 3241 * and if_down aren't MP-safe yet, so we must hold the lock. 3242 */ 3243 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3244 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 3245 const int s = splsoftnet(); 3246 if_down_locked(ifp); 3247 splx(s); 3248 } 3249 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 3250 const int s = splsoftnet(); 3251 if_up_locked(ifp); 3252 splx(s); 3253 } 3254 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3255 flags = (ifp->if_flags & IFF_CANTCHANGE) | 3256 (ifr->ifr_flags &~ IFF_CANTCHANGE); 3257 if (ifp->if_flags != flags) { 3258 ifp->if_flags = flags; 3259 /* Notify that the flags have changed. */ 3260 rt_ifmsg(ifp); 3261 } 3262 break; 3263 case SIOCGIFFLAGS: 3264 ifr = data; 3265 ifr->ifr_flags = ifp->if_flags; 3266 break; 3267 3268 case SIOCGIFMETRIC: 3269 ifr = data; 3270 ifr->ifr_metric = ifp->if_metric; 3271 break; 3272 3273 case SIOCGIFMTU: 3274 ifr = data; 3275 ifr->ifr_mtu = ifp->if_mtu; 3276 break; 3277 3278 case SIOCGIFDLT: 3279 ifr = data; 3280 ifr->ifr_dlt = ifp->if_dlt; 3281 break; 3282 3283 case SIOCGIFCAP: 3284 ifcr = data; 3285 ifcr->ifcr_capabilities = ifp->if_capabilities; 3286 ifcr->ifcr_capenable = ifp->if_capenable; 3287 break; 3288 3289 case SIOCSIFMETRIC: 3290 ifr = data; 3291 ifp->if_metric = ifr->ifr_metric; 3292 break; 3293 3294 case SIOCGIFDATA: 3295 ifdr = data; 3296 if_export_if_data(ifp, &ifdr->ifdr_data, false); 3297 break; 3298 3299 case SIOCGIFINDEX: 3300 ifr = data; 3301 ifr->ifr_index = ifp->if_index; 3302 break; 3303 3304 case SIOCZIFDATA: 3305 ifdr = data; 3306 if_export_if_data(ifp, &ifdr->ifdr_data, true); 3307 getnanotime(&ifp->if_lastchange); 3308 break; 3309 case SIOCSIFMTU: 3310 ifr = data; 3311 if (ifp->if_mtu == ifr->ifr_mtu) 3312 break; 3313 ifp->if_mtu = ifr->ifr_mtu; 3314 return ENETRESET; 3315 case SIOCSIFDESCR: 3316 error = kauth_authorize_network(kauth_cred_get(), 3317 KAUTH_NETWORK_INTERFACE, 3318 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3319 NULL); 3320 if (error) 3321 return error; 3322 3323 ifr = data; 3324 3325 if (ifr->ifr_buflen > IFDESCRSIZE) 3326 return ENAMETOOLONG; 3327 3328 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) { 3329 /* unset description */ 3330 descr = NULL; 3331 } else { 3332 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP); 3333 /* 3334 * copy (IFDESCRSIZE - 1) bytes to ensure 3335 * terminating nul 3336 */ 3337 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1); 3338 if (error) { 3339 kmem_free(descr, IFDESCRSIZE); 3340 return error; 3341 } 3342 } 3343 3344 if (ifp->if_description != NULL) 3345 kmem_free(ifp->if_description, IFDESCRSIZE); 3346 3347 ifp->if_description = descr; 3348 break; 3349 3350 case SIOCGIFDESCR: 3351 ifr = data; 3352 descr = ifp->if_description; 3353 3354 if (descr == NULL) 3355 return ENOMSG; 3356 3357 if (ifr->ifr_buflen < IFDESCRSIZE) 3358 return EINVAL; 3359 3360 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE); 3361 if (error) 3362 return error; 3363 break; 3364 3365 default: 3366 return ENOTTY; 3367 } 3368 return 0; 3369 } 3370 3371 int 3372 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 3373 { 3374 