xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/powerplay/smumgr/amdgpu_iceland_smumgr.c (revision 0caae2224fa2e443b0194fe793325afc8e00f306)
1 /*	$NetBSD: amdgpu_iceland_smumgr.c,v 1.3 2021/12/19 12:02:40 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2016 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Author: Huang Rui <ray.huang@amd.com>
25  *
26  */
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: amdgpu_iceland_smumgr.c,v 1.3 2021/12/19 12:02:40 riastradh Exp $");
29 
30 #include "pp_debug.h"
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/gfp.h>
36 
37 #include "smumgr.h"
38 #include "iceland_smumgr.h"
39 
40 #include "ppsmc.h"
41 
42 #include "cgs_common.h"
43 
44 #include "smu7_dyn_defaults.h"
45 #include "smu7_hwmgr.h"
46 #include "hardwaremanager.h"
47 #include "ppatomctrl.h"
48 #include "atombios.h"
49 #include "pppcielanes.h"
50 #include "pp_endian.h"
51 #include "processpptables.h"
52 
53 
54 #include "smu/smu_7_1_1_d.h"
55 #include "smu/smu_7_1_1_sh_mask.h"
56 #include "smu71_discrete.h"
57 
58 #include "smu_ucode_xfer_vi.h"
59 #include "gmc/gmc_8_1_d.h"
60 #include "gmc/gmc_8_1_sh_mask.h"
61 #include "bif/bif_5_0_d.h"
62 #include "bif/bif_5_0_sh_mask.h"
63 #include "dce/dce_10_0_d.h"
64 #include "dce/dce_10_0_sh_mask.h"
65 
66 
67 #define ICELAND_SMC_SIZE               0x20000
68 
69 #define POWERTUNE_DEFAULT_SET_MAX    1
70 #define MC_CG_ARB_FREQ_F1           0x0b
71 #define VDDC_VDDCI_DELTA            200
72 
73 #define DEVICE_ID_VI_ICELAND_M_6900	0x6900
74 #define DEVICE_ID_VI_ICELAND_M_6901	0x6901
75 #define DEVICE_ID_VI_ICELAND_M_6902	0x6902
76 #define DEVICE_ID_VI_ICELAND_M_6903	0x6903
77 
78 static const struct iceland_pt_defaults defaults_iceland = {
79 	/*
80 	 * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,
81 	 * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
82 	 */
83 	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
84 	{ 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
85 	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
86 };
87 
88 /* 35W - XT, XTL */
89 static const struct iceland_pt_defaults defaults_icelandxt = {
90 	/*
91 	 * sviLoadLIneEn, SviLoadLineVddC,
92 	 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
93 	 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
94 	 * BAPM_TEMP_GRADIENT
95 	 */
96 	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
97 	{ 0xA7,  0x0, 0x0, 0xB5,  0x0, 0x0, 0x9F,  0x0, 0x0, 0xD6,  0x0, 0x0, 0xD7,  0x0, 0x0},
98 	{ 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
99 };
100 
101 /* 25W - PRO, LE */
102 static const struct iceland_pt_defaults defaults_icelandpro = {
103 	/*
104 	 * sviLoadLIneEn, SviLoadLineVddC,
105 	 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
106 	 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
107 	 * BAPM_TEMP_GRADIENT
108 	 */
109 	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
110 	{ 0xB7,  0x0, 0x0, 0xC3,  0x0, 0x0, 0xB5,  0x0, 0x0, 0xEA,  0x0, 0x0, 0xE6,  0x0, 0x0},
111 	{ 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
112 };
113 
iceland_start_smc(struct pp_hwmgr * hwmgr)114 static int iceland_start_smc(struct pp_hwmgr *hwmgr)
115 {
116 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
117 				  SMC_SYSCON_RESET_CNTL, rst_reg, 0);
118 
119 	return 0;
120 }
121 
iceland_reset_smc(struct pp_hwmgr * hwmgr)122 static void iceland_reset_smc(struct pp_hwmgr *hwmgr)
123 {
124 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
125 				  SMC_SYSCON_RESET_CNTL,
126 				  rst_reg, 1);
127 }
128 
129 
iceland_stop_smc_clock(struct pp_hwmgr * hwmgr)130 static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr)
131 {
132 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
133 				  SMC_SYSCON_CLOCK_CNTL_0,
134 				  ck_disable, 1);
135 }
136 
iceland_start_smc_clock(struct pp_hwmgr * hwmgr)137 static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr)
138 {
139 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
140 				  SMC_SYSCON_CLOCK_CNTL_0,
141 				  ck_disable, 0);
142 }
143 
iceland_smu_start_smc(struct pp_hwmgr * hwmgr)144 static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr)
145 {
146 	/* set smc instruct start point at 0x0 */
147 	smu7_program_jump_on_start(hwmgr);
148 
149 	/* enable smc clock */
150 	iceland_start_smc_clock(hwmgr);
151 
152 	/* de-assert reset */
153 	iceland_start_smc(hwmgr);
154 
155 	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
156 				 INTERRUPTS_ENABLED, 1);
157 
158 	return 0;
159 }
160 
161 
iceland_upload_smc_firmware_data(struct pp_hwmgr * hwmgr,uint32_t length,const uint8_t * src,uint32_t limit,uint32_t start_addr)162 static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr,
163 					uint32_t length, const uint8_t *src,
164 					uint32_t limit, uint32_t start_addr)
165 {
166 	uint32_t byte_count = length;
167 	uint32_t data;
168 
169 	PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -EINVAL);
170 
171 	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
172 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
173 
174 	while (byte_count >= 4) {
175 		data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
176 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
177 		src += 4;
178 		byte_count -= 4;
179 	}
180 
181 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
182 
183 	PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4.", return -EINVAL);
184 
185 	return 0;
186 }
187 
188 
iceland_smu_upload_firmware_image(struct pp_hwmgr * hwmgr)189 static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr)
190 {
191 	uint32_t val;
192 	struct cgs_firmware_info info = {0};
193 
194 	if (hwmgr == NULL || hwmgr->device == NULL)
195 		return -EINVAL;
196 
197 	/* load SMC firmware */
198 	cgs_get_firmware_info(hwmgr->device,
199 		smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
200 
201 	if (info.image_size & 3) {
202 		pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n");
203 		return -EINVAL;
204 	}
205 
206 	if (info.image_size > ICELAND_SMC_SIZE) {
207 		pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n");
208 		return -EINVAL;
209 	}
210 	hwmgr->smu_version = info.version;
211 	/* wait for smc boot up */
212 	PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
213 					 RCU_UC_EVENTS, boot_seq_done, 0);
214 
215 	/* clear firmware interrupt enable flag */
216 	val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
217 				    ixSMC_SYSCON_MISC_CNTL);
218 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
219 			       ixSMC_SYSCON_MISC_CNTL, val | 1);
220 
221 	/* stop smc clock */
222 	iceland_stop_smc_clock(hwmgr);
223 
224 	/* reset smc */
225 	iceland_reset_smc(hwmgr);
226 	iceland_upload_smc_firmware_data(hwmgr, info.image_size,
227 				(uint8_t *)info.kptr, ICELAND_SMC_SIZE,
228 				info.ucode_start_address);
229 
230 	return 0;
231 }
232 
iceland_request_smu_load_specific_fw(struct pp_hwmgr * hwmgr,uint32_t firmwareType)233 static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr,
234 						uint32_t firmwareType)
235 {
236 	return 0;
237 }
238 
iceland_start_smu(struct pp_hwmgr * hwmgr)239 static int iceland_start_smu(struct pp_hwmgr *hwmgr)
240 {
241 	struct iceland_smumgr *priv = hwmgr->smu_backend;
242 	int result;
243 
244 	if (!smu7_is_smc_ram_running(hwmgr)) {
245 		result = iceland_smu_upload_firmware_image(hwmgr);
246 		if (result)
247 			return result;
248 
249 		iceland_smu_start_smc(hwmgr);
250 	}
251 
252 	/* Setup SoftRegsStart here to visit the register UcodeLoadStatus
253 	 * to check fw loading state
254 	 */
255 	smu7_read_smc_sram_dword(hwmgr,
256 			SMU71_FIRMWARE_HEADER_LOCATION +
257 			offsetof(SMU71_Firmware_Header, SoftRegisters),
258 			&(priv->smu7_data.soft_regs_start), 0x40000);
259 
260 	result = smu7_request_smu_load_fw(hwmgr);
261 
262 	return result;
263 }
264 
iceland_smu_init(struct pp_hwmgr * hwmgr)265 static int iceland_smu_init(struct pp_hwmgr *hwmgr)
266 {
267 	struct iceland_smumgr *iceland_priv = NULL;
268 
269 	iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL);
270 
271 	if (iceland_priv == NULL)
272 		return -ENOMEM;
273 
274 	hwmgr->smu_backend = iceland_priv;
275 
276 	if (smu7_init(hwmgr)) {
277 		kfree(iceland_priv);
278 		return -EINVAL;
279 	}
280 
281 	return 0;
282 }
283 
284 
iceland_initialize_power_tune_defaults(struct pp_hwmgr * hwmgr)285 static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
286 {
287 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
288 	struct amdgpu_device *adev = hwmgr->adev;
289 	uint32_t dev_id;
290 
291 	dev_id = adev->pdev->device;
292 
293 	switch (dev_id) {
294 	case DEVICE_ID_VI_ICELAND_M_6900:
295 	case DEVICE_ID_VI_ICELAND_M_6903:
296 		smu_data->power_tune_defaults = &defaults_icelandxt;
297 		break;
298 
299 	case DEVICE_ID_VI_ICELAND_M_6901:
300 	case DEVICE_ID_VI_ICELAND_M_6902:
301 		smu_data->power_tune_defaults = &defaults_icelandpro;
302 		break;
303 	default:
304 		smu_data->power_tune_defaults = &defaults_iceland;
305 		pr_warn("Unknown V.I. Device ID.\n");
306 		break;
307 	}
308 	return;
309 }
310 
iceland_populate_svi_load_line(struct pp_hwmgr * hwmgr)311 static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr)
312 {
313 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
314 	const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
315 
316 	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
317 	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
318 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
