1 /* $NetBSD: i915_syncmap.c,v 1.2 2021/12/18 23:45:28 riastradh Exp $ */
2
3 /*
4 * Copyright © 2017 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: i915_syncmap.c,v 1.2 2021/12/18 23:45:28 riastradh Exp $");
29
30 #include <linux/slab.h>
31
32 #include "i915_syncmap.h"
33
34 #include "i915_gem.h" /* GEM_BUG_ON() */
35 #include "i915_selftest.h"
36
37 #define SHIFT ilog2(KSYNCMAP)
38 #define MASK (KSYNCMAP - 1)
39
40 /*
41 * struct i915_syncmap is a layer of a radixtree that maps a u64 fence
42 * context id to the last u32 fence seqno waited upon from that context.
43 * Unlike lib/radixtree it uses a parent pointer that allows traversal back to
44 * the root. This allows us to access the whole tree via a single pointer
45 * to the most recently used layer. We expect fence contexts to be dense
46 * and most reuse to be on the same i915_gem_context but on neighbouring
47 * engines (i.e. on adjacent contexts) and reuse the same leaf, a very
48 * effective lookup cache. If the new lookup is not on the same leaf, we
49 * expect it to be on the neighbouring branch.
50 *
51 * A leaf holds an array of u32 seqno, and has height 0. The bitmap field
52 * allows us to store whether a particular seqno is valid (i.e. allows us
53 * to distinguish unset from 0).
54 *
55 * A branch holds an array of layer pointers, and has height > 0, and always
56 * has at least 2 layers (either branches or leaves) below it.
57 *
58 * For example,
59 * for x in
60 * 0 1 2 0x10 0x11 0x200 0x201
61 * 0x500000 0x500001 0x503000 0x503001
62 * 0xE<<60:
63 * i915_syncmap_set(&sync, x, lower_32_bits(x));
64 * will build a tree like:
65 * 0xXXXXXXXXXXXXXXXX
66 * 0-> 0x0000000000XXXXXX
67 * | 0-> 0x0000000000000XXX
68 * | | 0-> 0x00000000000000XX
69 * | | | 0-> 0x000000000000000X 0:0, 1:1, 2:2
70 * | | | 1-> 0x000000000000001X 0:10, 1:11
71 * | | 2-> 0x000000000000020X 0:200, 1:201
72 * | 5-> 0x000000000050XXXX
73 * | 0-> 0x000000000050000X 0:500000, 1:500001
74 * | 3-> 0x000000000050300X 0:503000, 1:503001
75 * e-> 0xe00000000000000X e:e
76 */
77
78 struct i915_syncmap {
79 u64 prefix;
80 unsigned int height;
81 unsigned int bitmap;
82 struct i915_syncmap *parent;
83 /*
84 * Following this header is an array of either seqno or child pointers:
85 * union {
86 * u32 seqno[KSYNCMAP];
87 * struct i915_syncmap *child[KSYNCMAP];
88 * };
89 */
90 };
91
92 /**
93 * i915_syncmap_init -- initialise the #i915_syncmap
94 * @root: pointer to the #i915_syncmap
95 */
i915_syncmap_init(struct i915_syncmap ** root)96 void i915_syncmap_init(struct i915_syncmap **root)
97 {
98 BUILD_BUG_ON_NOT_POWER_OF_2(KSYNCMAP);
99 BUILD_BUG_ON_NOT_POWER_OF_2(SHIFT);
100 BUILD_BUG_ON(KSYNCMAP > BITS_PER_TYPE((*root)->bitmap));
101 *root = NULL;
102 }
103
__sync_seqno(struct i915_syncmap * p)104 static inline u32 *__sync_seqno(struct i915_syncmap *p)
105 {
106 GEM_BUG_ON(p->height);
107 return (u32 *)(p + 1);
108 }
109
__sync_child(struct i915_syncmap * p)110 static inline struct i915_syncmap **__sync_child(struct i915_syncmap *p)
111 {
112 GEM_BUG_ON(!p->height);
113 return (struct i915_syncmap **)(p + 1);
114 }
115
116 static inline unsigned int
__sync_branch_idx(const struct i915_syncmap * p,u64 id)117 __sync_branch_idx(const struct i915_syncmap *p, u64 id)
118 {
119 return (id >> p->height) & MASK;
120 }
121
122 static inline unsigned int
__sync_leaf_idx(const struct i915_syncmap * p,u64 id)123 __sync_leaf_idx(const struct i915_syncmap *p, u64 id)
124 {
125 GEM_BUG_ON(p->height);
126 return id & MASK;
127 }
128
__sync_branch_prefix(const struct i915_syncmap * p,u64 id)129 static inline u64 __sync_branch_prefix(const struct i915_syncmap *p, u64 id)
130 {
131 return id >> p->height >> SHIFT;
132 }
133
__sync_leaf_prefix(const struct i915_syncmap * p,u64 id)134 static inline u64 __sync_leaf_prefix(const struct i915_syncmap *p, u64 id)
135 {
136 GEM_BUG_ON(p->height);
137 return id >> SHIFT;
138 }
139
seqno_later(u32 a,u32 b)140 static inline bool seqno_later(u32 a, u32 b)
141 {
142 return (s32)(a - b) >= 0;
143 }
144
145 /**
146 * i915_syncmap_is_later -- compare against the last know sync point
147 * @root: pointer to the #i915_syncmap
148 * @id: the context id (other timeline) we are synchronising to
149 * @seqno: the sequence number along the other timeline
150 *
151 * If we have already synchronised this @root timeline with another (@id) then
152 * we can omit any repeated or earlier synchronisation requests. If the two
153 * timelines are already coupled, we can also omit the dependency between the
154 * two as that is already known via the timeline.
