xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/i915/i915_perf.c (revision 2a8c33eaff5adddac3ef2c5cb48ee67ef6d5d6dc)
1 /*	$NetBSD: i915_perf.c,v 1.7 2021/12/19 12:32:15 riastradh Exp $	*/
2 
3 /*
4  * Copyright © 2015-2016 Intel Corporation
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23  * IN THE SOFTWARE.
24  *
25  * Authors:
26  *   Robert Bragg <robert@sixbynine.org>
27  */
28 
29 
30 /**
31  * DOC: i915 Perf Overview
32  *
33  * Gen graphics supports a large number of performance counters that can help
34  * driver and application developers understand and optimize their use of the
35  * GPU.
36  *
37  * This i915 perf interface enables userspace to configure and open a file
38  * descriptor representing a stream of GPU metrics which can then be read() as
39  * a stream of sample records.
40  *
41  * The interface is particularly suited to exposing buffered metrics that are
42  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
43  *
44  * Streams representing a single context are accessible to applications with a
45  * corresponding drm file descriptor, such that OpenGL can use the interface
46  * without special privileges. Access to system-wide metrics requires root
47  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
48  * sysctl option.
49  *
50  */
51 
52 /**
53  * DOC: i915 Perf History and Comparison with Core Perf
54  *
55  * The interface was initially inspired by the core Perf infrastructure but
56  * some notable differences are:
57  *
58  * i915 perf file descriptors represent a "stream" instead of an "event"; where
59  * a perf event primarily corresponds to a single 64bit value, while a stream
60  * might sample sets of tightly-coupled counters, depending on the
61  * configuration.  For example the Gen OA unit isn't designed to support
62  * orthogonal configurations of individual counters; it's configured for a set
63  * of related counters. Samples for an i915 perf stream capturing OA metrics
64  * will include a set of counter values packed in a compact HW specific format.
65  * The OA unit supports a number of different packing formats which can be
66  * selected by the user opening the stream. Perf has support for grouping
67  * events, but each event in the group is configured, validated and
68  * authenticated individually with separate system calls.
69  *
70  * i915 perf stream configurations are provided as an array of u64 (key,value)
71  * pairs, instead of a fixed struct with multiple miscellaneous config members,
72  * interleaved with event-type specific members.
73  *
74  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
75  * The supported metrics are being written to memory by the GPU unsynchronized
76  * with the CPU, using HW specific packing formats for counter sets. Sometimes
77  * the constraints on HW configuration require reports to be filtered before it
78  * would be acceptable to expose them to unprivileged applications - to hide
79  * the metrics of other processes/contexts. For these use cases a read() based
80  * interface is a good fit, and provides an opportunity to filter data as it
81  * gets copied from the GPU mapped buffers to userspace buffers.
82  *
83  *
84  * Issues hit with first prototype based on Core Perf
85  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
86  *
87  * The first prototype of this driver was based on the core perf
88  * infrastructure, and while we did make that mostly work, with some changes to
89  * perf, we found we were breaking or working around too many assumptions baked
90  * into perf's currently cpu centric design.
91  *
92  * In the end we didn't see a clear benefit to making perf's implementation and
93  * interface more complex by changing design assumptions while we knew we still
94  * wouldn't be able to use any existing perf based userspace tools.
95  *
96  * Also considering the Gen specific nature of the Observability hardware and
97  * how userspace will sometimes need to combine i915 perf OA metrics with
98  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
99  * expecting the interface to be used by a platform specific userspace such as
100  * OpenGL or tools. This is to say; we aren't inherently missing out on having
101  * a standard vendor/architecture agnostic interface by not using perf.
102  *
103  *
104  * For posterity, in case we might re-visit trying to adapt core perf to be
105  * better suited to exposing i915 metrics these were the main pain points we
106  * hit:
107  *
108  * - The perf based OA PMU driver broke some significant design assumptions:
109  *
110  *   Existing perf pmus are used for profiling work on a cpu and we were
111  *   introducing the idea of _IS_DEVICE pmus with different security
112  *   implications, the need to fake cpu-related data (such as user/kernel
113  *   registers) to fit with perf's current design, and adding _DEVICE records
114  *   as a way to forward device-specific status records.
115  *
116  *   The OA unit writes reports of counters into a circular buffer, without
117  *   involvement from the CPU, making our PMU driver the first of a kind.
118  *
119  *   Given the way we were periodically forward data from the GPU-mapped, OA
120  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
121  *   we were sampling too fast and so we had to subvert its throttling checks.
122  *
123  *   Perf supports groups of counters and allows those to be read via
124  *   transactions internally but transactions currently seem designed to be
125  *   explicitly initiated from the cpu (say in response to a userspace read())
126  *   and while we could pull a report out of the OA buffer we can't
127  *   trigger a report from the cpu on demand.
128  *
129  *   Related to being report based; the OA counters are configured in HW as a
130  *   set while perf generally expects counter configurations to be orthogonal.
131  *   Although counters can be associated with a group leader as they are
132  *   opened, there's no clear precedent for being able to provide group-wide
133  *   configuration attributes (for example we want to let userspace choose the
134  *   OA unit report format used to capture all counters in a set, or specify a
135  *   GPU context to filter metrics on). We avoided using perf's grouping
136  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
137  *   field. This suited our userspace well considering how coupled the counters
138  *   are when dealing with normalizing. It would be inconvenient to split
139  *   counters up into separate events, only to require userspace to recombine
140  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
141  *   for combining with the side-band raw reports it captures using
142  *   MI_REPORT_PERF_COUNT commands.
143  *
144  *   - As a side note on perf's grouping feature; there was also some concern
145  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
146  *     would quite drastically inflate our sample sizes, which would likely
147  *     lower the effective sampling resolutions we could use when the available
148  *     memory bandwidth is limited.
149  *
150  *     With the OA unit's report formats, counters are packed together as 32
151  *     or 40bit values, with the largest report size being 256 bytes.
152  *
153  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
154  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
155  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
156  *
157  *   Related to counter orthogonality; we can't time share the OA unit, while
158  *   event scheduling is a central design idea within perf for allowing
159  *   userspace to open + enable more events than can be configured in HW at any
160  *   one time.  The OA unit is not designed to allow re-configuration while in
161  *   use. We can't reconfigure the OA unit without losing internal OA unit
162  *   state which we can't access explicitly to save and restore. Reconfiguring
163  *   the OA unit is also relatively slow, involving ~100 register writes. From
164  *   userspace Mesa also depends on a stable OA configuration when emitting
165  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
166  *   disabled while there are outstanding MI_RPC commands lest we hang the
167  *   command streamer.
168  *
169  *   The contents of sample records aren't extensible by device drivers (i.e.
170  *   the sample_type bits). As an example; Sourab Gupta had been looking to
171  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
172  *   into sample records by using the 'raw' field, but it's tricky to pack more
173  *   than one thing into this field because events/core.c currently only lets a
174  *   pmu give a single raw data pointer plus len which will be copied into the
175  *   ring buffer. To include more than the OA report we'd have to copy the
176  *   report into an intermediate larger buffer. I'd been considering allowing a
177  *   vector of data+len values to be specified for copying the raw data, but
178  *   it felt like a kludge to being using the raw field for this purpose.
179  *
180  * - It felt like our perf based PMU was making some technical compromises
181  *   just for the sake of using perf:
182  *
183  *   perf_event_open() requires events to either relate to a pid or a specific
184  *   cpu core, while our device pmu related to neither.  Events opened with a
185  *   pid will be automatically enabled/disabled according to the scheduling of
186  *   that process - so not appropriate for us. When an event is related to a
187  *   cpu id, perf ensures pmu methods will be invoked via an inter process
188  *   interrupt on that core. To avoid invasive changes our userspace opened OA
189  *   perf events for a specific cpu. This was workable but it meant the
190  *   majority of the OA driver ran in atomic context, including all OA report
191  *   forwarding, which wasn't really necessary in our case and seems to make
192  *   our locking requirements somewhat complex as we handled the interaction
193  *   with the rest of the i915 driver.
194  */
195 
196 #include <sys/cdefs.h>
197 __KERNEL_RCSID(0, "$NetBSD: i915_perf.c,v 1.7 2021/12/19 12:32:15 riastradh Exp $");
198 
199 #include <linux/anon_inodes.h>
200 #include <linux/sizes.h>
201 #include <linux/uuid.h>
202 
203 #include "gem/i915_gem_context.h"
204 #include "gt/intel_engine_pm.h"
205 #include "gt/intel_engine_user.h"
206 #include "gt/intel_gt.h"
207 #include "gt/intel_lrc_reg.h"
208 #include "gt/intel_ring.h"
209 
210 #include "i915_drv.h"
211 #include "i915_perf.h"
212 #include "oa/i915_oa_hsw.h"
213 #include "oa/i915_oa_bdw.h"
214 #include "oa/i915_oa_chv.h"
215 #include "oa/i915_oa_sklgt2.h"
216 #include "oa/i915_oa_sklgt3.h"
217 #include "oa/i915_oa_sklgt4.h"
218 #include "oa/i915_oa_bxt.h"
219 #include "oa/i915_oa_kblgt2.h"
220 #include "oa/i915_oa_kblgt3.h"
221 #include "oa/i915_oa_glk.h"
222 #include "oa/i915_oa_cflgt2.h"
223 #include "oa/i915_oa_cflgt3.h"
224 #include "oa/i915_oa_cnl.h"
225 #include "oa/i915_oa_icl.h"
226 #include "oa/i915_oa_tgl.h"
227 
228 #ifdef __NetBSD__
229 #include <sys/filedesc.h>
230 #include <sys/poll.h>
231 #include <sys/select.h>
232 #include <linux/nbsd-namespace.h>
233 #endif
234 
235 /* HW requires this to be a power of two, between 128k and 16M, though driver
236  * is currently generally designed assuming the largest 16M size is used such
237  * that the overflow cases are unlikely in normal operation.
238  */
239 #define OA_BUFFER_SIZE		SZ_16M
240 
241 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
242 
243 /**
244  * DOC: OA Tail Pointer Race
245  *
246  * There's a HW race condition between OA unit tail pointer register updates and
247  * writes to memory whereby the tail pointer can sometimes get ahead of what's
248  * been written out to the OA buffer so far (in terms of what's visible to the
249  * CPU).
250  *
251  * Although this can be observed explicitly while copying reports to userspace
252  * by checking for a zeroed report-id field in tail reports, we want to account
253  * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
254  * read() attempts.
255  *
256  * In effect we define a tail pointer for reading that lags the real tail
257  * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
258  * time for the corresponding reports to become visible to the CPU.
259  *
260  * To manage this we actually track two tail pointers:
261  *  1) An 'aging' tail with an associated timestamp that is tracked until we
262  *     can trust the corresponding data is visible to the CPU; at which point
263  *     it is considered 'aged'.
264  *  2) An 'aged' tail that can be used for read()ing.
265  *
266  * The two separate pointers let us decouple read()s from tail pointer aging.
267  *
268  * The tail pointers are checked and updated at a limited rate within a hrtimer
269  * callback (the same callback that is used for delivering EPOLLIN events)
270  *
271  * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
272  * indicates that an updated tail pointer is needed.
273  *
274  * Most of the implementation details for this workaround are in
275  * oa_buffer_check_unlocked() and _append_oa_reports()
276  *
277  * Note for posterity: previously the driver used to define an effective tail
278  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
279  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
280  * This was flawed considering that the OA unit may also automatically generate
281  * non-periodic reports (such as on context switch) or the OA unit may be
282  * enabled without any periodic sampling.
283  */
284 #define OA_TAIL_MARGIN_NSEC	100000ULL
285 #define INVALID_TAIL_PTR	0xffffffff
286 
287 /* frequency for checking whether the OA unit has written new reports to the
288  * circular OA buffer...
289  */
290 #define POLL_FREQUENCY 200
291 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
292 
293 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
294 static u32 i915_perf_stream_paranoid = true;
295 
296 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
297  * of the 64bit timestamp bits to trigger reports from) but there's currently
298  * no known use case for sampling as infrequently as once per 47 thousand years.
299  *
300  * Since the timestamps included in OA reports are only 32bits it seems
301  * reasonable to limit the OA exponent where it's still possible to account for
302  * overflow in OA report timestamps.
303  */
304 #define OA_EXPONENT_MAX 31
305 
306 #define INVALID_CTX_ID 0xffffffff
307 
308 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
309 #define OAREPORT_REASON_MASK           0x3f
310 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
311 #define OAREPORT_REASON_SHIFT          19
312 #define OAREPORT_REASON_TIMER          (1<<0)
313 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
314 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
315 
316 
317 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
318  *
319  * The highest sampling frequency we can theoretically program the OA unit
320  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
321  *
322  * Initialized just before we register the sysctl parameter.
323  */
324 static int oa_sample_rate_hard_limit;
325 
326 /* Theoretically we can program the OA unit to sample every 160ns but don't
327  * allow that by default unless root...
328  *
329  * The default threshold of 100000Hz is based on perf's similar
330  * kernel.perf_event_max_sample_rate sysctl parameter.
331  */
332 static u32 i915_oa_max_sample_rate = 100000;
333 
334 /* XXX: beware if future OA HW adds new report formats that the current
335  * code assumes all reports have a power-of-two size and ~(size - 1) can
336  * be used as a mask to align the OA tail pointer.
337  */
338 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
339 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
340 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
341 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
342 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
343 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
344 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
345 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
346 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
347 };
348 
349 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
350 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
351 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
352 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
353 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
354 };
355 
356 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
357 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
358 };
359 
360 #define SAMPLE_OA_REPORT      (1<<0)
361 
362 /**
363  * struct perf_open_properties - for validated properties given to open a stream
364  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
365  * @single_context: Whether a single or all gpu contexts should be monitored
366  * @hold_preemption: Whether the preemption is disabled for the filtered
367  *                   context
368  * @ctx_handle: A gem ctx handle for use with @single_context
369  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
370  * @oa_format: An OA unit HW report format
371  * @oa_periodic: Whether to enable periodic OA unit sampling
372  * @oa_period_exponent: The OA unit sampling period is derived from this
373  * @engine: The engine (typically rcs0) being monitored by the OA unit
374  *
375  * As read_properties_unlocked() enumerates and validates the properties given
376  * to open a stream of metrics the configuration is built up in the structure
377  * which starts out zero initialized.
378  */
379 struct perf_open_properties {
380 	u32 sample_flags;
381 
382 	u64 single_context:1;
383 	u64 hold_preemption:1;
384 	u64 ctx_handle;
385 
386 	/* OA sampling state */
387 	int metrics_set;
388 	int oa_format;
389 	bool oa_periodic;
390 	int oa_period_exponent;
391 
392 	struct intel_engine_cs *engine;
393 };
394 
395 struct i915_oa_config_bo {
396 	struct llist_node node;
397 
398 	struct i915_oa_config *oa_config;
399 	struct i915_vma *vma;
400 };
401 
402 #ifndef __NetBSD__		/* XXX i915 perf sysctl */
403 static struct ctl_table_header *sysctl_header;
404 #endif
405 
406 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
407 
i915_oa_config_release(struct kref * ref)408 void i915_oa_config_release(struct kref *ref)
409 {
410 	struct i915_oa_config *oa_config =
411 		container_of(ref, typeof(*oa_config), ref);
412 
413 	kfree(__UNCONST(oa_config->flex_regs));
414 	kfree(__UNCONST(oa_config->b_counter_regs));
415 	kfree(__UNCONST(oa_config->mux_regs));
416 
417 	kfree_rcu(oa_config, rcu);
418 }
419 
420 struct i915_oa_config *
i915_perf_get_oa_config(struct i915_perf * perf,int metrics_set)421 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
422 {
423 	struct i915_oa_config *oa_config;
424 
425 	rcu_read_lock();
426 	if (metrics_set == 1)
427 		oa_config = &perf->test_config;
428 	else
429 		oa_config = idr_find(&perf->metrics_idr, metrics_set);
430 	if (oa_config)
431 		oa_config = i915_oa_config_get(oa_config);
432 	rcu_read_unlock();
433 
434 	return oa_config;
435 }
436 
free_oa_config_bo(struct i915_oa_config_bo * oa_bo)437 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
438 {
439 	i915_oa_config_put(oa_bo->oa_config);
440 	i915_vma_put(oa_bo->vma);
441 	kfree(oa_bo);
442 }
443 
gen12_oa_hw_tail_read(struct i915_perf_stream * stream)444 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
445 {
446 	struct intel_uncore *uncore = stream->uncore;
447 
448 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
449 	       GEN12_OAG_OATAILPTR_MASK;
450 }
451 
gen8_oa_hw_tail_read(struct i915_perf_stream * stream)452 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
453 {
454 	struct intel_uncore *uncore = stream->uncore;
455 
456 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
457 }
458 
gen7_oa_hw_tail_read(struct i915_perf_stream * stream)459 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
460 {
461 	struct intel_uncore *uncore = stream->uncore;
462 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
463 
464 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
465 }
466 
467 /**
468  * oa_buffer_check - check for data and update tail ptr state
469  * @stream: i915 stream instance
470  *
471  * This is either called via fops (for blocking reads in user ctx) or the poll
472  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
473  * if there is data available for userspace to read.
474  *
475  * This function is central to providing a workaround for the OA unit tail
476  * pointer having a race with respect to what data is visible to the CPU.
477  * It is responsible for reading tail pointers from the hardware and giving
478  * the pointers time to 'age' before they are made available for reading.
479  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
480  *
481  * Besides returning true when there is data available to read() this function
482  * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
483  * and .aged_tail_idx state used for reading.
484  *
485  * Note: It's safe to read OA config state here unlocked, assuming that this is
486  * only called while the stream is enabled, while the global OA configuration
487  * can't be modified.
488  *
489  * Returns: %true if the OA buffer contains data, else %false
490  */
oa_buffer_check(struct i915_perf_stream * stream)491 static bool oa_buffer_check(struct i915_perf_stream *stream)
492 {
493 	int report_size = stream->oa_buffer.format_size;
494 	unsigned int aged_idx;
495 	u32 head, hw_tail, aged_tail, aging_tail;
496 	u64 now;
497 
498 	/* We have to consider the (unlikely) possibility that read() errors
499 	 * could result in an OA buffer reset which might reset the head,
500 	 * tails[] and aged_tail state.
501 	 */
502 
503 	/* NB: The head we observe here might effectively be a little out of
504 	 * date (between head and tails[aged_idx].offset if there is currently
505 	 * a read() in progress.
506 	 */
507 	head = stream->oa_buffer.head;
508 
509 	aged_idx = stream->oa_buffer.aged_tail_idx;
510 	aged_tail = stream->oa_buffer.tails[aged_idx].offset;
511 	aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
512 
513 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
514 
515 	/* The tail pointer increases in 64 byte increments,
516 	 * not in report_size steps...
517 	 */
518 	hw_tail &= ~(report_size - 1);
519 
520 	now = ktime_get_mono_fast_ns();
521 
522 	/* Update the aged tail
523 	 *
524 	 * Flip the tail pointer available for read()s once the aging tail is
525 	 * old enough to trust that the corresponding data will be visible to
526 	 * the CPU...
527 	 *
528 	 * Do this before updating the aging pointer in case we may be able to
529 	 * immediately start aging a new pointer too (if new data has become
530 	 * available) without needing to wait for a later hrtimer callback.
531 	 */
532 	if (aging_tail != INVALID_TAIL_PTR &&
533 	    ((now - stream->oa_buffer.aging_timestamp) >
534 	     OA_TAIL_MARGIN_NSEC)) {
535 
536 		aged_idx ^= 1;
537 		stream->oa_buffer.aged_tail_idx = aged_idx;
538 
539 		aged_tail = aging_tail;
540 
541 		/* Mark that we need a new pointer to start aging... */
542 		stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
543 		aging_tail = INVALID_TAIL_PTR;
544 	}
545 
546 	/* Update the aging tail
547 	 *
548 	 * We throttle aging tail updates until we have a new tail that
549 	 * represents >= one report more data than is already available for
550 	 * reading. This ensures there will be enough data for a successful
551 	 * read once this new pointer has aged and ensures we will give the new
552 	 * pointer time to age.
