xref: /netbsd-src/sys/arch/arm/xscale/i80321_icu.c (revision 0a29e87b23edd59b99e43aff47d2839258b6673e)
1 /*	$NetBSD: i80321_icu.c,v 1.27 2021/08/06 09:01:36 rin Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.27 2021/08/06 09:01:36 rin Exp $");
40 
41 #ifndef EVBARM_SPL_NOINLINE
42 #define	EVBARM_SPL_NOINLINE
43 #endif
44 
45 /*
46  * Interrupt support for the Intel i80321 I/O Processor.
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/kmem.h>
52 
53 #include <uvm/uvm_extern.h>
54 
55 #include <sys/bus.h>
56 #include <machine/intr.h>
57 
58 #include <arm/cpufunc.h>
59 
60 #include <arm/xscale/i80321reg.h>
61 #include <arm/xscale/i80321var.h>
62 
63 /* Interrupt handler queues. */
64 struct intrq intrq[NIRQ];
65 
66 /* Interrupts to mask at each level. */
67 int i80321_imask[NIPL];
68 
69 /* Interrupts pending. */
70 volatile int i80321_ipending;
71 
72 /* Software copy of the IRQs we have enabled. */
73 volatile uint32_t intr_enabled;
74 
75 /* Mask if interrupts steered to FIQs. */
76 uint32_t intr_steer;
77 
78 /*
79  * Interrupt bit names.
80  */
81 const char * const i80321_irqnames[] = {
82 	"DMA0 EOT",
83 	"DMA0 EOC",
84 	"DMA1 EOT",
85 	"DMA1 EOC",
86 	"irq 4",
87 	"irq 5",
88 	"AAU EOT",
89 	"AAU EOC",
90 	"core PMU",
91 	"TMR0 (hardclock)",
92 	"TMR1",
93 	"I2C0",
94 	"I2C1",
95 	"MU",
96 	"BIST",
97 	"periph PMU",
98 	"XScale PMU",
99 	"BIU error",
100 	"ATU error",
101 	"MCU error",
102 	"DMA0 error",
103 	"DMA1 error",
104 	"irq 22",
105 	"AAU error",
106 	"MU error",
107 	"SSP",
108 	"irq 26",
109 	"irq 27",
110 	"irq 28",
111 	"irq 29",
112 	"irq 30",
113 	"irq 31",
114 };
115 
116 void	i80321_intr_dispatch(struct clockframe *frame);
117 
118 static inline uint32_t
i80321_iintsrc_read(void)119 i80321_iintsrc_read(void)
120 {
121 	uint32_t iintsrc;
122 
123 	__asm volatile("mrc p6, 0, %0, c8, c0, 0"
124 		: "=r" (iintsrc));
125 
126 	/*
127 	 * The IINTSRC register shows bits that are active even
128 	 * if they are masked in INTCTL, so we have to mask them
129 	 * off with the interrupts we consider enabled.
130 	 */
131 	return (iintsrc & intr_enabled);
132 }
133 
134 static inline void
i80321_set_intrsteer(void)135 i80321_set_intrsteer(void)
136 {
137 
138 	__asm volatile("mcr p6, 0, %0, c4, c0, 0"
139 		:
140 		: "r" (intr_steer & ICU_INT_HWMASK));
141 }
142 
143 static inline void
i80321_enable_irq(int irq)144 i80321_enable_irq(int irq)
145 {
146 
147 	intr_enabled |= (1U << irq);
148 	i80321_set_intrmask();
149 }
150 
151 static inline void
i80321_disable_irq(int irq)152 i80321_disable_irq(int irq)
153 {
154 
155 	intr_enabled &= ~(1U << irq);
156 	i80321_set_intrmask();
157 }
158 
159 /*
160  * NOTE: This routine must be called with interrupts disabled in the CPSR.