319 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
320 
321 	return 0;
322 }
323 
iceland_populate_tdc_limit(struct pp_hwmgr * hwmgr)324 static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr)
325 {
326 	uint16_t tdc_limit;
327 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
328 	const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
329 
330 	tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
331 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
332 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
333 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
334 			defaults->tdc_vddc_throttle_release_limit_perc;
335 	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
336 
337 	return 0;
338 }
339 
iceland_populate_dw8(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)340 static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
341 {
342 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
343 	const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
344 	uint32_t temp;
345 
346 	if (smu7_read_smc_sram_dword(hwmgr,
347 			fuse_table_offset +
348 			offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl),
349 			(uint32_t *)&temp, SMC_RAM_END))
350 		PP_ASSERT_WITH_CODE(false,
351 				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
352 				return -EINVAL);
353 	else
354 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
355 
356 	return 0;
357 }
358 
iceland_populate_temperature_scaler(struct pp_hwmgr * hwmgr)359 static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
360 {
361 	return 0;
362 }
363 
iceland_populate_gnb_lpml(struct pp_hwmgr * hwmgr)364 static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
365 {
366 	int i;
367 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
368 
369 	/* Currently not used. Set all to zero. */
370 	for (i = 0; i < 8; i++)
371 		smu_data->power_tune_table.GnbLPML[i] = 0;
372 
373 	return 0;
374 }
375 
iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr * hwmgr)376 static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
377 {
378 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
379 	uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
380 	uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
381 	struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
382 
383 	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
384 	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
385 
386 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
387 			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
388 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
389 			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
390 
391 	return 0;
392 }
393 
iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr * hwmgr)394 static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
395 {
396 	int i;
397 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
398 	uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
399 	uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
400 
401 	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
402 			    "The CAC Leakage table does not exist!", return -EINVAL);
403 	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
404 			    "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
405 	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
406 			    "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
407 
408 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
409 		for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
410 			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
411 			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
412 		}
413 	} else {
414 		PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL);
415 	}
416 
417 	return 0;
418 }
419 
iceland_populate_vddc_vid(struct pp_hwmgr * hwmgr)420 static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr)
421 {
422 	int i;
423 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
424 	uint8_t *vid = smu_data->power_tune_table.VddCVid;
425 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
426 
427 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
428 		"There should never be more than 8 entries for VddcVid!!!",
429 		return -EINVAL);
430 
431 	for (i = 0; i < (int)data->vddc_voltage_table.count; i++) {
432 		vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
433 	}
434 
435 	return 0;
436 }
437 
438 
439 
iceland_populate_pm_fuses(struct pp_hwmgr * hwmgr)440 static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr)
441 {
442 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
443 	uint32_t pm_fuse_table_offset;
444 
445 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
446 			PHM_PlatformCaps_PowerContainment)) {
447 		if (smu7_read_smc_sram_dword(hwmgr,
448 				SMU71_FIRMWARE_HEADER_LOCATION +
449 				offsetof(SMU71_Firmware_Header, PmFuseTable),
450 				&pm_fuse_table_offset, SMC_RAM_END))
451 			PP_ASSERT_WITH_CODE(false,
452 					"Attempt to get pm_fuse_table_offset Failed!",
453 					return -EINVAL);
454 
455 		/* DW0 - DW3 */
456 		if (iceland_populate_bapm_vddc_vid_sidd(hwmgr))
457 			PP_ASSERT_WITH_CODE(false,
458 					"Attempt to populate bapm vddc vid Failed!",
459 					return -EINVAL);
460 
461 		/* DW4 - DW5 */
462 		if (iceland_populate_vddc_vid(hwmgr))
463 			PP_ASSERT_WITH_CODE(false,
464 					"Attempt to populate vddc vid Failed!",
465 					return -EINVAL);
466 
467 		/* DW6 */
468 		if (iceland_populate_svi_load_line(hwmgr))
469 			PP_ASSERT_WITH_CODE(false,
470 					"Attempt to populate SviLoadLine Failed!",
471 					return -EINVAL);
472 		/* DW7 */
473 		if (iceland_populate_tdc_limit(hwmgr))
474 			PP_ASSERT_WITH_CODE(false,
475 					"Attempt to populate TDCLimit Failed!", return -EINVAL);
476 		/* DW8 */
477 		if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset))
478 			PP_ASSERT_WITH_CODE(false,
479 					"Attempt to populate TdcWaterfallCtl, "
480 					"LPMLTemperature Min and Max Failed!",
481 					return -EINVAL);
482 
483 		/* DW9-DW12 */
484 		if (0 != iceland_populate_temperature_scaler(hwmgr))
485 			PP_ASSERT_WITH_CODE(false,
486 					"Attempt to populate LPMLTemperatureScaler Failed!",
487 					return -EINVAL);
488 
489 		/* DW13-DW16 */
490 		if (iceland_populate_gnb_lpml(hwmgr))
491 			PP_ASSERT_WITH_CODE(false,
492 					"Attempt to populate GnbLPML Failed!",
493 					return -EINVAL);
494 
495 		/* DW18 */
496 		if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr))
497 			PP_ASSERT_WITH_CODE(false,
498 					"Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",
499 					return -EINVAL);
500 
501 		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
502 				(uint8_t *)&smu_data->power_tune_table,
503 				sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END))
504 			PP_ASSERT_WITH_CODE(false,
505 					"Attempt to download PmFuseTable Failed!",
506 					return -EINVAL);
507 	}
508 	return 0;
509 }
510 
iceland_get_dependency_volt_by_clk(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * allowed_clock_voltage_table,uint32_t clock,uint32_t * vol)511 static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
512 	struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
513 	uint32_t clock, uint32_t *vol)
514 {
515 	uint32_t i = 0;
516 
517 	/* clock - voltage dependency table is empty table */
518 	if (allowed_clock_voltage_table->count == 0)
519 		return -EINVAL;
520 
521 	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
522 		/* find first sclk bigger than request */
523 		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
524 			*vol = allowed_clock_voltage_table->entries[i].v;
525 			return 0;
526 		}
527 	}
528 
529 	/* sclk is bigger than max sclk in the dependence table */
530 	*vol = allowed_clock_voltage_table->entries[i - 1].v;
531 
532 	return 0;
533 }
534 
iceland_get_std_voltage_value_sidd(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,uint16_t * hi,uint16_t * lo)535 static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
536 		pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
537 		uint16_t *lo)
538 {
539 	uint16_t v_index;
540 	bool vol_found = false;
541 	*hi = tab->value * VOLTAGE_SCALE;
542 	*lo = tab->value * VOLTAGE_SCALE;
543 
544 	/* SCLK/VDDC Dependency Table has to exist. */
545 	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
546 			"The SCLK/VDDC Dependency Table does not exist.",
547 			return -EINVAL);
548 
549 	if (NULL == hwmgr->dyn_state.cac_leakage_table) {
550 		pr_warn("CAC Leakage Table does not exist, using vddc.\n");
551 		return 0;
552 	}
553 
554 	/*
555 	 * Since voltage in the sclk/vddc dependency table is not
556 	 * necessarily in ascending order because of ELB voltage
557 	 * patching, loop through entire list to find exact voltage.
558 	 */
559 	for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
560 		if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
561 			vol_found = true;
562 			if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
563 				*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
564 				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
565 			} else {
566 				pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
567 				*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
568 				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
569 			}
570 			break;
571 		}
572 	}
573 
574 	/*
575 	 * If voltage is not found in the first pass, loop again to
576 	 * find the best match, equal or higher value.