553 	 */
554 	if (aging_tail == INVALID_TAIL_PTR &&
555 	    (aged_tail == INVALID_TAIL_PTR ||
556 	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
557 		struct i915_vma *vma = stream->oa_buffer.vma;
558 		u32 gtt_offset = i915_ggtt_offset(vma);
559 
560 		/* Be paranoid and do a bounds check on the pointer read back
561 		 * from hardware, just in case some spurious hardware condition
562 		 * could put the tail out of bounds...
563 		 */
564 		if (hw_tail >= gtt_offset &&
565 		    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
566 			stream->oa_buffer.tails[!aged_idx].offset =
567 				aging_tail = hw_tail;
568 			stream->oa_buffer.aging_timestamp = now;
569 		} else {
570 			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %x\n",
571 				  hw_tail);
572 		}
573 	}
574 
575 	return aged_tail == INVALID_TAIL_PTR ?
576 		false : OA_TAKEN(aged_tail, head) >= report_size;
577 }
578 
579 /**
580  * append_oa_status - Appends a status record to a userspace read() buffer.
581  * @stream: An i915-perf stream opened for OA metrics
582  * @buf: destination buffer given by userspace
583  * @count: the number of bytes userspace wants to read
584  * @offset: (inout): the current position for writing into @buf
585  * @type: The kind of status to report to userspace
586  *
587  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
588  * into the userspace read() buffer.
589  *
590  * The @buf @offset will only be updated on success.
591  *
592  * Returns: 0 on success, negative error code on failure.
593  */
append_oa_status(struct i915_perf_stream * stream,struct uio * buf,kauth_cred_t count,int offset,enum drm_i915_perf_record_type type)594 static int append_oa_status(struct i915_perf_stream *stream,
595 #ifdef __NetBSD__
596 			    struct uio *buf,
597 			    kauth_cred_t count, /* XXX dummy */
598 			    int offset,		/* XXX dummy */
599 #else
600 			    char __user *buf,
601 			    size_t count,
602 			    size_t *offset,
603 #endif
604 			    enum drm_i915_perf_record_type type)
605 {
606 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
607 
608 #ifdef __NetBSD__
609 	/* XXX errno NetBSD->Linux */
610 	return -uiomove(&header, sizeof(header), buf);
611 #else
612 	if ((count - *offset) < header.size)
613 		return -ENOSPC;
614 
615 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
616 		return -EFAULT;
617 
618 	(*offset) += header.size;
619 
620 	return 0;
621 #endif
622 }
623 
624 /**
625  * append_oa_sample - Copies single OA report into userspace read() buffer.
626  * @stream: An i915-perf stream opened for OA metrics
627  * @buf: destination buffer given by userspace
628  * @count: the number of bytes userspace wants to read
629  * @offset: (inout): the current position for writing into @buf
630  * @report: A single OA report to (optionally) include as part of the sample
631  *
632  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
633  * properties when opening a stream, tracked as `stream->sample_flags`. This
634  * function copies the requested components of a single sample to the given
635  * read() @buf.
636  *
637  * The @buf @offset will only be updated on success.
638  *
639  * Returns: 0 on success, negative error code on failure.
640  */
append_oa_sample(struct i915_perf_stream * stream,struct uio * buf,kauth_cred_t count,int offset,const u8 * report)641 static int append_oa_sample(struct i915_perf_stream *stream,
642 #ifdef __NetBSD__
643 			    struct uio *buf,
644 			    kauth_cred_t count, /* XXX dummy */
645 			    int offset,		/* XXX dummy */
646 #else
647 			    char __user *buf,
648 			    size_t count,
649 			    size_t *offset,
650 #endif
651 			    const u8 *report)
652 {
653 	int report_size = stream->oa_buffer.format_size;
654 	struct drm_i915_perf_record_header header;
655 	u32 sample_flags = stream->sample_flags;
656 
657 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
658 	header.pad = 0;
659 	header.size = stream->sample_size;
660 
661 #ifdef __NetBSD__
662 	/* XXX errno NetBSD->Linux */
663 	int ret = -uiomove(&header, sizeof(header), buf);
664 	if (ret)
665 		return ret;
666 #else
667 	if ((count - *offset) < header.size)
668 		return -ENOSPC;
669 
670 	buf += *offset;
671 	if (copy_to_user(buf, &header, sizeof(header)))
672 		return -EFAULT;
673 	buf += sizeof(header);
674 #endif
675 
676 	if (sample_flags & SAMPLE_OA_REPORT) {
677 #ifdef __NetBSD__
678 		ret = -uiomove(__UNCONST(report), report_size, buf);
679 		if (ret)
680 			return ret;
681 #else
682 		if (copy_to_user(buf, report, report_size))
683 			return -EFAULT;
684 #endif
685 	}
686 
687 #ifndef __NetBSD__		/* done by uiomove */
688 	(*offset) += header.size;
689 #endif
690 
691 	return 0;
692 }
693 
694 /**
695  * Copies all buffered OA reports into userspace read() buffer.
696  * @stream: An i915-perf stream opened for OA metrics
697  * @buf: destination buffer given by userspace
698  * @count: the number of bytes userspace wants to read
699  * @offset: (inout): the current position for writing into @buf
700  *
701  * Notably any error condition resulting in a short read (-%ENOSPC or
702  * -%EFAULT) will be returned even though one or more records may
703  * have been successfully copied. In this case it's up to the caller
704  * to decide if the error should be squashed before returning to
705  * userspace.
706  *
707  * Note: reports are consumed from the head, and appended to the
708  * tail, so the tail chases the head?... If you think that's mad
709  * and back-to-front you're not alone, but this follows the
710  * Gen PRM naming convention.
711  *
712  * Returns: 0 on success, negative error code on failure.
713  */
714 #ifdef __NetBSD__
gen8_append_oa_reports(struct i915_perf_stream * stream,struct uio * buf,kauth_cred_t count,int offset)715 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
716 				  struct uio *buf,
717 				  kauth_cred_t count, /* XXX dummy */
718 				  int offset)	      /* XXX dummy */
719 #else
720 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
721 				  char __user *buf,
722 				  size_t count,
723 				  size_t *offset)
724 #endif
725 {
726 	struct intel_uncore *uncore = stream->uncore;
727 	int report_size = stream->oa_buffer.format_size;
728 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
729 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
730 	u32 mask = (OA_BUFFER_SIZE - 1);
731 #ifdef __NetBSD__
732 	size_t start_offset = buf->uio_offset;
733 #else
734 	size_t start_offset = *offset;
735 #endif
736 	unsigned long flags;
737 	unsigned int aged_tail_idx;
738 	u32 head, tail;
739 	u32 taken;
740 	int ret = 0;
741 
742 	if (WARN_ON(!stream->enabled))
743 		return -EIO;
744 
745 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
746 
747 	head = stream->oa_buffer.head;
748 	aged_tail_idx = stream->oa_buffer.aged_tail_idx;
749 	tail = stream->oa_buffer.tails[aged_tail_idx].offset;
750 
751 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
752 
753 	/*
754 	 * An invalid tail pointer here means we're still waiting for the poll
755 	 * hrtimer callback to give us a pointer
756 	 */
757 	if (tail == INVALID_TAIL_PTR)
758 		return -EAGAIN;
759 
760 	/*
761 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
762 	 * while indexing relative to oa_buf_base.
763 	 */
764 	head -= gtt_offset;
765 	tail -= gtt_offset;
766 
767 	/*
768 	 * An out of bounds or misaligned head or tail pointer implies a driver
769 	 * bug since we validate + align the tail pointers we read from the
770 	 * hardware and we are in full control of the head pointer which should
771 	 * only be incremented by multiples of the report size (notably also
772 	 * all a power of two).
773 	 */
774 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
775 		      tail > OA_BUFFER_SIZE || tail % report_size,
776 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
777 		      head, tail))
778 		return -EIO;
779 
780 
781 	for (/* none */;
782 	     (taken = OA_TAKEN(tail, head));
783 	     head = (head + report_size) & mask) {
784 		u8 *report = oa_buf_base + head;
785 		u32 *report32 = (void *)report;
786 		u32 ctx_id;
787 		u32 reason;
788 
789 		/*
790 		 * All the report sizes factor neatly into the buffer
791 		 * size so we never expect to see a report split
792 		 * between the beginning and end of the buffer.
793 		 *
794 		 * Given the initial alignment check a misalignment
795 		 * here would imply a driver bug that would result
796 		 * in an overrun.
797 		 */
798 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
799 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
800 			break;
801 		}
802 
803 		/*
804 		 * The reason field includes flags identifying what
805 		 * triggered this specific report (mostly timer
806 		 * triggered or e.g. due to a context switch).
807 		 *
808 		 * This field is never expected to be zero so we can
809 		 * check that the report isn't invalid before copying
810 		 * it to userspace...
811 		 */
812 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
813 			  (IS_GEN(stream->perf->i915, 12) ?
814 			   OAREPORT_REASON_MASK_EXTENDED :
815 			   OAREPORT_REASON_MASK));
816 		if (reason == 0) {
817 			if (__ratelimit(&stream->perf->spurious_report_rs))
818 				DRM_NOTE("Skipping spurious, invalid OA report\n");
819 			continue;
820 		}
821 
822 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
823 
824 		/*
825 		 * Squash whatever is in the CTX_ID field if it's marked as
826 		 * invalid to be sure we avoid false-positive, single-context
827 		 * filtering below...
828 		 *
829 		 * Note: that we don't clear the valid_ctx_bit so userspace can
830 		 * understand that the ID has been squashed by the kernel.
831 		 */
832 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
833 		    INTEL_GEN(stream->perf->i915) <= 11)
834 			ctx_id = report32[2] = INVALID_CTX_ID;
835 
836 		/*
837 		 * NB: For Gen 8 the OA unit no longer supports clock gating
838 		 * off for a specific context and the kernel can't securely
839 		 * stop the counters from updating as system-wide / global
840 		 * values.
841 		 *
842 		 * Automatic reports now include a context ID so reports can be
843 		 * filtered on the cpu but it's not worth trying to
844 		 * automatically subtract/hide counter progress for other
845 		 * contexts while filtering since we can't stop userspace
846 		 * issuing MI_REPORT_PERF_COUNT commands which would still
847 		 * provide a side-band view of the real values.
848 		 *
849 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
850 		 * to normalize counters for a single filtered context then it
851 		 * needs be forwarded bookend context-switch reports so that it
852 		 * can track switches in between MI_REPORT_PERF_COUNT commands
853 		 * and can itself subtract/ignore the progress of counters
854 		 * associated with other contexts. Note that the hardware
855 		 * automatically triggers reports when switching to a new
856 		 * context which are tagged with the ID of the newly active
857 		 * context. To avoid the complexity (and likely fragility) of
858 		 * reading ahead while parsing reports to try and minimize
859 		 * forwarding redundant context switch reports (i.e. between
860 		 * other, unrelated contexts) we simply elect to forward them
861 		 * all.
862 		 *
863 		 * We don't rely solely on the reason field to identify context
864 		 * switches since it's not-uncommon for periodic samples to
865 		 * identify a switch before any 'context switch' report.
866 		 */
867 		if (!stream->perf->exclusive_stream->ctx ||
868 		    stream->specific_ctx_id == ctx_id ||
869 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
870 		    reason & OAREPORT_REASON_CTX_SWITCH) {
871 
872 			/*
873 			 * While filtering for a single context we avoid
874 			 * leaking the IDs of other contexts.
875 			 */
876 			if (stream->perf->exclusive_stream->ctx &&
877 			    stream->specific_ctx_id != ctx_id) {
878 				report32[2] = INVALID_CTX_ID;
879 			}
880 
881 			ret = append_oa_sample(stream, buf, count, offset,
882 					       report);
883 			if (ret)
884 				break;
885 
886 			stream->oa_buffer.last_ctx_id = ctx_id;
887 		}
888 
889 		/*
890 		 * The above reason field sanity check is based on
891 		 * the assumption that the OA buffer is initially
892 		 * zeroed and we reset the field after copying so the
893 		 * check is still meaningful once old reports start
894 		 * being overwritten.
895 		 */
896 		report32[0] = 0;
897 	}
898 
899 #ifdef __NetBSD__
900 	if (start_offset != buf->uio_offset)
901 #else
902 	if (start_offset != *offset)
903 #endif
904 	{
905 		i915_reg_t oaheadptr;
906 
907 		oaheadptr = IS_GEN(stream->perf->i915, 12) ?
908 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
909 
910 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
911 
912 		/*
913 		 * We removed the gtt_offset for the copy loop above, indexing
914 		 * relative to oa_buf_base so put back here...
915 		 */
916 		head += gtt_offset;
917 		intel_uncore_write(uncore, oaheadptr,
918 				   head & GEN12_OAG_OAHEADPTR_MASK);
919 		stream->oa_buffer.head = head;
920 
921 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
922 	}
923 
924 	return ret;
925 }
926 
927 /**
928  * gen8_oa_read - copy status records then buffered OA reports
929  * @stream: An i915-perf stream opened for OA metrics
930  * @buf: destination buffer given by userspace
931  * @count: the number of bytes userspace wants to read
932  * @offset: (inout): the current position for writing into @buf
933  *
934  * Checks OA unit status registers and if necessary appends corresponding
935  * status records for userspace (such as for a buffer full condition) and then
936  * initiate appending any buffered OA reports.
937  *
938  * Updates @offset according to the number of bytes successfully copied into
939  * the userspace buffer.
940  *
941  * NB: some data may be successfully copied to the userspace buffer
942  * even if an error is returned, and this is reflected in the
943  * updated @offset.
944  *
945  * Returns: zero on success or a negative error code
946  */
947 #ifdef __NetBSD__
gen8_oa_read(struct i915_perf_stream * stream,struct uio * buf,kauth_cred_t count,int offset)948 static int gen8_oa_read(struct i915_perf_stream *stream,
949 			struct uio *buf,
950 			kauth_cred_t count,   /* XXX dummy */
951 			int offset)	      /* XXX dummy */
952 #else
953 static int gen8_oa_read(struct i915_perf_stream *stream,
954 			char __user *buf,
955 			size_t count,
956 			size_t *offset)
957 #endif
958 {
959 	struct intel_uncore *uncore = stream->uncore;
960 	u32 oastatus;
961 	i915_reg_t oastatus_reg;
962 	int ret;
963 
964 	if (WARN_ON(!stream->oa_buffer.vaddr))
965 		return -EIO;
966 
967 	oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
968 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
969 
970 	oastatus = intel_uncore_read(uncore, oastatus_reg);
971 
972 	/*
973 	 * We treat OABUFFER_OVERFLOW as a significant error:
974 	 *
975 	 * Although theoretically we could handle this more gracefully
976 	 * sometimes, some Gens don't correctly suppress certain
977 	 * automatically triggered reports in this condition and so we
978 	 * have to assume that old reports are now being trampled
979 	 * over.
980 	 *
981 	 * Considering how we don't currently give userspace control
982 	 * over the OA buffer size and always configure a large 16MB
983 	 * buffer, then a buffer overflow does anyway likely indicate
984 	 * that something has gone quite badly wrong.
985 	 */
986 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
987 		ret = append_oa_status(stream, buf, count, offset,
988 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
989 		if (ret)
990 			return ret;
991 
992 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
993 			  stream->period_exponent);
994 
995 		stream->perf->ops.oa_disable(stream);
996 		stream->perf->ops.oa_enable(stream);
997 
998 		/*
999 		 * Note: .oa_enable() is expected to re-init the oabuffer and
1000 		 * reset GEN8_OASTATUS for us
1001 		 */
1002 		oastatus = intel_uncore_read(uncore, oastatus_reg);
1003 	}
1004 
1005 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
1006 		ret = append_oa_status(stream, buf, count, offset,
1007 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1008 		if (ret)
1009 			return ret;
1010 		intel_uncore_write(uncore, oastatus_reg,
1011 				   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
1012 	}
1013 
1014 	return gen8_append_oa_reports(stream, buf, count, offset);
1015 }
1016 
1017 /**
1018  * Copies all buffered OA reports into userspace read() buffer.
1019  * @stream: An i915-perf stream opened for OA metrics
1020  * @buf: destination buffer given by userspace
1021  * @count: the number of bytes userspace wants to read
1022  * @offset: (inout): the current position for writing into @buf
1023  *
1024  * Notably any error condition resulting in a short read (-%ENOSPC or
1025  * -%EFAULT) will be returned even though one or more records may
1026  * have been successfully copied. In this case it's up to the caller
1027  * to decide if the error should be squashed before returning to
1028  * userspace.
1029  *
1030  * Note: reports are consumed from the head, and appended to the
1031  * tail, so the tail chases the head?... If you think that's mad
1032  * and back-to-front you're not alone, but this follows the
1033  * Gen PRM naming convention.
1034  *
1035  * Returns: 0 on success, negative error code on failure.
1036  */
1037 #ifdef __NetBSD__
gen7_append_oa_reports(struct i915_perf_stream * stream,struct uio * buf,kauth_cred_t count,int offset)1038 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1039 				  struct uio *buf,
1040 				  kauth_cred_t count, /* XXX dummy */
1041 				  int offset)	      /* XXX dummy */
1042 #else
1043 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1044 				  char __user *buf,
1045 				  size_t count,
1046 				  size_t *offset)
1047 #endif
1048 {
1049 	struct intel_uncore *uncore = stream->uncore;
1050 	int report_size = stream->oa_buffer.format_size;
1051 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
1052 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1053 	u32 mask = (OA_BUFFER_SIZE - 1);
1054 #ifdef __NetBSD__
1055 	size_t start_offset = buf->uio_offset;
1056 #else
1057 	size_t start_offset = *offset;
1058 #endif
1059 	unsigned long flags;
1060 	unsigned int aged_tail_idx;
1061 	u32 head, tail;
1062 	u32 taken;
1063 	int ret = 0;
1064 
1065 	if (WARN_ON(!stream->enabled))
1066 		return -EIO;
1067 
1068 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1069 
1070 	head = stream->oa_buffer.head;
1071 	aged_tail_idx = stream->oa_buffer.aged_tail_idx;
1072 	tail = stream->oa_buffer.tails[aged_tail_idx].offset;
1073 
1074 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1075 
1076 	/* An invalid tail pointer here means we're still waiting for the poll
1077 	 * hrtimer callback to give us a pointer
1078 	 */
1079 	if (tail == INVALID_TAIL_PTR)
1080 		return -EAGAIN;
1081 
1082 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1083 	 * while indexing relative to oa_buf_base.
1084 	 */
1085 	head -= gtt_offset;
1086 	tail -= gtt_offset;
1087 
1088 	/* An out of bounds or misaligned head or tail pointer implies a driver
1089 	 * bug since we validate + align the tail pointers we read from the
1090 	 * hardware and we are in full control of the head pointer which should
1091 	 * only be incremented by multiples of the report size (notably also
1092 	 * all a power of two).
1093 	 */
1094 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
1095 		      tail > OA_BUFFER_SIZE || tail % report_size,
1096 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1097 		      head, tail))
1098 		return -EIO;
1099 
1100 
1101 	for (/* none */;
1102 	     (taken = OA_TAKEN(tail, head));
1103 	     head = (head + report_size) & mask) {
1104 		u8 *report = oa_buf_base + head;
1105 		u32 *report32 = (void *)report;
1106 
1107 		/* All the report sizes factor neatly into the buffer
1108 		 * size so we never expect to see a report split
1109 		 * between the beginning and end of the buffer.
1110 		 *
1111 		 * Given the initial alignment check a misalignment
1112 		 * here would imply a driver bug that would result
1113 		 * in an overrun.
1114 		 */
1115 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1116 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1117 			break;
1118 		}
1119 
1120 		/* The report-ID field for periodic samples includes
1121 		 * some undocumented flags related to what triggered
1122 		 * the report and is never expected to be zero so we
1123 		 * can check that the report isn't invalid before
1124 		 * copying it to userspace...
1125 		 */
1126 		if (report32[0] == 0) {
1127 			if (__ratelimit(&stream->perf->spurious_report_rs))
1128 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1129 			continue;
1130 		}
1131 
1132 		ret = append_oa_sample(stream, buf, count, offset, report);
1133 		if (ret)
1134 			break;
1135 
1136 		/* The above report-id field sanity check is based on
1137 		 * the assumption that the OA buffer is initially
1138 		 * zeroed and we reset the field after copying so the
1139 		 * check is still meaningful once old reports start
1140 		 * being overwritten.
