1 /* $NetBSD: amdgpu_iceland_smumgr.c,v 1.3 2021/12/19 12:02:40 riastradh Exp $ */
2
3 /*
4 * Copyright 2016 Advanced Micro Devices, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Author: Huang Rui <ray.huang@amd.com>
25 *
26 */
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: amdgpu_iceland_smumgr.c,v 1.3 2021/12/19 12:02:40 riastradh Exp $");
29
30 #include "pp_debug.h"
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/gfp.h>
36
37 #include "smumgr.h"
38 #include "iceland_smumgr.h"
39
40 #include "ppsmc.h"
41
42 #include "cgs_common.h"
43
44 #include "smu7_dyn_defaults.h"
45 #include "smu7_hwmgr.h"
46 #include "hardwaremanager.h"
47 #include "ppatomctrl.h"
48 #include "atombios.h"
49 #include "pppcielanes.h"
50 #include "pp_endian.h"
51 #include "processpptables.h"
52
53
54 #include "smu/smu_7_1_1_d.h"
55 #include "smu/smu_7_1_1_sh_mask.h"
56 #include "smu71_discrete.h"
57
58 #include "smu_ucode_xfer_vi.h"
59 #include "gmc/gmc_8_1_d.h"
60 #include "gmc/gmc_8_1_sh_mask.h"
61 #include "bif/bif_5_0_d.h"
62 #include "bif/bif_5_0_sh_mask.h"
63 #include "dce/dce_10_0_d.h"
64 #include "dce/dce_10_0_sh_mask.h"
65
66
67 #define ICELAND_SMC_SIZE 0x20000
68
69 #define POWERTUNE_DEFAULT_SET_MAX 1
70 #define MC_CG_ARB_FREQ_F1 0x0b
71 #define VDDC_VDDCI_DELTA 200
72
73 #define DEVICE_ID_VI_ICELAND_M_6900 0x6900
74 #define DEVICE_ID_VI_ICELAND_M_6901 0x6901
75 #define DEVICE_ID_VI_ICELAND_M_6902 0x6902
76 #define DEVICE_ID_VI_ICELAND_M_6903 0x6903
77
78 static const struct iceland_pt_defaults defaults_iceland = {
79 /*
80 * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,
81 * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
82 */
83 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
84 { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 },
85 { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
86 };
87
88 /* 35W - XT, XTL */
89 static const struct iceland_pt_defaults defaults_icelandxt = {
90 /*
91 * sviLoadLIneEn, SviLoadLineVddC,
92 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
93 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
94 * BAPM_TEMP_GRADIENT
95 */
96 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
97 { 0xA7, 0x0, 0x0, 0xB5, 0x0, 0x0, 0x9F, 0x0, 0x0, 0xD6, 0x0, 0x0, 0xD7, 0x0, 0x0},
98 { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
99 };
100
101 /* 25W - PRO, LE */
102 static const struct iceland_pt_defaults defaults_icelandpro = {
103 /*
104 * sviLoadLIneEn, SviLoadLineVddC,
105 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
106 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
107 * BAPM_TEMP_GRADIENT
108 */
109 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
110 { 0xB7, 0x0, 0x0, 0xC3, 0x0, 0x0, 0xB5, 0x0, 0x0, 0xEA, 0x0, 0x0, 0xE6, 0x0, 0x0},
111 { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
112 };
113
iceland_start_smc(struct pp_hwmgr * hwmgr)114 static int iceland_start_smc(struct pp_hwmgr *hwmgr)
115 {
116 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
117 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
118
119 return 0;
120 }
121
iceland_reset_smc(struct pp_hwmgr * hwmgr)122 static void iceland_reset_smc(struct pp_hwmgr *hwmgr)
123 {
124 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
125 SMC_SYSCON_RESET_CNTL,
126 rst_reg, 1);
127 }
128
129
iceland_stop_smc_clock(struct pp_hwmgr * hwmgr)130 static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr)
131 {
132 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
133 SMC_SYSCON_CLOCK_CNTL_0,
134 ck_disable, 1);
135 }
136
iceland_start_smc_clock(struct pp_hwmgr * hwmgr)137 static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr)
138 {
139 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
140 SMC_SYSCON_CLOCK_CNTL_0,
141 ck_disable, 0);
142 }
143
iceland_smu_start_smc(struct pp_hwmgr * hwmgr)144 static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr)
145 {
146 /* set smc instruct start point at 0x0 */
147 smu7_program_jump_on_start(hwmgr);
148
149 /* enable smc clock */
150 iceland_start_smc_clock(hwmgr);
151
152 /* de-assert reset */
153 iceland_start_smc(hwmgr);
154
155 PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
156 INTERRUPTS_ENABLED, 1);
157
158 return 0;
159 }
160
161
iceland_upload_smc_firmware_data(struct pp_hwmgr * hwmgr,uint32_t length,const uint8_t * src,uint32_t limit,uint32_t start_addr)162 static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr,
163 uint32_t length, const uint8_t *src,
164 uint32_t limit, uint32_t start_addr)
165 {
166 uint32_t byte_count = length;
167 uint32_t data;
168
169 PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -EINVAL);
170
171 cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
172 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
173
174 while (byte_count >= 4) {
175 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
176 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
177 src += 4;
178 byte_count -= 4;
179 }
180
181 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
182
183 PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4.", return -EINVAL);
184
185 return 0;
186 }
187
188
iceland_smu_upload_firmware_image(struct pp_hwmgr * hwmgr)189 static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr)
190 {
191 uint32_t val;
192 struct cgs_firmware_info info = {0};
193
194 if (hwmgr == NULL || hwmgr->device == NULL)
195 return -EINVAL;
196
197 /* load SMC firmware */
198 cgs_get_firmware_info(hwmgr->device,
199 smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
200
201 if (info.image_size & 3) {
202 pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n");
203 return -EINVAL;
204 }
205
206 if (info.image_size > ICELAND_SMC_SIZE) {
207 pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n");
208 return -EINVAL;
209 }
210 hwmgr->smu_version = info.version;
211 /* wait for smc boot up */
212 PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
213 RCU_UC_EVENTS, boot_seq_done, 0);
214
215 /* clear firmware interrupt enable flag */
216 val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
217 ixSMC_SYSCON_MISC_CNTL);
218 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
219 ixSMC_SYSCON_MISC_CNTL, val | 1);
220
221 /* stop smc clock */
222 iceland_stop_smc_clock(hwmgr);
223
224 /* reset smc */
225 iceland_reset_smc(hwmgr);
226 iceland_upload_smc_firmware_data(hwmgr, info.image_size,
227 (uint8_t *)info.kptr, ICELAND_SMC_SIZE,
228 info.ucode_start_address);
229
230 return 0;
231 }
232
iceland_request_smu_load_specific_fw(struct pp_hwmgr * hwmgr,uint32_t firmwareType)233 static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr,
234 uint32_t firmwareType)
235 {
236 return 0;
237 }
238
iceland_start_smu(struct pp_hwmgr * hwmgr)239 static int iceland_start_smu(struct pp_hwmgr *hwmgr)
240 {
241 struct iceland_smumgr *priv = hwmgr->smu_backend;
242 int result;
243
244 if (!smu7_is_smc_ram_running(hwmgr)) {
245 result = iceland_smu_upload_firmware_image(hwmgr);
246 if (result)
247 return result;
248
249 iceland_smu_start_smc(hwmgr);
250 }
251
252 /* Setup SoftRegsStart here to visit the register UcodeLoadStatus
253 * to check fw loading state
254 */
255 smu7_read_smc_sram_dword(hwmgr,
256 SMU71_FIRMWARE_HEADER_LOCATION +
257 offsetof(SMU71_Firmware_Header, SoftRegisters),
258 &(priv->smu7_data.soft_regs_start), 0x40000);
259
260 result = smu7_request_smu_load_fw(hwmgr);
261
262 return result;
263 }
264
iceland_smu_init(struct pp_hwmgr * hwmgr)265 static int iceland_smu_init(struct pp_hwmgr *hwmgr)
266 {
267 struct iceland_smumgr *iceland_priv = NULL;
268
269 iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL);
270
271 if (iceland_priv == NULL)
272 return -ENOMEM;
273
274 hwmgr->smu_backend = iceland_priv;
275
276 if (smu7_init(hwmgr)) {
277 kfree(iceland_priv);
278 return -EINVAL;
279 }
280
281 return 0;
282 }
283
284
iceland_initialize_power_tune_defaults(struct pp_hwmgr * hwmgr)285 static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
286 {
287 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
288 struct amdgpu_device *adev = hwmgr->adev;
289 uint32_t dev_id;
290
291 dev_id = adev->pdev->device;
292
293 switch (dev_id) {
294 case DEVICE_ID_VI_ICELAND_M_6900:
295 case DEVICE_ID_VI_ICELAND_M_6903:
296 smu_data->power_tune_defaults = &defaults_icelandxt;
297 break;
298
299 case DEVICE_ID_VI_ICELAND_M_6901:
300 case DEVICE_ID_VI_ICELAND_M_6902:
301 smu_data->power_tune_defaults = &defaults_icelandpro;
302 break;
303 default:
304 smu_data->power_tune_defaults = &defaults_iceland;
305 pr_warn("Unknown V.I. Device ID.\n");
306 break;
307 }
308 return;
309 }
310
iceland_populate_svi_load_line(struct pp_hwmgr * hwmgr)311 static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr)
312 {
313 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
314 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
315
316 smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
317 smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
318 smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