155 *
156 * Returns true if the two timelines are already synchronised wrt to @seqno,
157 * false if not and the synchronisation must be emitted.
158 */
i915_syncmap_is_later(struct i915_syncmap ** root,u64 id,u32 seqno)159 bool i915_syncmap_is_later(struct i915_syncmap **root, u64 id, u32 seqno)
160 {
161 struct i915_syncmap *p;
162 unsigned int idx;
163
164 p = *root;
165 if (!p)
166 return false;
167
168 if (likely(__sync_leaf_prefix(p, id) == p->prefix))
169 goto found;
170
171 /* First climb the tree back to a parent branch */
172 do {
173 p = p->parent;
174 if (!p)
175 return false;
176
177 if (__sync_branch_prefix(p, id) == p->prefix)
178 break;
179 } while (1);
180
181 /* And then descend again until we find our leaf */
182 do {
183 if (!p->height)
184 break;
185
186 p = __sync_child(p)[__sync_branch_idx(p, id)];
187 if (!p)
188 return false;
189
190 if (__sync_branch_prefix(p, id) != p->prefix)
191 return false;
192 } while (1);
193
194 *root = p;
195 found:
196 idx = __sync_leaf_idx(p, id);
197 if (!(p->bitmap & BIT(idx)))
198 return false;
199
200 return seqno_later(__sync_seqno(p)[idx], seqno);
201 }
202
203 static struct i915_syncmap *
__sync_alloc_leaf(struct i915_syncmap * parent,u64 id)204 __sync_alloc_leaf(struct i915_syncmap *parent, u64 id)
205 {
206 struct i915_syncmap *p;
207
208 p = kmalloc(sizeof(*p) + KSYNCMAP * sizeof(u32), GFP_KERNEL);
209 if (unlikely(!p))
210 return NULL;
211
212 p->parent = parent;
213 p->height = 0;
214 p->bitmap = 0;
215 p->prefix = __sync_leaf_prefix(p, id);
216 return p;
217 }
218
__sync_set_seqno(struct i915_syncmap * p,u64 id,u32 seqno)219 static inline void __sync_set_seqno(struct i915_syncmap *p, u64 id, u32 seqno)
220 {
221 unsigned int idx = __sync_leaf_idx(p, id);
222
223 p->bitmap |= BIT(idx);
224 __sync_seqno(p)[idx] = seqno;
225 }
226
__sync_set_child(struct i915_syncmap * p,unsigned int idx,struct i915_syncmap * child)227 static inline void __sync_set_child(struct i915_syncmap *p,
228 unsigned int idx,
229 struct i915_syncmap *child)
230 {
231 p->bitmap |= BIT(idx);
232 __sync_child(p)[idx] = child;
233 }
234
__sync_set(struct i915_syncmap ** root,u64 id,u32 seqno)235 static noinline int __sync_set(struct i915_syncmap **root, u64 id, u32 seqno)
236 {
237 struct i915_syncmap *p = *root;
238 unsigned int idx;
239
240 if (!p) {
241 p = __sync_alloc_leaf(NULL, id);
242 if (unlikely(!p))
243 return -ENOMEM;
244
245 goto found;
246 }
247
248 /* Caller handled the likely cached case */
249 GEM_BUG_ON(__sync_leaf_prefix(p, id) == p->prefix);
250
251 /* Climb back up the tree until we find a common prefix */
252 do {
253 if (!p->parent)
254 break;
255
256 p = p->parent;
257
258 if (__sync_branch_prefix(p, id) == p->prefix)
259 break;
260 } while (1);
261
262 /*
263 * No shortcut, we have to descend the tree to find the right layer
264 * containing this fence.
265 *
266 * Each layer in the tree holds 16 (KSYNCMAP) pointers, either fences
267 * or lower layers. Leaf nodes (height = 0) contain the fences, all
268 * other nodes (height > 0) are internal layers that point to a lower
269 * node. Each internal layer has at least 2 descendents.
270 *
271 * Starting at the top, we check whether the current prefix matches. If
272 * it doesn't, we have gone past our target and need to insert a join
273 * into the tree, and a new leaf node for the target as a descendent
274 * of the join, as well as the original layer.