1141 		 */
1142 		report32[0] = 0;
1143 	}
1144 
1145 #ifdef __NetBSD__
1146 	if (start_offset != buf->uio_offset)
1147 #else
1148 	if (start_offset != *offset)
1149 #endif
1150 	{
1151 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1152 
1153 		/* We removed the gtt_offset for the copy loop above, indexing
1154 		 * relative to oa_buf_base so put back here...
1155 		 */
1156 		head += gtt_offset;
1157 
1158 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1159 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1160 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1161 		stream->oa_buffer.head = head;
1162 
1163 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1164 	}
1165 
1166 	return ret;
1167 }
1168 
1169 /**
1170  * gen7_oa_read - copy status records then buffered OA reports
1171  * @stream: An i915-perf stream opened for OA metrics
1172  * @buf: destination buffer given by userspace
1173  * @count: the number of bytes userspace wants to read
1174  * @offset: (inout): the current position for writing into @buf
1175  *
1176  * Checks Gen 7 specific OA unit status registers and if necessary appends
1177  * corresponding status records for userspace (such as for a buffer full
1178  * condition) and then initiate appending any buffered OA reports.
1179  *
1180  * Updates @offset according to the number of bytes successfully copied into
1181  * the userspace buffer.
1182  *
1183  * Returns: zero on success or a negative error code
1184  */
1185 #ifdef __NetBSD__
gen7_oa_read(struct i915_perf_stream * stream,struct uio * buf,kauth_cred_t count,int offset)1186 static int gen7_oa_read(struct i915_perf_stream *stream,
1187 			struct uio *buf,
1188 			kauth_cred_t count,   /* XXX dummy */
1189 			int offset)	      /* XXX dummy */
1190 #else
1191 static int gen7_oa_read(struct i915_perf_stream *stream,
1192 			char __user *buf,
1193 			size_t count,
1194 			size_t *offset)
1195 #endif
1196 {
1197 	struct intel_uncore *uncore = stream->uncore;
1198 	u32 oastatus1;
1199 	int ret;
1200 
1201 	if (WARN_ON(!stream->oa_buffer.vaddr))
1202 		return -EIO;
1203 
1204 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1205 
1206 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1207 	 * bits while the OA unit is enabled (while the tail pointer
1208 	 * may be updated asynchronously) so we ignore status bits
1209 	 * that have already been reported to userspace.
1210 	 */
1211 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1212 
1213 	/* We treat OABUFFER_OVERFLOW as a significant error:
1214 	 *
1215 	 * - The status can be interpreted to mean that the buffer is
1216 	 *   currently full (with a higher precedence than OA_TAKEN()
1217 	 *   which will start to report a near-empty buffer after an
1218 	 *   overflow) but it's awkward that we can't clear the status
1219 	 *   on Haswell, so without a reset we won't be able to catch
1220 	 *   the state again.
1221 	 *
1222 	 * - Since it also implies the HW has started overwriting old
1223 	 *   reports it may also affect our sanity checks for invalid
1224 	 *   reports when copying to userspace that assume new reports
1225 	 *   are being written to cleared memory.
1226 	 *
1227 	 * - In the future we may want to introduce a flight recorder
1228 	 *   mode where the driver will automatically maintain a safe
1229 	 *   guard band between head/tail, avoiding this overflow
1230 	 *   condition, but we avoid the added driver complexity for
1231 	 *   now.
1232 	 */
1233 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1234 		ret = append_oa_status(stream, buf, count, offset,
1235 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1236 		if (ret)
1237 			return ret;
1238 
1239 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1240 			  stream->period_exponent);
1241 
1242 		stream->perf->ops.oa_disable(stream);
1243 		stream->perf->ops.oa_enable(stream);
1244 
1245 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1246 	}
1247 
1248 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1249 		ret = append_oa_status(stream, buf, count, offset,
1250 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1251 		if (ret)
1252 			return ret;
1253 		stream->perf->gen7_latched_oastatus1 |=
1254 			GEN7_OASTATUS1_REPORT_LOST;
1255 	}
1256 
1257 	return gen7_append_oa_reports(stream, buf, count, offset);
1258 }
1259 
1260 /**
1261  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1262  * @stream: An i915-perf stream opened for OA metrics
1263  *
1264  * Called when userspace tries to read() from a blocking stream FD opened
1265  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1266  * OA buffer and wakes us.
1267  *
1268  * Note: it's acceptable to have this return with some false positives
1269  * since any subsequent read handling will return -EAGAIN if there isn't
1270  * really data ready for userspace yet.
1271  *
1272  * Returns: zero on success or a negative error code
1273  */
i915_oa_wait_unlocked(struct i915_perf_stream * stream)1274 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1275 {
1276 	unsigned long flags;
1277 	int ret;
1278 
1279 	/* We would wait indefinitely if periodic sampling is not enabled */
1280 	if (!stream->periodic)
1281 		return -EIO;
1282 
1283 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1284 	DRM_SPIN_WAIT_UNTIL(ret, &stream->poll_wq, &stream->oa_buffer.ptr_lock,
1285 	    oa_buffer_check(stream));
1286 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1287 
1288 	return ret;
1289 }
1290 
1291 /**
1292  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1293  * @stream: An i915-perf stream opened for OA metrics
1294  * @file: An i915 perf stream file
1295  * @wait: poll() state table
1296  *
1297  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1298  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1299  * when it sees data ready to read in the circular OA buffer.
1300  */
1301 #ifndef __NetBSD__
i915_oa_poll_wait(struct i915_perf_stream * stream,struct file * file,poll_table * wait)1302 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1303 			      struct file *file,
1304 			      poll_table *wait)
1305 {
1306 	poll_wait(file, &stream->poll_wq, wait);
1307 }
1308 #endif
1309 
1310 /**
1311  * i915_oa_read - just calls through to &i915_oa_ops->read
1312  * @stream: An i915-perf stream opened for OA metrics
1313  * @buf: destination buffer given by userspace
1314  * @count: the number of bytes userspace wants to read
1315  * @offset: (inout): the current position for writing into @buf
1316  *
1317  * Updates @offset according to the number of bytes successfully copied into
1318  * the userspace buffer.
1319  *
1320  * Returns: zero on success or a negative error code
1321  */
1322 #ifdef __NetBSD__
i915_oa_read(struct i915_perf_stream * stream,struct uio * buf,kauth_cred_t count,int offset)1323 static int i915_oa_read(struct i915_perf_stream *stream,
1324 			struct uio *buf,
1325 			kauth_cred_t count,   /* XXX dummy */
1326 			int offset)	      /* XXX dummy */
1327 #else
1328 static int i915_oa_read(struct i915_perf_stream *stream,
1329 			char __user *buf,
1330 			size_t count,
1331 			size_t *offset)
1332 #endif
1333 {
1334 	return stream->perf->ops.read(stream, buf, count, offset);
1335 }
1336 
oa_pin_context(struct i915_perf_stream * stream)1337 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1338 {
1339 	struct i915_gem_engines_iter it;
1340 	struct i915_gem_context *ctx = stream->ctx;
1341 	struct intel_context *ce;
1342 	int err;
1343 
1344 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1345 		if (ce->engine != stream->engine) /* first match! */
1346 			continue;
1347 
1348 		/*
1349 		 * As the ID is the gtt offset of the context's vma we
1350 		 * pin the vma to ensure the ID remains fixed.
1351 		 */
1352 		err = intel_context_pin(ce);
1353 		if (err == 0) {
1354 			stream->pinned_ctx = ce;
1355 			break;
1356 		}
1357 	}
1358 	i915_gem_context_unlock_engines(ctx);
1359 
1360 	return stream->pinned_ctx;
1361 }
1362 
1363 /**
1364  * oa_get_render_ctx_id - determine and hold ctx hw id
1365  * @stream: An i915-perf stream opened for OA metrics
1366  *
1367  * Determine the render context hw id, and ensure it remains fixed for the
1368  * lifetime of the stream. This ensures that we don't have to worry about
1369  * updating the context ID in OACONTROL on the fly.
1370  *
1371  * Returns: zero on success or a negative error code
1372  */
oa_get_render_ctx_id(struct i915_perf_stream * stream)1373 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1374 {
1375 	struct intel_context *ce;
1376 
1377 	ce = oa_pin_context(stream);
1378 	if (IS_ERR(ce))
1379 		return PTR_ERR(ce);
1380 
1381 	switch (INTEL_GEN(ce->engine->i915)) {
1382 	case 7: {
1383 		/*
1384 		 * On Haswell we don't do any post processing of the reports
1385 		 * and don't need to use the mask.
1386 		 */
1387 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1388 		stream->specific_ctx_id_mask = 0;
1389 		break;
1390 	}
1391 
1392 	case 8:
1393 	case 9:
1394 	case 10:
1395 		if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1396 			stream->specific_ctx_id_mask =
1397 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1398 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1399 		} else {
1400 			/*
1401 			 * When using GuC, the context descriptor we write in
1402 			 * i915 is read by GuC and rewritten before it's
1403 			 * actually written into the hardware. The LRCA is
1404 			 * what is put into the context id field of the
1405 			 * context descriptor by GuC. Because it's aligned to
1406 			 * a page, the lower 12bits are always at 0 and
1407 			 * dropped by GuC. They won't be part of the context
1408 			 * ID in the OA reports, so squash those lower bits.
1409 			 */
1410 			stream->specific_ctx_id =
1411 				lower_32_bits(ce->lrc_desc) >> 12;
1412 
1413 			/*
1414 			 * GuC uses the top bit to signal proxy submission, so
1415 			 * ignore that bit.
1416 			 */
1417 			stream->specific_ctx_id_mask =
1418 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1419 		}
1420 		break;
1421 
1422 	case 11:
1423 	case 12: {
1424 		stream->specific_ctx_id_mask =
1425 			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1426 		stream->specific_ctx_id = stream->specific_ctx_id_mask;
1427 		break;
1428 	}
1429 
1430 	default:
1431 		MISSING_CASE(INTEL_GEN(ce->engine->i915));
1432 	}
1433 
1434 	ce->tag = stream->specific_ctx_id_mask;
1435 
1436 	DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1437 			 stream->specific_ctx_id,
1438 			 stream->specific_ctx_id_mask);
1439 
1440 	return 0;
1441 }
1442 
1443 /**
1444  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1445  * @stream: An i915-perf stream opened for OA metrics
1446  *
1447  * In case anything needed doing to ensure the context HW ID would remain valid
1448  * for the lifetime of the stream, then that can be undone here.
1449  */
oa_put_render_ctx_id(struct i915_perf_stream * stream)1450 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1451 {
1452 	struct intel_context *ce;
1453 
1454 	ce = fetch_and_zero(&stream->pinned_ctx);
1455 	if (ce) {
1456 		ce->tag = 0; /* recomputed on next submission after parking */
1457 		intel_context_unpin(ce);
1458 	}
1459 
1460 	stream->specific_ctx_id = INVALID_CTX_ID;
1461 	stream->specific_ctx_id_mask = 0;
1462 }
1463 
1464 static void
free_oa_buffer(struct i915_perf_stream * stream)1465 free_oa_buffer(struct i915_perf_stream *stream)
1466 {
1467 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1468 				   I915_VMA_RELEASE_MAP);
1469 
1470 	stream->oa_buffer.vaddr = NULL;
1471 }
1472 
1473 static void
free_oa_configs(struct i915_perf_stream * stream)1474 free_oa_configs(struct i915_perf_stream *stream)
1475 {
1476 	struct i915_oa_config_bo *oa_bo, *tmp;
1477 
1478 	i915_oa_config_put(stream->oa_config);
1479 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1480 		free_oa_config_bo(oa_bo);
1481 }
1482 
1483 static void
free_noa_wait(struct i915_perf_stream * stream)1484 free_noa_wait(struct i915_perf_stream *stream)
1485 {
1486 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1487 }
1488 
i915_oa_stream_destroy(struct i915_perf_stream * stream)1489 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1490 {
1491 	struct i915_perf *perf = stream->perf;
1492 
1493 	BUG_ON(stream != perf->exclusive_stream);
1494 
1495 	spin_lock_destroy(&stream->oa_buffer.ptr_lock);
1496 	seldestroy(&stream->poll_selq);
1497 	DRM_DESTROY_WAITQUEUE(&stream->poll_wq);
1498 	hrtimer_cancel(&stream->poll_check_timer);
1499 
1500 	/*
1501 	 * Unset exclusive_stream first, it will be checked while disabling
1502 	 * the metric set on gen8+.
1503 	 */
1504 	perf->exclusive_stream = NULL;
1505 	perf->ops.disable_metric_set(stream);
1506 
1507 	free_oa_buffer(stream);
1508 
1509 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1510 	intel_engine_pm_put(stream->engine);
1511 
1512 	if (stream->ctx)
1513 		oa_put_render_ctx_id(stream);
1514 
1515 	free_oa_configs(stream);
1516 	free_noa_wait(stream);
1517 
1518 	if (perf->spurious_report_rs.missed) {
1519 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1520 			 perf->spurious_report_rs.missed);
1521 	}
1522 }
1523 
gen7_init_oa_buffer(struct i915_perf_stream * stream)1524 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1525 {
1526 	struct intel_uncore *uncore = stream->uncore;
1527 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1528 	unsigned long flags;
1529 
1530 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1531 
1532 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1533 	 * before OASTATUS1, but after OASTATUS2
1534 	 */
1535 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1536 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1537 	stream->oa_buffer.head = gtt_offset;
1538 
1539 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1540 
1541 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1542 			   gtt_offset | OABUFFER_SIZE_16M);
1543 
1544 	/* Mark that we need updated tail pointers to read from... */
1545 	stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1546 	stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1547 
1548 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1549 
1550 	/* On Haswell we have to track which OASTATUS1 flags we've
1551 	 * already seen since they can't be cleared while periodic
1552 	 * sampling is enabled.
1553 	 */
1554 	stream->perf->gen7_latched_oastatus1 = 0;
1555 
1556 	/* NB: although the OA buffer will initially be allocated
1557 	 * zeroed via shmfs (and so this memset is redundant when
1558 	 * first allocating), we may re-init the OA buffer, either
1559 	 * when re-enabling a stream or in error/reset paths.
1560 	 *
1561 	 * The reason we clear the buffer for each re-init is for the
1562 	 * sanity check in gen7_append_oa_reports() that looks at the
1563 	 * report-id field to make sure it's non-zero which relies on
1564 	 * the assumption that new reports are being written to zeroed
1565 	 * memory...
1566 	 */
1567 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1568 
1569 	stream->pollin = false;
1570 }
1571 
gen8_init_oa_buffer(struct i915_perf_stream * stream)1572 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1573 {
1574 	struct intel_uncore *uncore = stream->uncore;
1575 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1576 	unsigned long flags;
1577 
1578 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1579 
1580 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1581 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1582 	stream->oa_buffer.head = gtt_offset;
1583 
1584 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1585 
1586 	/*
1587 	 * PRM says:
1588 	 *
1589 	 *  "This MMIO must be set before the OATAILPTR
1590 	 *  register and after the OAHEADPTR register. This is
1591 	 *  to enable proper functionality of the overflow
1592 	 *  bit."
1593 	 */
1594 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1595 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1596 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1597 
1598 	/* Mark that we need updated tail pointers to read from... */
1599 	stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1600 	stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1601 
1602 	/*
1603 	 * Reset state used to recognise context switches, affecting which
1604 	 * reports we will forward to userspace while filtering for a single
1605 	 * context.
1606 	 */
1607 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1608 
1609 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1610 
1611 	/*
1612 	 * NB: although the OA buffer will initially be allocated
1613 	 * zeroed via shmfs (and so this memset is redundant when
1614 	 * first allocating), we may re-init the OA buffer, either
1615 	 * when re-enabling a stream or in error/reset paths.
1616 	 *
1617 	 * The reason we clear the buffer for each re-init is for the
1618 	 * sanity check in gen8_append_oa_reports() that looks at the
1619 	 * reason field to make sure it's non-zero which relies on
1620 	 * the assumption that new reports are being written to zeroed
1621 	 * memory...
1622 	 */
1623 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1624 
1625 	stream->pollin = false;
1626 }
1627 
gen12_init_oa_buffer(struct i915_perf_stream * stream)1628 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1629 {
1630 	struct intel_uncore *uncore = stream->uncore;
1631 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1632 	unsigned long flags;
1633 
1634 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1635 
1636 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1637 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1638 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1639 	stream->oa_buffer.head = gtt_offset;
1640 
1641 	/*
1642 	 * PRM says:
1643 	 *
1644 	 *  "This MMIO must be set before the OATAILPTR
1645 	 *  register and after the OAHEADPTR register. This is
1646 	 *  to enable proper functionality of the overflow
1647 	 *  bit."
1648 	 */
1649 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1650 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1651 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1652 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1653 
1654 	/* Mark that we need updated tail pointers to read from... */
1655 	stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1656 	stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1657 
1658 	/*
1659 	 * Reset state used to recognise context switches, affecting which
1660 	 * reports we will forward to userspace while filtering for a single
1661 	 * context.
1662 	 */
1663 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1664 
1665 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1666 
1667 	/*
1668 	 * NB: although the OA buffer will initially be allocated
1669 	 * zeroed via shmfs (and so this memset is redundant when
1670 	 * first allocating), we may re-init the OA buffer, either
1671 	 * when re-enabling a stream or in error/reset paths.
1672 	 *
1673 	 * The reason we clear the buffer for each re-init is for the
1674 	 * sanity check in gen8_append_oa_reports() that looks at the
1675 	 * reason field to make sure it's non-zero which relies on
1676 	 * the assumption that new reports are being written to zeroed
1677 	 * memory...
1678 	 */
1679 	memset(stream->oa_buffer.vaddr, 0,
1680 	       stream->oa_buffer.vma->size);
1681 
1682 	stream->pollin = false;
1683 }
1684 
alloc_oa_buffer(struct i915_perf_stream * stream)1685 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1686 {
1687 	struct drm_i915_gem_object *bo;
1688 	struct i915_vma *vma;
1689 	int ret;
1690 
1691 	if (WARN_ON(stream->oa_buffer.vma))
1692 		return -ENODEV;
1693 
1694 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1695 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1696 
1697 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1698 	if (IS_ERR(bo)) {
1699 		DRM_ERROR("Failed to allocate OA buffer\n");
1700 		return PTR_ERR(bo);
1701 	}
1702 
1703 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1704 
1705 	/* PreHSW required 512K alignment, HSW requires 16M */
1706 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1707 	if (IS_ERR(vma)) {
1708 		ret = PTR_ERR(vma);
1709 		goto err_unref;
1710 	}
1711 	stream->oa_buffer.vma = vma;
1712 
1713 	stream->oa_buffer.vaddr =
1714 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1715 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1716 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1717 		goto err_unpin;
1718 	}
1719 
1720 	return 0;
1721 
1722 err_unpin:
1723 	__i915_vma_unpin(vma);
1724 
1725 err_unref:
1726 	i915_gem_object_put(bo);
1727 
1728 	stream->oa_buffer.vaddr = NULL;
1729 	stream->oa_buffer.vma = NULL;
1730 
1731 	return ret;
1732 }
1733 
save_restore_register(struct i915_perf_stream * stream,u32 * cs,bool save,i915_reg_t reg,u32 offset,u32 dword_count)1734 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1735 				  bool save, i915_reg_t reg, u32 offset,
1736 				  u32 dword_count)
1737 {
1738 	u32 cmd;
1739 	u32 d;
1740 
1741 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1742 	if (INTEL_GEN(stream->perf->i915) >= 8)
1743 		cmd++;
1744 
1745 	for (d = 0; d < dword_count; d++) {
1746 		*cs++ = cmd;
1747 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1748 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1749 						offset) + 4 * d;
1750 		*cs++ = 0;
1751 	}
1752 
1753 	return cs;
1754 }
1755 
alloc_noa_wait(struct i915_perf_stream * stream)1756 static int alloc_noa_wait(struct i915_perf_stream *stream)
1757 {
1758 	struct drm_i915_private *i915 = stream->perf->i915;
1759 	struct drm_i915_gem_object *bo;
1760 	struct i915_vma *vma;
1761 	const u64 delay_ticks = 0xffffffffffffffff -
1762 		DIV64_U64_ROUND_UP(
1763 			atomic64_read(&stream->perf->noa_programming_delay) *
1764 			RUNTIME_INFO(i915)->cs_timestamp_frequency_khz,
1765 			1000000ull);
1766 	const u32 base = stream->engine->mmio_base;
1767 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1768 	u32 *batch, *ts0, *cs, *jump;
1769 	int ret, i;
1770 	enum {
1771 		START_TS,
1772 		NOW_TS,
1773 		DELTA_TS,
1774 		JUMP_PREDICATE,
1775 		DELTA_TARGET,
1776 		N_CS_GPR
1777 	};
1778 
1779 	bo = i915_gem_object_create_internal(i915, 4096);
1780 	if (IS_ERR(bo)) {
1781 		DRM_ERROR("Failed to allocate NOA wait batchbuffer\n");
1782 		return PTR_ERR(bo);
1783 	}
1784 
1785 	/*
1786 	 * We pin in GGTT because we jump into this buffer now because
1787 	 * multiple OA config BOs will have a jump to this address and it
1788 	 * needs to be fixed during the lifetime of the i915/perf stream.
