1 //===-- hwasan_allocator.cpp ------------------------ ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of HWAddressSanitizer.
10 //
11 // HWAddressSanitizer allocator.
12 //===----------------------------------------------------------------------===//
13
14 #include "sanitizer_common/sanitizer_atomic.h"
15 #include "sanitizer_common/sanitizer_errno.h"
16 #include "sanitizer_common/sanitizer_stackdepot.h"
17 #include "hwasan.h"
18 #include "hwasan_allocator.h"
19 #include "hwasan_checks.h"
20 #include "hwasan_mapping.h"
21 #include "hwasan_malloc_bisect.h"
22 #include "hwasan_thread.h"
23 #include "hwasan_report.h"
24
25 namespace __hwasan {
26
27 static Allocator allocator;
28 static AllocatorCache fallback_allocator_cache;
29 static SpinMutex fallback_mutex;
30 static atomic_uint8_t hwasan_allocator_tagging_enabled;
31
32 static constexpr tag_t kFallbackAllocTag = 0xBB & kTagMask;
33 static constexpr tag_t kFallbackFreeTag = 0xBC;
34
35 enum RightAlignMode {
36 kRightAlignNever,
37 kRightAlignSometimes,
38 kRightAlignAlways
39 };
40
41 // Initialized in HwasanAllocatorInit, an never changed.
42 static ALIGNED(16) u8 tail_magic[kShadowAlignment - 1];
43
IsAllocated() const44 bool HwasanChunkView::IsAllocated() const {
45 return metadata_ && metadata_->alloc_context_id &&
46 metadata_->get_requested_size();
47 }
48
49 // Aligns the 'addr' right to the granule boundary.
AlignRight(uptr addr,uptr requested_size)50 static uptr AlignRight(uptr addr, uptr requested_size) {
51 uptr tail_size = requested_size % kShadowAlignment;
52 if (!tail_size) return addr;
53 return addr + kShadowAlignment - tail_size;
54 }
55
Beg() const56 uptr HwasanChunkView::Beg() const {
57 if (metadata_ && metadata_->right_aligned)
58 return AlignRight(block_, metadata_->get_requested_size());
59 return block_;
60 }
End() const61 uptr HwasanChunkView::End() const {
62 return Beg() + UsedSize();
63 }
UsedSize() const64 uptr HwasanChunkView::UsedSize() const {
65 return metadata_->get_requested_size();
66 }
GetAllocStackId() const67 u32 HwasanChunkView::GetAllocStackId() const {
68 return metadata_->alloc_context_id;
69 }
70
ActualSize() const71 uptr HwasanChunkView::ActualSize() const {
72 return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_));
73 }
74
FromSmallHeap() const75 bool HwasanChunkView::FromSmallHeap() const {
76 return allocator.FromPrimary(reinterpret_cast<void *>(block_));
77 }
78
GetAllocatorStats(AllocatorStatCounters s)79 void GetAllocatorStats(AllocatorStatCounters s) {
80 allocator.GetStats(s);
81 }
82
GetAliasRegionStart()83 uptr GetAliasRegionStart() {
84 #if defined(HWASAN_ALIASING_MODE)
85 constexpr uptr kAliasRegionOffset = 1ULL << (kTaggableRegionCheckShift - 1);
86 uptr AliasRegionStart =
87 __hwasan_shadow_memory_dynamic_address + kAliasRegionOffset;
88
89 CHECK_EQ(AliasRegionStart >> kTaggableRegionCheckShift,
90 __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
91 CHECK_EQ(
92 (AliasRegionStart + kAliasRegionOffset - 1) >> kTaggableRegionCheckShift,
93 __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
94 return AliasRegionStart;
95 #else
96 return 0;
97 #endif
98 }
99
HwasanAllocatorInit()100 void HwasanAllocatorInit() {
101 atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
102 !flags()->disable_allocator_tagging);
103 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
104 allocator.Init(common_flags()->allocator_release_to_os_interval_ms,
105 GetAliasRegionStart());
106 for (uptr i = 0; i < sizeof(tail_magic); i++)
107 tail_magic[i] = GetCurrentThread()->GenerateRandomTag();
108 }
109
HwasanAllocatorLock()110 void HwasanAllocatorLock() { allocator.ForceLock(); }
111
HwasanAllocatorUnlock()112 void HwasanAllocatorUnlock() { allocator.ForceUnlock(); }
113
AllocatorSwallowThreadLocalCache(AllocatorCache * cache)114 void AllocatorSwallowThreadLocalCache(AllocatorCache *cache) {
115 allocator.SwallowCache(cache);
116 }
117
TaggedSize(uptr size)118 static uptr TaggedSize(uptr size) {
119 if (!size) size = 1;
120 uptr new_size = RoundUpTo(size, kShadowAlignment);
121 CHECK_GE(new_size, size);
122 return new_size;
123 }
124
HwasanAllocate(StackTrace * stack,uptr orig_size,uptr alignment,bool zeroise)125 static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment,
126 bool zeroise) {
127 if (orig_size > kMaxAllowedMallocSize) {
128 if (AllocatorMayReturnNull()) {