319 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
320
321 return 0;
322 }
323
iceland_populate_tdc_limit(struct pp_hwmgr * hwmgr)324 static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr)
325 {
326 uint16_t tdc_limit;
327 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
328 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
329
330 tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
331 smu_data->power_tune_table.TDC_VDDC_PkgLimit =
332 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
333 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
334 defaults->tdc_vddc_throttle_release_limit_perc;
335 smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
336
337 return 0;
338 }
339
iceland_populate_dw8(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)340 static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
341 {
342 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
343 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
344 uint32_t temp;
345
346 if (smu7_read_smc_sram_dword(hwmgr,
347 fuse_table_offset +
348 offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl),
349 (uint32_t *)&temp, SMC_RAM_END))
350 PP_ASSERT_WITH_CODE(false,
351 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
352 return -EINVAL);
353 else
354 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
355
356 return 0;
357 }
358
iceland_populate_temperature_scaler(struct pp_hwmgr * hwmgr)359 static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
360 {
361 return 0;
362 }
363
iceland_populate_gnb_lpml(struct pp_hwmgr * hwmgr)364 static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
365 {
366 int i;
367 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
368
369 /* Currently not used. Set all to zero. */
370 for (i = 0; i < 8; i++)
371 smu_data->power_tune_table.GnbLPML[i] = 0;
372
373 return 0;
374 }
375
iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr * hwmgr)376 static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
377 {
378 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
379 uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
380 uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
381 struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
382
383 HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
384 LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
385
386 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
387 CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
388 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
389 CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
390
391 return 0;
392 }
393
iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr * hwmgr)394 static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
395 {
396 int i;
397 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
398 uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
399 uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
400
401 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
402 "The CAC Leakage table does not exist!", return -EINVAL);
403 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
404 "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
405 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
406 "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
407
408 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
409 for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
410 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
411 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
412 }
413 } else {
414 PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL);
415 }
416
417 return 0;
418 }
419
iceland_populate_vddc_vid(struct pp_hwmgr * hwmgr)420 static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr)
421 {
422 int i;
423 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
424 uint8_t *vid = smu_data->power_tune_table.VddCVid;
425 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
426
427 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
428 "There should never be more than 8 entries for VddcVid!!!",
429 return -EINVAL);
430
431 for (i = 0; i < (int)data->vddc_voltage_table.count; i++) {
432 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
433 }
434
435 return 0;
436 }
437
438
439
iceland_populate_pm_fuses(struct pp_hwmgr * hwmgr)440 static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr)
441 {
442 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
443 uint32_t pm_fuse_table_offset;
444
445 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
446 PHM_PlatformCaps_PowerContainment)) {
447 if (smu7_read_smc_sram_dword(hwmgr,
448 SMU71_FIRMWARE_HEADER_LOCATION +
449 offsetof(SMU71_Firmware_Header, PmFuseTable),
450 &pm_fuse_table_offset, SMC_RAM_END))
451 PP_ASSERT_WITH_CODE(false,
452 "Attempt to get pm_fuse_table_offset Failed!",
453 return -EINVAL);
454
455 /* DW0 - DW3 */
456 if (iceland_populate_bapm_vddc_vid_sidd(hwmgr))
457 PP_ASSERT_WITH_CODE(false,
458 "Attempt to populate bapm vddc vid Failed!",
459 return -EINVAL);
460
461 /* DW4 - DW5 */
462 if (iceland_populate_vddc_vid(hwmgr))
463 PP_ASSERT_WITH_CODE(false,
464 "Attempt to populate vddc vid Failed!",
465 return -EINVAL);
466
467 /* DW6 */
468 if (iceland_populate_svi_load_line(hwmgr))
469 PP_ASSERT_WITH_CODE(false,
470 "Attempt to populate SviLoadLine Failed!",
471 return -EINVAL);
472 /* DW7 */
473 if (iceland_populate_tdc_limit(hwmgr))
474 PP_ASSERT_WITH_CODE(false,
475 "Attempt to populate TDCLimit Failed!", return -EINVAL);
476 /* DW8 */
477 if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset))
478 PP_ASSERT_WITH_CODE(false,
479 "Attempt to populate TdcWaterfallCtl, "
480 "LPMLTemperature Min and Max Failed!",
481 return -EINVAL);
482
483 /* DW9-DW12 */
484 if (0 != iceland_populate_temperature_scaler(hwmgr))
485 PP_ASSERT_WITH_CODE(false,
486 "Attempt to populate LPMLTemperatureScaler Failed!",
487 return -EINVAL);
488
489 /* DW13-DW16 */
490 if (iceland_populate_gnb_lpml(hwmgr))
491 PP_ASSERT_WITH_CODE(false,
492 "Attempt to populate GnbLPML Failed!",
493 return -EINVAL);
494
495 /* DW18 */
496 if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr))
497 PP_ASSERT_WITH_CODE(false,
498 "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",
499 return -EINVAL);
500
501 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
502 (uint8_t *)&smu_data->power_tune_table,
503 sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END))
504 PP_ASSERT_WITH_CODE(false,
505 "Attempt to download PmFuseTable Failed!",
506 return -EINVAL);
507 }
508 return 0;
509 }
510
iceland_get_dependency_volt_by_clk(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * allowed_clock_voltage_table,uint32_t clock,uint32_t * vol)511 static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
512 struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
513 uint32_t clock, uint32_t *vol)
514 {
515 uint32_t i = 0;
516
517 /* clock - voltage dependency table is empty table */
518 if (allowed_clock_voltage_table->count == 0)
519 return -EINVAL;
520
521 for (i = 0; i < allowed_clock_voltage_table->count; i++) {
522 /* find first sclk bigger than request */
523 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
524 *vol = allowed_clock_voltage_table->entries[i].v;
525 return 0;
526 }
527 }
528
529 /* sclk is bigger than max sclk in the dependence table */
530 *vol = allowed_clock_voltage_table->entries[i - 1].v;
531
532 return 0;
533 }
534
iceland_get_std_voltage_value_sidd(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,uint16_t * hi,uint16_t * lo)535 static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
536 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
537 uint16_t *lo)
538 {
539 uint16_t v_index;
540 bool vol_found = false;
541 *hi = tab->value * VOLTAGE_SCALE;
542 *lo = tab->value * VOLTAGE_SCALE;
543
544 /* SCLK/VDDC Dependency Table has to exist. */
545 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
546 "The SCLK/VDDC Dependency Table does not exist.",
547 return -EINVAL);
548
549 if (NULL == hwmgr->dyn_state.cac_leakage_table) {
550 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
551 return 0;
552 }
553
554 /*
555 * Since voltage in the sclk/vddc dependency table is not
556 * necessarily in ascending order because of ELB voltage
557 * patching, loop through entire list to find exact voltage.
558 */
559 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
560 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
561 vol_found = true;
562 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
563 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
564 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
565 } else {
566 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
567 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
568 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
569 }
570 break;
571 }
572 }
573
574 /*
575 * If voltage is not found in the first pass, loop again to
576 * find the best match, equal or higher value.