1789 	 */
1790 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1791 	if (IS_ERR(vma)) {
1792 		ret = PTR_ERR(vma);
1793 		goto err_unref;
1794 	}
1795 
1796 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1797 	if (IS_ERR(batch)) {
1798 		ret = PTR_ERR(batch);
1799 		goto err_unpin;
1800 	}
1801 
1802 	/* Save registers. */
1803 	for (i = 0; i < N_CS_GPR; i++)
1804 		cs = save_restore_register(
1805 			stream, cs, true /* save */, CS_GPR(i),
1806 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1807 	cs = save_restore_register(
1808 		stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1809 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1810 
1811 	/* First timestamp snapshot location. */
1812 	ts0 = cs;
1813 
1814 	/*
1815 	 * Initial snapshot of the timestamp register to implement the wait.
1816 	 * We work with 32b values, so clear out the top 32b bits of the
1817 	 * register because the ALU works 64bits.
1818 	 */
1819 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1820 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1821 	*cs++ = 0;
1822 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1823 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1824 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1825 
1826 	/*
1827 	 * This is the location we're going to jump back into until the
1828 	 * required amount of time has passed.
1829 	 */
1830 	jump = cs;
1831 
1832 	/*
1833 	 * Take another snapshot of the timestamp register. Take care to clear
1834 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1835 	 * operations below.
1836 	 */
1837 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1838 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1839 	*cs++ = 0;
1840 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1841 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1842 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1843 
1844 	/*
1845 	 * Do a diff between the 2 timestamps and store the result back into
1846 	 * CS_GPR(1).
1847 	 */
1848 	*cs++ = MI_MATH(5);
1849 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1850 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1851 	*cs++ = MI_MATH_SUB;
1852 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1853 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1854 
1855 	/*
1856 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1857 	 * timestamp have rolled over the 32bits) into the predicate register
1858 	 * to be used for the predicated jump.
1859 	 */
1860 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1861 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1862 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1863 
1864 	/* Restart from the beginning if we had timestamps roll over. */
1865 	*cs++ = (INTEL_GEN(i915) < 8 ?
1866 		 MI_BATCH_BUFFER_START :
1867 		 MI_BATCH_BUFFER_START_GEN8) |
1868 		MI_BATCH_PREDICATE;
1869 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1870 	*cs++ = 0;
1871 
1872 	/*
1873 	 * Now add the diff between to previous timestamps and add it to :
1874 	 *      (((1 * << 64) - 1) - delay_ns)
1875 	 *
1876 	 * When the Carry Flag contains 1 this means the elapsed time is
1877 	 * longer than the expected delay, and we can exit the wait loop.
1878 	 */
1879 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1880 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1881 	*cs++ = lower_32_bits(delay_ticks);
1882 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1883 	*cs++ = upper_32_bits(delay_ticks);
1884 
1885 	*cs++ = MI_MATH(4);
1886 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1887 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1888 	*cs++ = MI_MATH_ADD;
1889 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1890 
1891 	*cs++ = MI_ARB_CHECK;
1892 
1893 	/*
1894 	 * Transfer the result into the predicate register to be used for the
1895 	 * predicated jump.
1896 	 */
1897 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1898 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1899 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1900 
1901 	/* Predicate the jump.  */
1902 	*cs++ = (INTEL_GEN(i915) < 8 ?
1903 		 MI_BATCH_BUFFER_START :
1904 		 MI_BATCH_BUFFER_START_GEN8) |
1905 		MI_BATCH_PREDICATE;
1906 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1907 	*cs++ = 0;
1908 
1909 	/* Restore registers. */
1910 	for (i = 0; i < N_CS_GPR; i++)
1911 		cs = save_restore_register(
1912 			stream, cs, false /* restore */, CS_GPR(i),
1913 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1914 	cs = save_restore_register(
1915 		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1916 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1917 
1918 	/* And return to the ring. */
1919 	*cs++ = MI_BATCH_BUFFER_END;
1920 
1921 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1922 
1923 	i915_gem_object_flush_map(bo);
1924 	i915_gem_object_unpin_map(bo);
1925 
1926 	stream->noa_wait = vma;
1927 	return 0;
1928 
1929 err_unpin:
1930 	i915_vma_unpin_and_release(&vma, 0);
1931 err_unref:
1932 	i915_gem_object_put(bo);
1933 	return ret;
1934 }
1935 
write_cs_mi_lri(u32 * cs,const struct i915_oa_reg * reg_data,u32 n_regs)1936 static u32 *write_cs_mi_lri(u32 *cs,
1937 			    const struct i915_oa_reg *reg_data,
1938 			    u32 n_regs)
1939 {
1940 	u32 i;
1941 
1942 	for (i = 0; i < n_regs; i++) {
1943 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1944 			u32 n_lri = min_t(u32,
1945 					  n_regs - i,
1946 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1947 
1948 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1949 		}
1950 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1951 		*cs++ = reg_data[i].value;
1952 	}
1953 
1954 	return cs;
1955 }
1956 
num_lri_dwords(int num_regs)1957 static int num_lri_dwords(int num_regs)
1958 {
1959 	int count = 0;
1960 
1961 	if (num_regs > 0) {
1962 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1963 		count += num_regs * 2;
1964 	}
1965 
1966 	return count;
1967 }
1968 
1969 static struct i915_oa_config_bo *
alloc_oa_config_buffer(struct i915_perf_stream * stream,struct i915_oa_config * oa_config)1970 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1971 		       struct i915_oa_config *oa_config)
1972 {
1973 	struct drm_i915_gem_object *obj;
1974 	struct i915_oa_config_bo *oa_bo;
1975 	size_t config_length = 0;
1976 	u32 *cs;
1977 	int err;
1978 
1979 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1980 	if (!oa_bo)
1981 		return ERR_PTR(-ENOMEM);
1982 
1983 	config_length += num_lri_dwords(oa_config->mux_regs_len);
1984 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1985 	config_length += num_lri_dwords(oa_config->flex_regs_len);
1986 	config_length += 3; /* MI_BATCH_BUFFER_START */
1987 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1988 
1989 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1990 	if (IS_ERR(obj)) {
1991 		err = PTR_ERR(obj);
1992 		goto err_free;
1993 	}
1994 
1995 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1996 	if (IS_ERR(cs)) {
1997 		err = PTR_ERR(cs);
1998 		goto err_oa_bo;
1999 	}
2000 
2001 	cs = write_cs_mi_lri(cs,
2002 			     oa_config->mux_regs,
2003 			     oa_config->mux_regs_len);
2004 	cs = write_cs_mi_lri(cs,
2005 			     oa_config->b_counter_regs,
2006 			     oa_config->b_counter_regs_len);
2007 	cs = write_cs_mi_lri(cs,
2008 			     oa_config->flex_regs,
2009 			     oa_config->flex_regs_len);
2010 
2011 	/* Jump into the active wait. */
2012 	*cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
2013 		 MI_BATCH_BUFFER_START :
2014 		 MI_BATCH_BUFFER_START_GEN8);
2015 	*cs++ = i915_ggtt_offset(stream->noa_wait);
2016 	*cs++ = 0;
2017 
2018 	i915_gem_object_flush_map(obj);
2019 	i915_gem_object_unpin_map(obj);
2020 
2021 	oa_bo->vma = i915_vma_instance(obj,
2022 				       &stream->engine->gt->ggtt->vm,
2023 				       NULL);
2024 	if (IS_ERR(oa_bo->vma)) {
2025 		err = PTR_ERR(oa_bo->vma);
2026 		goto err_oa_bo;
2027 	}
2028 
2029 	oa_bo->oa_config = i915_oa_config_get(oa_config);
2030 	llist_add(&oa_bo->node, &stream->oa_config_bos);
2031 
2032 	return oa_bo;
2033 
2034 err_oa_bo:
2035 	i915_gem_object_put(obj);
2036 err_free:
2037 	kfree(oa_bo);
2038 	return ERR_PTR(err);
2039 }
2040 
2041 static struct i915_vma *
get_oa_vma(struct i915_perf_stream * stream,struct i915_oa_config * oa_config)2042 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2043 {
2044 	struct i915_oa_config_bo *oa_bo;
2045 
2046 	/*
2047 	 * Look for the buffer in the already allocated BOs attached
2048 	 * to the stream.
2049 	 */
2050 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2051 		if (oa_bo->oa_config == oa_config &&
2052 		    memcmp(oa_bo->oa_config->uuid,
2053 			   oa_config->uuid,
2054 			   sizeof(oa_config->uuid)) == 0)
2055 			goto out;
2056 	}
2057 
2058 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2059 	if (IS_ERR(oa_bo))
2060 		return ERR_CAST(oa_bo);
2061 
2062 out:
2063 	return i915_vma_get(oa_bo->vma);
2064 }
2065 
emit_oa_config(struct i915_perf_stream * stream,struct i915_oa_config * oa_config,struct intel_context * ce)2066 static int emit_oa_config(struct i915_perf_stream *stream,
2067 			  struct i915_oa_config *oa_config,
2068 			  struct intel_context *ce)
2069 {
2070 	struct i915_request *rq;
2071 	struct i915_vma *vma;
2072 	int err;
2073 
2074 	vma = get_oa_vma(stream, oa_config);
2075 	if (IS_ERR(vma))
2076 		return PTR_ERR(vma);
2077 
2078 	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2079 	if (err)
2080 		goto err_vma_put;
2081 
2082 	intel_engine_pm_get(ce->engine);
2083 	rq = i915_request_create(ce);
2084 	intel_engine_pm_put(ce->engine);
2085 	if (IS_ERR(rq)) {
2086 		err = PTR_ERR(rq);
2087 		goto err_vma_unpin;
2088 	}
2089 
2090 	i915_vma_lock(vma);
2091 	err = i915_request_await_object(rq, vma->obj, 0);
2092 	if (!err)
2093 		err = i915_vma_move_to_active(vma, rq, 0);
2094 	i915_vma_unlock(vma);
2095 	if (err)
2096 		goto err_add_request;
2097 
2098 	err = rq->engine->emit_bb_start(rq,
2099 					vma->node.start, 0,
2100 					I915_DISPATCH_SECURE);
2101 err_add_request:
2102 	i915_request_add(rq);
2103 err_vma_unpin:
2104 	i915_vma_unpin(vma);
2105 err_vma_put:
2106 	i915_vma_put(vma);
2107 	return err;
2108 }
2109 
oa_context(struct i915_perf_stream * stream)2110 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2111 {
2112 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2113 }
2114 
hsw_enable_metric_set(struct i915_perf_stream * stream)2115 static int hsw_enable_metric_set(struct i915_perf_stream *stream)
2116 {
2117 	struct intel_uncore *uncore = stream->uncore;
2118 
2119 	/*
2120 	 * PRM:
2121 	 *
2122 	 * OA unit is using “crclk” for its functionality. When trunk
2123 	 * level clock gating takes place, OA clock would be gated,
2124 	 * unable to count the events from non-render clock domain.
2125 	 * Render clock gating must be disabled when OA is enabled to
2126 	 * count the events from non-render domain. Unit level clock
2127 	 * gating for RCS should also be disabled.
2128 	 */
2129 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2130 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2131 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2132 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2133 
2134 	return emit_oa_config(stream, stream->oa_config, oa_context(stream));
2135 }
2136 
hsw_disable_metric_set(struct i915_perf_stream * stream)2137 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2138 {
2139 	struct intel_uncore *uncore = stream->uncore;
2140 
2141 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2142 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2143 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2144 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2145 
2146 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2147 }
2148 
oa_config_flex_reg(const struct i915_oa_config * oa_config,i915_reg_t reg)2149 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2150 			      i915_reg_t reg)
2151 {
2152 	u32 mmio = i915_mmio_reg_offset(reg);
2153 	int i;
2154 
2155 	/*
2156 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2157 	 * Active' event. In the future it's anticipated that there
2158 	 * will be an explicit 'No Event' we can select, but not yet...
2159 	 */
2160 	if (!oa_config)
2161 		return 0;
2162 
2163 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2164 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2165 			return oa_config->flex_regs[i].value;
2166 	}
2167 
2168 	return 0;
2169 }
2170 /*
2171  * NB: It must always remain pointer safe to run this even if the OA unit
2172  * has been disabled.
2173  *
2174  * It's fine to put out-of-date values into these per-context registers
2175  * in the case that the OA unit has been disabled.
2176  */
2177 static void
gen8_update_reg_state_unlocked(const struct intel_context * ce,const struct i915_perf_stream * stream)2178 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2179 			       const struct i915_perf_stream *stream)
2180 {
2181 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2182 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2183 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2184 	i915_reg_t flex_regs[] = {
2185 		EU_PERF_CNTL0,
2186 		EU_PERF_CNTL1,
2187 		EU_PERF_CNTL2,
2188 		EU_PERF_CNTL3,
2189 		EU_PERF_CNTL4,
2190 		EU_PERF_CNTL5,
2191 		EU_PERF_CNTL6,
2192 	};
2193 	u32 *reg_state = ce->lrc_reg_state;
2194 	int i;
2195 
2196 	reg_state[ctx_oactxctrl + 1] =
2197 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2198 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2199 		GEN8_OA_COUNTER_RESUME;
2200 
2201 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2202 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2203 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2204 
2205 	reg_state[CTX_R_PWR_CLK_STATE] =
2206 		intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu);
2207 }
2208 
2209 struct flex {
2210 	i915_reg_t reg;
2211 	u32 offset;
2212 	u32 value;
2213 };
2214 
2215 static int
gen8_store_flex(struct i915_request * rq,struct intel_context * ce,const struct flex * flex,unsigned int count)2216 gen8_store_flex(struct i915_request *rq,
2217 		struct intel_context *ce,
2218 		const struct flex *flex, unsigned int count)
2219 {
2220 	u32 offset;
2221 	u32 *cs;
2222 
2223 	cs = intel_ring_begin(rq, 4 * count);
2224 	if (IS_ERR(cs))
2225 		return PTR_ERR(cs);
2226 
2227 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
2228 	do {
2229 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2230 		*cs++ = offset + flex->offset * sizeof(u32);
2231 		*cs++ = 0;
2232 		*cs++ = flex->value;
2233 	} while (flex++, --count);
2234 
2235 	intel_ring_advance(rq, cs);
2236 
2237 	return 0;
2238 }
2239 
2240 static int
gen8_load_flex(struct i915_request * rq,struct intel_context * ce,const struct flex * flex,unsigned int count)2241 gen8_load_flex(struct i915_request *rq,
2242 	       struct intel_context *ce,
2243 	       const struct flex *flex, unsigned int count)
2244 {
2245 	u32 *cs;
2246 
2247 	GEM_BUG_ON(!count || count > 63);
2248 
2249 	cs = intel_ring_begin(rq, 2 * count + 2);
2250 	if (IS_ERR(cs))
2251 		return PTR_ERR(cs);
2252 
2253 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2254 	do {
2255 		*cs++ = i915_mmio_reg_offset(flex->reg);
2256 		*cs++ = flex->value;
2257 	} while (flex++, --count);
2258 	*cs++ = MI_NOOP;
2259 
2260 	intel_ring_advance(rq, cs);
2261 
2262 	return 0;
2263 }
2264 
gen8_modify_context(struct intel_context * ce,const struct flex * flex,unsigned int count)2265 static int gen8_modify_context(struct intel_context *ce,
2266 			       const struct flex *flex, unsigned int count)
2267 {
2268 	struct i915_request *rq;
2269 	int err;
2270 
2271 	rq = intel_engine_create_kernel_request(ce->engine);
2272 	if (IS_ERR(rq))
2273 		return PTR_ERR(rq);
2274 
2275 	/* Serialise with the remote context */
2276 	err = intel_context_prepare_remote_request(ce, rq);
2277 	if (err == 0)
2278 		err = gen8_store_flex(rq, ce, flex, count);
2279 
2280 	i915_request_add(rq);
2281 	return err;
2282 }
2283 
gen8_modify_self(struct intel_context * ce,const struct flex * flex,unsigned int count)2284 static int gen8_modify_self(struct intel_context *ce,
2285 			    const struct flex *flex, unsigned int count)
2286 {
2287 	struct i915_request *rq;
2288 	int err;
2289 
2290 	rq = i915_request_create(ce);
2291 	if (IS_ERR(rq))
2292 		return PTR_ERR(rq);
2293 
2294 	err = gen8_load_flex(rq, ce, flex, count);
2295 
2296 	i915_request_add(rq);
2297 	return err;
2298 }
2299 
gen8_configure_context(struct i915_gem_context * ctx,struct flex * flex,unsigned int count)2300 static int gen8_configure_context(struct i915_gem_context *ctx,
2301 				  struct flex *flex, unsigned int count)
2302 {
2303 	struct i915_gem_engines_iter it;
2304 	struct intel_context *ce;
2305 	int err = 0;
2306 
2307 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2308 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2309 
2310 		if (ce->engine->class != RENDER_CLASS)
2311 			continue;
2312 
2313 		/* Otherwise OA settings will be set upon first use */
2314 		if (!intel_context_pin_if_active(ce))
2315 			continue;
2316 
2317 		flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
2318 		err = gen8_modify_context(ce, flex, count);
2319 
2320 		intel_context_unpin(ce);
2321 		if (err)
2322 			break;
2323 	}
2324 	i915_gem_context_unlock_engines(ctx);
2325 
2326 	return err;
2327 }
2328 
gen12_configure_oar_context(struct i915_perf_stream * stream,bool enable)2329 static int gen12_configure_oar_context(struct i915_perf_stream *stream, bool enable)
2330 {
2331 	int err;
2332 	struct intel_context *ce = stream->pinned_ctx;
2333 	u32 format = stream->oa_buffer.format;
2334 	struct flex regs_context[] = {
2335 		{
2336 			GEN8_OACTXCONTROL,
2337 			stream->perf->ctx_oactxctrl_offset + 1,
2338 			enable ? GEN8_OA_COUNTER_RESUME : 0,
2339 		},
2340 	};
2341 	/* Offsets in regs_lri are not used since this configuration is only
2342 	 * applied using LRI. Initialize the correct offsets for posterity.
2343 	 */
2344 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2345 	struct flex regs_lri[] = {
2346 		{
2347 			GEN12_OAR_OACONTROL,
2348 			GEN12_OAR_OACONTROL_OFFSET + 1,
2349 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2350 			(enable ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2351 		},
2352 		{
2353 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2354 			CTX_CONTEXT_CONTROL,
2355 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2356 				      enable ?
2357 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2358 				      0)
2359 		},
2360 	};
2361 
2362 	/* Modify the context image of pinned context with regs_context*/
2363 	err = intel_context_lock_pinned(ce);
2364 	if (err)
2365 		return err;
2366 
2367 	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2368 	intel_context_unlock_pinned(ce);
2369 	if (err)
2370 		return err;
2371 
2372 	/* Apply regs_lri using LRI with pinned context */
2373 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri));
2374 }
2375 
2376 /*
2377  * Manages updating the per-context aspects of the OA stream
2378  * configuration across all contexts.
2379  *
2380  * The awkward consideration here is that OACTXCONTROL controls the
2381  * exponent for periodic sampling which is primarily used for system
2382  * wide profiling where we'd like a consistent sampling period even in
2383  * the face of context switches.
2384  *
2385  * Our approach of updating the register state context (as opposed to
2386  * say using a workaround batch buffer) ensures that the hardware
2387  * won't automatically reload an out-of-date timer exponent even
2388  * transiently before a WA BB could be parsed.