577 	 */
578 	if (!vol_found) {
579 		for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
580 			if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
581 				vol_found = true;
582 				if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
583 					*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
584 					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
585 				} else {
586 					pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
587 					*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
588 					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
589 				}
590 				break;
591 			}
592 		}
593 
594 		if (!vol_found)
595 			pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
596 	}
597 
598 	return 0;
599 }
600 
iceland_populate_smc_voltage_table(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,SMU71_Discrete_VoltageLevel * smc_voltage_tab)601 static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
602 		pp_atomctrl_voltage_table_entry *tab,
603 		SMU71_Discrete_VoltageLevel *smc_voltage_tab)
604 {
605 	int result;
606 
607 	result = iceland_get_std_voltage_value_sidd(hwmgr, tab,
608 			&smc_voltage_tab->StdVoltageHiSidd,
609 			&smc_voltage_tab->StdVoltageLoSidd);
610 	if (0 != result) {
611 		smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
612 		smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
613 	}
614 
615 	smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
616 	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
617 	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
618 
619 	return 0;
620 }
621 
iceland_populate_smc_vddc_table(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)622 static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
623 			SMU71_Discrete_DpmTable *table)
624 {
625 	unsigned int count;
626 	int result;
627 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
628 
629 	table->VddcLevelCount = data->vddc_voltage_table.count;
630 	for (count = 0; count < table->VddcLevelCount; count++) {
631 		result = iceland_populate_smc_voltage_table(hwmgr,
632 				&(data->vddc_voltage_table.entries[count]),
633 				&(table->VddcLevel[count]));
634 		PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
635 
636 		/* GPIO voltage control */
637 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
638 			table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
639 		else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
640 			table->VddcLevel[count].Smio = 0;
641 	}
642 
643 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
644 
645 	return 0;
646 }
647 
iceland_populate_smc_vdd_ci_table(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)648 static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
649 			SMU71_Discrete_DpmTable *table)
650 {
651 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
652 	uint32_t count;
653 	int result;
654 
655 	table->VddciLevelCount = data->vddci_voltage_table.count;
656 
657 	for (count = 0; count < table->VddciLevelCount; count++) {
658 		result = iceland_populate_smc_voltage_table(hwmgr,
659 				&(data->vddci_voltage_table.entries[count]),
660 				&(table->VddciLevel[count]));
661 		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
662 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
663 			table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
664 		else
665 			table->VddciLevel[count].Smio |= 0;
666 	}
667 
668 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
669 
670 	return 0;
671 }
672 
iceland_populate_smc_mvdd_table(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)673 static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
674 			SMU71_Discrete_DpmTable *table)
675 {
676 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
677 	uint32_t count;
678 	int result;
679 
680 	table->MvddLevelCount = data->mvdd_voltage_table.count;
681 
682 	for (count = 0; count < table->VddciLevelCount; count++) {
683 		result = iceland_populate_smc_voltage_table(hwmgr,
684 				&(data->mvdd_voltage_table.entries[count]),
685 				&table->MvddLevel[count]);
686 		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
687 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
688 			table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
689 		else
690 			table->MvddLevel[count].Smio |= 0;
691 	}
692 
693 	CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
694 
695 	return 0;
696 }
697 
698 
iceland_populate_smc_voltage_tables(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)699 static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
700 	SMU71_Discrete_DpmTable *table)
701 {
702 	int result;
703 
704 	result = iceland_populate_smc_vddc_table(hwmgr, table);
705 	PP_ASSERT_WITH_CODE(0 == result,
706 			"can not populate VDDC voltage table to SMC", return -EINVAL);
707 
708 	result = iceland_populate_smc_vdd_ci_table(hwmgr, table);
709 	PP_ASSERT_WITH_CODE(0 == result,
710 			"can not populate VDDCI voltage table to SMC", return -EINVAL);
711 
712 	result = iceland_populate_smc_mvdd_table(hwmgr, table);
713 	PP_ASSERT_WITH_CODE(0 == result,
714 			"can not populate MVDD voltage table to SMC", return -EINVAL);
715 
716 	return 0;
717 }
718 
iceland_populate_ulv_level(struct pp_hwmgr * hwmgr,struct SMU71_Discrete_Ulv * state)719 static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr,
720 		struct SMU71_Discrete_Ulv *state)
721 {
722 	uint32_t voltage_response_time, ulv_voltage;
723 	int result;
724 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
725 
726 	state->CcPwrDynRm = 0;
727 	state->CcPwrDynRm1 = 0;
728 
729 	result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
730 	PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
731 
732 	if (ulv_voltage == 0) {
733 		data->ulv_supported = false;
734 		return 0;
735 	}
736 
737 	if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
738 		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
739 		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
740 			state->VddcOffset = 0;
741 		else
742 			/* used in SMIO Mode. not implemented for now. this is backup only for CI. */
743 			state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
744 	} else {
745 		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
746 		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
747 			state->VddcOffsetVid = 0;
748 		else  /* used in SVI2 Mode */
749 			state->VddcOffsetVid = (uint8_t)(
750 					(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
751 						* VOLTAGE_VID_OFFSET_SCALE2
752 						/ VOLTAGE_VID_OFFSET_SCALE1);
753 	}
754 	state->VddcPhase = 1;
755 
756 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
757 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
758 	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
759 
760 	return 0;
761 }
762 
iceland_populate_ulv_state(struct pp_hwmgr * hwmgr,SMU71_Discrete_Ulv * ulv_level)763 static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr,
764 		 SMU71_Discrete_Ulv *ulv_level)
765 {
766 	return iceland_populate_ulv_level(hwmgr, ulv_level);
767 }
768 
iceland_populate_smc_link_level(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)769 static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table)
770 {
771 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
772 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
773 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
774 	uint32_t i;
775 
776 	/* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
777 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
778 		table->LinkLevel[i].PcieGenSpeed  =
779 			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
780 		table->LinkLevel[i].PcieLaneCount =
781 			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
782 		table->LinkLevel[i].EnabledForActivity =
783 			1;
784 		table->LinkLevel[i].SPC =
785 			(uint8_t)(data->pcie_spc_cap & 0xff);
786 		table->LinkLevel[i].DownThreshold =
787 			PP_HOST_TO_SMC_UL(5);
788 		table->LinkLevel[i].UpThreshold =
789 			PP_HOST_TO_SMC_UL(30);
790 	}
791 
792 	smu_data->smc_state_table.LinkLevelCount =
793 		(uint8_t)dpm_table->pcie_speed_table.count;
794 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
795 		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
796 
797 	return 0;
798 }
799 
iceland_calculate_sclk_params(struct pp_hwmgr * hwmgr,uint32_t engine_clock,SMU71_Discrete_GraphicsLevel * sclk)800 static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr,
801 		uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk)
802 {
803 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
804 	pp_atomctrl_clock_dividers_vi dividers;
805 	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
806 	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
807 	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
808 	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
809 	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
810 	uint32_t    reference_clock;
811 	uint32_t reference_divider;
812 	uint32_t fbdiv;
813 	int result;
814 
815 	/* get the engine clock dividers for this clock value*/
816 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);
817 
818 	PP_ASSERT_WITH_CODE(result == 0,
819 		"Error retrieving Engine Clock dividers from VBIOS.", return result);
820 
821 	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
822 	reference_clock = atomctrl_get_reference_clock(hwmgr);
823 
824 	reference_divider = 1 + dividers.uc_pll_ref_div;
825 
826 	/* low 14 bits is fraction and high 12 bits is divider*/
827 	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
828 
829 	/* SPLL_FUNC_CNTL setup*/
830 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
831 		CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
832 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
833 		CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);
834 
835 	/* SPLL_FUNC_CNTL_3 setup*/
836 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
837 		CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
838 
839 	/* set to use fractional accumulation*/
840 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
841 		CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
842 
843 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
844 			PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
845 		pp_atomctrl_internal_ss_info ss_info;
846 
847 		uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
848 		if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
849 			/*
850 			* ss_info.speed_spectrum_percentage -- in unit of 0.01%
851 			* ss_info.speed_spectrum_rate -- in unit of khz
852 			*/
853 			/* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
854 			uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
855 
856 			/* clkv = 2 * D * fbdiv / NS */
857 			uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
858 
859 			cg_spll_spread_spectrum =
860 				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
861 			cg_spll_spread_spectrum =
862 				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
863 			cg_spll_spread_spectrum_2 =
864 				PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
865 		}
866 	}
867 
868 	sclk->SclkFrequency        = engine_clock;
869 	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
870 	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
871 	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
872 	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
873 	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
874 
875 	return 0;
876 }
877 
iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t sclk,uint32_t * p_shed)878 static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
879 				const struct phm_phase_shedding_limits_table *pl,
880 					uint32_t sclk, uint32_t *p_shed)
881 {
882 	unsigned int i;
883 
884 	/* use the minimum phase shedding */
885 	*p_shed = 1;
886 
887 	for (i = 0; i < pl->count; i++) {
888 		if (sclk < pl->entries[i].Sclk) {
889 			*p_shed = i;
890 			break;
891 		}
892 	}
893 	return 0;
894 }
895 
iceland_populate_single_graphic_level(struct pp_hwmgr * hwmgr,uint32_t engine_clock,SMU71_Discrete_GraphicsLevel * graphic_level)896 static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
897 						uint32_t engine_clock,
898 				SMU71_Discrete_GraphicsLevel *graphic_level)
899 {
900 	int result;
901 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
902 
903 	result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
904 
905 	/* populate graphics levels*/
906 	result = iceland_get_dependency_volt_by_clk(hwmgr,
907 		hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock,
908 		&graphic_level->MinVddc);
909 	PP_ASSERT_WITH_CODE((0 == result),
910 		"can not find VDDC voltage value for VDDC engine clock dependency table", return result);
911 
912 	/* SCLK frequency in units of 10KHz*/
913 	graphic_level->SclkFrequency = engine_clock;
914 	graphic_level->MinVddcPhases = 1;
915 
916 	if (data->vddc_phase_shed_control)
917 		iceland_populate_phase_value_based_on_sclk(hwmgr,
918 				hwmgr->dyn_state.vddc_phase_shed_limits_table,
919 				engine_clock,
920 				&graphic_level->MinVddcPhases);
921 
922 	/* Indicates maximum activity level for this performance level. 50% for now*/
923 	graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
924 
925 	graphic_level->CcPwrDynRm = 0;
926 	graphic_level->CcPwrDynRm1 = 0;
927 	/* this level can be used if activity is high enough.*/
928 	graphic_level->EnabledForActivity = 0;
929 	/* this level can be used for throttling.*/
930 	graphic_level->EnabledForThrottle = 1;
931 	graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
932 	graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
933 	graphic_level->VoltageDownHyst = 0;
934 	graphic_level->PowerThrottle = 0;
935 
936 	data->display_timing.min_clock_in_sr =
937 			hwmgr->display_config->min_core_set_clock_in_sr;
938 
939 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
940 			PHM_PlatformCaps_SclkDeepSleep))
941 		graphic_level->DeepSleepDivId =
942 				smu7_get_sleep_divider_id_from_clock(engine_clock,
943 						data->display_timing.min_clock_in_sr);
944 
945 	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
946 	graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
947 
948 	if (0 == result) {
949 		graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE);
950 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);
951 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
952 		CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
953 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
954 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
955 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
956 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
957 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
958 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
959 	}
960 
961 	return result;
962 }
963 
iceland_populate_all_graphic_levels(struct pp_hwmgr * hwmgr)964 static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
965 {
966 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
967 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
968 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
969 	uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start +
970 				offsetof(SMU71_Discrete_DpmTable, GraphicsLevel);
971 
972 	uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) *
973 						SMU71_MAX_LEVELS_GRAPHICS;
974 
975 	SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
976 
977 	uint32_t i;
978 	uint8_t highest_pcie_level_enabled = 0;