577 */
578 if (!vol_found) {
579 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
580 if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
581 vol_found = true;
582 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
583 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
584 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
585 } else {
586 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
587 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
588 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
589 }
590 break;
591 }
592 }
593
594 if (!vol_found)
595 pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
596 }
597
598 return 0;
599 }
600
iceland_populate_smc_voltage_table(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,SMU71_Discrete_VoltageLevel * smc_voltage_tab)601 static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
602 pp_atomctrl_voltage_table_entry *tab,
603 SMU71_Discrete_VoltageLevel *smc_voltage_tab)
604 {
605 int result;
606
607 result = iceland_get_std_voltage_value_sidd(hwmgr, tab,
608 &smc_voltage_tab->StdVoltageHiSidd,
609 &smc_voltage_tab->StdVoltageLoSidd);
610 if (0 != result) {
611 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
612 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
613 }
614
615 smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
616 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
617 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
618
619 return 0;
620 }
621
iceland_populate_smc_vddc_table(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)622 static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
623 SMU71_Discrete_DpmTable *table)
624 {
625 unsigned int count;
626 int result;
627 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
628
629 table->VddcLevelCount = data->vddc_voltage_table.count;
630 for (count = 0; count < table->VddcLevelCount; count++) {
631 result = iceland_populate_smc_voltage_table(hwmgr,
632 &(data->vddc_voltage_table.entries[count]),
633 &(table->VddcLevel[count]));
634 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
635
636 /* GPIO voltage control */
637 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
638 table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
639 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
640 table->VddcLevel[count].Smio = 0;
641 }
642
643 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
644
645 return 0;
646 }
647
iceland_populate_smc_vdd_ci_table(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)648 static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
649 SMU71_Discrete_DpmTable *table)
650 {
651 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
652 uint32_t count;
653 int result;
654
655 table->VddciLevelCount = data->vddci_voltage_table.count;
656
657 for (count = 0; count < table->VddciLevelCount; count++) {
658 result = iceland_populate_smc_voltage_table(hwmgr,
659 &(data->vddci_voltage_table.entries[count]),
660 &(table->VddciLevel[count]));
661 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
662 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
663 table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
664 else
665 table->VddciLevel[count].Smio |= 0;
666 }
667
668 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
669
670 return 0;
671 }
672
iceland_populate_smc_mvdd_table(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)673 static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
674 SMU71_Discrete_DpmTable *table)
675 {
676 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
677 uint32_t count;
678 int result;
679
680 table->MvddLevelCount = data->mvdd_voltage_table.count;
681
682 for (count = 0; count < table->VddciLevelCount; count++) {
683 result = iceland_populate_smc_voltage_table(hwmgr,
684 &(data->mvdd_voltage_table.entries[count]),
685 &table->MvddLevel[count]);
686 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
687 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
688 table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
689 else
690 table->MvddLevel[count].Smio |= 0;
691 }
692
693 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
694
695 return 0;
696 }
697
698
iceland_populate_smc_voltage_tables(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)699 static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
700 SMU71_Discrete_DpmTable *table)
701 {
702 int result;
703
704 result = iceland_populate_smc_vddc_table(hwmgr, table);
705 PP_ASSERT_WITH_CODE(0 == result,
706 "can not populate VDDC voltage table to SMC", return -EINVAL);
707
708 result = iceland_populate_smc_vdd_ci_table(hwmgr, table);
709 PP_ASSERT_WITH_CODE(0 == result,
710 "can not populate VDDCI voltage table to SMC", return -EINVAL);
711
712 result = iceland_populate_smc_mvdd_table(hwmgr, table);
713 PP_ASSERT_WITH_CODE(0 == result,
714 "can not populate MVDD voltage table to SMC", return -EINVAL);
715
716 return 0;
717 }
718
iceland_populate_ulv_level(struct pp_hwmgr * hwmgr,struct SMU71_Discrete_Ulv * state)719 static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr,
720 struct SMU71_Discrete_Ulv *state)
721 {
722 uint32_t voltage_response_time, ulv_voltage;
723 int result;
724 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
725
726 state->CcPwrDynRm = 0;
727 state->CcPwrDynRm1 = 0;
728
729 result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
730 PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
731
732 if (ulv_voltage == 0) {
733 data->ulv_supported = false;
734 return 0;
735 }
736
737 if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
738 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
739 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
740 state->VddcOffset = 0;
741 else
742 /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
743 state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
744 } else {
745 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
746 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
747 state->VddcOffsetVid = 0;
748 else /* used in SVI2 Mode */
749 state->VddcOffsetVid = (uint8_t)(
750 (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
751 * VOLTAGE_VID_OFFSET_SCALE2
752 / VOLTAGE_VID_OFFSET_SCALE1);
753 }
754 state->VddcPhase = 1;
755
756 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
757 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
758 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
759
760 return 0;
761 }
762
iceland_populate_ulv_state(struct pp_hwmgr * hwmgr,SMU71_Discrete_Ulv * ulv_level)763 static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr,
764 SMU71_Discrete_Ulv *ulv_level)
765 {
766 return iceland_populate_ulv_level(hwmgr, ulv_level);
767 }
768
iceland_populate_smc_link_level(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)769 static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table)
770 {
771 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
772 struct smu7_dpm_table *dpm_table = &data->dpm_table;
773 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
774 uint32_t i;
775
776 /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
777 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
778 table->LinkLevel[i].PcieGenSpeed =
779 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
780 table->LinkLevel[i].PcieLaneCount =
781 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
782 table->LinkLevel[i].EnabledForActivity =
783 1;
784 table->LinkLevel[i].SPC =
785 (uint8_t)(data->pcie_spc_cap & 0xff);
786 table->LinkLevel[i].DownThreshold =
787 PP_HOST_TO_SMC_UL(5);
788 table->LinkLevel[i].UpThreshold =
789 PP_HOST_TO_SMC_UL(30);
790 }
791
792 smu_data->smc_state_table.LinkLevelCount =
793 (uint8_t)dpm_table->pcie_speed_table.count;
794 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
795 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
796
797 return 0;
798 }
799
iceland_calculate_sclk_params(struct pp_hwmgr * hwmgr,uint32_t engine_clock,SMU71_Discrete_GraphicsLevel * sclk)800 static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr,
801 uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk)
802 {
803 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
804 pp_atomctrl_clock_dividers_vi dividers;
805 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
806 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
807 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
808 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
809 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
810 uint32_t reference_clock;
811 uint32_t reference_divider;
812 uint32_t fbdiv;
813 int result;
814
815 /* get the engine clock dividers for this clock value*/
816 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs);
817
818 PP_ASSERT_WITH_CODE(result == 0,
819 "Error retrieving Engine Clock dividers from VBIOS.", return result);
820
821 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
822 reference_clock = atomctrl_get_reference_clock(hwmgr);
823
824 reference_divider = 1 + dividers.uc_pll_ref_div;
825
826 /* low 14 bits is fraction and high 12 bits is divider*/
827 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
828
829 /* SPLL_FUNC_CNTL setup*/
830 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
831 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
832 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
833 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
834
835 /* SPLL_FUNC_CNTL_3 setup*/
836 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
837 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
838
839 /* set to use fractional accumulation*/
840 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
841 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
842
843 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
844 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
845 pp_atomctrl_internal_ss_info ss_info;
846
847 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
848 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
849 /*
850 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
851 * ss_info.speed_spectrum_rate -- in unit of khz
852 */
853 /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
854 uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
855
856 /* clkv = 2 * D * fbdiv / NS */
857 uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
858
859 cg_spll_spread_spectrum =
860 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
861 cg_spll_spread_spectrum =
862 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
863 cg_spll_spread_spectrum_2 =
864 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
865 }
866 }
867
868 sclk->SclkFrequency = engine_clock;
869 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
870 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
871 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
872 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
873 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
874
875 return 0;
876 }
877
iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t sclk,uint32_t * p_shed)878 static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
879 const struct phm_phase_shedding_limits_table *pl,
880 uint32_t sclk, uint32_t *p_shed)
881 {
882 unsigned int i;
883
884 /* use the minimum phase shedding */
885 *p_shed = 1;
886
887 for (i = 0; i < pl->count; i++) {
888 if (sclk < pl->entries[i].Sclk) {
889 *p_shed = i;
890 break;
891 }
892 }
893 return 0;
894 }
895
iceland_populate_single_graphic_level(struct pp_hwmgr * hwmgr,uint32_t engine_clock,SMU71_Discrete_GraphicsLevel * graphic_level)896 static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
897 uint32_t engine_clock,
898 SMU71_Discrete_GraphicsLevel *graphic_level)
899 {
900 int result;
901 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
902
903 result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
904
905 /* populate graphics levels*/
906 result = iceland_get_dependency_volt_by_clk(hwmgr,
907 hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock,
908 &graphic_level->MinVddc);
909 PP_ASSERT_WITH_CODE((0 == result),
910 "can not find VDDC voltage value for VDDC engine clock dependency table", return result);
911
912 /* SCLK frequency in units of 10KHz*/
913 graphic_level->SclkFrequency = engine_clock;
914 graphic_level->MinVddcPhases = 1;
915
916 if (data->vddc_phase_shed_control)
917 iceland_populate_phase_value_based_on_sclk(hwmgr,
918 hwmgr->dyn_state.vddc_phase_shed_limits_table,
919 engine_clock,
920 &graphic_level->MinVddcPhases);
921
922 /* Indicates maximum activity level for this performance level. 50% for now*/
923 graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
924
925 graphic_level->CcPwrDynRm = 0;
926 graphic_level->CcPwrDynRm1 = 0;
927 /* this level can be used if activity is high enough.*/
928 graphic_level->EnabledForActivity = 0;
929 /* this level can be used for throttling.*/
930 graphic_level->EnabledForThrottle = 1;
931 graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
932 graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
933 graphic_level->VoltageDownHyst = 0;
934 graphic_level->PowerThrottle = 0;
935
936 data->display_timing.min_clock_in_sr =
937 hwmgr->display_config->min_core_set_clock_in_sr;
938
939 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
940 PHM_PlatformCaps_SclkDeepSleep))
941 graphic_level->DeepSleepDivId =
942 smu7_get_sleep_divider_id_from_clock(engine_clock,
943 data->display_timing.min_clock_in_sr);
944
945 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
946 graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
947
948 if (0 == result) {
949 graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE);
950 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);
951 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
952 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
953 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
954 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
955 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
956 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
957 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
958 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
959 }
960
961 return result;
962 }
963
iceland_populate_all_graphic_levels(struct pp_hwmgr * hwmgr)964 static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
965 {
966 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
967 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
968 struct smu7_dpm_table *dpm_table = &data->dpm_table;
969 uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start +
970 offsetof(SMU71_Discrete_DpmTable, GraphicsLevel);
971
972 uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) *
973 SMU71_MAX_LEVELS_GRAPHICS;
974
975 SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
976
977 uint32_t i;
978 uint8_t highest_pcie_level_enabled = 0;