2389  *
2390  * This function needs to:
2391  * - Ensure the currently running context's per-context OA state is
2392  *   updated
2393  * - Ensure that all existing contexts will have the correct per-context
2394  *   OA state if they are scheduled for use.
2395  * - Ensure any new contexts will be initialized with the correct
2396  *   per-context OA state.
2397  *
2398  * Note: it's only the RCS/Render context that has any OA state.
2399  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2400  */
oa_configure_all_contexts(struct i915_perf_stream * stream,struct flex * regs,size_t num_regs)2401 static int oa_configure_all_contexts(struct i915_perf_stream *stream,
2402 				     struct flex *regs,
2403 				     size_t num_regs)
2404 {
2405 	struct drm_i915_private *i915 = stream->perf->i915;
2406 	struct intel_engine_cs *engine;
2407 	struct i915_gem_context *ctx, *cn;
2408 	int err;
2409 
2410 	lockdep_assert_held(&stream->perf->lock);
2411 
2412 	/*
2413 	 * The OA register config is setup through the context image. This image
2414 	 * might be written to by the GPU on context switch (in particular on
2415 	 * lite-restore). This means we can't safely update a context's image,
2416 	 * if this context is scheduled/submitted to run on the GPU.
2417 	 *
2418 	 * We could emit the OA register config through the batch buffer but
2419 	 * this might leave small interval of time where the OA unit is
2420 	 * configured at an invalid sampling period.
2421 	 *
2422 	 * Note that since we emit all requests from a single ring, there
2423 	 * is still an implicit global barrier here that may cause a high
2424 	 * priority context to wait for an otherwise independent low priority
2425 	 * context. Contexts idle at the time of reconfiguration are not
2426 	 * trapped behind the barrier.
2427 	 */
2428 	spin_lock(&i915->gem.contexts.lock);
2429 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2430 		if (!kref_get_unless_zero(&ctx->ref))
2431 			continue;
2432 
2433 		spin_unlock(&i915->gem.contexts.lock);
2434 
2435 		err = gen8_configure_context(ctx, regs, num_regs);
2436 		if (err) {
2437 			i915_gem_context_put(ctx);
2438 			return err;
2439 		}
2440 
2441 		spin_lock(&i915->gem.contexts.lock);
2442 		list_safe_reset_next(ctx, cn, link);
2443 		i915_gem_context_put(ctx);
2444 	}
2445 	spin_unlock(&i915->gem.contexts.lock);
2446 
2447 	/*
2448 	 * After updating all other contexts, we need to modify ourselves.
2449 	 * If we don't modify the kernel_context, we do not get events while
2450 	 * idle.
2451 	 */
2452 	for_each_uabi_engine(engine, i915) {
2453 		struct intel_context *ce = engine->kernel_context;
2454 
2455 		if (engine->class != RENDER_CLASS)
2456 			continue;
2457 
2458 		regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);
2459 
2460 		err = gen8_modify_self(ce, regs, num_regs);
2461 		if (err)
2462 			return err;
2463 	}
2464 
2465 	return 0;
2466 }
2467 
gen12_configure_all_contexts(struct i915_perf_stream * stream,const struct i915_oa_config * oa_config)2468 static int gen12_configure_all_contexts(struct i915_perf_stream *stream,
2469 					const struct i915_oa_config *oa_config)
2470 {
2471 	struct flex regs[] = {
2472 		{
2473 			GEN8_R_PWR_CLK_STATE,
2474 			CTX_R_PWR_CLK_STATE,
2475 		},
2476 	};
2477 
2478 	return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs));
2479 }
2480 
lrc_configure_all_contexts(struct i915_perf_stream * stream,const struct i915_oa_config * oa_config)2481 static int lrc_configure_all_contexts(struct i915_perf_stream *stream,
2482 				      const struct i915_oa_config *oa_config)
2483 {
2484 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2485 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2486 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2487 	struct flex regs[] = {
2488 		{
2489 			GEN8_R_PWR_CLK_STATE,
2490 			CTX_R_PWR_CLK_STATE,
2491 		},
2492 		{
2493 			GEN8_OACTXCONTROL,
2494 			stream->perf->ctx_oactxctrl_offset + 1,
2495 		},
2496 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2497 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2498 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2499 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2500 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2501 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2502 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2503 	};
2504 #undef ctx_flexeuN
2505 	int i;
2506 
2507 	regs[1].value =
2508 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2509 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2510 		GEN8_OA_COUNTER_RESUME;
2511 
2512 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2513 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2514 
2515 	return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs));
2516 }
2517 
gen8_enable_metric_set(struct i915_perf_stream * stream)2518 static int gen8_enable_metric_set(struct i915_perf_stream *stream)
2519 {
2520 	struct intel_uncore *uncore = stream->uncore;
2521 	struct i915_oa_config *oa_config = stream->oa_config;
2522 	int ret;
2523 
2524 	/*
2525 	 * We disable slice/unslice clock ratio change reports on SKL since
2526 	 * they are too noisy. The HW generates a lot of redundant reports
2527 	 * where the ratio hasn't really changed causing a lot of redundant
2528 	 * work to processes and increasing the chances we'll hit buffer
2529 	 * overruns.
2530 	 *
2531 	 * Although we don't currently use the 'disable overrun' OABUFFER
2532 	 * feature it's worth noting that clock ratio reports have to be
2533 	 * disabled before considering to use that feature since the HW doesn't
2534 	 * correctly block these reports.
2535 	 *
2536 	 * Currently none of the high-level metrics we have depend on knowing
2537 	 * this ratio to normalize.
2538 	 *
2539 	 * Note: This register is not power context saved and restored, but
2540 	 * that's OK considering that we disable RC6 while the OA unit is
2541 	 * enabled.
2542 	 *
2543 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2544 	 * be read back from automatically triggered reports, as part of the
2545 	 * RPT_ID field.
2546 	 */
2547 	if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2548 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2549 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2550 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2551 	}
2552 
2553 	/*
2554 	 * Update all contexts prior writing the mux configurations as we need
2555 	 * to make sure all slices/subslices are ON before writing to NOA
2556 	 * registers.
2557 	 */
2558 	ret = lrc_configure_all_contexts(stream, oa_config);
2559 	if (ret)
2560 		return ret;
2561 
2562 	return emit_oa_config(stream, oa_config, oa_context(stream));
2563 }
2564 
oag_report_ctx_switches(const struct i915_perf_stream * stream)2565 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2566 {
2567 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2568 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2569 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2570 }
2571 
gen12_enable_metric_set(struct i915_perf_stream * stream)2572 static int gen12_enable_metric_set(struct i915_perf_stream *stream)
2573 {
2574 	struct intel_uncore *uncore = stream->uncore;
2575 	struct i915_oa_config *oa_config = stream->oa_config;
2576 	bool periodic = stream->periodic;
2577 	u32 period_exponent = stream->period_exponent;
2578 	int ret;
2579 
2580 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2581 			   /* Disable clk ratio reports, like previous Gens. */
2582 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2583 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2584 			   /*
2585 			    * If the user didn't require OA reports, instruct
2586 			    * the hardware not to emit ctx switch reports.
2587 			    */
2588 			   oag_report_ctx_switches(stream));
2589 
2590 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2591 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2592 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2593 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2594 			    : 0);
2595 
2596 	/*
2597 	 * Update all contexts prior writing the mux configurations as we need
2598 	 * to make sure all slices/subslices are ON before writing to NOA
2599 	 * registers.
2600 	 */
2601 	ret = gen12_configure_all_contexts(stream, oa_config);
2602 	if (ret)
2603 		return ret;
2604 
2605 	/*
2606 	 * For Gen12, performance counters are context
2607 	 * saved/restored. Only enable it for the context that
2608 	 * requested this.
2609 	 */
2610 	if (stream->ctx) {
2611 		ret = gen12_configure_oar_context(stream, true);
2612 		if (ret)
2613 			return ret;
2614 	}
2615 
2616 	return emit_oa_config(stream, oa_config, oa_context(stream));
2617 }
2618 
gen8_disable_metric_set(struct i915_perf_stream * stream)2619 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2620 {
2621 	struct intel_uncore *uncore = stream->uncore;
2622 
2623 	/* Reset all contexts' slices/subslices configurations. */
2624 	lrc_configure_all_contexts(stream, NULL);
2625 
2626 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2627 }
2628 
gen10_disable_metric_set(struct i915_perf_stream * stream)2629 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2630 {
2631 	struct intel_uncore *uncore = stream->uncore;
2632 
2633 	/* Reset all contexts' slices/subslices configurations. */
2634 	lrc_configure_all_contexts(stream, NULL);
2635 
2636 	/* Make sure we disable noa to save power. */
2637 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2638 }
2639 
gen12_disable_metric_set(struct i915_perf_stream * stream)2640 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2641 {
2642 	struct intel_uncore *uncore = stream->uncore;
2643 
2644 	/* Reset all contexts' slices/subslices configurations. */
2645 	gen12_configure_all_contexts(stream, NULL);
2646 
2647 	/* disable the context save/restore or OAR counters */
2648 	if (stream->ctx)
2649 		gen12_configure_oar_context(stream, false);
2650 
2651 	/* Make sure we disable noa to save power. */
2652 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2653 }
2654 
gen7_oa_enable(struct i915_perf_stream * stream)2655 static void gen7_oa_enable(struct i915_perf_stream *stream)
2656 {
2657 	struct intel_uncore *uncore = stream->uncore;
2658 	struct i915_gem_context *ctx = stream->ctx;
2659 	u32 ctx_id = stream->specific_ctx_id;
2660 	bool periodic = stream->periodic;
2661 	u32 period_exponent = stream->period_exponent;
2662 	u32 report_format = stream->oa_buffer.format;
2663 
2664 	/*
2665 	 * Reset buf pointers so we don't forward reports from before now.
2666 	 *
2667 	 * Think carefully if considering trying to avoid this, since it
2668 	 * also ensures status flags and the buffer itself are cleared
2669 	 * in error paths, and we have checks for invalid reports based
2670 	 * on the assumption that certain fields are written to zeroed
2671 	 * memory which this helps maintains.
2672 	 */
2673 	gen7_init_oa_buffer(stream);
2674 
2675 	intel_uncore_write(uncore, GEN7_OACONTROL,
2676 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2677 			   (period_exponent <<
2678 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2679 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2680 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2681 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2682 			   GEN7_OACONTROL_ENABLE);
2683 }
2684 
gen8_oa_enable(struct i915_perf_stream * stream)2685 static void gen8_oa_enable(struct i915_perf_stream *stream)
2686 {
2687 	struct intel_uncore *uncore = stream->uncore;
2688 	u32 report_format = stream->oa_buffer.format;
2689 
2690 	/*
2691 	 * Reset buf pointers so we don't forward reports from before now.
2692 	 *
2693 	 * Think carefully if considering trying to avoid this, since it
2694 	 * also ensures status flags and the buffer itself are cleared
2695 	 * in error paths, and we have checks for invalid reports based
2696 	 * on the assumption that certain fields are written to zeroed
2697 	 * memory which this helps maintains.
2698 	 */
2699 	gen8_init_oa_buffer(stream);
2700 
2701 	/*
2702 	 * Note: we don't rely on the hardware to perform single context
2703 	 * filtering and instead filter on the cpu based on the context-id
2704 	 * field of reports
2705 	 */
2706 	intel_uncore_write(uncore, GEN8_OACONTROL,
2707 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2708 			   GEN8_OA_COUNTER_ENABLE);
2709 }
2710 
gen12_oa_enable(struct i915_perf_stream * stream)2711 static void gen12_oa_enable(struct i915_perf_stream *stream)
2712 {
2713 	struct intel_uncore *uncore = stream->uncore;
2714 	u32 report_format = stream->oa_buffer.format;
2715 
2716 	/*
2717 	 * If we don't want OA reports from the OA buffer, then we don't even
2718 	 * need to program the OAG unit.
2719 	 */
2720 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2721 		return;
2722 
2723 	gen12_init_oa_buffer(stream);
2724 
2725 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2726 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2727 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2728 }
2729 
2730 /**
2731  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2732  * @stream: An i915 perf stream opened for OA metrics
2733  *
2734  * [Re]enables hardware periodic sampling according to the period configured
2735  * when opening the stream. This also starts a hrtimer that will periodically
2736  * check for data in the circular OA buffer for notifying userspace (e.g.
2737  * during a read() or poll()).
2738  */
i915_oa_stream_enable(struct i915_perf_stream * stream)2739 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2740 {
2741 	stream->perf->ops.oa_enable(stream);
2742 
2743 	if (stream->periodic)
2744 		hrtimer_start(&stream->poll_check_timer,
2745 			      ns_to_ktime(POLL_PERIOD),
2746 			      HRTIMER_MODE_REL_PINNED);
2747 }
2748 
gen7_oa_disable(struct i915_perf_stream * stream)2749 static void gen7_oa_disable(struct i915_perf_stream *stream)
2750 {
2751 	struct intel_uncore *uncore = stream->uncore;
2752 
2753 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2754 	if (intel_wait_for_register(uncore,
2755 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2756 				    50))
2757 		DRM_ERROR("wait for OA to be disabled timed out\n");
2758 }
2759 
gen8_oa_disable(struct i915_perf_stream * stream)2760 static void gen8_oa_disable(struct i915_perf_stream *stream)
2761 {
2762 	struct intel_uncore *uncore = stream->uncore;
2763 
2764 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2765 	if (intel_wait_for_register(uncore,
2766 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2767 				    50))
2768 		DRM_ERROR("wait for OA to be disabled timed out\n");
2769 }
2770 
gen12_oa_disable(struct i915_perf_stream * stream)2771 static void gen12_oa_disable(struct i915_perf_stream *stream)
2772 {
2773 	struct intel_uncore *uncore = stream->uncore;
2774 
2775 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2776 	if (intel_wait_for_register(uncore,
2777 				    GEN12_OAG_OACONTROL,
2778 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2779 				    50))
2780 		DRM_ERROR("wait for OA to be disabled timed out\n");
2781 }
2782 
2783 /**
2784  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2785  * @stream: An i915 perf stream opened for OA metrics
2786  *
2787  * Stops the OA unit from periodically writing counter reports into the
2788  * circular OA buffer. This also stops the hrtimer that periodically checks for
2789  * data in the circular OA buffer, for notifying userspace.
2790  */
i915_oa_stream_disable(struct i915_perf_stream * stream)2791 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2792 {
2793 	stream->perf->ops.oa_disable(stream);
2794 
2795 	if (stream->periodic)
2796 		hrtimer_cancel(&stream->poll_check_timer);
2797 }
2798 
2799 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2800 	.destroy = i915_oa_stream_destroy,
2801 	.enable = i915_oa_stream_enable,
2802 	.disable = i915_oa_stream_disable,
2803 	.wait_unlocked = i915_oa_wait_unlocked,
2804 #ifndef __NetBSD__
2805 	.poll_wait = i915_oa_poll_wait,
2806 #endif
2807 	.read = i915_oa_read,
2808 };
2809 
2810 /**
2811  * i915_oa_stream_init - validate combined props for OA stream and init
2812  * @stream: An i915 perf stream
2813  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2814  * @props: The property state that configures stream (individually validated)
2815  *
2816  * While read_properties_unlocked() validates properties in isolation it
2817  * doesn't ensure that the combination necessarily makes sense.
2818  *
2819  * At this point it has been determined that userspace wants a stream of
2820  * OA metrics, but still we need to further validate the combined
2821  * properties are OK.
2822  *
2823  * If the configuration makes sense then we can allocate memory for
2824  * a circular OA buffer and apply the requested metric set configuration.
2825  *
2826  * Returns: zero on success or a negative error code.
2827  */
i915_oa_stream_init(struct i915_perf_stream * stream,struct drm_i915_perf_open_param * param,struct perf_open_properties * props)2828 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2829 			       struct drm_i915_perf_open_param *param,
2830 			       struct perf_open_properties *props)
2831 {
2832 	struct i915_perf *perf = stream->perf;
2833 	int format_size;
2834 	int ret;
2835 
2836 	if (!props->engine) {
2837 		DRM_DEBUG("OA engine not specified\n");
2838 		return -EINVAL;
2839 	}
2840 
2841 	/*
2842 	 * If the sysfs metrics/ directory wasn't registered for some
2843 	 * reason then don't let userspace try their luck with config
2844 	 * IDs
2845 	 */
2846 	if (!perf->metrics_kobj) {
2847 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2848 		return -EINVAL;
2849 	}
2850 
2851 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2852 	    (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2853 		DRM_DEBUG("Only OA report sampling supported\n");
2854 		return -EINVAL;
2855 	}
2856 
2857 	if (!perf->ops.enable_metric_set) {
2858 		DRM_DEBUG("OA unit not supported\n");
2859 		return -ENODEV;
2860 	}
2861 
2862 	/*
2863 	 * To avoid the complexity of having to accurately filter
2864 	 * counter reports and marshal to the appropriate client
2865 	 * we currently only allow exclusive access
2866 	 */
2867 	if (perf->exclusive_stream) {
2868 		DRM_DEBUG("OA unit already in use\n");
2869 		return -EBUSY;
2870 	}
2871 
2872 	if (!props->oa_format) {
2873 		DRM_DEBUG("OA report format not specified\n");
2874 		return -EINVAL;
2875 	}
2876 
2877 	stream->engine = props->engine;
2878 	stream->uncore = stream->engine->gt->uncore;
2879 
2880 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2881 
2882 	format_size = perf->oa_formats[props->oa_format].size;
2883 
2884 	stream->sample_flags = props->sample_flags;
2885 	stream->sample_size += format_size;
2886 
2887 	stream->oa_buffer.format_size = format_size;
2888 	if (WARN_ON(stream->oa_buffer.format_size == 0))
2889 		return -EINVAL;
2890 
2891 	stream->hold_preemption = props->hold_preemption;
2892 
2893 	stream->oa_buffer.format =
2894 		perf->oa_formats[props->oa_format].format;
2895 
2896 	stream->periodic = props->oa_periodic;
2897 	if (stream->periodic)
2898 		stream->period_exponent = props->oa_period_exponent;
2899 
2900 	if (stream->ctx) {
2901 		ret = oa_get_render_ctx_id(stream);
2902 		if (ret) {
2903 			DRM_DEBUG("Invalid context id to filter with\n");
2904 			return ret;
2905 		}
2906 	}
2907 
2908 	ret = alloc_noa_wait(stream);
2909 	if (ret) {
2910 		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2911 		goto err_noa_wait_alloc;
2912 	}
2913 
2914 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2915 	if (!stream->oa_config) {
2916 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2917 		ret = -EINVAL;
2918 		goto err_config;
2919 	}
2920 
2921 	/* PRM - observability performance counters:
2922 	 *
2923 	 *   OACONTROL, performance counter enable, note:
2924 	 *
2925 	 *   "When this bit is set, in order to have coherent counts,
2926 	 *   RC6 power state and trunk clock gating must be disabled.
2927 	 *   This can be achieved by programming MMIO registers as
2928 	 *   0xA094=0 and 0xA090[31]=1"
2929 	 *
2930 	 *   In our case we are expecting that taking pm + FORCEWAKE
2931 	 *   references will effectively disable RC6.