275 *
276 * The matching prefix means we are still following the right branch
277 * of the tree. If it has height 0, we have found our leaf and just
278 * need to replace the fence slot with ourselves. If the height is
279 * not zero, our slot contains the next layer in the tree (unless
280 * it is empty, in which case we can add ourselves as a new leaf).
281 * As descend the tree the prefix grows (and height decreases).
282 */
283 do {
284 struct i915_syncmap *next;
285
286 if (__sync_branch_prefix(p, id) != p->prefix) {
287 unsigned int above;
288
289 /* Insert a join above the current layer */
290 next = kzalloc(sizeof(*next) + KSYNCMAP * sizeof(next),
291 GFP_KERNEL);
292 if (unlikely(!next))
293 return -ENOMEM;
294
295 /* Compute the height at which these two diverge */
296 above = fls64(__sync_branch_prefix(p, id) ^ p->prefix);
297 above = round_up(above, SHIFT);
298 next->height = above + p->height;
299 next->prefix = __sync_branch_prefix(next, id);
300
301 /* Insert the join into the parent */
302 if (p->parent) {
303 idx = __sync_branch_idx(p->parent, id);
304 __sync_child(p->parent)[idx] = next;
305 GEM_BUG_ON(!(p->parent->bitmap & BIT(idx)));
306 }
307 next->parent = p->parent;
308
309 /* Compute the idx of the other branch, not our id! */
310 idx = p->prefix >> (above - SHIFT) & MASK;
311 __sync_set_child(next, idx, p);
312 p->parent = next;
313
314 /* Ascend to the join */
315 p = next;
316 } else {
317 if (!p->height)
318 break;
319 }
320
321 /* Descend into the next layer */
322 GEM_BUG_ON(!p->height);
323 idx = __sync_branch_idx(p, id);
324 next = __sync_child(p)[idx];
325 if (!next) {
326 next = __sync_alloc_leaf(p, id);
327 if (unlikely(!next))
328 return -ENOMEM;
329
330 __sync_set_child(p, idx, next);
331 p = next;
332 break;
333 }
334
335 p = next;
336 } while (1);
337
338 found:
339 GEM_BUG_ON(p->prefix != __sync_leaf_prefix(p, id));
340 __sync_set_seqno(p, id, seqno);
341 *root = p;
342 return 0;
343 }
344
345 /**
346 * i915_syncmap_set -- mark the most recent syncpoint between contexts
347 * @root: pointer to the #i915_syncmap
348 * @id: the context id (other timeline) we have synchronised to
349 * @seqno: the sequence number along the other timeline
350 *
351 * When we synchronise this @root timeline with another (@id), we also know
352 * that we have synchronized with all previous seqno along that timeline. If
353 * we then have a request to synchronise with the same seqno or older, we can
354 * omit it, see i915_syncmap_is_later()
355 *
356 * Returns 0 on success, or a negative error code.
357 */
i915_syncmap_set(struct i915_syncmap ** root,u64 id,u32 seqno)358 int i915_syncmap_set(struct i915_syncmap **root, u64 id, u32 seqno)
359 {
360 struct i915_syncmap *p = *root;
361
362 /*
363 * We expect to be called in sequence following is_later(id), which
364 * should have preloaded the root for us.
365 */
366 if (likely(p && __sync_leaf_prefix(p, id) == p->prefix)) {
367 __sync_set_seqno(p, id, seqno);
368 return 0;
369 }
370
371 return __sync_set(root, id, seqno);
372 }
373
__sync_free(struct i915_syncmap * p)374 static void __sync_free(struct i915_syncmap *p)
375 {
376 if (p->height) {
377 unsigned int i;
378
379 while ((i = ffs(p->bitmap))) {
380 p->bitmap &= ~0u << i;
381 __sync_free(__sync_child(p)[i - 1]);
382 }
383 }
384
385 kfree(p);
386 }
387
388 /**
389 * i915_syncmap_free -- free all memory associated with the syncmap
390 * @root: pointer to the #i915_syncmap
391 *
392 * Either when the timeline is to be freed and we no longer need the sync
393 * point tracking, or when the fences are all known to be signaled and the
394 * sync point tracking is redundant, we can free the #i915_syncmap to recover
395 * its allocations.
396 *
397 * Will reinitialise the @root pointer so that the #i915_syncmap is ready for
398 * reuse.
399 */
i915_syncmap_free(struct i915_syncmap ** root)400 void i915_syncmap_free(struct i915_syncmap **root)
401 {
402 struct i915_syncmap *p;
403
404 p = *root;
405 if (!p)
406 return;
407
408 while (p->parent)
409 p = p->parent;
410
411 __sync_free(p);
412 *root = NULL;
413 }
414
415 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
416 #include "selftests/i915_syncmap.c"
417 #endif
418