979 	uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
980 	uint8_t count = 0;
981 	int result = 0;
982 
983 	memset(levels, 0x00, level_array_size);
984 
985 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
986 		result = iceland_populate_single_graphic_level(hwmgr,
987 					dpm_table->sclk_table.dpm_levels[i].value,
988 					&(smu_data->smc_state_table.GraphicsLevel[i]));
989 		if (result != 0)
990 			return result;
991 
992 		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
993 		if (i > 1)
994 			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
995 	}
996 
997 	/* Only enable level 0 for now. */
998 	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
999 
1000 	/* set highest level watermark to high */
1001 	if (dpm_table->sclk_table.count > 1)
1002 		smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
1003 			PPSMC_DISPLAY_WATERMARK_HIGH;
1004 
1005 	smu_data->smc_state_table.GraphicsDpmLevelCount =
1006 		(uint8_t)dpm_table->sclk_table.count;
1007 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1008 		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1009 
1010 	while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1011 				(1 << (highest_pcie_level_enabled + 1))) != 0) {
1012 		highest_pcie_level_enabled++;
1013 	}
1014 
1015 	while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1016 		(1 << lowest_pcie_level_enabled)) == 0) {
1017 		lowest_pcie_level_enabled++;
1018 	}
1019 
1020 	while ((count < highest_pcie_level_enabled) &&
1021 			((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1022 				(1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) {
1023 		count++;
1024 	}
1025 
1026 	mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
1027 		(lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
1028 
1029 
1030 	/* set pcieDpmLevel to highest_pcie_level_enabled*/
1031 	for (i = 2; i < dpm_table->sclk_table.count; i++) {
1032 		smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
1033 	}
1034 
1035 	/* set pcieDpmLevel to lowest_pcie_level_enabled*/
1036 	smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
1037 
1038 	/* set pcieDpmLevel to mid_pcie_level_enabled*/
1039 	smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
1040 
1041 	/* level count will send to smc once at init smc table and never change*/
1042 	result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress,
1043 				(uint8_t *)levels, (uint32_t)level_array_size,
1044 								SMC_RAM_END);
1045 
1046 	return result;
1047 }
1048 
iceland_calculate_mclk_params(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU71_Discrete_MemoryLevel * mclk,bool strobe_mode,bool dllStateOn)1049 static int iceland_calculate_mclk_params(
1050 		struct pp_hwmgr *hwmgr,
1051 		uint32_t memory_clock,
1052 		SMU71_Discrete_MemoryLevel *mclk,
1053 		bool strobe_mode,
1054 		bool dllStateOn
1055 		)
1056 {
1057 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1058 
1059 	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1060 	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1061 	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1062 	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1063 	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1064 	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1065 	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1066 	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1067 	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1068 
1069 	pp_atomctrl_memory_clock_param mpll_param;
1070 	int result;
1071 
1072 	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1073 				memory_clock, &mpll_param, strobe_mode);
1074 	PP_ASSERT_WITH_CODE(0 == result,
1075 		"Error retrieving Memory Clock Parameters from VBIOS.", return result);
1076 
1077 	/* MPLL_FUNC_CNTL setup*/
1078 	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1079 
1080 	/* MPLL_FUNC_CNTL_1 setup*/
1081 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1082 							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1083 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1084 							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1085 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1086 							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1087 
1088 	/* MPLL_AD_FUNC_CNTL setup*/
1089 	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1090 							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1091 
1092 	if (data->is_memory_gddr5) {
1093 		/* MPLL_DQ_FUNC_CNTL setup*/
1094 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1095 								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1096 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1097 								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1098 	}
1099 
1100 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1101 			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1102 		/*
1103 		 ************************************
1104 		 Fref = Reference Frequency
1105 		 NF = Feedback divider ratio
1106 		 NR = Reference divider ratio
1107 		 Fnom = Nominal VCO output frequency = Fref * NF / NR
1108 		 Fs = Spreading Rate
1109 		 D = Percentage down-spread / 2
1110 		 Fint = Reference input frequency to PFD = Fref / NR
1111 		 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1112 		 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1113 		 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1114 		 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1115 		 *************************************
1116 		 */
1117 		pp_atomctrl_internal_ss_info ss_info;
1118 		uint32_t freq_nom;
1119 		uint32_t tmp;
1120 		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1121 
1122 		/* for GDDR5 for all modes and DDR3 */
1123 		if (1 == mpll_param.qdr)
1124 			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1125 		else
1126 			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1127 
1128 		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1129 		tmp = (freq_nom / reference_clock);
1130 		tmp = tmp * tmp;
1131 
1132 		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1133 			/* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1134 			/* ss.Info.speed_spectrum_rate -- in unit of khz */
1135 			/* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1136 			/*     = reference_clock * 5 / speed_spectrum_rate */
1137 			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1138 
1139 			/* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1140 			/*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1141 			uint32_t clkv =
1142 				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1143 							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1144 
1145 			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1146 			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1147 		}
1148 	}
1149 
1150 	/* MCLK_PWRMGT_CNTL setup */
1151 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1152 		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1153 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1154 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1155 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1156 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1157 
1158 
1159 	/* Save the result data to outpupt memory level structure */
1160 	mclk->MclkFrequency   = memory_clock;
1161 	mclk->MpllFuncCntl    = mpll_func_cntl;
1162 	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1163 	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1164 	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1165 	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1166 	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1167 	mclk->DllCntl         = dll_cntl;
1168 	mclk->MpllSs1         = mpll_ss1;
1169 	mclk->MpllSs2         = mpll_ss2;
1170 
1171 	return 0;
1172 }
1173 
iceland_get_mclk_frequency_ratio(uint32_t memory_clock,bool strobe_mode)1174 static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock,
1175 		bool strobe_mode)
1176 {
1177 	uint8_t mc_para_index;
1178 
1179 	if (strobe_mode) {
1180 		if (memory_clock < 12500) {
1181 			mc_para_index = 0x00;
1182 		} else if (memory_clock > 47500) {
1183 			mc_para_index = 0x0f;
1184 		} else {
1185 			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1186 		}
1187 	} else {
1188 		if (memory_clock < 65000) {
1189 			mc_para_index = 0x00;
1190 		} else if (memory_clock > 135000) {
1191 			mc_para_index = 0x0f;
1192 		} else {
1193 			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1194 		}
1195 	}
1196 
1197 	return mc_para_index;
1198 }
1199 
iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)1200 static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1201 {
1202 	uint8_t mc_para_index;
1203 
1204 	if (memory_clock < 10000) {
1205 		mc_para_index = 0;
1206 	} else if (memory_clock >= 80000) {
1207 		mc_para_index = 0x0f;
1208 	} else {
1209 		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1210 	}
1211 
1212 	return mc_para_index;
1213 }
1214 
iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t memory_clock,uint32_t * p_shed)1215 static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1216 					uint32_t memory_clock, uint32_t *p_shed)
1217 {
1218 	unsigned int i;
1219 
1220 	*p_shed = 1;
1221 
1222 	for (i = 0; i < pl->count; i++) {
1223 		if (memory_clock < pl->entries[i].Mclk) {
1224 			*p_shed = i;
1225 			break;
1226 		}
1227 	}
1228 
1229 	return 0;
1230 }
1231 
iceland_populate_single_memory_level(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU71_Discrete_MemoryLevel * memory_level)1232 static int iceland_populate_single_memory_level(
1233 		struct pp_hwmgr *hwmgr,
1234 		uint32_t memory_clock,
1235 		SMU71_Discrete_MemoryLevel *memory_level
1236 		)
1237 {
1238 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1239 	int result = 0;
1240 	bool dll_state_on;
1241 	uint32_t mclk_edc_wr_enable_threshold = 40000;
1242 	uint32_t mclk_edc_enable_threshold = 40000;
1243 	uint32_t mclk_strobe_mode_threshold = 40000;
1244 
1245 	if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1246 		result = iceland_get_dependency_volt_by_clk(hwmgr,
1247 			hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1248 		PP_ASSERT_WITH_CODE((0 == result),
1249 			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1250 	}
1251 
1252 	if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) {
1253 		memory_level->MinVddci = memory_level->MinVddc;
1254 	} else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1255 		result = iceland_get_dependency_volt_by_clk(hwmgr,
1256 				hwmgr->dyn_state.vddci_dependency_on_mclk,
1257 				memory_clock,
1258 				&memory_level->MinVddci);
1259 		PP_ASSERT_WITH_CODE((0 == result),
1260 			"can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1261 	}
1262 
1263 	memory_level->MinVddcPhases = 1;
1264 
1265 	if (data->vddc_phase_shed_control) {
1266 		iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1267 				memory_clock, &memory_level->MinVddcPhases);
1268 	}
1269 
1270 	memory_level->EnabledForThrottle = 1;
1271 	memory_level->EnabledForActivity = 0;
1272 	memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1273 	memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1274 	memory_level->VoltageDownHyst = 0;
1275 
1276 	/* Indicates maximum activity level for this performance level.*/
1277 	memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1278 	memory_level->StutterEnable = 0;
1279 	memory_level->StrobeEnable = 0;
1280 	memory_level->EdcReadEnable = 0;
1281 	memory_level->EdcWriteEnable = 0;
1282 	memory_level->RttEnable = 0;
1283 
1284 	/* default set to low watermark. Highest level will be set to high later.*/
1285 	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1286 
1287 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1288 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1289 
1290 	/* stutter mode not support on iceland */
1291 
1292 	/* decide strobe mode*/
1293 	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1294 		(memory_clock <= mclk_strobe_mode_threshold);
1295 
1296 	/* decide EDC mode and memory clock ratio*/
1297 	if (data->is_memory_gddr5) {
1298 		memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock,
1299 					memory_level->StrobeEnable);
1300 
1301 		if ((mclk_edc_enable_threshold != 0) &&
1302 				(memory_clock > mclk_edc_enable_threshold)) {
1303 			memory_level->EdcReadEnable = 1;
1304 		}
1305 
1306 		if ((mclk_edc_wr_enable_threshold != 0) &&
1307 				(memory_clock > mclk_edc_wr_enable_threshold)) {
1308 			memory_level->EdcWriteEnable = 1;
1309 		}
1310 
1311 		if (memory_level->StrobeEnable) {
1312 			if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >=
1313 					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1314 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1315 			else
1316 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1317 		} else
1318 			dll_state_on = data->dll_default_on;
1319 	} else {
1320 		memory_level->StrobeRatio =
1321 			iceland_get_ddr3_mclk_frequency_ratio(memory_clock);
1322 		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1323 	}
1324 
1325 	result = iceland_calculate_mclk_params(hwmgr,
1326 		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1327 
1328 	if (0 == result) {
1329 		memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1330 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1331 		memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1332 		memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1333 		/* MCLK frequency in units of 10KHz*/
1334 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1335 		/* Indicates maximum activity level for this performance level.*/
1336 		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1337 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1338 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1339 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1340 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1341 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1342 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1343 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1344 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1345 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1346 	}
1347 
1348 	return result;
1349 }
1350 
iceland_populate_all_memory_levels(struct pp_hwmgr * hwmgr)1351 static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1352 {
1353 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1354 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1355 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1356 	int result;
1357 
1358 	/* populate MCLK dpm table to SMU7 */
1359 	uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel);
1360 	uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY;
1361 	SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1362 	uint32_t i;
1363 
1364 	memset(levels, 0x00, level_array_size);
1365 
1366 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1367 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1368 			"can not populate memory level as memory clock is zero", return -EINVAL);
1369 		result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1370 			&(smu_data->smc_state_table.MemoryLevel[i]));
1371 		if (0 != result) {
1372 			return result;
1373 		}
1374 	}
1375 
1376 	/* Only enable level 0 for now.*/
1377 	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1378 
1379 	/*
1380 	* in order to prevent MC activity from stutter mode to push DPM up.