161  */
162 static void
i80321_intr_calculate_masks(void)163 i80321_intr_calculate_masks(void)
164 {
165 	struct intrq *iq;
166 	struct intrhand *ih;
167 	int irq, ipl;
168 
169 	/* Disable all IRQs. */
170 	for (irq = 0; irq < NIRQ; irq++)
171 		i80321_disable_irq(irq);
172 
173 	/* Figure out which IRQs are used by each IPL. */
174 	for (ipl = 0; ipl < NIPL; ipl++)
175 		i80321_imask[ipl] = 0;
176 	for (irq = 0; irq < NIRQ; irq++) {
177 		iq = &intrq[irq];
178 		TAILQ_FOREACH(ih, &iq->iq_list, ih_list)
179 			i80321_imask[ih->ih_ipl] |= (1U << irq);
180 	}
181 
182 	/* All IPLs block everything blocked by any lower IPL. */
183 	for (ipl = 1; ipl < NIPL; ipl++)
184 		i80321_imask[ipl] |= i80321_imask[ipl - 1];
185 
186 	KASSERT(i80321_imask[IPL_NONE] == 0);
187 	KASSERT(i80321_imask[IPL_SOFTCLOCK] == 0);
188 	KASSERT(i80321_imask[IPL_SOFTBIO] == 0);
189 	KASSERT(i80321_imask[IPL_SOFTNET] == 0);
190 	KASSERT(i80321_imask[IPL_SOFTSERIAL] == 0);
191 
192 	/* Enable IRQs in use. */
193 	for (irq = 0; irq < NIRQ; irq++) {
194 		iq = &intrq[irq];
195 		if (!TAILQ_EMPTY(&iq->iq_list))
196 			i80321_enable_irq(irq);
197 	}
198 }
199 
200 void
splx(int new)201 splx(int new)
202 {
203 	i80321_splx(new);
204 }
205 
206 int
_spllower(int ipl)207 _spllower(int ipl)
208 {
209 	return (i80321_spllower(ipl));
210 }
211 
212 int
_splraise(int ipl)213 _splraise(int ipl)
214 {
215 	return (i80321_splraise(ipl));
216 }
217 
218 /*
219  * i80321_icu_init:
220  *
221  *	Initialize the i80321 ICU.  Called early in bootstrap
222  *	to make sure the ICU is in a pristine state.
223  */
224 void
i80321_icu_init(void)225 i80321_icu_init(void)
226 {
227 
228 	intr_enabled = 0;	/* All interrupts disabled */
229 	i80321_set_intrmask();
230 
231 	intr_steer = 0;		/* All interrupts steered to IRQ */
232 	i80321_set_intrsteer();
233 }
234 
235 /*
236  * i80321_intr_init:
237  *
238  *	Initialize the rest of the interrupt subsystem, making it
239  *	ready to handle interrupts from devices.
240  */
241 void
i80321_intr_init(void)242 i80321_intr_init(void)
243 {
244 	struct intrq *iq;
245 	int i;
246 
247 	intr_enabled = 0;
248 
249 	for (i = 0; i < NIRQ; i++) {
250 		iq = &intrq[i];
251 		TAILQ_INIT(&iq->iq_list);
252 	}
253 
254 	i80321_intr_calculate_masks();
255 
256 	/* Enable IRQs (don't yet use FIQs). */
257 	enable_interrupts(I32_bit);
258 }
259 
260 void
i80321_intr_evcnt_attach(void)261 i80321_intr_evcnt_attach(void)
262 {
263 	for (u_int i = 0; i < NIRQ; i++) {
264 		struct intrq *iq = &intrq[i];
265 		evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
266 		    NULL, "iop321", i80321_irqnames[i]);
267 	}
268 
269 }
270 
271 void *
i80321_intr_establish(int irq,int ipl,int (* func)(void *),void * arg)272 i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
273 {
274 	struct intrq *iq;
275 	struct intrhand *ih;
276 	u_int oldirqstate;
277 
278 	if (irq < 0 || irq > NIRQ)
279 		panic("i80321_intr_establish: IRQ %d out of range", irq);
280 
281 	ih = kmem_alloc(sizeof(*ih), KM_SLEEP);
282 	ih->ih_func = func;
283 	ih->ih_arg = arg;
284 	ih->ih_ipl = ipl;
285 	ih->ih_irq = irq;
286 
287 	iq = &intrq[irq];
288 
289 	/* All IOP321 interrupts are level-triggered. */
290 	iq->iq_ist = IST_LEVEL;
291 
292 	oldirqstate = disable_interrupts(I32_bit);
293 
294 	TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
295 
296 	i80321_intr_calculate_masks();
297 
298 	restore_interrupts(oldirqstate);
299 
300 	return (ih);
301 }
302 
303 void
i80321_intr_disestablish(void * cookie)304 i80321_intr_disestablish(void *cookie)
305 {
306 	struct intrhand *ih = cookie;
307 	struct intrq *iq = &intrq[ih->ih_irq];
308 	int oldirqstate;
309 
310 	oldirqstate = disable_interrupts(I32_bit);
311 
312 	TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
313 
314 	i80321_intr_calculate_masks();
315 
316 	restore_interrupts(oldirqstate);
317 }
318 
319 /*
320  * Hardware interrupt handler.
321  *
322  * If I80321_HPI_ENABLED is defined, this code attempts to deal with
323  * HPI interrupts as best it can.
324  *
325  * The problem is that HPIs cannot be masked at the interrupt controller;
326  * they can only be masked by disabling IRQs in the XScale core.
