xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/i915/i915_syncmap.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: i915_syncmap.c,v 1.2 2021/12/18 23:45:28 riastradh Exp $	*/
2 
3 /*
4  * Copyright © 2017 Intel Corporation
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23  * IN THE SOFTWARE.
24  *
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: i915_syncmap.c,v 1.2 2021/12/18 23:45:28 riastradh Exp $");
29 
30 #include <linux/slab.h>
31 
32 #include "i915_syncmap.h"
33 
34 #include "i915_gem.h" /* GEM_BUG_ON() */
35 #include "i915_selftest.h"
36 
37 #define SHIFT ilog2(KSYNCMAP)
38 #define MASK (KSYNCMAP - 1)
39 
40 /*
41  * struct i915_syncmap is a layer of a radixtree that maps a u64 fence
42  * context id to the last u32 fence seqno waited upon from that context.
43  * Unlike lib/radixtree it uses a parent pointer that allows traversal back to
44  * the root. This allows us to access the whole tree via a single pointer
45  * to the most recently used layer. We expect fence contexts to be dense
46  * and most reuse to be on the same i915_gem_context but on neighbouring
47  * engines (i.e. on adjacent contexts) and reuse the same leaf, a very
48  * effective lookup cache. If the new lookup is not on the same leaf, we
49  * expect it to be on the neighbouring branch.
50  *
51  * A leaf holds an array of u32 seqno, and has height 0. The bitmap field
52  * allows us to store whether a particular seqno is valid (i.e. allows us
53  * to distinguish unset from 0).
54  *
55  * A branch holds an array of layer pointers, and has height > 0, and always
56  * has at least 2 layers (either branches or leaves) below it.
57  *
58  * For example,
59  *	for x in
60  *	  0 1 2 0x10 0x11 0x200 0x201
61  *	  0x500000 0x500001 0x503000 0x503001
62  *	  0xE<<60:
63  *		i915_syncmap_set(&sync, x, lower_32_bits(x));
64  * will build a tree like:
65  *	0xXXXXXXXXXXXXXXXX
66  *	0-> 0x0000000000XXXXXX
67  *	|   0-> 0x0000000000000XXX
68  *	|   |   0-> 0x00000000000000XX
69  *	|   |   |   0-> 0x000000000000000X 0:0, 1:1, 2:2
70  *	|   |   |   1-> 0x000000000000001X 0:10, 1:11
71  *	|   |   2-> 0x000000000000020X 0:200, 1:201
72  *	|   5-> 0x000000000050XXXX
73  *	|       0-> 0x000000000050000X 0:500000, 1:500001
74  *	|       3-> 0x000000000050300X 0:503000, 1:503001
75  *	e-> 0xe00000000000000X e:e
76  */
77 
78 struct i915_syncmap {
79 	u64 prefix;
80 	unsigned int height;
81 	unsigned int bitmap;
82 	struct i915_syncmap *parent;
83 	/*
84 	 * Following this header is an array of either seqno or child pointers:
85 	 * union {
86 	 *	u32 seqno[KSYNCMAP];
87 	 *	struct i915_syncmap *child[KSYNCMAP];
88 	 * };
89 	 */
90 };
91 
92 /**
93  * i915_syncmap_init -- initialise the #i915_syncmap
94  * @root: pointer to the #i915_syncmap
95  */
i915_syncmap_init(struct i915_syncmap ** root)96 void i915_syncmap_init(struct i915_syncmap **root)
97 {
98 	BUILD_BUG_ON_NOT_POWER_OF_2(KSYNCMAP);
99 	BUILD_BUG_ON_NOT_POWER_OF_2(SHIFT);