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 3375 struct ifaddr *ifa; 3376 const struct sockaddr *any, *sa; 3377 union { 3378 struct sockaddr sa; 3379 struct sockaddr_storage ss; 3380 } u, v; 3381 int s, error = 0; 3382 3383 switch (cmd) { 3384 case SIOCSIFADDRPREF: 3385 error = kauth_authorize_network(kauth_cred_get(), 3386 KAUTH_NETWORK_INTERFACE, 3387 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3388 NULL); 3389 if (error) 3390 return error; 3391 break; 3392 case SIOCGIFADDRPREF: 3393 break; 3394 default: 3395 return EOPNOTSUPP; 3396 } 3397 3398 /* sanity checks */ 3399 if (data == NULL || ifp == NULL) { 3400 panic("invalid argument to %s", __func__); 3401 /*NOTREACHED*/ 3402 } 3403 3404 /* address must be specified on ADD and DELETE */ 3405 sa = sstocsa(&ifap->ifap_addr); 3406 if (sa->sa_family != sofamily(so)) 3407 return EINVAL; 3408 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 3409 return EINVAL; 3410 3411 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 3412 3413 s = pserialize_read_enter(); 3414 IFADDR_READER_FOREACH(ifa, ifp) { 3415 if (ifa->ifa_addr->sa_family != sa->sa_family) 3416 continue; 3417 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 3418 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 3419 break; 3420 } 3421 if (ifa == NULL) { 3422 error = EADDRNOTAVAIL; 3423 goto out; 3424 } 3425 3426 switch (cmd) { 3427 case SIOCSIFADDRPREF: 3428 ifa->ifa_preference = ifap->ifap_preference; 3429 goto out; 3430 case SIOCGIFADDRPREF: 3431 /* fill in the if_laddrreq structure */ 3432 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 3433 sizeof(ifap->ifap_addr), ifa->ifa_addr); 3434 ifap->ifap_preference = ifa->ifa_preference; 3435 goto out; 3436 default: 3437 error = EOPNOTSUPP; 3438 } 3439 out: 3440 pserialize_read_exit(s); 3441 return error; 3442 } 3443 3444 /* 3445 * Interface ioctls. 3446 */ 3447 static int 3448 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 3449 { 3450 struct ifnet *ifp; 3451 struct ifreq *ifr; 3452 int error = 0; 3453 u_long ocmd = cmd; 3454 u_short oif_flags; 3455 struct ifreq ifrb; 3456 struct oifreq *oifr = NULL; 3457 int r; 3458 struct psref psref; 3459 bool do_if43_post = false; 3460 bool do_ifm80_post = false; 3461 3462 switch (cmd) { 3463 case SIOCGIFCONF: 3464 return ifconf(cmd, data); 3465 case SIOCINITIFADDR: 3466 return EPERM; 3467 default: 3468 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(), 3469 error); 3470 if (error != ENOSYS) 3471 return error; 3472 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data), 3473 enosys(), error); 3474 if (error != ENOSYS) 3475 return error; 3476 error = 0; 3477 break; 3478 } 3479 3480 ifr = data; 3481 /* Pre-conversion */ 3482 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error); 3483 if (cmd != ocmd) { 3484 oifr = data; 3485 data = ifr = &ifrb; 3486 IFREQO2N_43(oifr, ifr); 3487 do_if43_post = true; 3488 } 3489 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post), 3490 enosys(), error); 3491 3492 switch (cmd) { 3493 case SIOCIFCREATE: 3494 case SIOCIFDESTROY: { 3495 const int bound = curlwp_bind(); 3496 if (l != NULL) { 3497 ifp = if_get(ifr->ifr_name, &psref); 3498 error = kauth_authorize_network(l->l_cred, 3499 KAUTH_NETWORK_INTERFACE, 3500 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3501 KAUTH_ARG(cmd), NULL); 3502 if (ifp != NULL) 3503 if_put(ifp, &psref); 3504 if (error != 0) { 3505 curlwp_bindx(bound); 3506 return error; 3507 } 3508 } 3509 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3510 mutex_enter(&if_clone_mtx); 3511 r = (cmd == SIOCIFCREATE) ? 