1381 	* the UVD change complements this by putting the MCLK in a higher state
1382 	* by default such that we are not effected by up threshold or and MCLK DPM latency.
1383 	*/
1384 	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1385 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1386 
1387 	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1388 	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1389 	/* set highest level watermark to high*/
1390 	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1391 
1392 	/* level count will send to smc once at init smc table and never change*/
1393 	result = smu7_copy_bytes_to_smc(hwmgr,
1394 		level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size,
1395 		SMC_RAM_END);
1396 
1397 	return result;
1398 }
1399 
iceland_populate_mvdd_value(struct pp_hwmgr * hwmgr,uint32_t mclk,SMU71_Discrete_VoltageLevel * voltage)1400 static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1401 					SMU71_Discrete_VoltageLevel *voltage)
1402 {
1403 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1404 
1405 	uint32_t i = 0;
1406 
1407 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1408 		/* find mvdd value which clock is more than request */
1409 		for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1410 			if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1411 				/* Always round to higher voltage. */
1412 				voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1413 				break;
1414 			}
1415 		}
1416 
1417 		PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1418 			"MVDD Voltage is outside the supported range.", return -EINVAL);
1419 
1420 	} else {
1421 		return -EINVAL;
1422 	}
1423 
1424 	return 0;
1425 }
1426 
iceland_populate_smc_acpi_level(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)1427 static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1428 	SMU71_Discrete_DpmTable *table)
1429 {
1430 	int result = 0;
1431 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1432 	struct pp_atomctrl_clock_dividers_vi dividers;
1433 	uint32_t vddc_phase_shed_control = 0;
1434 
1435 	SMU71_Discrete_VoltageLevel voltage_level;
1436 	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1437 	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1438 	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1439 	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1440 
1441 
1442 	/* The ACPI state should not do DPM on DC (or ever).*/
1443 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1444 
1445 	if (data->acpi_vddc)
1446 		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1447 	else
1448 		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1449 
1450 	table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1;
1451 	/* assign zero for now*/
1452 	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1453 
1454 	/* get the engine clock dividers for this clock value*/
1455 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1456 		table->ACPILevel.SclkFrequency,  &dividers);
1457 
1458 	PP_ASSERT_WITH_CODE(result == 0,
1459 		"Error retrieving Engine Clock dividers from VBIOS.", return result);
1460 
1461 	/* divider ID for required SCLK*/
1462 	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1463 	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1464 	table->ACPILevel.DeepSleepDivId = 0;
1465 
1466 	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1467 							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1468 	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1469 							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1470 	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1471 							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1472 
1473 	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1474 	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1475 	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1476 	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1477 	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1478 	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1479 	table->ACPILevel.CcPwrDynRm = 0;
1480 	table->ACPILevel.CcPwrDynRm1 = 0;
1481 
1482 
1483 	/* For various features to be enabled/disabled while this level is active.*/
1484 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1485 	/* SCLK frequency in units of 10KHz*/
1486 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1487 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1488 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1489 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1490 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1491 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1492 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1493 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1494 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1495 
1496 	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1497 	table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1498 	table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1499 
1500 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1501 		table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1502 	else {
1503 		if (data->acpi_vddci != 0)
1504 			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1505 		else
1506 			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1507 	}
1508 
1509 	if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level))
1510 		table->MemoryACPILevel.MinMvdd =
1511 			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1512 	else
1513 		table->MemoryACPILevel.MinMvdd = 0;
1514 
1515 	/* Force reset on DLL*/
1516 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1517 		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1518 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1519 		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1520 
1521 	/* Disable DLL in ACPIState*/
1522 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1523 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1524 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1525 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1526 
1527 	/* Enable DLL bypass signal*/
1528 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1529 		DLL_CNTL, MRDCK0_BYPASS, 0);
1530 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1531 		DLL_CNTL, MRDCK1_BYPASS, 0);
1532 
1533 	table->MemoryACPILevel.DllCntl            =
1534 		PP_HOST_TO_SMC_UL(dll_cntl);
1535 	table->MemoryACPILevel.MclkPwrmgtCntl     =
1536 		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1537 	table->MemoryACPILevel.MpllAdFuncCntl     =
1538 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1539 	table->MemoryACPILevel.MpllDqFuncCntl     =
1540 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1541 	table->MemoryACPILevel.MpllFuncCntl       =
1542 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1543 	table->MemoryACPILevel.MpllFuncCntl_1     =
1544 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1545 	table->MemoryACPILevel.MpllFuncCntl_2     =
1546 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1547 	table->MemoryACPILevel.MpllSs1            =
1548 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1549 	table->MemoryACPILevel.MpllSs2            =
1550 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1551 
1552 	table->MemoryACPILevel.EnabledForThrottle = 0;
1553 	table->MemoryACPILevel.EnabledForActivity = 0;
1554 	table->MemoryACPILevel.UpHyst = 0;
1555 	table->MemoryACPILevel.DownHyst = 100;
1556 	table->MemoryACPILevel.VoltageDownHyst = 0;
1557 	/* Indicates maximum activity level for this performance level.*/
1558 	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1559 
1560 	table->MemoryACPILevel.StutterEnable = 0;
1561 	table->MemoryACPILevel.StrobeEnable = 0;
1562 	table->MemoryACPILevel.EdcReadEnable = 0;
1563 	table->MemoryACPILevel.EdcWriteEnable = 0;
1564 	table->MemoryACPILevel.RttEnable = 0;
1565 
1566 	return result;
1567 }
1568 
iceland_populate_smc_uvd_level(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)1569 static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1570 					SMU71_Discrete_DpmTable *table)
1571 {
1572 	return 0;
1573 }
1574 
iceland_populate_smc_vce_level(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)1575 static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1576 		SMU71_Discrete_DpmTable *table)
1577 {
1578 	return 0;
1579 }
1580 
iceland_populate_smc_acp_level(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)1581 static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1582 		SMU71_Discrete_DpmTable *table)
1583 {
1584 	return 0;
1585 }
1586 
iceland_populate_memory_timing_parameters(struct pp_hwmgr * hwmgr,uint32_t engine_clock,uint32_t memory_clock,struct SMU71_Discrete_MCArbDramTimingTableEntry * arb_regs)1587 static int iceland_populate_memory_timing_parameters(
1588 		struct pp_hwmgr *hwmgr,
1589 		uint32_t engine_clock,
1590 		uint32_t memory_clock,
1591 		struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs
1592 		)
1593 {
1594 	uint32_t dramTiming;
1595 	uint32_t dramTiming2;
1596 	uint32_t burstTime;
1597 	int result;
1598 
1599 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1600 				engine_clock, memory_clock);
1601 
1602 	PP_ASSERT_WITH_CODE(result == 0,
1603 		"Error calling VBIOS to set DRAM_TIMING.", return result);
1604 
1605 	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1606 	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1607 	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1608 
1609 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1610 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1611 	arb_regs->McArbBurstTime = (uint8_t)burstTime;
1612 
1613 	return 0;
1614 }
1615 
iceland_program_memory_timing_parameters(struct pp_hwmgr * hwmgr)1616 static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1617 {
1618 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1619 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1620 	int result = 0;
1621 	SMU71_Discrete_MCArbDramTimingTable  arb_regs;
1622 	uint32_t i, j;
1623 
1624 	memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable));
1625 
1626 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1627 		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1628 			result = iceland_populate_memory_timing_parameters
1629 				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1630 				 data->dpm_table.mclk_table.dpm_levels[j].value,
1631 				 &arb_regs.entries[i][j]);
1632 
1633 			if (0 != result) {
1634 				break;
1635 			}
1636 		}
1637 	}
1638 
1639 	if (0 == result) {
1640 		result = smu7_copy_bytes_to_smc(
1641 				hwmgr,
1642 				smu_data->smu7_data.arb_table_start,
1643 				(uint8_t *)&arb_regs,
1644 				sizeof(SMU71_Discrete_MCArbDramTimingTable),
1645 				SMC_RAM_END
1646 				);
1647 	}
1648 
1649 	return result;
1650 }
1651 
iceland_populate_smc_boot_level(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * table)1652 static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1653 			SMU71_Discrete_DpmTable *table)
1654 {
1655 	int result = 0;
1656 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1657 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1658 	table->GraphicsBootLevel = 0;
1659 	table->MemoryBootLevel = 0;
1660 
1661 	/* find boot level from dpm table*/
1662 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1663 			data->vbios_boot_state.sclk_bootup_value,
1664 			(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1665 
1666 	if (0 != result) {
1667 		smu_data->smc_state_table.GraphicsBootLevel = 0;
1668 		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1669 		result = 0;
1670 	}
1671 
1672 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1673 		data->vbios_boot_state.mclk_bootup_value,