327  *
328  * So, if an HPI comes in and we determine that it should be masked at
329  * the current IPL then we mark it pending in the usual way and set
330  * I32_bit in the interrupt frame. This ensures that when we return from
331  * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To
332  * ensure IRQs are enabled later, i80321_splx() has been modified to do
333  * just that when a pending HPI interrupt is unmasked.) Additionally,
334  * because HPIs are level-triggered, the registered handler for the HPI
335  * interrupt will also be invoked with IRQs disabled. If a masked HPI
336  * occurs at the same time as another unmasked higher priority interrupt,
337  * the higher priority handler will also be invoked with IRQs disabled.
338  * As a result, the system could end up executing a lot of code with IRQs
339  * completely disabled if the HPI's IPL is relatively low.
340  *
341  * At the present time, the only known use of HPI is for the console UART
342  * on a couple of boards. This is probably the least intrusive use of HPI
343  * as IPL_SERIAL is the highest priority IPL in the system anyway. The
344  * code has not been tested with HPI hooked up to a class of device which
345  * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to
346  * perform very poorly if at all, even though the following code has been
347  * designed (hopefully) to cope with it.
348  */
349 
350 void
i80321_intr_dispatch(struct clockframe * frame)351 i80321_intr_dispatch(struct clockframe *frame)
352 {
353 	struct intrq *iq;
354 	struct intrhand *ih;
355 	int oldirqstate, irq, ibit, hwpend;
356 #ifdef I80321_HPI_ENABLED
357 	int oldpending;
358 #endif
359 	struct cpu_info * const ci = curcpu();
360 	const int ppl = ci->ci_cpl;
361 	const uint32_t imask = i80321_imask[ppl];
362 
363 	hwpend = i80321_iintsrc_read();
364 
365 	/*
366 	 * Disable all the interrupts that are pending.  We will
367 	 * reenable them once they are processed and not masked.
368 	 */
369 	intr_enabled &= ~hwpend;
370 	i80321_set_intrmask();
371 
372 #ifdef I80321_HPI_ENABLED
373 	oldirqstate = 0;	/* XXX: quell gcc warning */
374 #endif
375 
376 	while (hwpend != 0) {
377 #ifdef I80321_HPI_ENABLED
378 		/* Deal with HPI interrupt first */
379 		if (__predict_false(hwpend & INT_HPIMASK))
380 			irq = ICU_INT_HPI;
381 		else
382 #endif
383 		irq = ffs(hwpend) - 1;
384 		ibit = (1U << irq);
385 
386 		hwpend &= ~ibit;
387 
388 		if (imask & ibit) {
389 			/*
390 			 * IRQ is masked; mark it as pending and check
391 			 * the next one.  Note: the IRQ is already disabled.
392 			 */
393 #ifdef I80321_HPI_ENABLED
394 			if (__predict_false(irq == ICU_INT_HPI)) {
395 				/*
396 				 * This is an HPI. We *must* disable
397 				 * IRQs in the interrupt frame until
398 				 * INT_HPIMASK is cleared by a later
399 				 * call to splx(). Otherwise the level-
400 				 * triggered interrupt will just keep
401 				 * coming back.
402 				 */
403 				frame->cf_tf.tf_spsr |= I32_bit;
404 			}
405 #endif
406 			i80321_ipending |= ibit;
407 			continue;
408 		}
409 
410 #ifdef I80321_HPI_ENABLED
411 		oldpending = i80321_ipending | ibit;
412 #endif
413 		i80321_ipending &= ~ibit;
414 
415 		iq = &intrq[irq];
416 		iq->iq_ev.ev_count++;
417 		ci->ci_data.cpu_nintr++;
418 #ifdef I80321_HPI_ENABLED
419 		/*
420 		 * Re-enable interrupts iff an HPI is not pending
421 		 */
422 		if (__predict_true((oldpending & INT_HPIMASK) == 0)) {
423 #endif
424 			TAILQ_FOREACH (ih, &iq->iq_list, ih_list) {
425 				ci->ci_cpl = ih->ih_ipl;
426 				oldirqstate = enable_interrupts(I32_bit);
427 				(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
428 				restore_interrupts(oldirqstate);
429 			}
430 #ifdef I80321_HPI_ENABLED
431 		} else if (irq == ICU_INT_HPI) {
432 			/*
433 			 * We've just handled the HPI. Make sure IRQs
434 			 * are enabled in the interrupt frame.
435 			 * Here's hoping the handler really did clear
436 			 * down the source...
437 			 */
438 			frame->cf_tf.tf_spsr &= ~I32_bit;
439 		}
440 #endif
441 		ci->ci_cpl = ppl;
442 
443 		/* Re-enable this interrupt now that's it's cleared. */
444 		intr_enabled |= ibit;
445 		i80321_set_intrmask();
446 
447 		/*
448 		 * Don't forget to include interrupts which may have
449 		 * arrived in the meantime.
450 		 */
451 		hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~imask);
452 	}
453 
454 #ifdef __HAVE_FAST_SOFTINTS
455 	cpu_dosoftints();
456 #endif
457 }
458