100 	BUILD_BUG_ON(KSYNCMAP > BITS_PER_TYPE((*root)->bitmap));
101 	*root = NULL;
102 }
103 
__sync_seqno(struct i915_syncmap * p)104 static inline u32 *__sync_seqno(struct i915_syncmap *p)
105 {
106 	GEM_BUG_ON(p->height);
107 	return (u32 *)(p + 1);
108 }
109 
__sync_child(struct i915_syncmap * p)110 static inline struct i915_syncmap **__sync_child(struct i915_syncmap *p)
111 {
112 	GEM_BUG_ON(!p->height);
113 	return (struct i915_syncmap **)(p + 1);
114 }
115 
116 static inline unsigned int
__sync_branch_idx(const struct i915_syncmap * p,u64 id)117 __sync_branch_idx(const struct i915_syncmap *p, u64 id)
118 {
119 	return (id >> p->height) & MASK;
120 }
121 
122 static inline unsigned int
__sync_leaf_idx(const struct i915_syncmap * p,u64 id)123 __sync_leaf_idx(const struct i915_syncmap *p, u64 id)
124 {
125 	GEM_BUG_ON(p->height);
126 	return id & MASK;
127 }
128 
__sync_branch_prefix(const struct i915_syncmap * p,u64 id)129 static inline u64 __sync_branch_prefix(const struct i915_syncmap *p, u64 id)
130 {
131 	return id >> p->height >> SHIFT;
132 }
133 
__sync_leaf_prefix(const struct i915_syncmap * p,u64 id)134 static inline u64 __sync_leaf_prefix(const struct i915_syncmap *p, u64 id)
135 {
136 	GEM_BUG_ON(p->height);
137 	return id >> SHIFT;
138 }
139 
seqno_later(u32 a,u32 b)140 static inline bool seqno_later(u32 a, u32 b)
141 {
142 	return (s32)(a - b) >= 0;
143 }
144 
145 /**
146  * i915_syncmap_is_later -- compare against the last know sync point
147  * @root: pointer to the #i915_syncmap
148  * @id: the context id (other timeline) we are synchronising to
149  * @seqno: the sequence number along the other timeline
150  *
151  * If we have already synchronised this @root timeline with another (@id) then
152  * we can omit any repeated or earlier synchronisation requests. If the two
153  * timelines are already coupled, we can also omit the dependency between the
154  * two as that is already known via the timeline.
155  *
156  * Returns true if the two timelines are already synchronised wrt to @seqno,
157  * false if not and the synchronisation must be emitted.
158  */
i915_syncmap_is_later(struct i915_syncmap ** root,u64 id,u32 seqno)159 bool i915_syncmap_is_later(struct i915_syncmap **root, u64 id, u32 seqno)
160 {
161 	struct i915_syncmap *p;
162 	unsigned int idx;
163 
164 	p = *root;
165 	if (!p)
166 		return false;
167 
168 	if (likely(__sync_leaf_prefix(p, id) == p->prefix))
169 		goto found;
170 
171 	/* First climb the tree back to a parent branch */
172 	do {
173 		p = p->parent;
174 		if (!p)
175 			return false;
176 
177 		if (__sync_branch_prefix(p, id) == p->prefix)
178 			break;
179 	} while (1);
180 
181 	/* And then descend again until we find our leaf */
182 	do {
183 		if (!p->height)
184 			break;
185 
186 		p = __sync_child(p)[__sync_branch_idx(p, id)];
187 		if (!p)
188 			return false;
189 
190 		if (__sync_branch_prefix(p, id) != p->prefix)
191 			return false;
192 	} while (1);
193 
194 	*root = p;
195 found:
196 	idx = __sync_leaf_idx(p, id);
197 	if (!(p->bitmap & BIT(idx)))
198 		return false;
199 
200 	return seqno_later(__sync_seqno(p)[idx], seqno);
201 }
202 
203 static struct i915_syncmap *
__sync_alloc_leaf(struct i915_syncmap * parent,u64 id)204 __sync_alloc_leaf(struct i915_syncmap *parent, u64 id)
205 {
206 	struct i915_syncmap *p;
207 
208 	p = kmalloc(sizeof(*p) + KSYNCMAP * sizeof(u32), GFP_KERNEL);
209 	if (unlikely(!p))
210 		return NULL;
211 
212 	p->parent = parent;
213 	p->height = 0;
214 	p->bitmap = 0;
215 	p->prefix = __sync_leaf_prefix(p, id);
216 	return p;
217 }
218 
__sync_set_seqno(struct i915_syncmap * p,u64 id,u32 seqno)219 static inline void __sync_set_seqno(struct i915_syncmap *p, u64 id, u32 seqno)
220 {
221 	unsigned int idx = __sync_leaf_idx(p, id);
222 
223 	p->bitmap |= BIT(idx);
224 	__sync_seqno(p)[idx] = seqno;
225 }
226 
__sync_set_child(struct i915_syncmap * p,unsigned int idx,struct i915_syncmap * child)227 static inline void __sync_set_child(struct i915_syncmap *p,
228 				    unsigned int idx,
229 				    struct i915_syncmap *child)
230 {
231 	p->bitmap |= BIT(idx);
232 	__sync_child(p)[idx] = child;
233 }
234 
__sync_set(struct i915_syncmap ** root,u64 id,u32 seqno)235 static noinline int __sync_set(struct i915_syncmap **root, u64 id, u32 seqno)
236 {
237 	struct i915_syncmap *p = *root;
238 	unsigned int idx;
239 
240 	if (!p) {
241 		p = __sync_alloc_leaf(NULL, id);
242 		if (unlikely(!p))
243 			return -ENOMEM;
244 
245 		goto found;
246 	}
247 
248 	/* Caller handled the likely cached case */
249 	GEM_BUG_ON(__sync_leaf_prefix(p, id) == p->prefix);
250 
251 	/* Climb back up the tree until we find a common prefix */
252 	do {
253 		if (!p->parent)
254 			break;
255 
256 		p = p->parent;
257 
258 		if (__sync_branch_prefix(p, id) == p->prefix)
259 			break;
260 	} while (1);
261 
262 	/*
263 	 * No shortcut, we have to descend the tree to find the right layer
264 	 * containing this fence.
265 	 *
266 	 * Each layer in the tree holds 16 (KSYNCMAP) pointers, either fences
267 	 * or lower layers. Leaf nodes (height = 0) contain the fences, all
268 	 * other nodes (height > 0) are internal layers that point to a lower
269 	 * node. Each internal layer has at least 2 descendents.
270 	 *
271 	 * Starting at the top, we check whether the current prefix matches. If
272 	 * it doesn't, we have gone past our target and need to insert a join
273 	 * into the tree, and a new leaf node for the target as a descendent
274 	 * of the join, as well as the original layer.
275 	 *
276 	 * The matching prefix means we are still following the right branch
277 	 * of the tree. If it has height 0, we have found our leaf and just
278 	 * need to replace the fence slot with ourselves. If the height is
279 	 * not zero, our slot contains the next layer in the tree (unless
280 	 * it is empty, in which case we can add ourselves as a new leaf).
281 	 * As descend the tree the prefix grows (and height decreases).