3512 if_clone_create(ifr->ifr_name) : 3513 if_clone_destroy(ifr->ifr_name); 3514 mutex_exit(&if_clone_mtx); 3515 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3516 curlwp_bindx(bound); 3517 return r; 3518 } 3519 case SIOCIFGCLONERS: { 3520 struct if_clonereq *req = (struct if_clonereq *)data; 3521 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 3522 &req->ifcr_total); 3523 } 3524 } 3525 3526 if ((cmd & IOC_IN) == 0 || IOCPARM_LEN(cmd) < sizeof(ifr->ifr_name)) 3527 return EINVAL; 3528 3529 const int bound = curlwp_bind(); 3530 ifp = if_get(ifr->ifr_name, &psref); 3531 if (ifp == NULL) { 3532 curlwp_bindx(bound); 3533 return ENXIO; 3534 } 3535 3536 switch (cmd) { 3537 case SIOCALIFADDR: 3538 case SIOCDLIFADDR: 3539 case SIOCSIFADDRPREF: 3540 case SIOCSIFFLAGS: 3541 case SIOCSIFCAP: 3542 case SIOCSIFMETRIC: 3543 case SIOCZIFDATA: 3544 case SIOCSIFMTU: 3545 case SIOCSIFPHYADDR: 3546 case SIOCDIFPHYADDR: 3547 #ifdef INET6 3548 case SIOCSIFPHYADDR_IN6: 3549 #endif 3550 case SIOCSLIFPHYADDR: 3551 case SIOCADDMULTI: 3552 case SIOCDELMULTI: 3553 case SIOCSETHERCAP: 3554 case SIOCSIFMEDIA: 3555 case SIOCSDRVSPEC: 3556 case SIOCG80211: 3557 case SIOCS80211: 3558 case SIOCS80211NWID: 3559 case SIOCS80211NWKEY: 3560 case SIOCS80211POWER: 3561 case SIOCS80211BSSID: 3562 case SIOCS80211CHANNEL: 3563 case SIOCSLINKSTR: 3564 if (l != NULL) { 3565 error = kauth_authorize_network(l->l_cred, 3566 KAUTH_NETWORK_INTERFACE, 3567 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3568 KAUTH_ARG(cmd), NULL); 3569 if (error != 0) 3570 goto out; 3571 } 3572 } 3573 3574 oif_flags = ifp->if_flags; 3575 3576 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 3577 IFNET_LOCK(ifp); 3578 3579 error = if_ioctl(ifp, cmd, data); 3580 if (error != ENOTTY) 3581 ; 3582 else if (so->so_proto == NULL) 3583 error = EOPNOTSUPP; 3584 else { 3585 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3586 MODULE_HOOK_CALL(if_ifioctl_43_hook, 3587 (so, ocmd, cmd, data, l), enosys(), error); 3588 if (error == ENOSYS) 3589 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3590 cmd, data, ifp); 3591 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3592 } 3593 3594 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3595 if ((ifp->if_flags & IFF_UP) != 0) { 3596 const int s = splsoftnet(); 3597 if_up_locked(ifp); 3598 splx(s); 3599 } 3600 } 3601 3602 /* Post-conversion */ 3603 if (do_ifm80_post && (error == 0)) 3604 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd), 3605 enosys(), error); 3606 if (do_if43_post) 3607 IFREQN2O_43(oifr, ifr); 3608 3609 IFNET_UNLOCK(ifp); 3610 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 3611 out: 3612 if_put(ifp, &psref); 3613 curlwp_bindx(bound); 3614 return error; 3615 } 3616 3617 /* 3618 * Return interface configuration 3619 * of system. List may be used 3620 * in later ioctl's (above) to get 3621 * other information. 