2932 	 */
2933 	intel_engine_pm_get(stream->engine);
2934 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2935 
2936 	ret = alloc_oa_buffer(stream);
2937 	if (ret)
2938 		goto err_oa_buf_alloc;
2939 
2940 	stream->ops = &i915_oa_stream_ops;
2941 	perf->exclusive_stream = stream;
2942 
2943 	ret = perf->ops.enable_metric_set(stream);
2944 	if (ret) {
2945 		DRM_DEBUG("Unable to enable metric set\n");
2946 		goto err_enable;
2947 	}
2948 
2949 	DRM_DEBUG("opening stream oa config uuid=%s\n",
2950 		  stream->oa_config->uuid);
2951 
2952 	hrtimer_init(&stream->poll_check_timer,
2953 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2954 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
2955 	DRM_INIT_WAITQUEUE(&stream->poll_wq, "i915perf");
2956 	selinit(&stream->poll_selq);
2957 	spin_lock_init(&stream->oa_buffer.ptr_lock);
2958 
2959 	return 0;
2960 
2961 err_enable:
2962 	perf->exclusive_stream = NULL;
2963 	perf->ops.disable_metric_set(stream);
2964 
2965 	free_oa_buffer(stream);
2966 
2967 err_oa_buf_alloc:
2968 	free_oa_configs(stream);
2969 
2970 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2971 	intel_engine_pm_put(stream->engine);
2972 
2973 err_config:
2974 	free_noa_wait(stream);
2975 
2976 err_noa_wait_alloc:
2977 	if (stream->ctx)
2978 		oa_put_render_ctx_id(stream);
2979 
2980 	return ret;
2981 }
2982 
i915_oa_init_reg_state(const struct intel_context * ce,const struct intel_engine_cs * engine)2983 void i915_oa_init_reg_state(const struct intel_context *ce,
2984 			    const struct intel_engine_cs *engine)
2985 {
2986 	struct i915_perf_stream *stream;
2987 
2988 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2989 
2990 	if (engine->class != RENDER_CLASS)
2991 		return;
2992 
2993 	stream = engine->i915->perf.exclusive_stream;
2994 	/*
2995 	 * For gen12, only CTX_R_PWR_CLK_STATE needs update, but the caller
2996 	 * is already doing that, so nothing to be done for gen12 here.
2997 	 */
2998 	if (stream && INTEL_GEN(stream->perf->i915) < 12)
2999 		gen8_update_reg_state_unlocked(ce, stream);
3000 }
3001 
3002 /**
3003  * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
3004  * @stream: An i915 perf stream
3005  * @file: An i915 perf stream file
3006  * @buf: destination buffer given by userspace
3007  * @count: the number of bytes userspace wants to read
3008  * @ppos: (inout) file seek position (unused)
3009  *
3010  * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
3011  * ensure that if we've successfully copied any data then reporting that takes
3012  * precedence over any internal error status, so the data isn't lost.
3013  *
3014  * For example ret will be -ENOSPC whenever there is more buffered data than
3015  * can be copied to userspace, but that's only interesting if we weren't able
3016  * to copy some data because it implies the userspace buffer is too small to
3017  * receive a single record (and we never split records).
3018  *
3019  * Another case with ret == -EFAULT is more of a grey area since it would seem
3020  * like bad form for userspace to ask us to overrun its buffer, but the user
3021  * knows best:
3022  *
3023  *   http://yarchive.net/comp/linux/partial_reads_writes.html
3024  *
3025  * Returns: The number of bytes copied or a negative error code on failure.
3026  */
3027 #ifdef __NetBSD__
i915_perf_read_locked(struct i915_perf_stream * stream,struct file * file,struct uio * buf,kauth_cred_t count,int ppos)3028 static int i915_perf_read_locked(struct i915_perf_stream *stream,
3029 				     struct file *file,
3030 				     struct uio *buf,
3031 				     kauth_cred_t count, /* XXX dummy */
3032 				     int ppos)		 /* XXX dummy */
3033 {
3034 	return stream->ops->read(stream, buf, count, ppos);
3035 }
3036 #else
i915_perf_read_locked(struct i915_perf_stream * stream,struct file * file,char __user * buf,size_t count,loff_t * ppos)3037 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
3038 				     struct file *file,
3039 				     char __user *buf,
3040 				     size_t count,
3041 				     loff_t *ppos)
3042 {
3043 	/* Note we keep the offset (aka bytes read) separate from any
3044 	 * error status so that the final check for whether we return
3045 	 * the bytes read with a higher precedence than any error (see
3046 	 * comment below) doesn't need to be handled/duplicated in
3047 	 * stream->ops->read() implementations.
3048 	 */
3049 	size_t offset = 0;
3050 	int ret = stream->ops->read(stream, buf, count, &offset);
3051 
3052 	return offset ?: (ret ?: -EAGAIN);
3053 }
3054 #endif
3055 
3056 /**
3057  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3058  * @file: An i915 perf stream file
3059  * @buf: destination buffer given by userspace
3060  * @count: the number of bytes userspace wants to read
3061  * @ppos: (inout) file seek position (unused)
3062  *
3063  * The entry point for handling a read() on a stream file descriptor from
3064  * userspace. Most of the work is left to the i915_perf_read_locked() and
3065  * &i915_perf_stream_ops->read but to save having stream implementations (of
3066  * which we might have multiple later) we handle blocking read here.
3067  *
3068  * We can also consistently treat trying to read from a disabled stream
3069  * as an IO error so implementations can assume the stream is enabled
3070  * while reading.
3071  *
3072  * Returns: The number of bytes copied or a negative error code on failure.
3073  */
3074 #ifdef __NetBSD__
i915_perf_read(struct file * file,off_t * offset,struct uio * buf,kauth_cred_t count,int ppos)3075 static int i915_perf_read(struct file *file,
3076 			  off_t *offset,
3077 			  struct uio *buf,
3078 			  kauth_cred_t count, /* XXX dummy */
3079 			  int ppos)	      /* XXX dummy */
3080 #else
3081 static ssize_t i915_perf_read(struct file *file,
3082 			      char __user *buf,
3083 			      size_t count,
3084 			      loff_t *ppos)
3085 #endif
3086 {
3087 #ifdef __NetBSD__
3088 	struct i915_perf_stream *stream = file->f_data;
3089 #else
3090 	struct i915_perf_stream *stream = file->private_data;
3091 #endif
3092 	struct i915_perf *perf = stream->perf;
3093 	ssize_t ret;
3094 
3095 	/* To ensure it's handled consistently we simply treat all reads of a
3096 	 * disabled stream as an error. In particular it might otherwise lead
3097 	 * to a deadlock for blocking file descriptors...
3098 	 */
3099 	if (!stream->enabled)
3100 		return -EIO;
3101 
3102 #ifdef __NetBSD__
3103 	buf->uio_offset = *offset;
3104 	if (!(file->f_flag & FNONBLOCK))
3105 #else
3106 	if (!(file->f_flags & O_NONBLOCK))
3107 #endif
3108 	{
3109 		/* There's the small chance of false positives from
3110 		 * stream->ops->wait_unlocked.
3111 		 *
3112 		 * E.g. with single context filtering since we only wait until
3113 		 * oabuffer has >= 1 report we don't immediately know whether
3114 		 * any reports really belong to the current context
3115 		 */
3116 		do {
3117 			ret = stream->ops->wait_unlocked(stream);
3118 			if (ret)
3119 				return ret;
3120 
3121 			mutex_lock(&perf->lock);
3122 			ret = i915_perf_read_locked(stream, file,
3123 						    buf, count, ppos);
3124 			mutex_unlock(&perf->lock);
3125 		} while (ret == -EAGAIN);
3126 	} else {
3127 		mutex_lock(&perf->lock);
3128 		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
3129 		mutex_unlock(&perf->lock);
3130 	}
3131 
3132 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3133 	 * events where we might actually report EAGAIN on read() if there's
3134 	 * not really any data available. In this situation though we don't
3135 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3136 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3137 	 * effectively ensures we back off until the next hrtimer callback
3138 	 * before reporting another EPOLLIN event.
3139 	 */
3140 	if (ret >= 0 || ret == -EAGAIN) {
3141 		/* Maybe make ->pollin per-stream state if we support multiple
3142 		 * concurrent streams in the future.
3143 		 */
3144 		stream->pollin = false;
3145 	}
3146 
3147 	return ret;
3148 }
3149 
oa_poll_check_timer_cb(struct hrtimer * hrtimer)3150 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3151 {
3152 	struct i915_perf_stream *stream =
3153 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3154 	unsigned long flags;
3155 
3156 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
3157 	if (oa_buffer_check(stream)) {
3158 		stream->pollin = true;
3159 		DRM_SPIN_WAKEUP_ONE(&stream->poll_wq,
3160 		    &stream->oa_buffer.ptr_lock);
3161 		selnotify(&stream->poll_selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
3162 	}
3163 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
3164 
3165 	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
3166 
3167 	return HRTIMER_RESTART;
3168 }
3169 
3170 #ifdef __NetBSD__
3171 
3172 static int
i915_perf_poll(struct file * fp,int events)3173 i915_perf_poll(struct file *fp, int events)
3174 {
3175 	struct i915_perf_stream *stream = fp->f_data;
3176 	unsigned long flags;
3177 	int revents = 0;
3178 
3179 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
3180 	if (stream->pollin)
3181 		revents |= events & (POLLIN|POLLRDNORM);
3182 	else
3183 		selrecord(curlwp, &stream->poll_selq);
3184 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
3185 
3186 	return revents;
3187 }
3188 
3189 #else
3190 
3191 /**
3192  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3193  * @stream: An i915 perf stream
3194  * @file: An i915 perf stream file
3195  * @wait: poll() state table
3196  *
3197  * For handling userspace polling on an i915 perf stream, this calls through to
3198  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3199  * will be woken for new stream data.
3200  *
3201  * Note: The &perf->lock mutex has been taken to serialize
3202  * with any non-file-operation driver hooks.
3203  *
3204  * Returns: any poll events that are ready without sleeping
3205  */
i915_perf_poll_locked(struct i915_perf_stream * stream,struct file * file,poll_table * wait)3206 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3207 				      struct file *file,
3208 				      poll_table *wait)
3209 {
3210 	__poll_t events = 0;
3211 
3212 	stream->ops->poll_wait(stream, file, wait);
3213 
3214 	/* Note: we don't explicitly check whether there's something to read
3215 	 * here since this path may be very hot depending on what else
3216 	 * userspace is polling, or on the timeout in use. We rely solely on
3217 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3218 	 * samples to read.
3219 	 */
3220 	if (stream->pollin)
3221 		events |= EPOLLIN;
3222 
3223 	return events;
3224 }
3225 
3226 /**
3227  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3228  * @file: An i915 perf stream file
3229  * @wait: poll() state table
3230  *
3231  * For handling userspace polling on an i915 perf stream, this ensures
3232  * poll_wait() gets called with a wait queue that will be woken for new stream
3233  * data.
3234  *
3235  * Note: Implementation deferred to i915_perf_poll_locked()
3236  *
3237  * Returns: any poll events that are ready without sleeping
3238  */
i915_perf_poll(struct file * file,poll_table * wait)3239 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3240 {
3241 	struct i915_perf_stream *stream = file->private_data;
3242 	struct i915_perf *perf = stream->perf;
3243 	__poll_t ret;
3244 
3245 	mutex_lock(&perf->lock);
3246 	ret = i915_perf_poll_locked(stream, file, wait);
3247 	mutex_unlock(&perf->lock);
3248 
3249 	return ret;
3250 }
3251 
3252 #endif	/* __NetBSD__ */
3253 
3254 /**
3255  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3256  * @stream: A disabled i915 perf stream
3257  *
3258  * [Re]enables the associated capture of data for this stream.
3259  *
3260  * If a stream was previously enabled then there's currently no intention
3261  * to provide userspace any guarantee about the preservation of previously
3262  * buffered data.
3263  */
i915_perf_enable_locked(struct i915_perf_stream * stream)3264 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3265 {
3266 	if (stream->enabled)
3267 		return;
3268 
3269 	/* Allow stream->ops->enable() to refer to this */
3270 	stream->enabled = true;
3271 
3272 	if (stream->ops->enable)
3273 		stream->ops->enable(stream);
3274 
3275 	if (stream->hold_preemption)
3276 		intel_context_set_nopreempt(stream->pinned_ctx);
3277 }
3278 
3279 /**
3280  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3281  * @stream: An enabled i915 perf stream
3282  *
3283  * Disables the associated capture of data for this stream.
3284  *
3285  * The intention is that disabling an re-enabling a stream will ideally be
3286  * cheaper than destroying and re-opening a stream with the same configuration,
3287  * though there are no formal guarantees about what state or buffered data
3288  * must be retained between disabling and re-enabling a stream.
3289  *
3290  * Note: while a stream is disabled it's considered an error for userspace
3291  * to attempt to read from the stream (-EIO).
3292  */
i915_perf_disable_locked(struct i915_perf_stream * stream)3293 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3294 {
3295 	if (!stream->enabled)
3296 		return;
3297 
3298 	/* Allow stream->ops->disable() to refer to this */
3299 	stream->enabled = false;
3300 
3301 	if (stream->hold_preemption)
3302 		intel_context_clear_nopreempt(stream->pinned_ctx);
3303 
3304 	if (stream->ops->disable)
3305 		stream->ops->disable(stream);
3306 }
3307 
i915_perf_config_locked(struct i915_perf_stream * stream,unsigned long metrics_set)3308 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3309 				    unsigned long metrics_set)
3310 {
3311 	struct i915_oa_config *config;
3312 	long ret = stream->oa_config->id;
3313 
3314 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3315 	if (!config)
3316 		return -EINVAL;
3317 
3318 	if (config != stream->oa_config) {
3319 		int err;
3320 
3321 		/*
3322 		 * If OA is bound to a specific context, emit the
3323 		 * reconfiguration inline from that context. The update
3324 		 * will then be ordered with respect to submission on that
3325 		 * context.
3326 		 *
3327 		 * When set globally, we use a low priority kernel context,
3328 		 * so it will effectively take effect when idle.
3329 		 */
3330 		err = emit_oa_config(stream, config, oa_context(stream));
3331 		if (err == 0)
3332 			config = xchg(&stream->oa_config, config);
3333 		else
3334 			ret = err;
3335 	}
3336 
3337 	i915_oa_config_put(config);
3338 
3339 	return ret;
3340 }
3341 
3342 /**
3343  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3344  * @stream: An i915 perf stream
3345  * @cmd: the ioctl request
3346  * @arg: the ioctl data
3347  *
3348  * Note: The &perf->lock mutex has been taken to serialize
3349  * with any non-file-operation driver hooks.
3350  *
3351  * Returns: zero on success or a negative error code. Returns -EINVAL for
3352  * an unknown ioctl request.
3353  */
i915_perf_ioctl_locked(struct i915_perf_stream * stream,unsigned int cmd,unsigned long arg)3354 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3355 				   unsigned int cmd,
3356 				   unsigned long arg)
3357 {
3358 	switch (cmd) {
3359 	case I915_PERF_IOCTL_ENABLE:
3360 		i915_perf_enable_locked(stream);
3361 		return 0;
3362 	case I915_PERF_IOCTL_DISABLE:
3363 		i915_perf_disable_locked(stream);
3364 		return 0;
3365 	case I915_PERF_IOCTL_CONFIG:
3366 		return i915_perf_config_locked(stream, arg);
3367 	}
3368 
3369 	return -EINVAL;
3370 }
3371 
3372 /**
3373  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3374  * @file: An i915 perf stream file
3375  * @cmd: the ioctl request
3376  * @arg: the ioctl data
3377  *
3378  * Implementation deferred to i915_perf_ioctl_locked().
3379  *
3380  * Returns: zero on success or a negative error code. Returns -EINVAL for
3381  * an unknown ioctl request.
3382  */
3383 #ifdef __NetBSD__
i915_perf_ioctl(struct file * file,unsigned long cmd,void * cookie)3384 static int i915_perf_ioctl(struct file *file,
3385 			    unsigned long cmd,
3386 			    void *cookie)
3387 #else
3388 static long i915_perf_ioctl(struct file *file,
3389 			    unsigned int cmd,
3390 			    unsigned long arg)
3391 #endif
3392 {
3393 #ifdef __NetBSD__
3394 	unsigned long arg = (unsigned long)(uintptr_t)cookie;
3395 	struct i915_perf_stream *stream = file->f_data;
3396 #else
3397 	struct i915_perf_stream *stream = file->private_data;
3398 #endif
3399 	struct i915_perf *perf = stream->perf;
3400 	long ret;
3401 
3402 	mutex_lock(&perf->lock);
3403 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3404 	mutex_unlock(&perf->lock);
3405 
3406 	return ret;
3407 }
3408 
3409 /**
3410  * i915_perf_destroy_locked - destroy an i915 perf stream
3411  * @stream: An i915 perf stream
3412  *
3413  * Frees all resources associated with the given i915 perf @stream, disabling
3414  * any associated data capture in the process.
3415  *
3416  * Note: The &perf->lock mutex has been taken to serialize
3417  * with any non-file-operation driver hooks.
3418  */
i915_perf_destroy_locked(struct i915_perf_stream * stream)3419 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3420 {
3421 	if (stream->enabled)
3422 		i915_perf_disable_locked(stream);
3423 
3424 	if (stream->ops->destroy)
3425 		stream->ops->destroy(stream);
3426 
3427 	if (stream->ctx)
3428 		i915_gem_context_put(stream->ctx);
3429 
3430 	kfree(stream);
3431 }
3432 
3433 /**
3434  * i915_perf_release - handles userspace close() of a stream file
3435  * @inode: anonymous inode associated with file
3436  * @file: An i915 perf stream file
3437  *
3438  * Cleans up any resources associated with an open i915 perf stream file.
3439  *
3440  * NB: close() can't really fail from the userspace point of view.
3441  *
3442  * Returns: zero on success or a negative error code.
3443  */
3444 #ifdef __NetBSD__
i915_perf_close(struct file * fp)3445 static int i915_perf_close(struct file *fp)
3446 {
3447 	struct i915_perf_stream *stream = fp->f_data;
3448 	struct i915_perf *perf = stream->perf;
3449 
3450 	mutex_lock(&perf->lock);
3451 	i915_perf_destroy_locked(stream);
3452 	mutex_unlock(&perf->lock);
3453 
3454 	/* Release the reference the perf stream kept on the driver. */
3455 	drm_dev_put(&perf->i915->drm);
3456 
3457 	return 0;
3458 }
3459 #else
i915_perf_release(struct inode * inode,struct file * file)3460 static int i915_perf_release(struct inode *inode, struct file *file)
3461 {
3462 	struct i915_perf_stream *stream = file->private_data;
3463 	struct i915_perf *perf = stream->perf;
3464 
3465 	mutex_lock(&perf->lock);
3466 	i915_perf_destroy_locked(stream);
3467 	mutex_unlock(&perf->lock);
3468 
3469 	/* Release the reference the perf stream kept on the driver. */
3470 	drm_dev_put(&perf->i915->drm);
3471 
3472 	return 0;
3473 }
3474 #endif
3475 
3476 
3477 #ifdef __NetBSD__
3478 static int
i915_perf_stat(struct file * fp,struct stat * st)3479 i915_perf_stat(struct file *fp, struct stat *st)
3480 {
3481 	const dev_t devno = 0;	/* XXX */
3482 
3483 	memset(st, 0, sizeof(*st));
3484 
3485 	st->st_dev = devno;	/* XXX */
3486 	st->st_ino = 0;		/* XXX */
3487 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
3488 	st->st_gid = kauth_cred_getegid(fp->f_cred);
3489 	st->st_mode = S_IFCHR;
3490 	st->st_rdev = devno;
3491 
3492 	return 0;
3493 }
3494 
3495 static const struct fileops fops = {
3496 	.fo_name = "i915perf",
3497 	.fo_read = i915_perf_read,
3498 	.fo_write = fbadop_write,
3499 	.fo_ioctl = i915_perf_ioctl,
3500 	.fo_fcntl = fnullop_fcntl,
3501 	.fo_poll = i915_perf_poll,
3502 	.fo_stat = i915_perf_stat,
3503 	.fo_close = i915_perf_close,
3504 	.fo_kqfilter = fnullop_kqfilter,	/* XXX */
3505 	.fo_restart = fnullop_restart,
3506 	.fo_mmap = NULL,
3507 };
3508 #else
3509 static const struct file_operations fops = {
3510 	.owner		= THIS_MODULE,
3511 	.llseek		= no_llseek,
3512 	.release	= i915_perf_release,
3513 	.poll		= i915_perf_poll,
3514 	.read		= i915_perf_read,
3515 	.unlocked_ioctl	= i915_perf_ioctl,
3516 	/* Our ioctl have no arguments, so it's safe to use the same function
3517 	 * to handle 32bits compatibility.
3518 	 */
3519 	.compat_ioctl   = i915_perf_ioctl,
3520 };
3521 #endif
3522 
3523 
3524 /**
3525  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3526  * @perf: i915 perf instance
3527  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3528  * @props: individually validated u64 property value pairs
3529  * @file: drm file
3530  *
3531  * See i915_perf_ioctl_open() for interface details.
3532  *
3533  * Implements further stream config validation and stream initialization on
3534  * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3535  * taken to serialize with any non-file-operation driver hooks.