979 uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
980 uint8_t count = 0;
981 int result = 0;
982
983 memset(levels, 0x00, level_array_size);
984
985 for (i = 0; i < dpm_table->sclk_table.count; i++) {
986 result = iceland_populate_single_graphic_level(hwmgr,
987 dpm_table->sclk_table.dpm_levels[i].value,
988 &(smu_data->smc_state_table.GraphicsLevel[i]));
989 if (result != 0)
990 return result;
991
992 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
993 if (i > 1)
994 smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
995 }
996
997 /* Only enable level 0 for now. */
998 smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
999
1000 /* set highest level watermark to high */
1001 if (dpm_table->sclk_table.count > 1)
1002 smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
1003 PPSMC_DISPLAY_WATERMARK_HIGH;
1004
1005 smu_data->smc_state_table.GraphicsDpmLevelCount =
1006 (uint8_t)dpm_table->sclk_table.count;
1007 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1008 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1009
1010 while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1011 (1 << (highest_pcie_level_enabled + 1))) != 0) {
1012 highest_pcie_level_enabled++;
1013 }
1014
1015 while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1016 (1 << lowest_pcie_level_enabled)) == 0) {
1017 lowest_pcie_level_enabled++;
1018 }
1019
1020 while ((count < highest_pcie_level_enabled) &&
1021 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1022 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) {
1023 count++;
1024 }
1025
1026 mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
1027 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
1028
1029
1030 /* set pcieDpmLevel to highest_pcie_level_enabled*/
1031 for (i = 2; i < dpm_table->sclk_table.count; i++) {
1032 smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
1033 }
1034
1035 /* set pcieDpmLevel to lowest_pcie_level_enabled*/
1036 smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
1037
1038 /* set pcieDpmLevel to mid_pcie_level_enabled*/
1039 smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
1040
1041 /* level count will send to smc once at init smc table and never change*/
1042 result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress,
1043 (uint8_t *)levels, (uint32_t)level_array_size,
1044 SMC_RAM_END);
1045
1046 return result;
1047 }
1048
iceland_calculate_mclk_params(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU71_Discrete_MemoryLevel * mclk,bool strobe_mode,bool dllStateOn)1049 static int iceland_calculate_mclk_params(
1050 struct pp_hwmgr *hwmgr,
1051 uint32_t memory_clock,
1052 SMU71_Discrete_MemoryLevel *mclk,
1053 bool strobe_mode,
1054 bool dllStateOn
1055 )
1056 {
1057 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1058
1059 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1060 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1061 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1062 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1063 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1064 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1065 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1066 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
1067 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
1068
1069 pp_atomctrl_memory_clock_param mpll_param;
1070 int result;
1071
1072 result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1073 memory_clock, &mpll_param, strobe_mode);
1074 PP_ASSERT_WITH_CODE(0 == result,
1075 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1076
1077 /* MPLL_FUNC_CNTL setup*/
1078 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1079
1080 /* MPLL_FUNC_CNTL_1 setup*/
1081 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1082 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1083 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1084 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1085 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1086 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1087
1088 /* MPLL_AD_FUNC_CNTL setup*/
1089 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1090 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1091
1092 if (data->is_memory_gddr5) {
1093 /* MPLL_DQ_FUNC_CNTL setup*/
1094 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1095 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1096 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1097 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1098 }
1099
1100 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1101 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1102 /*
1103 ************************************
1104 Fref = Reference Frequency
1105 NF = Feedback divider ratio
1106 NR = Reference divider ratio
1107 Fnom = Nominal VCO output frequency = Fref * NF / NR
1108 Fs = Spreading Rate
1109 D = Percentage down-spread / 2
1110 Fint = Reference input frequency to PFD = Fref / NR
1111 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1112 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1113 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1114 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1115 *************************************
1116 */
1117 pp_atomctrl_internal_ss_info ss_info;
1118 uint32_t freq_nom;
1119 uint32_t tmp;
1120 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1121
1122 /* for GDDR5 for all modes and DDR3 */
1123 if (1 == mpll_param.qdr)
1124 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1125 else
1126 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1127
1128 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1129 tmp = (freq_nom / reference_clock);
1130 tmp = tmp * tmp;
1131
1132 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1133 /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1134 /* ss.Info.speed_spectrum_rate -- in unit of khz */
1135 /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1136 /* = reference_clock * 5 / speed_spectrum_rate */
1137 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1138
1139 /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1140 /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1141 uint32_t clkv =
1142 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1143 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1144
1145 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1146 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1147 }
1148 }
1149
1150 /* MCLK_PWRMGT_CNTL setup */
1151 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1152 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1153 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1154 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1155 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1156 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1157
1158
1159 /* Save the result data to outpupt memory level structure */
1160 mclk->MclkFrequency = memory_clock;
1161 mclk->MpllFuncCntl = mpll_func_cntl;
1162 mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
1163 mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
1164 mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
1165 mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
1166 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
1167 mclk->DllCntl = dll_cntl;
1168 mclk->MpllSs1 = mpll_ss1;
1169 mclk->MpllSs2 = mpll_ss2;
1170
1171 return 0;
1172 }
1173
iceland_get_mclk_frequency_ratio(uint32_t memory_clock,bool strobe_mode)1174 static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock,
1175 bool strobe_mode)
1176 {
1177 uint8_t mc_para_index;
1178
1179 if (strobe_mode) {
1180 if (memory_clock < 12500) {
1181 mc_para_index = 0x00;
1182 } else if (memory_clock > 47500) {
1183 mc_para_index = 0x0f;
1184 } else {
1185 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1186 }
1187 } else {
1188 if (memory_clock < 65000) {
1189 mc_para_index = 0x00;
1190 } else if (memory_clock > 135000) {
1191 mc_para_index = 0x0f;
1192 } else {
1193 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1194 }
1195 }
1196
1197 return mc_para_index;
1198 }
1199
iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)1200 static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1201 {
1202 uint8_t mc_para_index;
1203
1204 if (memory_clock < 10000) {
1205 mc_para_index = 0;
1206 } else if (memory_clock >= 80000) {
1207 mc_para_index = 0x0f;
1208 } else {
1209 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1210 }
1211
1212 return mc_para_index;
1213 }
1214
iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t memory_clock,uint32_t * p_shed)1215 static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1216 uint32_t memory_clock, uint32_t *p_shed)
1217 {
1218 unsigned int i;
1219
1220 *p_shed = 1;
1221
1222 for (i = 0; i < pl->count; i++) {
1223 if (memory_clock < pl->entries[i].Mclk) {
1224 *p_shed = i;
1225 break;
1226 }
1227 }
1228
1229 return 0;
1230 }
1231
iceland_populate_single_memory_level(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU71_Discrete_MemoryLevel * memory_level)1232 static int iceland_populate_single_memory_level(
1233 struct pp_hwmgr *hwmgr,
1234 uint32_t memory_clock,
1235 SMU71_Discrete_MemoryLevel *memory_level
1236 )
1237 {
1238 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1239 int result = 0;
1240 bool dll_state_on;
1241 uint32_t mclk_edc_wr_enable_threshold = 40000;
1242 uint32_t mclk_edc_enable_threshold = 40000;
1243 uint32_t mclk_strobe_mode_threshold = 40000;
1244
1245 if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1246 result = iceland_get_dependency_volt_by_clk(hwmgr,
1247 hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1248 PP_ASSERT_WITH_CODE((0 == result),
1249 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1250 }
1251
1252 if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) {
1253 memory_level->MinVddci = memory_level->MinVddc;
1254 } else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1255 result = iceland_get_dependency_volt_by_clk(hwmgr,
1256 hwmgr->dyn_state.vddci_dependency_on_mclk,
1257 memory_clock,
1258 &memory_level->MinVddci);
1259 PP_ASSERT_WITH_CODE((0 == result),
1260 "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1261 }
1262
1263 memory_level->MinVddcPhases = 1;
1264
1265 if (data->vddc_phase_shed_control) {
1266 iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1267 memory_clock, &memory_level->MinVddcPhases);
1268 }
1269
1270 memory_level->EnabledForThrottle = 1;
1271 memory_level->EnabledForActivity = 0;
1272 memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1273 memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1274 memory_level->VoltageDownHyst = 0;
1275
1276 /* Indicates maximum activity level for this performance level.*/
1277 memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1278 memory_level->StutterEnable = 0;
1279 memory_level->StrobeEnable = 0;
1280 memory_level->EdcReadEnable = 0;
1281 memory_level->EdcWriteEnable = 0;
1282 memory_level->RttEnable = 0;
1283
1284 /* default set to low watermark. Highest level will be set to high later.*/
1285 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1286
1287 data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1288 data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1289
1290 /* stutter mode not support on iceland */
1291
1292 /* decide strobe mode*/
1293 memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1294 (memory_clock <= mclk_strobe_mode_threshold);
1295
1296 /* decide EDC mode and memory clock ratio*/
1297 if (data->is_memory_gddr5) {
1298 memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock,
1299 memory_level->StrobeEnable);
1300
1301 if ((mclk_edc_enable_threshold != 0) &&
1302 (memory_clock > mclk_edc_enable_threshold)) {
1303 memory_level->EdcReadEnable = 1;
1304 }
1305
1306 if ((mclk_edc_wr_enable_threshold != 0) &&
1307 (memory_clock > mclk_edc_wr_enable_threshold)) {
1308 memory_level->EdcWriteEnable = 1;
1309 }
1310
1311 if (memory_level->StrobeEnable) {
1312 if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >=
1313 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1314 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1315 else
1316 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1317 } else
1318 dll_state_on = data->dll_default_on;
1319 } else {
1320 memory_level->StrobeRatio =
1321 iceland_get_ddr3_mclk_frequency_ratio(memory_clock);
1322 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1323 }
1324
1325 result = iceland_calculate_mclk_params(hwmgr,
1326 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1327
1328 if (0 == result) {
1329 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1330 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1331 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1332 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1333 /* MCLK frequency in units of 10KHz*/
1334 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1335 /* Indicates maximum activity level for this performance level.*/
1336 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1337 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1338 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1339 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1340 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1341 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1342 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1343 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1344 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1345 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1346 }
1347
1348 return result;
1349 }
1350
iceland_populate_all_memory_levels(struct pp_hwmgr * hwmgr)1351 static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1352 {
1353 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1354 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1355 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1356 int result;
1357
1358 /* populate MCLK dpm table to SMU7 */
1359 uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel);
1360 uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY;
1361 SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1362 uint32_t i;
1363
1364 memset(levels, 0x00, level_array_size);
1365
1366 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1367 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1368 "can not populate memory level as memory clock is zero", return -EINVAL);
1369 result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1370 &(smu_data->smc_state_table.MemoryLevel[i]));
1371 if (0 != result) {
1372 return result;
1373 }
1374 }
1375
1376 /* Only enable level 0 for now.*/
1377 smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1378
1379 /*
1380 * in order to prevent MC activity from stutter mode to push DPM up.