1674 		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1675 
1676 	if (0 != result) {
1677 		smu_data->smc_state_table.MemoryBootLevel = 0;
1678 		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1679 		result = 0;
1680 	}
1681 
1682 	table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1683 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1684 		table->BootVddci = table->BootVddc;
1685 	else
1686 		table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1687 
1688 	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1689 
1690 	return result;
1691 }
1692 
iceland_populate_mc_reg_address(struct pp_hwmgr * hwmgr,SMU71_Discrete_MCRegisters * mc_reg_table)1693 static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1694 				 SMU71_Discrete_MCRegisters *mc_reg_table)
1695 {
1696 	const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend;
1697 
1698 	uint32_t i, j;
1699 
1700 	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1701 		if (smu_data->mc_reg_table.validflag & 1<<j) {
1702 			PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1703 				"Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1704 			mc_reg_table->address[i].s0 =
1705 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1706 			mc_reg_table->address[i].s1 =
1707 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1708 			i++;
1709 		}
1710 	}
1711 
1712 	mc_reg_table->last = (uint8_t)i;
1713 
1714 	return 0;
1715 }
1716 
1717 /*convert register values from driver to SMC format */
iceland_convert_mc_registers(const struct iceland_mc_reg_entry * entry,SMU71_Discrete_MCRegisterSet * data,uint32_t num_entries,uint32_t valid_flag)1718 static void iceland_convert_mc_registers(
1719 	const struct iceland_mc_reg_entry *entry,
1720 	SMU71_Discrete_MCRegisterSet *data,
1721 	uint32_t num_entries, uint32_t valid_flag)
1722 {
1723 	uint32_t i, j;
1724 
1725 	for (i = 0, j = 0; j < num_entries; j++) {
1726 		if (valid_flag & 1<<j) {
1727 			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1728 			i++;
1729 		}
1730 	}
1731 }
1732 
iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr * hwmgr,const uint32_t memory_clock,SMU71_Discrete_MCRegisterSet * mc_reg_table_data)1733 static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr,
1734 		const uint32_t memory_clock,
1735 		SMU71_Discrete_MCRegisterSet *mc_reg_table_data
1736 		)
1737 {
1738 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1739 	uint32_t i = 0;
1740 
1741 	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1742 		if (memory_clock <=
1743 			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1744 			break;
1745 		}
1746 	}
1747 
1748 	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1749 		--i;
1750 
1751 	iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1752 				mc_reg_table_data, smu_data->mc_reg_table.last,
1753 				smu_data->mc_reg_table.validflag);
1754 
1755 	return 0;
1756 }
1757 
iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr * hwmgr,SMU71_Discrete_MCRegisters * mc_regs)1758 static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1759 		SMU71_Discrete_MCRegisters *mc_regs)
1760 {
1761 	int result = 0;
1762 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1763 	int res;
1764 	uint32_t i;
1765 
1766 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1767 		res = iceland_convert_mc_reg_table_entry_to_smc(
1768 				hwmgr,
1769 				data->dpm_table.mclk_table.dpm_levels[i].value,
1770 				&mc_regs->data[i]
1771 				);
1772 
1773 		if (0 != res)
1774 			result = res;
1775 	}
1776 
1777 	return result;
1778 }
1779 
iceland_update_and_upload_mc_reg_table(struct pp_hwmgr * hwmgr)1780 static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1781 {
1782 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1783 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1784 	uint32_t address;
1785 	int32_t result;
1786 
1787 	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1788 		return 0;
1789 
1790 
1791 	memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters));
1792 
1793 	result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1794 
1795 	if (result != 0)
1796 		return result;
1797 
1798 
1799 	address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]);
1800 
1801 	return  smu7_copy_bytes_to_smc(hwmgr, address,
1802 				 (uint8_t *)&smu_data->mc_regs.data[0],
1803 				sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1804 				SMC_RAM_END);
1805 }
1806 
iceland_populate_initial_mc_reg_table(struct pp_hwmgr * hwmgr)1807 static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1808 {
1809 	int result;
1810 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1811 
1812 	memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters));
1813 	result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1814 	PP_ASSERT_WITH_CODE(0 == result,
1815 		"Failed to initialize MCRegTable for the MC register addresses!", return result;);
1816 
1817 	result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1818 	PP_ASSERT_WITH_CODE(0 == result,
1819 		"Failed to initialize MCRegTable for driver state!", return result;);
1820 
1821 	return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
1822 			(uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END);
1823 }
1824 
iceland_populate_smc_initial_state(struct pp_hwmgr * hwmgr)1825 static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1826 {
1827 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1828 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1829 	uint8_t count, level;
1830 
1831 	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1832 
1833 	for (level = 0; level < count; level++) {
1834 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1835 			 >= data->vbios_boot_state.sclk_bootup_value) {
1836 			smu_data->smc_state_table.GraphicsBootLevel = level;
1837 			break;
1838 		}
1839 	}
1840 
1841 	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1842 
1843 	for (level = 0; level < count; level++) {
1844 		if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1845 			>= data->vbios_boot_state.mclk_bootup_value) {
1846 			smu_data->smc_state_table.MemoryBootLevel = level;
1847 			break;
1848 		}
1849 	}
1850 
1851 	return 0;
1852 }
1853 
iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr * hwmgr)1854 static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1855 {
1856 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1857 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1858 	const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
1859 	SMU71_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
1860 	struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
1861 	struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
1862 	const uint16_t *def1, *def2;
1863 	int i, j, k;
1864 
1865 
1866 	/*
1867 	 * TDP number of fraction bits are changed from 8 to 7 for Iceland
1868 	 * as requested by SMC team
1869 	 */
1870 
1871 	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
1872 	dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
1873 
1874 
1875 	dpm_table->DTETjOffset = 0;
1876 
1877 	dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
1878 	dpm_table->GpuTjHyst = 8;
1879 
1880 	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
1881 
1882 	/* The following are for new Iceland Multi-input fan/thermal control */
1883 	if (NULL != ppm) {
1884 		dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
1885 		dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
1886 	} else {
1887 		dpm_table->PPM_PkgPwrLimit = 0;
1888 		dpm_table->PPM_TemperatureLimit = 0;
1889 	}
1890 
1891 	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
1892 	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
1893 
1894 	dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
1895 	def1 = defaults->bapmti_r;
1896 	def2 = defaults->bapmti_rc;
1897 
1898 	for (i = 0; i < SMU71_DTE_ITERATIONS; i++) {
1899 		for (j = 0; j < SMU71_DTE_SOURCES; j++) {
1900 			for (k = 0; k < SMU71_DTE_SINKS; k++) {
1901 				dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
1902 				dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
1903 				def1++;
1904 				def2++;
1905 			}
1906 		}
1907 	}
1908 
1909 	return 0;
1910 }
1911 
iceland_populate_smc_svi2_config(struct pp_hwmgr * hwmgr,SMU71_Discrete_DpmTable * tab)1912 static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1913 					    SMU71_Discrete_DpmTable *tab)
1914 {
1915 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1916 
1917 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1918 		tab->SVI2Enable |= VDDC_ON_SVI2;
1919 
1920 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1921 		tab->SVI2Enable |= VDDCI_ON_SVI2;
1922 	else
1923 		tab->MergedVddci = 1;
1924 
1925 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control)
1926 		tab->SVI2Enable |= MVDD_ON_SVI2;
1927 
1928 	PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&
1929 		(tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL);
1930 
1931 	return 0;
1932 }
1933 
iceland_init_smc_table(struct pp_hwmgr * hwmgr)1934 static int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
1935 {
1936 	int result;
1937 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1938 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1939 	SMU71_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1940 
1941 
1942 	iceland_initialize_power_tune_defaults(hwmgr);
1943 	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1944 
1945 	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) {
1946 		iceland_populate_smc_voltage_tables(hwmgr, table);
1947 	}
1948 
1949 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1950 			PHM_PlatformCaps_AutomaticDCTransition))
1951 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1952 
1953 
1954 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1955 			PHM_PlatformCaps_StepVddc))
1956 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1957 
1958 	if (data->is_memory_gddr5)
1959 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1960 
1961 
1962 	if (data->ulv_supported) {
1963 		result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting));
1964 		PP_ASSERT_WITH_CODE(0 == result,
1965 			"Failed to initialize ULV state!", return result;);
1966 
1967 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1968 			ixCG_ULV_PARAMETER, 0x40035);
1969 	}
1970 
1971 	result = iceland_populate_smc_link_level(hwmgr, table);
1972 	PP_ASSERT_WITH_CODE(0 == result,
1973 		"Failed to initialize Link Level!", return result;);
1974 
1975 	result = iceland_populate_all_graphic_levels(hwmgr);
1976 	PP_ASSERT_WITH_CODE(0 == result,
1977 		"Failed to initialize Graphics Level!", return result;);
1978 
1979 	result = iceland_populate_all_memory_levels(hwmgr);
1980 	PP_ASSERT_WITH_CODE(0 == result,
1981 		"Failed to initialize Memory Level!", return result;);
1982 
1983 	result = iceland_populate_smc_acpi_level(hwmgr, table);
1984 	PP_ASSERT_WITH_CODE(0 == result,
1985 		"Failed to initialize ACPI Level!", return result;);
1986 
1987 	result = iceland_populate_smc_vce_level(hwmgr, table);
1988 	PP_ASSERT_WITH_CODE(0 == result,
1989 		"Failed to initialize VCE Level!", return result;);
1990 
1991 	result = iceland_populate_smc_acp_level(hwmgr, table);
1992 	PP_ASSERT_WITH_CODE(0 == result,
1993 		"Failed to initialize ACP Level!", return result;);
1994 
1995 	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
1996 	/* need to populate the  ARB settings for the initial state. */
1997 	result = iceland_program_memory_timing_parameters(hwmgr);
1998 	PP_ASSERT_WITH_CODE(0 == result,
1999 		"Failed to Write ARB settings for the initial state.", return result;);
2000 
2001 	result = iceland_populate_smc_uvd_level(hwmgr, table);
2002 	PP_ASSERT_WITH_CODE(0 == result,