3622 * 3623 * Each record is a struct ifreq. Before the addition of 3624 * sockaddr_storage, the API rule was that sockaddr flavors that did 3625 * not fit would extend beyond the struct ifreq, with the next struct 3626 * ifreq starting sa_len beyond the struct sockaddr. Because the 3627 * union in struct ifreq includes struct sockaddr_storage, every kind 3628 * of sockaddr must fit. Thus, there are no longer any overlength 3629 * records. 3630 * 3631 * Records are added to the user buffer if they fit, and ifc_len is 3632 * adjusted to the length that was written. Thus, the user is only 3633 * assured of getting the complete list if ifc_len on return is at 3634 * least sizeof(struct ifreq) less than it was on entry. 3635 * 3636 * If the user buffer pointer is NULL, this routine copies no data and 3637 * returns the amount of space that would be needed. 3638 * 3639 * Invariants: 3640 * ifrp points to the next part of the user's buffer to be used. If 3641 * ifrp != NULL, space holds the number of bytes remaining that we may 3642 * write at ifrp. Otherwise, space holds the number of bytes that 3643 * would have been written had there been adequate space. 3644 */ 3645 /*ARGSUSED*/ 3646 static int 3647 ifconf(u_long cmd, void *data) 3648 { 3649 struct ifconf *ifc = (struct ifconf *)data; 3650 struct ifnet *ifp; 3651 struct ifaddr *ifa; 3652 struct ifreq ifr, *ifrp = NULL; 3653 int space = 0, error = 0; 3654 const int sz = (int)sizeof(struct ifreq); 3655 const bool docopy = ifc->ifc_req != NULL; 3656 struct psref psref; 3657 3658 if (docopy) { 3659 if (ifc->ifc_len < 0) 3660 return EINVAL; 3661 3662 space = ifc->ifc_len; 3663 ifrp = ifc->ifc_req; 3664 } 3665 memset(&ifr, 0, sizeof(ifr)); 3666 3667 const int bound = curlwp_bind(); 3668 int s = pserialize_read_enter(); 3669 IFNET_READER_FOREACH(ifp) { 3670 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3671 pserialize_read_exit(s); 3672 3673 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3674 sizeof(ifr.ifr_name)); 3675 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3676 error = ENAMETOOLONG; 3677 goto release_exit; 3678 } 3679 if (IFADDR_READER_EMPTY(ifp)) { 3680 /* Interface with no addresses - send zero sockaddr. */ 3681 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3682 if (!docopy) { 3683 space += sz; 3684 goto next; 3685 } 3686 if (space >= sz) { 3687 error = copyout(&ifr, ifrp, sz); 3688 if (error != 0) 3689 goto release_exit; 3690 ifrp++; 3691 space -= sz; 3692 } 3693 } 3694 3695 s = pserialize_read_enter(); 3696 IFADDR_READER_FOREACH(ifa, ifp) { 3697 struct sockaddr *sa = ifa->ifa_addr; 3698 /* all sockaddrs must fit in sockaddr_storage */ 3699 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3700 3701 if (!docopy) { 3702 space += sz; 3703 continue; 3704 } 3705 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3706 pserialize_read_exit(s); 3707 3708 if (space >= sz) { 3709 error = copyout(&ifr, ifrp, sz); 3710 if (error != 0) 3711 goto release_exit; 3712 ifrp++; space -= sz; 3713 } 3714 s = pserialize_read_enter(); 3715 } 3716 pserialize_read_exit(s); 3717 3718 next: 3719 s = pserialize_read_enter(); 3720 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3721 } 3722 pserialize_read_exit(s); 3723 curlwp_bindx(bound); 3724 3725 if (docopy) { 3726 KASSERT(0 <= space && space <= ifc->ifc_len); 3727 ifc->ifc_len -= space; 3728 } else { 3729 KASSERT(space >= 0); 3730 ifc->ifc_len = space; 3731 } 3732 return 0; 3733 3734 release_exit: 3735 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3736 curlwp_bindx(bound); 3737 return error; 3738 } 3739 3740 int 3741 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3742 { 3743 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space); 3744 struct ifreq ifrb; 3745 struct oifreq *oifr = NULL; 3746 u_long ocmd = cmd; 3747 int hook; 3748 3749 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook); 3750 if (hook != ENOSYS) { 3751 if (cmd != ocmd) { 3752 oifr = (struct oifreq *)(void *)ifr; 3753 ifr = &ifrb; 3754 IFREQO2N_43(oifr, ifr); 3755 len = sizeof(oifr->ifr_addr); 3756 } 3757 } 3758 3759 if (len < sa->sa_len) 3760 return EFBIG; 3761 3762 memset(&ifr->ifr_addr, 0, len); 3763 sockaddr_copy(&ifr->ifr_addr, len, sa); 3764 3765 if (cmd != ocmd) 3766 IFREQN2O_43(oifr, ifr); 3767 return 0; 3768 } 3769 3770 /* 3771 * wrapper function for the drivers which doesn't have if_transmit(). 3772 */ 3773 static int 3774 if_transmit(struct ifnet *ifp, struct mbuf *m) 3775 { 3776 int error; 3777 size_t pktlen = m->m_pkthdr.len; 3778 bool mcast = (m->m_flags & M_MCAST) != 0; 3779 3780 const int s = splnet(); 3781 3782 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3783 if (error != 0) { 3784 /* mbuf is already freed */ 3785 goto out; 3786 } 3787 3788 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 3789 if_statadd_ref(ifp, nsr, if_obytes, pktlen); 3790 if (mcast) 3791 if_statinc_ref(ifp, nsr, if_omcasts); 3792 IF_STAT_PUTREF(ifp); 3793 3794 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3795 if_start_lock(ifp); 3796 out: 3797 splx(s); 3798 3799 return error; 3800 } 3801 3802 int 3803 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3804 { 3805 int error; 3806 3807 kmsan_check_mbuf(m); 3808 3809 #ifdef ALTQ 3810 KERNEL_LOCK(1, NULL); 3811 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3812 error = if_transmit(ifp, m); 3813 KERNEL_UNLOCK_ONE(NULL); 3814 } else { 3815 KERNEL_UNLOCK_ONE(NULL); 3816 error = (*ifp->if_transmit)(ifp, m); 3817 /* mbuf is already freed */ 3818 } 3819 #else /* !ALTQ */ 3820 error = (*ifp->if_transmit)(ifp, m); 3821 /* mbuf is already freed */ 3822 #endif /* !ALTQ */ 3823 3824 return error; 3825 } 3826 3827 /* 3828 * Queue message on interface, and start output if interface 3829 * not yet active. 3830 */ 3831 int 3832 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3833 { 3834 3835 return if_transmit_lock(ifp, m); 3836 } 3837 3838 /* 3839 * Queue message on interface, possibly using a second fast queue 3840 */ 3841 int 3842 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3843 { 3844 int error = 0; 3845 3846 if (ifq != NULL 3847 #ifdef ALTQ 3848 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3849 #endif 3850 ) { 3851 if (IF_QFULL(ifq)) { 3852 IF_DROP(&ifp->if_snd); 3853 m_freem(m); 3854 if (error == 0) 3855 