1381 * the UVD change complements this by putting the MCLK in a higher state
1382 * by default such that we are not effected by up threshold or and MCLK DPM latency.
1383 */
1384 smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1385 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1386
1387 smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1388 data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1389 /* set highest level watermark to high*/
1390 smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1391
1392 /* level count will send to smc once at init smc table and never change*/
1393 result = smu7_copy_bytes_to_smc(hwmgr,
1394 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size,
1395 SMC_RAM_END);
1396
1397 return result;
1398 }
1399
iceland_populate_mvdd_value(struct pp_hwmgr * hwmgr,uint32_t mclk,SMU71_Discrete_VoltageLevel * voltage)1400 static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1401 SMU71_Discrete_VoltageLevel *voltage)
1402 {
1403 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1404
1405 uint32_t i = 0;
1406
1407 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1408 /* find mvdd value which clock is more than request */
1409 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1410 if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1411 /* Always round to higher voltage. */
1412 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1413 break;
1414 }
1415 }
1416
1417 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1418 "MVDD Voltage is outside the supported range.", return -EINVAL);
1419
1420 } else {
1421 return -EINVAL;
1422 }
1423
1424 return 0;
1425 }
1426
iceland_populate_smc_acpi_level(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)1427 static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1428 SMU71_Discrete_DpmTable *table)
1429 {
1430 int result = 0;
1431 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1432 struct pp_atomctrl_clock_dividers_vi dividers;
1433 uint32_t vddc_phase_shed_control = 0;
1434
1435 SMU71_Discrete_VoltageLevel voltage_level;
1436 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1437 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1438 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1439 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1440
1441
1442 /* The ACPI state should not do DPM on DC (or ever).*/
1443 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1444
1445 if (data->acpi_vddc)
1446 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1447 else
1448 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1449
1450 table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1;
1451 /* assign zero for now*/
1452 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1453
1454 /* get the engine clock dividers for this clock value*/
1455 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1456 table->ACPILevel.SclkFrequency, ÷rs);
1457
1458 PP_ASSERT_WITH_CODE(result == 0,
1459 "Error retrieving Engine Clock dividers from VBIOS.", return result);
1460
1461 /* divider ID for required SCLK*/
1462 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1463 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1464 table->ACPILevel.DeepSleepDivId = 0;
1465
1466 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1467 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
1468 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1469 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
1470 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
1471 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
1472
1473 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1474 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1475 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1476 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1477 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1478 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1479 table->ACPILevel.CcPwrDynRm = 0;
1480 table->ACPILevel.CcPwrDynRm1 = 0;
1481
1482
1483 /* For various features to be enabled/disabled while this level is active.*/
1484 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1485 /* SCLK frequency in units of 10KHz*/
1486 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1487 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1488 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1489 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1490 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1491 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1492 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1493 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1494 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1495
1496 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1497 table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1498 table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1499
1500 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1501 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1502 else {
1503 if (data->acpi_vddci != 0)
1504 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1505 else
1506 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1507 }
1508
1509 if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level))
1510 table->MemoryACPILevel.MinMvdd =
1511 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1512 else
1513 table->MemoryACPILevel.MinMvdd = 0;
1514
1515 /* Force reset on DLL*/
1516 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1517 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1518 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1519 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1520
1521 /* Disable DLL in ACPIState*/
1522 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1523 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1524 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1525 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1526
1527 /* Enable DLL bypass signal*/
1528 dll_cntl = PHM_SET_FIELD(dll_cntl,
1529 DLL_CNTL, MRDCK0_BYPASS, 0);
1530 dll_cntl = PHM_SET_FIELD(dll_cntl,
1531 DLL_CNTL, MRDCK1_BYPASS, 0);
1532
1533 table->MemoryACPILevel.DllCntl =
1534 PP_HOST_TO_SMC_UL(dll_cntl);
1535 table->MemoryACPILevel.MclkPwrmgtCntl =
1536 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1537 table->MemoryACPILevel.MpllAdFuncCntl =
1538 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1539 table->MemoryACPILevel.MpllDqFuncCntl =
1540 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1541 table->MemoryACPILevel.MpllFuncCntl =
1542 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1543 table->MemoryACPILevel.MpllFuncCntl_1 =
1544 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1545 table->MemoryACPILevel.MpllFuncCntl_2 =
1546 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1547 table->MemoryACPILevel.MpllSs1 =
1548 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1549 table->MemoryACPILevel.MpllSs2 =
1550 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1551
1552 table->MemoryACPILevel.EnabledForThrottle = 0;
1553 table->MemoryACPILevel.EnabledForActivity = 0;
1554 table->MemoryACPILevel.UpHyst = 0;
1555 table->MemoryACPILevel.DownHyst = 100;
1556 table->MemoryACPILevel.VoltageDownHyst = 0;
1557 /* Indicates maximum activity level for this performance level.*/
1558 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1559
1560 table->MemoryACPILevel.StutterEnable = 0;
1561 table->MemoryACPILevel.StrobeEnable = 0;
1562 table->MemoryACPILevel.EdcReadEnable = 0;
1563 table->MemoryACPILevel.EdcWriteEnable = 0;
1564 table->MemoryACPILevel.RttEnable = 0;
1565
1566 return result;
1567 }
1568
iceland_populate_smc_uvd_level(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)1569 static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1570 SMU71_Discrete_DpmTable *table)
1571 {
1572 return 0;
1573 }
1574
iceland_populate_smc_vce_level(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)1575 static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1576 SMU71_Discrete_DpmTable *table)
1577 {
1578 return 0;
1579 }
1580
iceland_populate_smc_acp_level(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)1581 static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1582 SMU71_Discrete_DpmTable *table)
1583 {
1584 return 0;
1585 }
1586
iceland_populate_memory_timing_parameters(struct pp_hwmgr * hwmgr,uint32_t engine_clock,uint32_t memory_clock,struct SMU71_Discrete_MCArbDramTimingTableEntry * arb_regs)1587 static int iceland_populate_memory_timing_parameters(
1588 struct pp_hwmgr *hwmgr,
1589 uint32_t engine_clock,
1590 uint32_t memory_clock,
1591 struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs
1592 )
1593 {
1594 uint32_t dramTiming;
1595 uint32_t dramTiming2;
1596 uint32_t burstTime;
1597 int result;
1598
1599 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1600 engine_clock, memory_clock);
1601
1602 PP_ASSERT_WITH_CODE(result == 0,
1603 "Error calling VBIOS to set DRAM_TIMING.", return result);
1604
1605 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1606 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1607 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1608
1609 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1610 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1611 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1612
1613 return 0;
1614 }
1615
iceland_program_memory_timing_parameters(struct pp_hwmgr * hwmgr)1616 static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1617 {
1618 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1619 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1620 int result = 0;
1621 SMU71_Discrete_MCArbDramTimingTable arb_regs;
1622 uint32_t i, j;
1623
1624 memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable));
1625
1626 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1627 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1628 result = iceland_populate_memory_timing_parameters
1629 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1630 data->dpm_table.mclk_table.dpm_levels[j].value,
1631 &arb_regs.entries[i][j]);
1632
1633 if (0 != result) {
1634 break;
1635 }
1636 }
1637 }
1638
1639 if (0 == result) {
1640 result = smu7_copy_bytes_to_smc(
1641 hwmgr,
1642 smu_data->smu7_data.arb_table_start,
1643 (uint8_t *)&arb_regs,
1644 sizeof(SMU71_Discrete_MCArbDramTimingTable),
1645 SMC_RAM_END
1646 );
1647 }
1648
1649 return result;
1650 }
1651
iceland_populate_smc_boot_level(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)1652 static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1653 SMU71_Discrete_DpmTable *table)
1654 {
1655 int result = 0;
1656 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1657 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1658 table->GraphicsBootLevel = 0;
1659 table->MemoryBootLevel = 0;
1660
1661 /* find boot level from dpm table*/
1662 result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1663 data->vbios_boot_state.sclk_bootup_value,
1664 (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1665
1666 if (0 != result) {
1667 smu_data->smc_state_table.GraphicsBootLevel = 0;
1668 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1669 result = 0;
1670 }
1671
1672 result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1673 data->vbios_boot_state.mclk_bootup_value,