2003 		"Failed to initialize UVD Level!", return result;);
2004 
2005 	table->GraphicsBootLevel = 0;
2006 	table->MemoryBootLevel = 0;
2007 
2008 	result = iceland_populate_smc_boot_level(hwmgr, table);
2009 	PP_ASSERT_WITH_CODE(0 == result,
2010 		"Failed to initialize Boot Level!", return result;);
2011 
2012 	result = iceland_populate_smc_initial_state(hwmgr);
2013 	PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2014 
2015 	result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr);
2016 	PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2017 
2018 	table->GraphicsVoltageChangeEnable  = 1;
2019 	table->GraphicsThermThrottleEnable  = 1;
2020 	table->GraphicsInterval = 1;
2021 	table->VoltageInterval  = 1;
2022 	table->ThermalInterval  = 1;
2023 
2024 	table->TemperatureLimitHigh =
2025 		(data->thermal_temp_setting.temperature_high *
2026 		 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2027 	table->TemperatureLimitLow =
2028 		(data->thermal_temp_setting.temperature_low *
2029 		SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2030 
2031 	table->MemoryVoltageChangeEnable  = 1;
2032 	table->MemoryInterval  = 1;
2033 	table->VoltageResponseTime  = 0;
2034 	table->PhaseResponseTime  = 0;
2035 	table->MemoryThermThrottleEnable  = 1;
2036 	table->PCIeBootLinkLevel = 0;
2037 	table->PCIeGenInterval = 1;
2038 
2039 	result = iceland_populate_smc_svi2_config(hwmgr, table);
2040 	PP_ASSERT_WITH_CODE(0 == result,
2041 		"Failed to populate SVI2 setting!", return result);
2042 
2043 	table->ThermGpio  = 17;
2044 	table->SclkStepSize = 0x4000;
2045 
2046 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2047 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2048 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2049 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2050 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2051 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2052 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2053 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2054 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2055 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2056 
2057 	table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2058 	table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2059 	table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2060 
2061 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2062 	result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start +
2063 										offsetof(SMU71_Discrete_DpmTable, SystemFlags),
2064 										(uint8_t *)&(table->SystemFlags),
2065 										sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController),
2066 										SMC_RAM_END);
2067 
2068 	PP_ASSERT_WITH_CODE(0 == result,
2069 		"Failed to upload dpm data to SMC memory!", return result;);
2070 
2071 	/* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */
2072 	result = smu7_copy_bytes_to_smc(hwmgr,
2073 			smu_data->smu7_data.ulv_setting_starts,
2074 			(uint8_t *)&(smu_data->ulv_setting),
2075 			sizeof(SMU71_Discrete_Ulv),
2076 			SMC_RAM_END);
2077 
2078 
2079 	result = iceland_populate_initial_mc_reg_table(hwmgr);
2080 	PP_ASSERT_WITH_CODE((0 == result),
2081 		"Failed to populate initialize MC Reg table!", return result);
2082 
2083 	result = iceland_populate_pm_fuses(hwmgr);
2084 	PP_ASSERT_WITH_CODE(0 == result,
2085 			"Failed to  populate PM fuses to SMC memory!", return result);
2086 
2087 	return 0;
2088 }
2089 
iceland_thermal_setup_fan_table(struct pp_hwmgr * hwmgr)2090 int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2091 {
2092 	struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2093 	SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2094 	uint32_t duty100;
2095 	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2096 	uint16_t fdo_min, slope1, slope2;
2097 	uint32_t reference_clock;
2098 	int res __unused;
2099 	uint64_t tmp64;
2100 
2101 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2102 		return 0;
2103 
2104 	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2105 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2106 			PHM_PlatformCaps_MicrocodeFanControl);
2107 		return 0;
2108 	}
2109 
2110 	if (0 == smu7_data->fan_table_start) {
2111 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2112 		return 0;
2113 	}
2114 
2115 	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2116 
2117 	if (0 == duty100) {
2118 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2119 		return 0;
2120 	}
2121 
2122 	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2123 	do_div(tmp64, 10000);
2124 	fdo_min = (uint16_t)tmp64;
2125 
2126 	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2127 	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2128 
2129 	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2130 	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2131 
2132 	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2133 	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2134 
2135 	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2136 	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2137 	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2138 
2139 	fan_table.Slope1 = cpu_to_be16(slope1);
2140 	fan_table.Slope2 = cpu_to_be16(slope2);
2141 
2142 	fan_table.FdoMin = cpu_to_be16(fdo_min);
2143 
2144 	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2145 
2146 	fan_table.HystUp = cpu_to_be16(1);
2147 
2148 	fan_table.HystSlope = cpu_to_be16(1);
2149 
2150 	fan_table.TempRespLim = cpu_to_be16(5);
2151 
2152 	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2153 
2154 	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2155 
2156 	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2157 
2158 	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2159 
2160 	/* fan_table.FanControl_GL_Flag = 1; */
2161 
2162 	res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2163 
2164 	return 0;
2165 }
2166 
2167 
iceland_program_mem_timing_parameters(struct pp_hwmgr * hwmgr)2168 static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2169 {
2170 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2171 
2172 	if (data->need_update_smu7_dpm_table &
2173 		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2174 		return iceland_program_memory_timing_parameters(hwmgr);
2175 
2176 	return 0;
2177 }
2178 
iceland_update_sclk_threshold(struct pp_hwmgr * hwmgr)2179 static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2180 {
2181 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2182 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2183 
2184 	int result = 0;
2185 	uint32_t low_sclk_interrupt_threshold = 0;
2186 
2187 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2188 			PHM_PlatformCaps_SclkThrottleLowNotification)
2189 		&& (data->low_sclk_interrupt_threshold != 0)) {
2190 		low_sclk_interrupt_threshold =
2191 				data->low_sclk_interrupt_threshold;
2192 
2193 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2194 
2195 		result = smu7_copy_bytes_to_smc(
2196 				hwmgr,
2197 				smu_data->smu7_data.dpm_table_start +
2198 				offsetof(SMU71_Discrete_DpmTable,
2199 					LowSclkInterruptThreshold),
2200 				(uint8_t *)&low_sclk_interrupt_threshold,
2201 				sizeof(uint32_t),
2202 				SMC_RAM_END);
2203 	}
2204 
2205 	result = iceland_update_and_upload_mc_reg_table(hwmgr);
2206 
2207 	PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2208 
2209 	result = iceland_program_mem_timing_parameters(hwmgr);
2210 	PP_ASSERT_WITH_CODE((result == 0),
2211 			"Failed to program memory timing parameters!",
2212 			);
2213 
2214 	return result;
2215 }
2216 
iceland_get_offsetof(uint32_t type,uint32_t member)2217 static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member)
2218 {
2219 	switch (type) {
2220 	case SMU_SoftRegisters:
2221 		switch (member) {
2222 		case HandshakeDisables:
2223 			return offsetof(SMU71_SoftRegisters, HandshakeDisables);
2224 		case VoltageChangeTimeout:
2225 			return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout);
2226 		case AverageGraphicsActivity:
2227 			return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity);
2228 		case AverageMemoryActivity:
2229 			return offsetof(SMU71_SoftRegisters, AverageMemoryActivity);
2230 		case PreVBlankGap:
2231 			return offsetof(SMU71_SoftRegisters, PreVBlankGap);
2232 		case VBlankTimeout:
2233 			return offsetof(SMU71_SoftRegisters, VBlankTimeout);
2234 		case UcodeLoadStatus:
2235 			return offsetof(SMU71_SoftRegisters, UcodeLoadStatus);
2236 		case DRAM_LOG_ADDR_H:
2237 			return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H);
2238 		case DRAM_LOG_ADDR_L:
2239 			return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L);
2240 		case DRAM_LOG_PHY_ADDR_H:
2241 			return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2242 		case DRAM_LOG_PHY_ADDR_L:
2243 			return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2244 		case DRAM_LOG_BUFF_SIZE:
2245 			return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2246 		}
2247 		break;
2248 	case SMU_Discrete_DpmTable:
2249 		switch (member) {
2250 		case LowSclkInterruptThreshold:
2251 			return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold);
2252 		}
2253 		break;
2254 	}
2255 	pr_warn("can't get the offset of type %x member %x\n", type, member);
2256 	return 0;
2257 }
2258 
iceland_get_mac_definition(uint32_t value)2259 static uint32_t iceland_get_mac_definition(uint32_t value)
2260 {
2261 	switch (value) {
2262 	case SMU_MAX_LEVELS_GRAPHICS:
2263 		return SMU71_MAX_LEVELS_GRAPHICS;
2264 	case SMU_MAX_LEVELS_MEMORY:
2265 		return SMU71_MAX_LEVELS_MEMORY;
2266 	case SMU_MAX_LEVELS_LINK:
2267 		return SMU71_MAX_LEVELS_LINK;
2268 	case SMU_MAX_ENTRIES_SMIO:
2269 		return SMU71_MAX_ENTRIES_SMIO;
2270 	case SMU_MAX_LEVELS_VDDC:
2271 		return SMU71_MAX_LEVELS_VDDC;
2272 	case SMU_MAX_LEVELS_VDDCI:
2273 		return SMU71_MAX_LEVELS_VDDCI;
2274 	case SMU_MAX_LEVELS_MVDD:
2275 		return SMU71_MAX_LEVELS_MVDD;
2276 	}
2277 
2278 	pr_warn("can't get the mac of %x\n", value);
2279 	return 0;
2280 }
2281 
iceland_process_firmware_header(struct pp_hwmgr * hwmgr)2282 static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr)
2283 {
2284 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2285 	struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2286 
2287 	uint32_t tmp;
2288 	int result;
2289 	bool error = false;
2290 
2291 	result = smu7_read_smc_sram_dword(hwmgr,
2292 				SMU71_FIRMWARE_HEADER_LOCATION +
2293 				offsetof(SMU71_Firmware_Header, DpmTable),
2294 				&tmp, SMC_RAM_END);
2295 
2296 	if (0 == result) {
2297 		smu7_data->dpm_table_start = tmp;
2298 	}
2299 
2300 	error |= (0 != result);
2301 
2302 	result = smu7_read_smc_sram_dword(hwmgr,
2303 				SMU71_FIRMWARE_HEADER_LOCATION +
2304 				offsetof(SMU71_Firmware_Header, SoftRegisters),
2305 				&tmp, SMC_RAM_END);
2306 
2307 	if (0 == result) {
2308 		data->soft_regs_start = tmp;
2309 		smu7_data->soft_regs_start = tmp;
2310 	}
2311 
2312 	error |= (0 != result);
2313 
2314 
2315 	result = smu7_read_smc_sram_dword(hwmgr,
2316 				SMU71_FIRMWARE_HEADER_LOCATION +
2317 				offsetof(SMU71_Firmware_Header, mcRegisterTable),
2318 				&tmp, SMC_RAM_END);
2319 
2320 	if (0 == result) {
2321 		smu7_data->mc_reg_table_start = tmp;
2322 	}
2323 
2324 	result = smu7_read_smc_sram_dword(hwmgr,
2325 				SMU71_FIRMWARE_HEADER_LOCATION +
2326 				offsetof(SMU71_Firmware_Header, FanTable),
2327 				&tmp, SMC_RAM_END);
2328 
2329 	if (0 == result) {
2330 		smu7_data->fan_table_start = tmp;
2331 	}
2332 
2333 	error |= (0 != result);
2334 
2335 	result = smu7_read_smc_sram_dword(hwmgr,
2336 				SMU71_FIRMWARE_HEADER_LOCATION +
2337 				offsetof(SMU71_Firmware_Header, mcArbDramTimingTable),
2338 				&tmp, SMC_RAM_END);