error = ENOBUFS; 3856 } else 3857 IF_ENQUEUE(ifq, m); 3858 } else 3859 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3860 if (error != 0) { 3861 if_statinc(ifp, if_oerrors); 3862 return error; 3863 } 3864 return 0; 3865 } 3866 3867 int 3868 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3869 { 3870 int rc; 3871 3872 KASSERT(IFNET_LOCKED(ifp)); 3873 if (ifp->if_initaddr != NULL) 3874 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3875 else if (src || (rc = if_ioctl(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3876 rc = if_ioctl(ifp, SIOCINITIFADDR, ifa); 3877 3878 return rc; 3879 } 3880 3881 int 3882 if_do_dad(struct ifnet *ifp) 3883 { 3884 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3885 return 0; 3886 3887 switch (ifp->if_type) { 3888 case IFT_FAITH: 3889 /* 3890 * These interfaces do not have the IFF_LOOPBACK flag, 3891 * but loop packets back. We do not have to do DAD on such 3892 * interfaces. We should even omit it, because loop-backed 3893 * responses would confuse the DAD procedure. 3894 */ 3895 return 0; 3896 default: 3897 /* 3898 * Our DAD routine requires the interface up and running. 3899 * However, some interfaces can be up before the RUNNING 3900 * status. Additionally, users may try to assign addresses 3901 * before the interface becomes up (or running). 3902 * We simply skip DAD in such a case as a work around. 3903 * XXX: we should rather mark "tentative" on such addresses, 3904 * and do DAD after the interface becomes ready. 3905 */ 3906 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 3907 (IFF_UP | IFF_RUNNING)) 3908 return 0; 3909 3910 return 1; 3911 } 3912 } 3913 3914 /* 3915 * if_flags_set(ifp, flags) 3916 * 3917 * Ask ifp to change ifp->if_flags to flags, as if with the 3918 * SIOCSIFFLAGS ioctl command. 3919 * 3920 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 3921 * IFNET_LOCK. 3922 */ 3923 int 3924 if_flags_set(ifnet_t *ifp, const u_short flags) 3925 { 3926 int rc; 3927 3928 KASSERT(IFNET_LOCKED(ifp)); 3929 3930 if (ifp->if_setflags != NULL) 3931 rc = (*ifp->if_setflags)(ifp, flags); 3932 else { 3933 u_short cantflags, chgdflags; 3934 struct ifreq ifr; 3935 3936 chgdflags = ifp->if_flags ^ flags; 3937 cantflags = chgdflags & IFF_CANTCHANGE; 3938 3939 if (cantflags != 0) 3940 ifp->if_flags ^= cantflags; 3941 3942 /* 3943 * Traditionally, we do not call if_ioctl after 3944 * setting/clearing only IFF_PROMISC if the interface 3945 * isn't IFF_UP. Uphold that tradition. 3946 */ 3947 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3948 return 0; 3949 3950 memset(&ifr, 0, sizeof(ifr)); 3951 3952 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3953 rc = if_ioctl(ifp, SIOCSIFFLAGS, &ifr); 3954 3955 if (rc != 0 && cantflags != 0) 3956 ifp->if_flags ^= cantflags; 3957 } 3958 3959 return rc; 3960 } 3961 3962 /* 3963 * if_mcast_op(ifp, cmd, sa) 3964 * 3965 * Apply a multicast command, SIOCADDMULTI/SIOCDELMULTI, to the 3966 * interface. Returns 0 on success, nonzero errno(3) number on 3967 * failure. 3968 * 3969 * May sleep. 3970 * 3971 * Use this, not if_ioctl, for the multicast commands. 