1674 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1675
1676 if (0 != result) {
1677 smu_data->smc_state_table.MemoryBootLevel = 0;
1678 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1679 result = 0;
1680 }
1681
1682 table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1683 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1684 table->BootVddci = table->BootVddc;
1685 else
1686 table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1687
1688 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1689
1690 return result;
1691 }
1692
iceland_populate_mc_reg_address(struct pp_hwmgr * hwmgr,SMU71_Discrete_MCRegisters * mc_reg_table)1693 static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1694 SMU71_Discrete_MCRegisters *mc_reg_table)
1695 {
1696 const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend;
1697
1698 uint32_t i, j;
1699
1700 for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1701 if (smu_data->mc_reg_table.validflag & 1<<j) {
1702 PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1703 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1704 mc_reg_table->address[i].s0 =
1705 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1706 mc_reg_table->address[i].s1 =
1707 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1708 i++;
1709 }
1710 }
1711
1712 mc_reg_table->last = (uint8_t)i;
1713
1714 return 0;
1715 }
1716
1717 /*convert register values from driver to SMC format */
iceland_convert_mc_registers(const struct iceland_mc_reg_entry * entry,SMU71_Discrete_MCRegisterSet * data,uint32_t num_entries,uint32_t valid_flag)1718 static void iceland_convert_mc_registers(
1719 const struct iceland_mc_reg_entry *entry,
1720 SMU71_Discrete_MCRegisterSet *data,
1721 uint32_t num_entries, uint32_t valid_flag)
1722 {
1723 uint32_t i, j;
1724
1725 for (i = 0, j = 0; j < num_entries; j++) {
1726 if (valid_flag & 1<<j) {
1727 data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1728 i++;
1729 }
1730 }
1731 }
1732
iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr * hwmgr,const uint32_t memory_clock,SMU71_Discrete_MCRegisterSet * mc_reg_table_data)1733 static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr,
1734 const uint32_t memory_clock,
1735 SMU71_Discrete_MCRegisterSet *mc_reg_table_data
1736 )
1737 {
1738 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1739 uint32_t i = 0;
1740
1741 for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1742 if (memory_clock <=
1743 smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1744 break;
1745 }
1746 }
1747
1748 if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1749 --i;
1750
1751 iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1752 mc_reg_table_data, smu_data->mc_reg_table.last,
1753 smu_data->mc_reg_table.validflag);
1754
1755 return 0;
1756 }
1757
iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr * hwmgr,SMU71_Discrete_MCRegisters * mc_regs)1758 static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1759 SMU71_Discrete_MCRegisters *mc_regs)
1760 {
1761 int result = 0;
1762 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1763 int res;
1764 uint32_t i;
1765
1766 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1767 res = iceland_convert_mc_reg_table_entry_to_smc(
1768 hwmgr,
1769 data->dpm_table.mclk_table.dpm_levels[i].value,
1770 &mc_regs->data[i]
1771 );
1772
1773 if (0 != res)
1774 result = res;
1775 }
1776
1777 return result;
1778 }
1779
iceland_update_and_upload_mc_reg_table(struct pp_hwmgr * hwmgr)1780 static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1781 {
1782 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1783 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1784 uint32_t address;
1785 int32_t result;
1786
1787 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1788 return 0;
1789
1790
1791 memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters));
1792
1793 result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1794
1795 if (result != 0)
1796 return result;
1797
1798
1799 address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]);
1800
1801 return smu7_copy_bytes_to_smc(hwmgr, address,
1802 (uint8_t *)&smu_data->mc_regs.data[0],
1803 sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1804 SMC_RAM_END);
1805 }
1806
iceland_populate_initial_mc_reg_table(struct pp_hwmgr * hwmgr)1807 static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1808 {
1809 int result;
1810 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1811
1812 memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters));
1813 result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1814 PP_ASSERT_WITH_CODE(0 == result,
1815 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1816
1817 result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1818 PP_ASSERT_WITH_CODE(0 == result,
1819 "Failed to initialize MCRegTable for driver state!", return result;);
1820
1821 return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
1822 (uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END);
1823 }
1824
iceland_populate_smc_initial_state(struct pp_hwmgr * hwmgr)1825 static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1826 {
1827 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1828 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1829 uint8_t count, level;
1830
1831 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1832
1833 for (level = 0; level < count; level++) {
1834 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1835 >= data->vbios_boot_state.sclk_bootup_value) {
1836 smu_data->smc_state_table.GraphicsBootLevel = level;
1837 break;
1838 }
1839 }
1840
1841 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1842
1843 for (level = 0; level < count; level++) {
1844 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1845 >= data->vbios_boot_state.mclk_bootup_value) {
1846 smu_data->smc_state_table.MemoryBootLevel = level;
1847 break;
1848 }
1849 }
1850
1851 return 0;
1852 }
1853
iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr * hwmgr)1854 static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1855 {
1856 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1857 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1858 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
1859 SMU71_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
1860 struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
1861 struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
1862 const uint16_t *def1, *def2;
1863 int i, j, k;
1864
1865
1866 /*
1867 * TDP number of fraction bits are changed from 8 to 7 for Iceland
1868 * as requested by SMC team
1869 */
1870
1871 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
1872 dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
1873
1874
1875 dpm_table->DTETjOffset = 0;
1876
1877 dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
1878 dpm_table->GpuTjHyst = 8;
1879
1880 dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
1881
1882 /* The following are for new Iceland Multi-input fan/thermal control */
1883 if (NULL != ppm) {
1884 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
1885 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
1886 } else {
1887 dpm_table->PPM_PkgPwrLimit = 0;
1888 dpm_table->PPM_TemperatureLimit = 0;
1889 }
1890
1891 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
1892 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
1893
1894 dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
1895 def1 = defaults->bapmti_r;
1896 def2 = defaults->bapmti_rc;
1897
1898 for (i = 0; i < SMU71_DTE_ITERATIONS; i++) {
1899 for (j = 0; j < SMU71_DTE_SOURCES; j++) {
1900 for (k = 0; k < SMU71_DTE_SINKS; k++) {
1901 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
1902 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
1903 def1++;
1904 def2++;
1905 }
1906 }
1907 }
1908
1909 return 0;
1910 }
1911
iceland_populate_smc_svi2_config(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * tab)1912 static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1913 SMU71_Discrete_DpmTable *tab)
1914 {
1915 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1916
1917 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1918 tab->SVI2Enable |= VDDC_ON_SVI2;
1919
1920 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1921 tab->SVI2Enable |= VDDCI_ON_SVI2;
1922 else
1923 tab->MergedVddci = 1;
1924
1925 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control)
1926 tab->SVI2Enable |= MVDD_ON_SVI2;
1927
1928 PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&
1929 (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL);
1930
1931 return 0;
1932 }
1933
iceland_init_smc_table(struct pp_hwmgr * hwmgr)1934 static int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
1935 {
1936 int result;
1937 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1938 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1939 SMU71_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1940
1941
1942 iceland_initialize_power_tune_defaults(hwmgr);
1943 memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1944
1945 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) {
1946 iceland_populate_smc_voltage_tables(hwmgr, table);
1947 }
1948
1949 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1950 PHM_PlatformCaps_AutomaticDCTransition))
1951 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1952
1953
1954 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1955 PHM_PlatformCaps_StepVddc))
1956 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1957
1958 if (data->is_memory_gddr5)
1959 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1960
1961
1962 if (data->ulv_supported) {
1963 result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting));
1964 PP_ASSERT_WITH_CODE(0 == result,
1965 "Failed to initialize ULV state!", return result;);
1966
1967 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1968 ixCG_ULV_PARAMETER, 0x40035);
1969 }
1970
1971 result = iceland_populate_smc_link_level(hwmgr, table);
1972 PP_ASSERT_WITH_CODE(0 == result,
1973 "Failed to initialize Link Level!", return result;);
1974
1975 result = iceland_populate_all_graphic_levels(hwmgr);
1976 PP_ASSERT_WITH_CODE(0 == result,
1977 "Failed to initialize Graphics Level!", return result;);
1978
1979 result = iceland_populate_all_memory_levels(hwmgr);
1980 PP_ASSERT_WITH_CODE(0 == result,
1981 "Failed to initialize Memory Level!", return result;);
1982
1983 result = iceland_populate_smc_acpi_level(hwmgr, table);
1984 PP_ASSERT_WITH_CODE(0 == result,
1985 "Failed to initialize ACPI Level!", return result;);
1986
1987 result = iceland_populate_smc_vce_level(hwmgr, table);
1988 PP_ASSERT_WITH_CODE(0 == result,
1989 "Failed to initialize VCE Level!", return result;);
1990
1991 result = iceland_populate_smc_acp_level(hwmgr, table);
1992 PP_ASSERT_WITH_CODE(0 == result,
1993 "Failed to initialize ACP Level!", return result;);
1994
1995 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
1996 /* need to populate the ARB settings for the initial state. */
1997 result = iceland_program_memory_timing_parameters(hwmgr);
1998 PP_ASSERT_WITH_CODE(0 == result,
1999 "Failed to Write ARB settings for the initial state.", return result;);
2000
2001 result = iceland_populate_smc_uvd_level(hwmgr, table);