3536  *
3537  * Note: at this point the @props have only been validated in isolation and
3538  * it's still necessary to validate that the combination of properties makes
3539  * sense.
3540  *
3541  * In the case where userspace is interested in OA unit metrics then further
3542  * config validation and stream initialization details will be handled by
3543  * i915_oa_stream_init(). The code here should only validate config state that
3544  * will be relevant to all stream types / backends.
3545  *
3546  * Returns: zero on success or a negative error code.
3547  */
3548 static int
i915_perf_open_ioctl_locked(struct i915_perf * perf,struct drm_i915_perf_open_param * param,struct perf_open_properties * props,struct drm_file * file)3549 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3550 			    struct drm_i915_perf_open_param *param,
3551 			    struct perf_open_properties *props,
3552 			    struct drm_file *file)
3553 {
3554 	struct i915_gem_context *specific_ctx = NULL;
3555 	struct i915_perf_stream *stream = NULL;
3556 	unsigned long f_flags = 0;
3557 	bool privileged_op = true;
3558 	int stream_fd;
3559 	int ret;
3560 
3561 	if (props->single_context) {
3562 		u32 ctx_handle = props->ctx_handle;
3563 		struct drm_i915_file_private *file_priv = file->driver_priv;
3564 
3565 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3566 		if (!specific_ctx) {
3567 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3568 				  ctx_handle);
3569 			ret = -ENOENT;
3570 			goto err;
3571 		}
3572 	}
3573 
3574 	/*
3575 	 * On Haswell the OA unit supports clock gating off for a specific
3576 	 * context and in this mode there's no visibility of metrics for the
3577 	 * rest of the system, which we consider acceptable for a
3578 	 * non-privileged client.
3579 	 *
3580 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3581 	 * specific context and the kernel can't securely stop the counters
3582 	 * from updating as system-wide / global values. Even though we can
3583 	 * filter reports based on the included context ID we can't block
3584 	 * clients from seeing the raw / global counter values via
3585 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3586 	 * enable the OA unit by default.
3587 	 *
3588 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3589 	 * per context basis. So we can relax requirements there if the user
3590 	 * doesn't request global stream access (i.e. query based sampling
3591 	 * using MI_RECORD_PERF_COUNT.
3592 	 */
3593 	if (IS_HASWELL(perf->i915) && specific_ctx)
3594 		privileged_op = false;
3595 	else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3596 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3597 		privileged_op = false;
3598 
3599 	if (props->hold_preemption) {
3600 		if (!props->single_context) {
3601 			DRM_DEBUG("preemption disable with no context\n");
3602 			ret = -EINVAL;
3603 			goto err;
3604 		}
3605 		privileged_op = true;
3606 	}
3607 
3608 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3609 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3610 	 * to determine if it's ok to access system wide OA counters
3611 	 * without CAP_SYS_ADMIN privileges.
3612 	 */
3613 	if (privileged_op &&
3614 	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3615 		DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3616 		ret = -EACCES;
3617 		goto err_ctx;
3618 	}
3619 
3620 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3621 	if (!stream) {
3622 		ret = -ENOMEM;
3623 		goto err_ctx;
3624 	}
3625 
3626 	stream->perf = perf;
3627 	stream->ctx = specific_ctx;
3628 
3629 	ret = i915_oa_stream_init(stream, param, props);
3630 	if (ret)
3631 		goto err_alloc;
3632 
3633 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3634 	 * to have _stream_init check the combination of sample flags more
3635 	 * thoroughly, but still this is the expected result at this point.
3636 	 */
3637 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3638 		ret = -ENODEV;
3639 		goto err_flags;
3640 	}
3641 
3642 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3643 		f_flags |= O_CLOEXEC;
3644 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3645 		f_flags |= O_NONBLOCK;
3646 
3647 #ifdef __NetBSD__
3648 	struct file *fp;
3649 
3650 	/* XXX errno NetBSD->Linux */
3651 	ret = -fd_allocfile(&fp, &stream_fd);
3652 	if (ret)
3653 		goto err_flags;
3654 
3655 	fp->f_type = DTYPE_MISC;
3656 	fp->f_flag = FREAD;
3657 	if (f_flags & O_NONBLOCK)
3658 		fp->f_flag |= FNONBLOCK;
3659 	if (f_flags & O_CLOEXEC)
3660 		fd_set_exclose(curlwp, stream_fd, true);
3661 	fp->f_ops = &fops;
3662 
3663 	fd_affix(curproc, fp, stream_fd);
3664 #else
3665 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3666 	if (stream_fd < 0) {
3667 		ret = stream_fd;
3668 		goto err_flags;
3669 	}
3670 #endif
3671 
3672 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3673 		i915_perf_enable_locked(stream);
3674 
3675 	/* Take a reference on the driver that will be kept with stream_fd
3676 	 * until its release.
3677 	 */
3678 	drm_dev_get(&perf->i915->drm);
3679 
3680 	return stream_fd;
3681 
3682 err_flags:
3683 	if (stream->ops->destroy)
3684 		stream->ops->destroy(stream);
3685 err_alloc:
3686 	kfree(stream);
3687 err_ctx:
3688 	if (specific_ctx)
3689 		i915_gem_context_put(specific_ctx);
3690 err:
3691 	return ret;
3692 }
3693 
oa_exponent_to_ns(struct i915_perf * perf,int exponent)3694 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3695 {
3696 	return div64_u64(1000000000ULL * (2ULL << exponent),
3697 			 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz);
3698 }
3699 
3700 /**
3701  * read_properties_unlocked - validate + copy userspace stream open properties
3702  * @perf: i915 perf instance
3703  * @uprops: The array of u64 key value pairs given by userspace
3704  * @n_props: The number of key value pairs expected in @uprops
3705  * @props: The stream configuration built up while validating properties
3706  *
3707  * Note this function only validates properties in isolation it doesn't
3708  * validate that the combination of properties makes sense or that all
3709  * properties necessary for a particular kind of stream have been set.
3710  *
3711  * Note that there currently aren't any ordering requirements for properties so
3712  * we shouldn't validate or assume anything about ordering here. This doesn't
3713  * rule out defining new properties with ordering requirements in the future.
3714  */
read_properties_unlocked(struct i915_perf * perf,u64 __user * uprops,u32 n_props,struct perf_open_properties * props)3715 static int read_properties_unlocked(struct i915_perf *perf,
3716 				    u64 __user *uprops,
3717 				    u32 n_props,
3718 				    struct perf_open_properties *props)
3719 {
3720 	u64 __user *uprop = uprops;
3721 	u32 i;
3722 
3723 	memset(props, 0, sizeof(struct perf_open_properties));
3724 
3725 	if (!n_props) {
3726 		DRM_DEBUG("No i915 perf properties given\n");
3727 		return -EINVAL;
3728 	}
3729 
3730 	/* At the moment we only support using i915-perf on the RCS. */
3731 	props->engine = intel_engine_lookup_user(perf->i915,
3732 						 I915_ENGINE_CLASS_RENDER,
3733 						 0);
3734 	if (!props->engine) {
3735 		DRM_DEBUG("No RENDER-capable engines\n");
3736 		return -EINVAL;
3737 	}
3738 
3739 	/* Considering that ID = 0 is reserved and assuming that we don't
3740 	 * (currently) expect any configurations to ever specify duplicate
3741 	 * values for a particular property ID then the last _PROP_MAX value is
3742 	 * one greater than the maximum number of properties we expect to get
3743 	 * from userspace.
3744 	 */
3745 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3746 		DRM_DEBUG("More i915 perf properties specified than exist\n");
3747 		return -EINVAL;
3748 	}
3749 
3750 	for (i = 0; i < n_props; i++) {
3751 		u64 oa_period, oa_freq_hz;
3752 		u64 id, value;
3753 		int ret;
3754 
3755 		ret = get_user(id, uprop);
3756 		if (ret)
3757 			return ret;
3758 
3759 		ret = get_user(value, uprop + 1);
3760 		if (ret)
3761 			return ret;
3762 
3763 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3764 			DRM_DEBUG("Unknown i915 perf property ID\n");
3765 			return -EINVAL;
3766 		}
3767 
3768 		switch ((enum drm_i915_perf_property_id)id) {
3769 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3770 			props->single_context = 1;
3771 			props->ctx_handle = value;
3772 			break;
3773 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3774 			if (value)
3775 				props->sample_flags |= SAMPLE_OA_REPORT;
3776 			break;
3777 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3778 			if (value == 0) {
3779 				DRM_DEBUG("Unknown OA metric set ID\n");
3780 				return -EINVAL;
3781 			}
3782 			props->metrics_set = value;
3783 			break;
3784 		case DRM_I915_PERF_PROP_OA_FORMAT:
3785 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3786 				DRM_DEBUG("Out-of-range OA report format %"PRIu64"\n",
3787 					  value);
3788 				return -EINVAL;
3789 			}
3790 			if (!perf->oa_formats[value].size) {
3791 				DRM_DEBUG("Unsupported OA report format %"PRIu64"\n",
3792 					  value);
3793 				return -EINVAL;
3794 			}
3795 			props->oa_format = value;
3796 			break;
3797 		case DRM_I915_PERF_PROP_OA_EXPONENT:
3798 			if (value > OA_EXPONENT_MAX) {
3799 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
3800 					 OA_EXPONENT_MAX);
3801 				return -EINVAL;
3802 			}
3803 
3804 			/* Theoretically we can program the OA unit to sample
3805 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3806 			 * for BXT. We don't allow such high sampling
3807 			 * frequencies by default unless root.
3808 			 */
3809 
3810 			BUILD_BUG_ON(sizeof(oa_period) != 8);
3811 			oa_period = oa_exponent_to_ns(perf, value);
3812 
3813 			/* This check is primarily to ensure that oa_period <=
3814 			 * UINT32_MAX (before passing to do_div which only
3815 			 * accepts a u32 denominator), but we can also skip
3816 			 * checking anything < 1Hz which implicitly can't be
3817 			 * limited via an integer oa_max_sample_rate.
3818 			 */
3819 			if (oa_period <= NSEC_PER_SEC) {
3820 				u64 tmp = NSEC_PER_SEC;
3821 				do_div(tmp, oa_period);
3822 				oa_freq_hz = tmp;
3823 			} else
3824 				oa_freq_hz = 0;
3825 
3826 			if (oa_freq_hz > i915_oa_max_sample_rate &&
3827 			    !capable(CAP_SYS_ADMIN)) {
3828 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl hw.drm2.i915.oa_max_sample_rate) %uHz without root privileges\n",
3829 					  i915_oa_max_sample_rate);
3830 				return -EACCES;
3831 			}
3832 
3833 			props->oa_periodic = true;
3834 			props->oa_period_exponent = value;
3835 			break;
3836 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3837 			props->hold_preemption = !!value;
3838 			break;
3839 		case DRM_I915_PERF_PROP_MAX:
3840 			MISSING_CASE(id);
3841 			return -EINVAL;
3842 		}
3843 
3844 		uprop += 2;
3845 	}
3846 
3847 	return 0;
3848 }
3849 
3850 /**
3851  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3852  * @dev: drm device
3853  * @data: ioctl data copied from userspace (unvalidated)
3854  * @file: drm file
3855  *
3856  * Validates the stream open parameters given by userspace including flags
3857  * and an array of u64 key, value pair properties.
3858  *
3859  * Very little is assumed up front about the nature of the stream being
3860  * opened (for instance we don't assume it's for periodic OA unit metrics). An
3861  * i915-perf stream is expected to be a suitable interface for other forms of
3862  * buffered data written by the GPU besides periodic OA metrics.
3863  *
3864  * Note we copy the properties from userspace outside of the i915 perf
3865  * mutex to avoid an awkward lockdep with mmap_sem.
3866  *
3867  * Most of the implementation details are handled by
3868  * i915_perf_open_ioctl_locked() after taking the &perf->lock
3869  * mutex for serializing with any non-file-operation driver hooks.
3870  *
3871  * Return: A newly opened i915 Perf stream file descriptor or negative
3872  * error code on failure.
3873  */
i915_perf_open_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3874 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3875 			 struct drm_file *file)
3876 {
3877 	struct i915_perf *perf = &to_i915(dev)->perf;
3878 	struct drm_i915_perf_open_param *param = data;
3879 	struct perf_open_properties props;
3880 	u32 known_open_flags;
3881 	int ret;
3882 
3883 	if (!perf->i915) {
3884 		DRM_DEBUG("i915 perf interface not available for this system\n");
3885 		return -ENOTSUPP;
3886 	}
3887 
3888 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3889 			   I915_PERF_FLAG_FD_NONBLOCK |
3890 			   I915_PERF_FLAG_DISABLED;
3891 	if (param->flags & ~known_open_flags) {
3892 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3893 		return -EINVAL;
3894 	}
3895 
3896 	ret = read_properties_unlocked(perf,
3897 				       u64_to_user_ptr(param->properties_ptr),
3898 				       param->num_properties,
3899 				       &props);
3900 	if (ret)
3901 		return ret;
3902 
3903 	mutex_lock(&perf->lock);
3904 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3905 	mutex_unlock(&perf->lock);
3906 
3907 	return ret;
3908 }
3909 
3910 /**
3911  * i915_perf_register - exposes i915-perf to userspace
3912  * @i915: i915 device instance
3913  *
3914  * In particular OA metric sets are advertised under a sysfs metrics/
3915  * directory allowing userspace to enumerate valid IDs that can be
3916  * used to open an i915-perf stream.
3917  */
i915_perf_register(struct drm_i915_private * i915)3918 void i915_perf_register(struct drm_i915_private *i915)
3919 {
3920 #ifndef __NetBSD__
3921 	struct i915_perf *perf = &i915->perf;
3922 	int ret;
3923 
3924 	if (!perf->i915)
3925 		return;
3926 
3927 	/* To be sure we're synchronized with an attempted
3928 	 * i915_perf_open_ioctl(); considering that we register after
3929 	 * being exposed to userspace.
3930 	 */
3931 	mutex_lock(&perf->lock);
3932 
3933 #ifndef __NetBSD__
3934 	perf->metrics_kobj =
3935 		kobject_create_and_add("metrics",
3936 				       &i915->drm.primary->kdev->kobj);
3937 	if (!perf->metrics_kobj)
3938 		goto exit;
3939 
3940 	sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr);
3941 #endif
3942 
3943 	if (IS_TIGERLAKE(i915)) {
3944 		i915_perf_load_test_config_tgl(i915);
3945 	} else if (INTEL_GEN(i915) >= 11) {
3946 		i915_perf_load_test_config_icl(i915);
3947 	} else if (IS_CANNONLAKE(i915)) {
3948 		i915_perf_load_test_config_cnl(i915);
3949 	} else if (IS_COFFEELAKE(i915)) {
3950 		if (IS_CFL_GT2(i915))
3951 			i915_perf_load_test_config_cflgt2(i915);
3952 		if (IS_CFL_GT3(i915))
3953 			i915_perf_load_test_config_cflgt3(i915);
3954 	} else if (IS_GEMINILAKE(i915)) {
3955 		i915_perf_load_test_config_glk(i915);
3956 	} else if (IS_KABYLAKE(i915)) {
3957 		if (IS_KBL_GT2(i915))
3958 			i915_perf_load_test_config_kblgt2(i915);
3959 		else if (IS_KBL_GT3(i915))
3960 			i915_perf_load_test_config_kblgt3(i915);
3961 	} else if (IS_BROXTON(i915)) {
3962 		i915_perf_load_test_config_bxt(i915);
3963 	} else if (IS_SKYLAKE(i915)) {
3964 		if (IS_SKL_GT2(i915))
3965 			i915_perf_load_test_config_sklgt2(i915);
3966 		else if (IS_SKL_GT3(i915))
3967 			i915_perf_load_test_config_sklgt3(i915);
3968 		else if (IS_SKL_GT4(i915))
3969 			i915_perf_load_test_config_sklgt4(i915);
3970 	} else if (IS_CHERRYVIEW(i915)) {
3971 		i915_perf_load_test_config_chv(i915);
3972 	} else if (IS_BROADWELL(i915)) {
3973 		i915_perf_load_test_config_bdw(i915);
3974 	} else if (IS_HASWELL(i915)) {
3975 		i915_perf_load_test_config_hsw(i915);
3976 	}
3977 
3978 	if (perf->test_config.id == 0)
3979 		goto sysfs_error;
3980 
3981 #ifdef __NetBSD__		/* XXX i915 sysfs */
3982 	__USE(ret);
3983 #else
3984 	ret = sysfs_create_group(perf->metrics_kobj,
3985 				 &perf->test_config.sysfs_metric);
3986 	if (ret)
3987 		goto sysfs_error;
3988 #endif
3989 
3990 	perf->test_config.perf = perf;
3991 	kref_init(&perf->test_config.ref);
3992 
3993 	goto exit;
3994 
3995 sysfs_error:
3996 #ifndef __NetBSD__
3997 	kobject_put(perf->metrics_kobj);
3998 	perf->metrics_kobj = NULL;
3999 #endif
4000 
4001 exit:
4002 	mutex_unlock(&perf->lock);
4003 #endif
4004 }
4005 
4006 /**
4007  * i915_perf_unregister - hide i915-perf from userspace
4008  * @i915: i915 device instance
4009  *
4010  * i915-perf state cleanup is split up into an 'unregister' and
4011  * 'deinit' phase where the interface is first hidden from
4012  * userspace by i915_perf_unregister() before cleaning up
4013  * remaining state in i915_perf_fini().
4014  */
i915_perf_unregister(struct drm_i915_private * i915)4015 void i915_perf_unregister(struct drm_i915_private *i915)
4016 {
4017 #ifndef __NetBSD__
4018 	struct i915_perf *perf = &i915->perf;
4019 
4020 	if (!perf->metrics_kobj)
4021 		return;
4022 
4023 	sysfs_remove_group(perf->metrics_kobj,
4024 			   &perf->test_config.sysfs_metric);
4025 
4026 	kobject_put(perf->metrics_kobj);
4027 	perf->metrics_kobj = NULL;
4028 #endif
4029 }
4030 
gen8_is_valid_flex_addr(struct i915_perf * perf,u32 addr)4031 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4032 {
4033 	static const i915_reg_t flex_eu_regs[] = {
4034 		EU_PERF_CNTL0,
4035 		EU_PERF_CNTL1,
4036 		EU_PERF_CNTL2,
4037 		EU_PERF_CNTL3,
4038 		EU_PERF_CNTL4,
4039 		EU_PERF_CNTL5,
4040 		EU_PERF_CNTL6,
4041 	};
4042 	int i;
4043 
4044 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4045 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4046 			return true;
4047 	}
4048 	return false;
4049 }
4050 
4051 #define ADDR_IN_RANGE(addr, start, end) \
4052 	((addr) >= (start) && \
4053 	 (addr) <= (end))
4054 
4055 #define REG_IN_RANGE(addr, start, end) \
4056 	((addr) >= i915_mmio_reg_offset(start) && \
4057 	 (addr) <= i915_mmio_reg_offset(end))
4058 
4059 #define REG_EQUAL(addr, mmio) \
4060 	((addr) == i915_mmio_reg_offset(mmio))
4061 
gen7_is_valid_b_counter_addr(struct i915_perf * perf,u32 addr)4062 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4063 {
4064 	return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
4065 	       REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
4066 	       REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
4067 }
4068 
gen7_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4069 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4070 {
4071 	return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
4072 	       REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
4073 	       REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
4074 	       REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
4075 }
4076 
gen8_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4077 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4078 {
4079 	return gen7_is_valid_mux_addr(perf, addr) ||
4080 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
4081 	       REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
4082 }
4083 
gen10_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4084 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4085 {
4086 	return gen8_is_valid_mux_addr(perf, addr) ||
4087 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
4088 	       REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
4089 }
4090 
hsw_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4091 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4092 {
4093 	return gen7_is_valid_mux_addr(perf, addr) ||
4094 	       ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
4095 	       REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
4096 	       REG_EQUAL(addr, HSW_MBVID2_MISR0);
4097 }
4098 
chv_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4099 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4100 {
4101 	return gen7_is_valid_mux_addr(perf, addr) ||
4102 	       ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
4103 }
4104 
gen12_is_valid_b_counter_addr(struct i915_perf * perf,u32 addr)4105 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4106 {
4107 	return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
4108 	       REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
4109 	       REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
4110 	       REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
4111 	       REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
4112 	       REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
4113 	       REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
4114 }
4115 
gen12_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4116 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4117 {
4118 	return REG_EQUAL(addr, NOA_WRITE) ||
4119 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
4120 	       REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
4121 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
4122 	       REG_EQUAL(addr, RPM_CONFIG0) ||
4123 	       REG_EQUAL(addr, RPM_CONFIG1) ||
4124 	       REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
4125 }
4126 
mask_reg_value(u32 reg,u32 val)4127 static u32 mask_reg_value(u32 reg, u32 val)
4128 {
4129 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4130 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4131 	 * programmed by userspace doesn't change this.