282 	 */
283 	do {
284 		struct i915_syncmap *next;
285 
286 		if (__sync_branch_prefix(p, id) != p->prefix) {
287 			unsigned int above;
288 
289 			/* Insert a join above the current layer */
290 			next = kzalloc(sizeof(*next) + KSYNCMAP * sizeof(next),
291 				       GFP_KERNEL);
292 			if (unlikely(!next))
293 				return -ENOMEM;
294 
295 			/* Compute the height at which these two diverge */
296 			above = fls64(__sync_branch_prefix(p, id) ^ p->prefix);
297 			above = round_up(above, SHIFT);
298 			next->height = above + p->height;
299 			next->prefix = __sync_branch_prefix(next, id);
300 
301 			/* Insert the join into the parent */
302 			if (p->parent) {
303 				idx = __sync_branch_idx(p->parent, id);
304 				__sync_child(p->parent)[idx] = next;
305 				GEM_BUG_ON(!(p->parent->bitmap & BIT(idx)));
306 			}
307 			next->parent = p->parent;
308 
309 			/* Compute the idx of the other branch, not our id! */
310 			idx = p->prefix >> (above - SHIFT) & MASK;
311 			__sync_set_child(next, idx, p);
312 			p->parent = next;
313 
314 			/* Ascend to the join */
315 			p = next;
316 		} else {
317 			if (!p->height)
318 				break;
319 		}
320 
321 		/* Descend into the next layer */
322 		GEM_BUG_ON(!p->height);
323 		idx = __sync_branch_idx(p, id);
324 		next = __sync_child(p)[idx];
325 		if (!next) {
326 			next = __sync_alloc_leaf(p, id);
327 			if (unlikely(!next))
328 				return -ENOMEM;
329 
330 			__sync_set_child(p, idx, next);
331 			p = next;
332 			break;
333 		}
334 
335 		p = next;
336 	} while (1);
337 
338 found:
339 	GEM_BUG_ON(p->prefix != __sync_leaf_prefix(p, id));
340 	__sync_set_seqno(p, id, seqno);
341 	*root = p;
342 	return 0;
343 }
344 
345 /**
346  * i915_syncmap_set -- mark the most recent syncpoint between contexts
347  * @root: pointer to the #i915_syncmap
348  * @id: the context id (other timeline) we have synchronised to
349  * @seqno: the sequence number along the other timeline
350  *
351  * When we synchronise this @root timeline with another (@id), we also know
352  * that we have synchronized with all previous seqno along that timeline. If
353  * we then have a request to synchronise with the same seqno or older, we can
354  * omit it, see i915_syncmap_is_later()
355  *
356  * Returns 0 on success, or a negative error code.
357  */
i915_syncmap_set(struct i915_syncmap ** root,u64 id,u32 seqno)358 int i915_syncmap_set(struct i915_syncmap **root, u64 id, u32 seqno)
359 {
360 	struct i915_syncmap *p = *root;
361 
362 	/*
363 	 * We expect to be called in sequence following is_later(id), which
364 	 * should have preloaded the root for us.
365 	 */
366 	if (likely(p && __sync_leaf_prefix(p, id) == p->prefix)) {
367 		__sync_set_seqno(p, id, seqno);
368 		return 0;
369 	}
370 
371 	return __sync_set(root, id, seqno);
372 }
373 
__sync_free(struct i915_syncmap * p)374 static void __sync_free(struct i915_syncmap *p)
375 {
376 	if (p->height) {
377 		unsigned int i;
378 
379 		while ((i = ffs(p->bitmap))) {
380 			p->bitmap &= ~0u << i;
381 			__sync_free(__sync_child(p)[i - 1]);
382 		}
383 	}
384 
385 	kfree(p);
386 }
387 
388 /**
389  * i915_syncmap_free -- free all memory associated with the syncmap
390  * @root: pointer to the #i915_syncmap
391  *
392  * Either when the timeline is to be freed and we no longer need the sync
393  * point tracking, or when the fences are all known to be signaled and the
394  * sync point tracking is redundant, we can free the #i915_syncmap to recover
395  * its allocations.
396  *
397  * Will reinitialise the @root pointer so that the #i915_syncmap is ready for
398  * reuse.
399  */
i915_syncmap_free(struct i915_syncmap ** root)400 void i915_syncmap_free(struct i915_syncmap **root)
401 {
402 	struct i915_syncmap *p;
403 
404 	p = *root;
405 	if (!p)
406 		return;
407 
408 	while (p->parent)
409 		p = p->parent;
410 
411 	__sync_free(p);
412 	*root = NULL;
413 }
414 
415 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
416 #include "selftests/i915_syncmap.c"
417 #endif
418