2002 PP_ASSERT_WITH_CODE(0 == result,
2003 "Failed to initialize UVD Level!", return result;);
2004
2005 table->GraphicsBootLevel = 0;
2006 table->MemoryBootLevel = 0;
2007
2008 result = iceland_populate_smc_boot_level(hwmgr, table);
2009 PP_ASSERT_WITH_CODE(0 == result,
2010 "Failed to initialize Boot Level!", return result;);
2011
2012 result = iceland_populate_smc_initial_state(hwmgr);
2013 PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2014
2015 result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr);
2016 PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2017
2018 table->GraphicsVoltageChangeEnable = 1;
2019 table->GraphicsThermThrottleEnable = 1;
2020 table->GraphicsInterval = 1;
2021 table->VoltageInterval = 1;
2022 table->ThermalInterval = 1;
2023
2024 table->TemperatureLimitHigh =
2025 (data->thermal_temp_setting.temperature_high *
2026 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2027 table->TemperatureLimitLow =
2028 (data->thermal_temp_setting.temperature_low *
2029 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2030
2031 table->MemoryVoltageChangeEnable = 1;
2032 table->MemoryInterval = 1;
2033 table->VoltageResponseTime = 0;
2034 table->PhaseResponseTime = 0;
2035 table->MemoryThermThrottleEnable = 1;
2036 table->PCIeBootLinkLevel = 0;
2037 table->PCIeGenInterval = 1;
2038
2039 result = iceland_populate_smc_svi2_config(hwmgr, table);
2040 PP_ASSERT_WITH_CODE(0 == result,
2041 "Failed to populate SVI2 setting!", return result);
2042
2043 table->ThermGpio = 17;
2044 table->SclkStepSize = 0x4000;
2045
2046 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2047 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2048 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2049 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2050 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2051 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2052 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2053 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2054 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2055 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2056
2057 table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2058 table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2059 table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2060
2061 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2062 result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start +
2063 offsetof(SMU71_Discrete_DpmTable, SystemFlags),
2064 (uint8_t *)&(table->SystemFlags),
2065 sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController),
2066 SMC_RAM_END);
2067
2068 PP_ASSERT_WITH_CODE(0 == result,
2069 "Failed to upload dpm data to SMC memory!", return result;);
2070
2071 /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */
2072 result = smu7_copy_bytes_to_smc(hwmgr,
2073 smu_data->smu7_data.ulv_setting_starts,
2074 (uint8_t *)&(smu_data->ulv_setting),
2075 sizeof(SMU71_Discrete_Ulv),
2076 SMC_RAM_END);
2077
2078
2079 result = iceland_populate_initial_mc_reg_table(hwmgr);
2080 PP_ASSERT_WITH_CODE((0 == result),
2081 "Failed to populate initialize MC Reg table!", return result);
2082
2083 result = iceland_populate_pm_fuses(hwmgr);
2084 PP_ASSERT_WITH_CODE(0 == result,
2085 "Failed to populate PM fuses to SMC memory!", return result);
2086
2087 return 0;
2088 }
2089
iceland_thermal_setup_fan_table(struct pp_hwmgr * hwmgr)2090 int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2091 {
2092 struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2093 SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2094 uint32_t duty100;
2095 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2096 uint16_t fdo_min, slope1, slope2;
2097 uint32_t reference_clock;
2098 int res __unused;
2099 uint64_t tmp64;
2100
2101 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2102 return 0;
2103
2104 if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2105 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2106 PHM_PlatformCaps_MicrocodeFanControl);
2107 return 0;
2108 }
2109
2110 if (0 == smu7_data->fan_table_start) {
2111 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2112 return 0;
2113 }
2114
2115 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2116
2117 if (0 == duty100) {
2118 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2119 return 0;
2120 }
2121
2122 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2123 do_div(tmp64, 10000);
2124 fdo_min = (uint16_t)tmp64;
2125
2126 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2127 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2128
2129 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2130 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2131
2132 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2133 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2134
2135 fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2136 fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2137 fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2138
2139 fan_table.Slope1 = cpu_to_be16(slope1);
2140 fan_table.Slope2 = cpu_to_be16(slope2);
2141
2142 fan_table.FdoMin = cpu_to_be16(fdo_min);
2143
2144 fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2145
2146 fan_table.HystUp = cpu_to_be16(1);
2147
2148 fan_table.HystSlope = cpu_to_be16(1);
2149
2150 fan_table.TempRespLim = cpu_to_be16(5);
2151
2152 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2153
2154 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2155
2156 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2157
2158 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2159
2160 /* fan_table.FanControl_GL_Flag = 1; */
2161
2162 res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2163
2164 return 0;
2165 }
2166
2167
iceland_program_mem_timing_parameters(struct pp_hwmgr * hwmgr)2168 static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2169 {
2170 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2171
2172 if (data->need_update_smu7_dpm_table &
2173 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2174 return iceland_program_memory_timing_parameters(hwmgr);
2175
2176 return 0;
2177 }
2178
iceland_update_sclk_threshold(struct pp_hwmgr * hwmgr)2179 static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2180 {
2181 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2182 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2183
2184 int result = 0;
2185 uint32_t low_sclk_interrupt_threshold = 0;
2186
2187 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2188 PHM_PlatformCaps_SclkThrottleLowNotification)
2189 && (data->low_sclk_interrupt_threshold != 0)) {
2190 low_sclk_interrupt_threshold =
2191 data->low_sclk_interrupt_threshold;
2192
2193 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2194
2195 result = smu7_copy_bytes_to_smc(
2196 hwmgr,
2197 smu_data->smu7_data.dpm_table_start +
2198 offsetof(SMU71_Discrete_DpmTable,
2199 LowSclkInterruptThreshold),
2200 (uint8_t *)&low_sclk_interrupt_threshold,
2201 sizeof(uint32_t),
2202 SMC_RAM_END);
2203 }
2204
2205 result = iceland_update_and_upload_mc_reg_table(hwmgr);
2206
2207 PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2208
2209 result = iceland_program_mem_timing_parameters(hwmgr);
2210 PP_ASSERT_WITH_CODE((result == 0),
2211 "Failed to program memory timing parameters!",
2212 );
2213
2214 return result;
2215 }
2216
iceland_get_offsetof(uint32_t type,uint32_t member)2217 static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member)
2218 {
2219 switch (type) {
2220 case SMU_SoftRegisters:
2221 switch (member) {
2222 case HandshakeDisables:
2223 return offsetof(SMU71_SoftRegisters, HandshakeDisables);
2224 case VoltageChangeTimeout:
2225 return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout);
2226 case AverageGraphicsActivity:
2227 return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity);
2228 case AverageMemoryActivity:
2229 return offsetof(SMU71_SoftRegisters, AverageMemoryActivity);
2230 case PreVBlankGap:
2231 return offsetof(SMU71_SoftRegisters, PreVBlankGap);
2232 case VBlankTimeout:
2233 return offsetof(SMU71_SoftRegisters, VBlankTimeout);
2234 case UcodeLoadStatus:
2235 return offsetof(SMU71_SoftRegisters, UcodeLoadStatus);
2236 case DRAM_LOG_ADDR_H:
2237 return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H);
2238 case DRAM_LOG_ADDR_L:
2239 return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L);
2240 case DRAM_LOG_PHY_ADDR_H:
2241 return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2242 case DRAM_LOG_PHY_ADDR_L:
2243 return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2244 case DRAM_LOG_BUFF_SIZE:
2245 return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2246 }
2247 break;
2248 case SMU_Discrete_DpmTable:
2249 switch (member) {
2250 case LowSclkInterruptThreshold:
2251 return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold);
2252 }
2253 break;
2254 }
2255 pr_warn("can't get the offset of type %x member %x\n", type, member);
2256 return 0;
2257 }
2258
iceland_get_mac_definition(uint32_t value)2259 static uint32_t iceland_get_mac_definition(uint32_t value)
2260 {
2261 switch (value) {
2262 case SMU_MAX_LEVELS_GRAPHICS:
2263 return SMU71_MAX_LEVELS_GRAPHICS;
2264 case SMU_MAX_LEVELS_MEMORY:
2265 return SMU71_MAX_LEVELS_MEMORY;
2266 case SMU_MAX_LEVELS_LINK:
2267 return SMU71_MAX_LEVELS_LINK;
2268 case SMU_MAX_ENTRIES_SMIO:
2269 return SMU71_MAX_ENTRIES_SMIO;
2270 case SMU_MAX_LEVELS_VDDC:
2271 return SMU71_MAX_LEVELS_VDDC;
2272 case SMU_MAX_LEVELS_VDDCI:
2273 return SMU71_MAX_LEVELS_VDDCI;
2274 case SMU_MAX_LEVELS_MVDD:
2275 return SMU71_MAX_LEVELS_MVDD;
2276 }
2277
2278 pr_warn("can't get the mac of %x\n", value);
2279 return 0;
2280 }
2281
iceland_process_firmware_header(struct pp_hwmgr * hwmgr)2282 static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr)
2283 {
2284 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2285 struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2286
2287 uint32_t tmp;
2288 int result;
2289 bool error = false;
2290
2291 result = smu7_read_smc_sram_dword(hwmgr,
2292 SMU71_FIRMWARE_HEADER_LOCATION +
2293 offsetof(SMU71_Firmware_Header, DpmTable),
2294 &tmp, SMC_RAM_END);
2295
2296 if (0 == result) {
2297 smu7_data->dpm_table_start = tmp;
2298 }
2299
2300 error |= (0 != result);
2301
2302 result = smu7_read_smc_sram_dword(hwmgr,
2303 SMU71_FIRMWARE_HEADER_LOCATION +
2304 offsetof(SMU71_Firmware_Header, SoftRegisters),
2305 &tmp, SMC_RAM_END);
2306
2307 if (0 == result) {
2308 data->soft_regs_start = tmp;
2309 smu7_data->soft_regs_start = tmp;
2310 }
2311
2312 error |= (0 != result);
2313
2314
2315 result = smu7_read_smc_sram_dword(hwmgr,
2316 SMU71_FIRMWARE_HEADER_LOCATION +
2317 offsetof(SMU71_Firmware_Header, mcRegisterTable),
2318 &tmp, SMC_RAM_END);
2319
2320 if (0 == result) {
2321 smu7_data->mc_reg_table_start = tmp;
2322 }
2323
2324 result = smu7_read_smc_sram_dword(hwmgr,
2325 SMU71_FIRMWARE_HEADER_LOCATION +
2326 offsetof(SMU71_Firmware_Header, FanTable),
2327 &tmp, SMC_RAM_END);
2328
2329 if (0 == result) {
2330 smu7_data->fan_table_start = tmp;
2331 }
2332
2333 error |= (0 != result);
2334
2335 result = smu7_read_smc_sram_dword(hwmgr,
2336 SMU71_FIRMWARE_HEADER_LOCATION +
2337 offsetof(SMU71_Firmware_Header, mcArbDramTimingTable),