3972 */ 3973 int 3974 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3975 { 3976 int rc; 3977 struct ifreq ifr; 3978 3979 switch (cmd) { 3980 case SIOCADDMULTI: 3981 case SIOCDELMULTI: 3982 break; 3983 default: 3984 panic("invalid ifnet multicast command: 0x%lx", cmd); 3985 } 3986 3987 ifreq_setaddr(cmd, &ifr, sa); 3988 rc = if_ioctl(ifp, cmd, &ifr); 3989 3990 return rc; 3991 } 3992 3993 static void 3994 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3995 struct ifaltq *ifq) 3996 { 3997 const struct sysctlnode *cnode, *rnode; 3998 3999 if (sysctl_createv(clog, 0, NULL, &rnode, 4000 CTLFLAG_PERMANENT, 4001 CTLTYPE_NODE, "interfaces", 4002 SYSCTL_DESCR("Per-interface controls"), 4003 NULL, 0, NULL, 0, 4004 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 4005 goto bad; 4006 4007 if (sysctl_createv(clog, 0, &rnode, &rnode, 4008 CTLFLAG_PERMANENT, 4009 CTLTYPE_NODE, ifname, 4010 SYSCTL_DESCR("Interface controls"), 4011 NULL, 0, NULL, 0, 4012 CTL_CREATE, CTL_EOL) != 0) 4013 goto bad; 4014 4015 if (sysctl_createv(clog, 0, &rnode, &rnode, 4016 CTLFLAG_PERMANENT, 4017 CTLTYPE_NODE, "sndq", 4018 SYSCTL_DESCR("Interface output queue controls"), 4019 NULL, 0, NULL, 0, 4020 CTL_CREATE, CTL_EOL) != 0) 4021 goto bad; 4022 4023 if (sysctl_createv(clog, 0, &rnode, &cnode, 4024 CTLFLAG_PERMANENT, 4025 CTLTYPE_INT, "len", 4026 SYSCTL_DESCR("Current output queue length"), 4027 NULL, 0, &ifq->ifq_len, 0, 4028 CTL_CREATE, CTL_EOL) != 0) 4029 goto bad; 4030 4031 if (sysctl_createv(clog, 0, &rnode, &cnode, 4032 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 4033 CTLTYPE_INT, "maxlen", 4034 SYSCTL_DESCR("Maximum allowed output queue length"), 4035 NULL, 0, &ifq->ifq_maxlen, 0, 4036 CTL_CREATE, CTL_EOL) != 0) 4037 goto bad; 4038 4039 if (sysctl_createv(clog, 0, &rnode, &cnode, 4040 CTLFLAG_PERMANENT, 4041 CTLTYPE_QUAD, "drops", 4042 SYSCTL_DESCR("Packets dropped due to full output queue"), 4043 NULL, 0, &ifq->ifq_drops, 0, 4044 CTL_CREATE, CTL_EOL) != 0) 4045 goto bad; 4046 4047 return; 4048 bad: 4049 printf("%s: could not attach sysctl nodes\n", ifname); 4050 return; 4051 } 4052 4053 static int 4054 if_sdl_sysctl(SYSCTLFN_ARGS) 4055 { 4056 struct ifnet *ifp; 4057 const struct sockaddr_dl *sdl; 4058 struct psref psref; 4059 int error = 0; 4060 4061 if (namelen != 1) 4062 return EINVAL; 4063 4064 const int bound = curlwp_bind(); 4065 ifp = if_get_byindex(name[0], &psref); 4066 if (ifp == NULL) { 4067 error = ENODEV; 4068 goto out0; 4069 } 4070 4071 sdl = ifp->if_sadl; 4072 if (sdl == NULL) { 4073 *oldlenp = 0; 4074 goto out1; 4075 } 4076 4077 if (oldp == NULL) { 4078 *oldlenp = sdl->sdl_alen; 4079 goto out1; 4080 } 4081 4082 if (*oldlenp >= sdl->sdl_alen) 4083 *oldlenp = sdl->sdl_alen; 4084 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], 4085 oldp, *oldlenp); 4086 out1: 4087 if_put(ifp, &psref); 4088 out0: 4089 curlwp_bindx(bound); 4090 return error; 4091 } 4092 4093 static void 4094 if_sysctl_setup(struct sysctllog **clog) 4095 { 4096 const struct sysctlnode *rnode = NULL; 4097 4098 sysctl_createv(clog, 0, NULL, &rnode, 4099 CTLFLAG_PERMANENT, 4100 CTLTYPE_NODE, "sdl", 4101 SYSCTL_DESCR("Get active link-layer address"), 4102 if_sdl_sysctl, 0, NULL, 0, 4103 CTL_NET, CTL_CREATE, CTL_EOL); 4104 } 4105