4132 	 */
4133 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4134 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4135 
4136 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4137 	 * indicated by its name and a bunch of selection fields used by OA
4138 	 * configs.
4139 	 */
4140 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4141 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4142 
4143 	return val;
4144 }
4145 
alloc_oa_regs(struct i915_perf * perf,bool (* is_valid)(struct i915_perf * perf,u32 addr),u32 __user * regs,u32 n_regs)4146 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4147 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4148 					 u32 __user *regs,
4149 					 u32 n_regs)
4150 {
4151 	struct i915_oa_reg *oa_regs;
4152 	int err;
4153 	u32 i;
4154 
4155 	if (!n_regs)
4156 		return NULL;
4157 
4158 	if (!access_ok(regs, n_regs * sizeof(u32) * 2))
4159 		return ERR_PTR(-EFAULT);
4160 
4161 	/* No is_valid function means we're not allowing any register to be programmed. */
4162 	GEM_BUG_ON(!is_valid);
4163 	if (!is_valid)
4164 		return ERR_PTR(-EINVAL);
4165 
4166 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4167 	if (!oa_regs)
4168 		return ERR_PTR(-ENOMEM);
4169 
4170 	for (i = 0; i < n_regs; i++) {
4171 		u32 addr, value;
4172 
4173 		err = get_user(addr, regs);
4174 		if (err)
4175 			goto addr_err;
4176 
4177 		if (!is_valid(perf, addr)) {
4178 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
4179 			err = -EINVAL;
4180 			goto addr_err;
4181 		}
4182 
4183 		err = get_user(value, regs + 1);
4184 		if (err)
4185 			goto addr_err;
4186 
4187 		oa_regs[i].addr = _MMIO(addr);
4188 		oa_regs[i].value = mask_reg_value(addr, value);
4189 
4190 		regs += 2;
4191 	}
4192 
4193 	return oa_regs;
4194 
4195 addr_err:
4196 	kfree(oa_regs);
4197 	return ERR_PTR(err);
4198 }
4199 
4200 #ifndef __NetBSD__		/* XXX i915 sysfs */
show_dynamic_id(struct device * dev,struct device_attribute * attr,char * buf)4201 static ssize_t show_dynamic_id(struct device *dev,
4202 			       struct device_attribute *attr,
4203 			       char *buf)
4204 {
4205 	struct i915_oa_config *oa_config =
4206 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4207 
4208 	return sprintf(buf, "%d\n", oa_config->id);
4209 }
4210 #endif
4211 
create_dynamic_oa_sysfs_entry(struct i915_perf * perf,struct i915_oa_config * oa_config)4212 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4213 					 struct i915_oa_config *oa_config)
4214 {
4215 #ifdef __NetBSD__		/* XXX i915 sysfs */
4216 	return 0;
4217 #else
4218 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4219 	oa_config->sysfs_metric_id.attr.name = "id";
4220 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4221 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4222 	oa_config->sysfs_metric_id.store = NULL;
4223 
4224 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4225 	oa_config->attrs[1] = NULL;
4226 
4227 	oa_config->sysfs_metric.name = oa_config->uuid;
4228 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4229 
4230 	return sysfs_create_group(perf->metrics_kobj,
4231 				  &oa_config->sysfs_metric);
4232 #endif
4233 }
4234 
4235 /**
4236  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4237  * @dev: drm device
4238  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4239  *        userspace (unvalidated)
4240  * @file: drm file
4241  *
4242  * Validates the submitted OA register to be saved into a new OA config that
4243  * can then be used for programming the OA unit and its NOA network.
4244  *
4245  * Returns: A new allocated config number to be used with the perf open ioctl
4246  * or a negative error code on failure.
4247  */
i915_perf_add_config_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4248 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4249 			       struct drm_file *file)
4250 {
4251 	struct i915_perf *perf = &to_i915(dev)->perf;
4252 	struct drm_i915_perf_oa_config *args = data;
4253 	struct i915_oa_config *oa_config, *tmp;
4254 	struct i915_oa_reg *regs;
4255 	int err, id;
4256 
4257 	if (!perf->i915) {
4258 		DRM_DEBUG("i915 perf interface not available for this system\n");
4259 		return -ENOTSUPP;
4260 	}
4261 
4262 	if (!perf->metrics_kobj) {
4263 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4264 		return -EINVAL;
4265 	}
4266 
4267 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
4268 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4269 		return -EACCES;
4270 	}
4271 
4272 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4273 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4274 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4275 		DRM_DEBUG("No OA registers given\n");
4276 		return -EINVAL;
4277 	}
4278 
4279 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4280 	if (!oa_config) {
4281 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
4282 		return -ENOMEM;
4283 	}
4284 
4285 	oa_config->perf = perf;
4286 	kref_init(&oa_config->ref);
4287 
4288 	if (!uuid_is_valid(args->uuid)) {
4289 		DRM_DEBUG("Invalid uuid format for OA config\n");
4290 		err = -EINVAL;
4291 		goto reg_err;
4292 	}
4293 
4294 	/* Last character in oa_config->uuid will be 0 because oa_config is
4295 	 * kzalloc.
4296 	 */
4297 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4298 
4299 	oa_config->mux_regs_len = args->n_mux_regs;
4300 	regs = alloc_oa_regs(perf,
4301 			     perf->ops.is_valid_mux_reg,
4302 			     u64_to_user_ptr(args->mux_regs_ptr),
4303 			     args->n_mux_regs);
4304 
4305 	if (IS_ERR(regs)) {
4306 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
4307 		err = PTR_ERR(regs);
4308 		goto reg_err;
4309 	}
4310 	oa_config->mux_regs = regs;
4311 
4312 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4313 	regs = alloc_oa_regs(perf,
4314 			     perf->ops.is_valid_b_counter_reg,
4315 			     u64_to_user_ptr(args->boolean_regs_ptr),
4316 			     args->n_boolean_regs);
4317 
4318 	if (IS_ERR(regs)) {
4319 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4320 		err = PTR_ERR(regs);
4321 		goto reg_err;
4322 	}
4323 	oa_config->b_counter_regs = regs;
4324 
4325 	if (INTEL_GEN(perf->i915) < 8) {
4326 		if (args->n_flex_regs != 0) {
4327 			err = -EINVAL;
4328 			goto reg_err;
4329 		}
4330 	} else {
4331 		oa_config->flex_regs_len = args->n_flex_regs;
4332 		regs = alloc_oa_regs(perf,
4333 				     perf->ops.is_valid_flex_reg,
4334 				     u64_to_user_ptr(args->flex_regs_ptr),
4335 				     args->n_flex_regs);
4336 
4337 		if (IS_ERR(regs)) {
4338 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
4339 			err = PTR_ERR(regs);
4340 			goto reg_err;
4341 		}
4342 		oa_config->flex_regs = regs;
4343 	}
4344 
4345 	idr_preload(GFP_KERNEL);
4346 	err = mutex_lock_interruptible(&perf->metrics_lock);
4347 	if (err)
4348 		goto reg_err;
4349 
4350 	/* We shouldn't have too many configs, so this iteration shouldn't be
4351 	 * too costly.
4352 	 */
4353 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4354 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4355 			DRM_DEBUG("OA config already exists with this uuid\n");
4356 			err = -EADDRINUSE;
4357 			goto sysfs_err;
4358 		}
4359 	}
4360 
4361 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4362 	if (err) {
4363 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4364 		goto sysfs_err;
4365 	}
4366 
4367 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4368 	oa_config->id = idr_alloc(&perf->metrics_idr,
4369 				  oa_config, 2,
4370 				  0, GFP_KERNEL);
4371 	if (oa_config->id < 0) {
4372 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4373 		err = oa_config->id;
4374 		goto sysfs_err;
4375 	}
4376 
4377 	mutex_unlock(&perf->metrics_lock);
4378 	idr_preload_end();
4379 
4380 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4381 
4382 	return oa_config->id;
4383 
4384 sysfs_err:
4385 	mutex_unlock(&perf->metrics_lock);
4386 	idr_preload_end();
4387 reg_err:
4388 	i915_oa_config_put(oa_config);
4389 	DRM_DEBUG("Failed to add new OA config\n");
4390 	return err;
4391 }
4392 
4393 /**
4394  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4395  * @dev: drm device
4396  * @data: ioctl data (pointer to u64 integer) copied from userspace
4397  * @file: drm file
4398  *
4399  * Configs can be removed while being used, the will stop appearing in sysfs
4400  * and their content will be freed when the stream using the config is closed.
4401  *
4402  * Returns: 0 on success or a negative error code on failure.
4403  */
i915_perf_remove_config_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4404 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4405 				  struct drm_file *file)
4406 {
4407 	struct i915_perf *perf = &to_i915(dev)->perf;
4408 	u64 *arg = data;
4409 	struct i915_oa_config *oa_config;
4410 	int ret;
4411 
4412 	if (!perf->i915) {
4413 		DRM_DEBUG("i915 perf interface not available for this system\n");
4414 		return -ENOTSUPP;
4415 	}
4416 
4417 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
4418 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4419 		return -EACCES;
4420 	}
4421 
4422 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4423 	if (ret)
4424 		return ret;
4425 
4426 	oa_config = idr_find(&perf->metrics_idr, *arg);
4427 	if (!oa_config) {
4428 		DRM_DEBUG("Failed to remove unknown OA config\n");
4429 		ret = -ENOENT;
4430 		goto err_unlock;
4431 	}
4432 
4433 	GEM_BUG_ON(*arg != oa_config->id);
4434 
4435 #ifndef __NetBSD__
4436 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4437 #endif
4438 
4439 	idr_remove(&perf->metrics_idr, *arg);
4440 
4441 	mutex_unlock(&perf->metrics_lock);
4442 
4443 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4444 
4445 	i915_oa_config_put(oa_config);
4446 
4447 	return 0;
4448 
4449 err_unlock:
4450 	mutex_unlock(&perf->metrics_lock);
4451 	return ret;
4452 }
4453 
4454 #ifndef __NetBSD__		/* XXX i915 perf sysctl */
4455 
4456 static struct ctl_table oa_table[] = {
4457 	{
4458 	 .procname = "perf_stream_paranoid",
4459 	 .data = &i915_perf_stream_paranoid,
4460 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4461 	 .mode = 0644,
4462 	 .proc_handler = proc_dointvec_minmax,
4463 	 .extra1 = SYSCTL_ZERO,
4464 	 .extra2 = SYSCTL_ONE,
4465 	 },
4466 	{
4467 	 .procname = "oa_max_sample_rate",
4468 	 .data = &i915_oa_max_sample_rate,
4469 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4470 	 .mode = 0644,
4471 	 .proc_handler = proc_dointvec_minmax,
4472 	 .extra1 = SYSCTL_ZERO,
4473 	 .extra2 = &oa_sample_rate_hard_limit,
4474 	 },
4475 	{}
4476 };
4477 
4478 static struct ctl_table i915_root[] = {
4479 	{
4480 	 .procname = "i915",
4481 	 .maxlen = 0,
4482 	 .mode = 0555,
4483 	 .child = oa_table,
4484 	 },
4485 	{}
4486 };
4487 
4488 static struct ctl_table dev_root[] = {
4489 	{
4490 	 .procname = "dev",
4491 	 .maxlen = 0,
4492 	 .mode = 0555,
4493 	 .child = i915_root,
4494 	 },
4495 	{}
4496 };
4497 
4498 #endif	/* __NetBSD__ */
4499 
4500 /**
4501  * i915_perf_init - initialize i915-perf state on module bind
4502  * @i915: i915 device instance
4503  *
4504  * Initializes i915-perf state without exposing anything to userspace.
4505  *
4506  * Note: i915-perf initialization is split into an 'init' and 'register'
4507  * phase with the i915_perf_register() exposing state to userspace.
4508  */
i915_perf_init(struct drm_i915_private * i915)4509 void i915_perf_init(struct drm_i915_private *i915)
4510 {
4511 	struct i915_perf *perf = &i915->perf;
4512 
4513 	/* XXX const struct i915_perf_ops! */
4514 
4515 	if (IS_HASWELL(i915)) {
4516 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4517 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4518 		perf->ops.is_valid_flex_reg = NULL;
4519 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4520 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4521 		perf->ops.oa_enable = gen7_oa_enable;
4522 		perf->ops.oa_disable = gen7_oa_disable;
4523 		perf->ops.read = gen7_oa_read;
4524 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4525 
4526 		perf->oa_formats = hsw_oa_formats;
4527 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4528 		/* Note: that although we could theoretically also support the
4529 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4530 		 * this driver, before upstreaming did this) it didn't seem
4531 		 * worth the complexity to maintain now that BDW+ enable
4532 		 * execlist mode by default.
4533 		 */
4534 		perf->ops.read = gen8_oa_read;
4535 
4536 		if (IS_GEN_RANGE(i915, 8, 9)) {
4537 			perf->oa_formats = gen8_plus_oa_formats;
4538 
4539 			perf->ops.is_valid_b_counter_reg =
4540 				gen7_is_valid_b_counter_addr;
4541 			perf->ops.is_valid_mux_reg =
4542 				gen8_is_valid_mux_addr;
4543 			perf->ops.is_valid_flex_reg =
4544 				gen8_is_valid_flex_addr;
4545 
4546 			if (IS_CHERRYVIEW(i915)) {
4547 				perf->ops.is_valid_mux_reg =
4548 					chv_is_valid_mux_addr;
4549 			}
4550 
4551 			perf->ops.oa_enable = gen8_oa_enable;
4552 			perf->ops.oa_disable = gen8_oa_disable;
4553 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4554 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4555 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4556 
4557 			if (IS_GEN(i915, 8)) {
4558 				perf->ctx_oactxctrl_offset = 0x120;
4559 				perf->ctx_flexeu0_offset = 0x2ce;
4560 
4561 				perf->gen8_valid_ctx_bit = BIT(25);
4562 			} else {
4563 				perf->ctx_oactxctrl_offset = 0x128;
4564 				perf->ctx_flexeu0_offset = 0x3de;
4565 
4566 				perf->gen8_valid_ctx_bit = BIT(16);
4567 			}
4568 		} else if (IS_GEN_RANGE(i915, 10, 11)) {
4569 			perf->oa_formats = gen8_plus_oa_formats;
4570 
4571 			perf->ops.is_valid_b_counter_reg =
4572 				gen7_is_valid_b_counter_addr;
4573 			perf->ops.is_valid_mux_reg =
4574 				gen10_is_valid_mux_addr;
4575 			perf->ops.is_valid_flex_reg =
4576 				gen8_is_valid_flex_addr;
4577 
4578 			perf->ops.oa_enable = gen8_oa_enable;
4579 			perf->ops.oa_disable = gen8_oa_disable;
4580 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4581 			perf->ops.disable_metric_set = gen10_disable_metric_set;
4582 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4583 
4584 			if (IS_GEN(i915, 10)) {
4585 				perf->ctx_oactxctrl_offset = 0x128;
4586 				perf->ctx_flexeu0_offset = 0x3de;
4587 			} else {
4588 				perf->ctx_oactxctrl_offset = 0x124;
4589 				perf->ctx_flexeu0_offset = 0x78e;
4590 			}
4591 			perf->gen8_valid_ctx_bit = BIT(16);
4592 		} else if (IS_GEN(i915, 12)) {
4593 			perf->oa_formats = gen12_oa_formats;
4594 
4595 			perf->ops.is_valid_b_counter_reg =
4596 				gen12_is_valid_b_counter_addr;
4597 			perf->ops.is_valid_mux_reg =
4598 				gen12_is_valid_mux_addr;
4599 			perf->ops.is_valid_flex_reg =
4600 				gen8_is_valid_flex_addr;
4601 
4602 			perf->ops.oa_enable = gen12_oa_enable;
4603 			perf->ops.oa_disable = gen12_oa_disable;
4604 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4605 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4606 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4607 
4608 			perf->ctx_flexeu0_offset = 0;
4609 			perf->ctx_oactxctrl_offset = 0x144;
4610 		}
4611 	}
4612 
4613 	if (perf->ops.enable_metric_set) {
4614 		mutex_init(&perf->lock);
4615 
4616 		oa_sample_rate_hard_limit = 1000 *
4617 			(RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2);
4618 
4619 		mutex_init(&perf->metrics_lock);
4620 		idr_init(&perf->metrics_idr);
4621 
4622 		/* We set up some ratelimit state to potentially throttle any
4623 		 * _NOTES about spurious, invalid OA reports which we don't
4624 		 * forward to userspace.
4625 		 *
4626 		 * We print a _NOTE about any throttling when closing the
4627 		 * stream instead of waiting until driver _fini which no one
4628 		 * would ever see.
4629 		 *
4630 		 * Using the same limiting factors as printk_ratelimit()
4631 		 */
4632 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4633 		/* Since we use a DRM_NOTE for spurious reports it would be
4634 		 * inconsistent to let __ratelimit() automatically print a
4635 		 * warning for throttling.
4636 		 */
4637 		ratelimit_set_flags(&perf->spurious_report_rs,
4638 				    RATELIMIT_MSG_ON_RELEASE);
4639 
4640 		atomic64_set(&perf->noa_programming_delay,
4641 			     500 * 1000 /* 500us */);
4642 
4643 		perf->i915 = i915;
4644 	}
4645 }
4646 
destroy_config(int id,void * p,void * data)4647 static int destroy_config(int id, void *p, void *data)
4648 {
4649 	i915_oa_config_put(p);
4650 	return 0;
4651 }
4652 
i915_perf_sysctl_register(void)4653 void i915_perf_sysctl_register(void)
4654 {
4655 #ifndef __NetBSD__		/* XXX i915 perf sysctl */
4656 	sysctl_header = register_sysctl_table(dev_root);
4657 #endif
4658 }
4659 
i915_perf_sysctl_unregister(void)4660 void i915_perf_sysctl_unregister(void)
4661 {
4662 #ifndef __NetBSD__		/* XXX i915 perf sysctl */
4663 	unregister_sysctl_table(sysctl_header);
4664 #endif
4665 }
4666 
4667 /**
4668  * i915_perf_fini - Counter part to i915_perf_init()
4669  * @i915: i915 device instance
4670  */
i915_perf_fini(struct drm_i915_private * i915)4671 void i915_perf_fini(struct drm_i915_private *i915)
4672 {
4673 	struct i915_perf *perf = &i915->perf;
4674 
4675 	if (!perf->i915)
4676 		return;
4677 
4678 	if (perf->ops.enable_metric_set) {
4679 		mutex_destroy(&perf->metrics_lock);
4680 		mutex_destroy(&perf->lock);
4681 	}
4682 
4683 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4684 	idr_destroy(&perf->metrics_idr);
4685 
4686 	memset(&perf->ops, 0, sizeof(perf->ops));
4687 	perf->i915 = NULL;
4688 }
4689 
4690 /**
4691  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4692  *
4693  * This version number is used by userspace to detect available features.
4694  */
i915_perf_ioctl_version(void)4695 int i915_perf_ioctl_version(void)
4696 {
4697 	/*
4698 	 * 1: Initial version
4699 	 *   I915_PERF_IOCTL_ENABLE
4700 	 *   I915_PERF_IOCTL_DISABLE
4701 	 *
4702 	 * 2: Added runtime modification of OA config.
4703 	 *   I915_PERF_IOCTL_CONFIG
4704 	 *
4705 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4706 	 *    preemption on a particular context so that performance data is
4707 	 *    accessible from a delta of MI_RPC reports without looking at the
4708 	 *    OA buffer.
4709 	 */
4710 	return 3;
4711 }
4712 
4713 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4714 #include "selftests/i915_perf.c"
4715 #endif
4716