2338 &tmp, SMC_RAM_END);
2339
2340 if (0 == result) {
2341 smu7_data->arb_table_start = tmp;
2342 }
2343
2344 error |= (0 != result);
2345
2346
2347 result = smu7_read_smc_sram_dword(hwmgr,
2348 SMU71_FIRMWARE_HEADER_LOCATION +
2349 offsetof(SMU71_Firmware_Header, Version),
2350 &tmp, SMC_RAM_END);
2351
2352 if (0 == result) {
2353 hwmgr->microcode_version_info.SMC = tmp;
2354 }
2355
2356 error |= (0 != result);
2357
2358 result = smu7_read_smc_sram_dword(hwmgr,
2359 SMU71_FIRMWARE_HEADER_LOCATION +
2360 offsetof(SMU71_Firmware_Header, UlvSettings),
2361 &tmp, SMC_RAM_END);
2362
2363 if (0 == result) {
2364 smu7_data->ulv_setting_starts = tmp;
2365 }
2366
2367 error |= (0 != result);
2368
2369 return error ? 1 : 0;
2370 }
2371
2372 /*---------------------------MC----------------------------*/
2373
iceland_get_memory_modile_index(struct pp_hwmgr * hwmgr)2374 static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2375 {
2376 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2377 }
2378
iceland_check_s0_mc_reg_index(uint16_t in_reg,uint16_t * out_reg)2379 static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2380 {
2381 bool result = true;
2382
2383 switch (in_reg) {
2384 case mmMC_SEQ_RAS_TIMING:
2385 *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2386 break;
2387
2388 case mmMC_SEQ_DLL_STBY:
2389 *out_reg = mmMC_SEQ_DLL_STBY_LP;
2390 break;
2391
2392 case mmMC_SEQ_G5PDX_CMD0:
2393 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2394 break;
2395
2396 case mmMC_SEQ_G5PDX_CMD1:
2397 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2398 break;
2399
2400 case mmMC_SEQ_G5PDX_CTRL:
2401 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2402 break;
2403
2404 case mmMC_SEQ_CAS_TIMING:
2405 *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2406 break;
2407
2408 case mmMC_SEQ_MISC_TIMING:
2409 *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2410 break;
2411
2412 case mmMC_SEQ_MISC_TIMING2:
2413 *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2414 break;
2415
2416 case mmMC_SEQ_PMG_DVS_CMD:
2417 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2418 break;
2419
2420 case mmMC_SEQ_PMG_DVS_CTL:
2421 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2422 break;
2423
2424 case mmMC_SEQ_RD_CTL_D0:
2425 *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2426 break;
2427
2428 case mmMC_SEQ_RD_CTL_D1:
2429 *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2430 break;
2431
2432 case mmMC_SEQ_WR_CTL_D0:
2433 *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2434 break;
2435
2436 case mmMC_SEQ_WR_CTL_D1:
2437 *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2438 break;
2439
2440 case mmMC_PMG_CMD_EMRS:
2441 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2442 break;
2443
2444 case mmMC_PMG_CMD_MRS:
2445 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2446 break;
2447
2448 case mmMC_PMG_CMD_MRS1:
2449 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2450 break;
2451
2452 case mmMC_SEQ_PMG_TIMING:
2453 *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2454 break;
2455
2456 case mmMC_PMG_CMD_MRS2:
2457 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2458 break;
2459
2460 case mmMC_SEQ_WR_CTL_2:
2461 *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2462 break;
2463
2464 default:
2465 result = false;
2466 break;
2467 }
2468
2469 return result;
2470 }
2471
iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table * table)2472 static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table)
2473 {
2474 uint32_t i;
2475 uint16_t address;
2476
2477 for (i = 0; i < table->last; i++) {
2478 table->mc_reg_address[i].s0 =
2479 iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2480 ? address : table->mc_reg_address[i].s1;
2481 }
2482 return 0;
2483 }
2484
iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table * table,struct iceland_mc_reg_table * ni_table)2485 static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2486 struct iceland_mc_reg_table *ni_table)
2487 {
2488 uint8_t i, j;
2489
2490 PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2491 "Invalid VramInfo table.", return -EINVAL);
2492 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2493 "Invalid VramInfo table.", return -EINVAL);
2494
2495 for (i = 0; i < table->last; i++) {
2496 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2497 }
2498 ni_table->last = table->last;
2499
2500 for (i = 0; i < table->num_entries; i++) {
2501 ni_table->mc_reg_table_entry[i].mclk_max =
2502 table->mc_reg_table_entry[i].mclk_max;
2503 for (j = 0; j < table->last; j++) {
2504 ni_table->mc_reg_table_entry[i].mc_data[j] =
2505 table->mc_reg_table_entry[i].mc_data[j];
2506 }
2507 }
2508
2509 ni_table->num_entries = table->num_entries;
2510
2511 return 0;
2512 }
2513
iceland_set_mc_special_registers(struct pp_hwmgr * hwmgr,struct iceland_mc_reg_table * table)2514 static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2515 struct iceland_mc_reg_table *table)
2516 {
2517 uint8_t i, j, k;
2518 uint32_t temp_reg;
2519 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2520
2521 for (i = 0, j = table->last; i < table->last; i++) {
2522 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2523 "Invalid VramInfo table.", return -EINVAL);
2524
2525 switch (table->mc_reg_address[i].s1) {
2526
2527 case mmMC_SEQ_MISC1:
2528 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2529 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2530 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2531 for (k = 0; k < table->num_entries; k++) {
2532 table->mc_reg_table_entry[k].mc_data[j] =
2533 ((temp_reg & 0xffff0000)) |
2534 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2535 }
2536 j++;
2537
2538 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2539 "Invalid VramInfo table.", return -EINVAL);
2540 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2541 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2542 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2543 for (k = 0; k < table->num_entries; k++) {
2544 table->mc_reg_table_entry[k].mc_data[j] =
2545 (temp_reg & 0xffff0000) |
2546 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2547
2548 if (!data->is_memory_gddr5) {
2549 table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2550 }
2551 }
2552 j++;
2553
2554 if (!data->is_memory_gddr5) {
2555 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2556 "Invalid VramInfo table.", return -EINVAL);
2557 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2558 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2559 for (k = 0; k < table->num_entries; k++) {
2560 table->mc_reg_table_entry[k].mc_data[j] =
2561 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2562 }
2563 j++;
2564 }
2565
2566 break;
2567
2568 case mmMC_SEQ_RESERVE_M:
2569 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2570 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2571 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2572 for (k = 0; k < table->num_entries; k++) {
2573 table->mc_reg_table_entry[k].mc_data[j] =
2574 (temp_reg & 0xffff0000) |
2575 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2576 }
2577 j++;
2578 break;
2579
2580 default:
2581 break;
2582 }
2583
2584 }
2585
2586 table->last = j;
2587
2588 return 0;
2589 }
2590
iceland_set_valid_flag(struct iceland_mc_reg_table * table)2591 static int iceland_set_valid_flag(struct iceland_mc_reg_table *table)
2592 {
2593 uint8_t i, j;
2594 for (i = 0; i < table->last; i++) {
2595 for (j = 1; j < table->num_entries; j++) {
2596 if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2597 table->mc_reg_table_entry[j].mc_data[i]) {
2598 table->validflag |= (1<<i);
2599 break;
2600 }
2601 }
2602 }
2603
2604 return 0;
2605 }
2606
iceland_initialize_mc_reg_table(struct pp_hwmgr * hwmgr)2607 static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2608 {
2609 int result;
2610 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2611 pp_atomctrl_mc_reg_table *table;
2612 struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2613 uint8_t module_index = iceland_get_memory_modile_index(hwmgr);
2614
2615 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2616
2617 if (NULL == table)
2618 return -ENOMEM;
2619
2620 /* Program additional LP registers that are no longer programmed by VBIOS */
2621 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2622 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2623 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2624 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2625 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2626 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2627 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2628 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2629 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2630 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2631 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2632 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2633 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2634 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2635 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2636 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2637 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2638 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2639 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2640 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2641
2642 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2643
2644 if (0 == result)
2645 result = iceland_copy_vbios_smc_reg_table(table, ni_table);
2646
2647 if (0 == result) {
2648 iceland_set_s0_mc_reg_index(ni_table);
2649 result = iceland_set_mc_special_registers(hwmgr, ni_table);
2650 }
2651
2652 if (0 == result)
2653 iceland_set_valid_flag(ni_table);
2654
2655 kfree(table);
2656
2657 return result;
2658 }
2659
iceland_is_dpm_running(struct pp_hwmgr * hwmgr)2660 static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr)
2661 {
2662 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2663 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2664 ? true : false;
2665 }
2666
2667 const struct pp_smumgr_func iceland_smu_funcs = {
2668 .name = "iceland_smu",
2669 .smu_init = &iceland_smu_init,
2670 .smu_fini = &smu7_smu_fini,
2671 .start_smu = &iceland_start_smu,
2672 .check_fw_load_finish = &smu7_check_fw_load_finish,
2673 .request_smu_load_fw = &smu7_request_smu_load_fw,
2674 .request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw,
2675 .send_msg_to_smc = &smu7_send_msg_to_smc,
2676 .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2677 .download_pptable_settings = NULL,
2678 .upload_pptable_settings = NULL,
2679 .get_offsetof = iceland_get_offsetof,
2680 .process_firmware_header = iceland_process_firmware_header,
2681 .init_smc_table = iceland_init_smc_table,
2682 .update_sclk_threshold = iceland_update_sclk_threshold,
2683 .thermal_setup_fan_table = iceland_thermal_setup_fan_table,
2684 .populate_all_graphic_levels = iceland_populate_all_graphic_levels,
2685 .populate_all_memory_levels = iceland_populate_all_memory_levels,
2686 .get_mac_definition = iceland_get_mac_definition,
2687 .initialize_mc_reg_table = iceland_initialize_mc_reg_table,
2688 .is_dpm_running = iceland_is_dpm_running,
2689 };
2690
2691