2339 
2340 	if (0 == result) {
2341 		smu7_data->arb_table_start = tmp;
2342 	}
2343 
2344 	error |= (0 != result);
2345 
2346 
2347 	result = smu7_read_smc_sram_dword(hwmgr,
2348 				SMU71_FIRMWARE_HEADER_LOCATION +
2349 				offsetof(SMU71_Firmware_Header, Version),
2350 				&tmp, SMC_RAM_END);
2351 
2352 	if (0 == result) {
2353 		hwmgr->microcode_version_info.SMC = tmp;
2354 	}
2355 
2356 	error |= (0 != result);
2357 
2358 	result = smu7_read_smc_sram_dword(hwmgr,
2359 				SMU71_FIRMWARE_HEADER_LOCATION +
2360 				offsetof(SMU71_Firmware_Header, UlvSettings),
2361 				&tmp, SMC_RAM_END);
2362 
2363 	if (0 == result) {
2364 		smu7_data->ulv_setting_starts = tmp;
2365 	}
2366 
2367 	error |= (0 != result);
2368 
2369 	return error ? 1 : 0;
2370 }
2371 
2372 /*---------------------------MC----------------------------*/
2373 
iceland_get_memory_modile_index(struct pp_hwmgr * hwmgr)2374 static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2375 {
2376 	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2377 }
2378 
iceland_check_s0_mc_reg_index(uint16_t in_reg,uint16_t * out_reg)2379 static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2380 {
2381 	bool result = true;
2382 
2383 	switch (in_reg) {
2384 	case  mmMC_SEQ_RAS_TIMING:
2385 		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
2386 		break;
2387 
2388 	case  mmMC_SEQ_DLL_STBY:
2389 		*out_reg = mmMC_SEQ_DLL_STBY_LP;
2390 		break;
2391 
2392 	case  mmMC_SEQ_G5PDX_CMD0:
2393 		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2394 		break;
2395 
2396 	case  mmMC_SEQ_G5PDX_CMD1:
2397 		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2398 		break;
2399 
2400 	case  mmMC_SEQ_G5PDX_CTRL:
2401 		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2402 		break;
2403 
2404 	case mmMC_SEQ_CAS_TIMING:
2405 		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
2406 		break;
2407 
2408 	case mmMC_SEQ_MISC_TIMING:
2409 		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
2410 		break;
2411 
2412 	case mmMC_SEQ_MISC_TIMING2:
2413 		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2414 		break;
2415 
2416 	case mmMC_SEQ_PMG_DVS_CMD:
2417 		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2418 		break;
2419 
2420 	case mmMC_SEQ_PMG_DVS_CTL:
2421 		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2422 		break;
2423 
2424 	case mmMC_SEQ_RD_CTL_D0:
2425 		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2426 		break;
2427 
2428 	case mmMC_SEQ_RD_CTL_D1:
2429 		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2430 		break;
2431 
2432 	case mmMC_SEQ_WR_CTL_D0:
2433 		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2434 		break;
2435 
2436 	case mmMC_SEQ_WR_CTL_D1:
2437 		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2438 		break;
2439 
2440 	case mmMC_PMG_CMD_EMRS:
2441 		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2442 		break;
2443 
2444 	case mmMC_PMG_CMD_MRS:
2445 		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2446 		break;
2447 
2448 	case mmMC_PMG_CMD_MRS1:
2449 		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2450 		break;
2451 
2452 	case mmMC_SEQ_PMG_TIMING:
2453 		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
2454 		break;
2455 
2456 	case mmMC_PMG_CMD_MRS2:
2457 		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2458 		break;
2459 
2460 	case mmMC_SEQ_WR_CTL_2:
2461 		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
2462 		break;
2463 
2464 	default:
2465 		result = false;
2466 		break;
2467 	}
2468 
2469 	return result;
2470 }
2471 
iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table * table)2472 static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table)
2473 {
2474 	uint32_t i;
2475 	uint16_t address;
2476 
2477 	for (i = 0; i < table->last; i++) {
2478 		table->mc_reg_address[i].s0 =
2479 			iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2480 			? address : table->mc_reg_address[i].s1;
2481 	}
2482 	return 0;
2483 }
2484 
iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table * table,struct iceland_mc_reg_table * ni_table)2485 static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2486 					struct iceland_mc_reg_table *ni_table)
2487 {
2488 	uint8_t i, j;
2489 
2490 	PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2491 		"Invalid VramInfo table.", return -EINVAL);
2492 	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2493 		"Invalid VramInfo table.", return -EINVAL);
2494 
2495 	for (i = 0; i < table->last; i++) {
2496 		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2497 	}
2498 	ni_table->last = table->last;
2499 
2500 	for (i = 0; i < table->num_entries; i++) {
2501 		ni_table->mc_reg_table_entry[i].mclk_max =
2502 			table->mc_reg_table_entry[i].mclk_max;
2503 		for (j = 0; j < table->last; j++) {
2504 			ni_table->mc_reg_table_entry[i].mc_data[j] =
2505 				table->mc_reg_table_entry[i].mc_data[j];
2506 		}
2507 	}
2508 
2509 	ni_table->num_entries = table->num_entries;
2510 
2511 	return 0;
2512 }
2513 
iceland_set_mc_special_registers(struct pp_hwmgr * hwmgr,struct iceland_mc_reg_table * table)2514 static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2515 					struct iceland_mc_reg_table *table)
2516 {
2517 	uint8_t i, j, k;
2518 	uint32_t temp_reg;
2519 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2520 
2521 	for (i = 0, j = table->last; i < table->last; i++) {
2522 		PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2523 			"Invalid VramInfo table.", return -EINVAL);
2524 
2525 		switch (table->mc_reg_address[i].s1) {
2526 
2527 		case mmMC_SEQ_MISC1:
2528 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2529 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2530 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2531 			for (k = 0; k < table->num_entries; k++) {
2532 				table->mc_reg_table_entry[k].mc_data[j] =
2533 					((temp_reg & 0xffff0000)) |
2534 					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2535 			}
2536 			j++;
2537 
2538 			PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2539 				"Invalid VramInfo table.", return -EINVAL);
2540 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2541 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2542 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2543 			for (k = 0; k < table->num_entries; k++) {
2544 				table->mc_reg_table_entry[k].mc_data[j] =
2545 					(temp_reg & 0xffff0000) |
2546 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2547 
2548 				if (!data->is_memory_gddr5) {
2549 					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2550 				}
2551 			}
2552 			j++;
2553 
2554 			if (!data->is_memory_gddr5) {
2555 				PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2556 					"Invalid VramInfo table.", return -EINVAL);
2557 				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2558 				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2559 				for (k = 0; k < table->num_entries; k++) {
2560 					table->mc_reg_table_entry[k].mc_data[j] =
2561 						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2562 				}
2563 				j++;
2564 			}
2565 
2566 			break;
2567 
2568 		case mmMC_SEQ_RESERVE_M:
2569 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2570 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2571 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2572 			for (k = 0; k < table->num_entries; k++) {
2573 				table->mc_reg_table_entry[k].mc_data[j] =
2574 					(temp_reg & 0xffff0000) |
2575 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2576 			}
2577 			j++;
2578 			break;
2579 
2580 		default:
2581 			break;
2582 		}
2583 
2584 	}
2585 
2586 	table->last = j;
2587 
2588 	return 0;
2589 }
2590 
iceland_set_valid_flag(struct iceland_mc_reg_table * table)2591 static int iceland_set_valid_flag(struct iceland_mc_reg_table *table)
2592 {
2593 	uint8_t i, j;
2594 	for (i = 0; i < table->last; i++) {
2595 		for (j = 1; j < table->num_entries; j++) {
2596 			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2597 				table->mc_reg_table_entry[j].mc_data[i]) {
2598 				table->validflag |= (1<<i);
2599 				break;
2600 			}
2601 		}
2602 	}
2603 
2604 	return 0;
2605 }
2606 
iceland_initialize_mc_reg_table(struct pp_hwmgr * hwmgr)2607 static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2608 {
2609 	int result;
2610 	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2611 	pp_atomctrl_mc_reg_table *table;
2612 	struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2613 	uint8_t module_index = iceland_get_memory_modile_index(hwmgr);
2614 
2615 	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2616 
2617 	if (NULL == table)
2618 		return -ENOMEM;
2619 
2620 	/* Program additional LP registers that are no longer programmed by VBIOS */
2621 	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2622 	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2623 	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2624 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2625 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2626 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2627 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2628 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2629 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2630 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2631 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2632 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2633 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2634 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2635 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2636 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2637 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2638 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2639 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2640 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2641 
2642 	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2643 
2644 	if (0 == result)
2645 		result = iceland_copy_vbios_smc_reg_table(table, ni_table);
2646 
2647 	if (0 == result) {
2648 		iceland_set_s0_mc_reg_index(ni_table);
2649 		result = iceland_set_mc_special_registers(hwmgr, ni_table);
2650 	}
2651 
2652 	if (0 == result)
2653 		iceland_set_valid_flag(ni_table);
2654 
2655 	kfree(table);
2656 
2657 	return result;
2658 }
2659 
iceland_is_dpm_running(struct pp_hwmgr * hwmgr)2660 static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr)
2661 {
2662 	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2663 			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2664 			? true : false;
2665 }
2666 
2667 const struct pp_smumgr_func iceland_smu_funcs = {
2668 	.name = "iceland_smu",
2669 	.smu_init = &iceland_smu_init,
2670 	.smu_fini = &smu7_smu_fini,
2671 	.start_smu = &iceland_start_smu,
2672 	.check_fw_load_finish = &smu7_check_fw_load_finish,
2673 	.request_smu_load_fw = &smu7_request_smu_load_fw,
2674 	.request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw,
2675 	.send_msg_to_smc = &smu7_send_msg_to_smc,
2676 	.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2677 	.download_pptable_settings = NULL,
2678 	.upload_pptable_settings = NULL,
2679 	.get_offsetof = iceland_get_offsetof,
2680 	.process_firmware_header = iceland_process_firmware_header,
2681 	.init_smc_table = iceland_init_smc_table,
2682 	.update_sclk_threshold = iceland_update_sclk_threshold,
2683 	.thermal_setup_fan_table = iceland_thermal_setup_fan_table,
2684 	.populate_all_graphic_levels = iceland_populate_all_graphic_levels,
2685 	.populate_all_memory_levels = iceland_populate_all_memory_levels,
2686 	.get_mac_definition = iceland_get_mac_definition,
2687 	.initialize_mc_reg_table = iceland_initialize_mc_reg_table,
2688 	.is_dpm_running = iceland_is_dpm_running,
2689 };
2690 
2691