129 Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
130 orig_size);
131 return nullptr;
132 }
133 ReportAllocationSizeTooBig(orig_size, kMaxAllowedMallocSize, stack);
134 }
135
136 alignment = Max(alignment, kShadowAlignment);
137 uptr size = TaggedSize(orig_size);
138 Thread *t = GetCurrentThread();
139 void *allocated;
140 if (t) {
141 allocated = allocator.Allocate(t->allocator_cache(), size, alignment);
142 } else {
143 SpinMutexLock l(&fallback_mutex);
144 AllocatorCache *cache = &fallback_allocator_cache;
145 allocated = allocator.Allocate(cache, size, alignment);
146 }
147 if (UNLIKELY(!allocated)) {
148 SetAllocatorOutOfMemory();
149 if (AllocatorMayReturnNull())
150 return nullptr;
151 ReportOutOfMemory(size, stack);
152 }
153 Metadata *meta =
154 reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
155 meta->set_requested_size(orig_size);
156 meta->alloc_context_id = StackDepotPut(*stack);
157 meta->right_aligned = false;
158 if (zeroise) {
159 internal_memset(allocated, 0, size);
160 } else if (flags()->max_malloc_fill_size > 0) {
161 uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size);
162 internal_memset(allocated, flags()->malloc_fill_byte, fill_size);
163 }
164 if (size != orig_size) {
165 u8 *tail = reinterpret_cast<u8 *>(allocated) + orig_size;
166 uptr tail_length = size - orig_size;
167 internal_memcpy(tail, tail_magic, tail_length - 1);
168 // Short granule is excluded from magic tail, so we explicitly untag.
169 tail[tail_length - 1] = 0;
170 }
171
172 void *user_ptr = allocated;
173 // Tagging can only be skipped when both tag_in_malloc and tag_in_free are
174 // false. When tag_in_malloc = false and tag_in_free = true malloc needs to
175 // retag to 0.
176 if (InTaggableRegion(reinterpret_cast<uptr>(user_ptr)) &&
177 (flags()->tag_in_malloc || flags()->tag_in_free) &&
178 atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) {
179 if (flags()->tag_in_malloc && malloc_bisect(stack, orig_size)) {
180 tag_t tag = t ? t->GenerateRandomTag() : kFallbackAllocTag;
181 uptr tag_size = orig_size ? orig_size : 1;
182 uptr full_granule_size = RoundDownTo(tag_size, kShadowAlignment);
183 user_ptr =
184 (void *)TagMemoryAligned((uptr)user_ptr, full_granule_size, tag);
185 if (full_granule_size != tag_size) {
186 u8 *short_granule =
187 reinterpret_cast<u8 *>(allocated) + full_granule_size;
188 TagMemoryAligned((uptr)short_granule, kShadowAlignment,
189 tag_size % kShadowAlignment);
190 short_granule[kShadowAlignment - 1] = tag;
191 }
192 } else {
193 user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, 0);
194 }
195 }
196
197 HWASAN_MALLOC_HOOK(user_ptr, size);
198 return user_ptr;
199 }
200
PointerAndMemoryTagsMatch(void * tagged_ptr)201 static bool PointerAndMemoryTagsMatch(void *tagged_ptr) {
202 CHECK(tagged_ptr);
203 uptr tagged_uptr = reinterpret_cast<uptr>(tagged_ptr);
204 if (!InTaggableRegion(tagged_uptr))
205 return true;
206 tag_t mem_tag = *reinterpret_cast<tag_t *>(
207 MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr))));
208 return PossiblyShortTagMatches(mem_tag, tagged_uptr, 1);
209 }
210
CheckInvalidFree(StackTrace * stack,void * untagged_ptr,void * tagged_ptr)211 static bool CheckInvalidFree(StackTrace *stack, void *untagged_ptr,
212 void *tagged_ptr) {
213 // This function can return true if halt_on_error is false.
214 if (!MemIsApp(reinterpret_cast<uptr>(untagged_ptr)) ||
215 !PointerAndMemoryTagsMatch(tagged_ptr)) {
216 ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
217 return true;
218 }
219 return false;
220 }
221
HwasanDeallocate(StackTrace * stack,void * tagged_ptr)222 static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) {
223 CHECK(tagged_ptr);
224 HWASAN_FREE_HOOK(tagged_ptr);
225
226 bool in_taggable_region =
227 InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr));
228 void *untagged_ptr = in_taggable_region ? UntagPtr(tagged_ptr) : tagged_ptr;
229
230 if (CheckInvalidFree(stack, untagged_ptr, tagged_ptr))
231 return;
232
233 void *aligned_ptr = reinterpret_cast<void *>(
234 RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
235 tag_t pointer_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr));
236 Metadata *meta =
237 reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
238 if (!meta) {
239 ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
240 return;
241 }
242 uptr orig_size = meta->get_requested_size();
243 u32 free_context_id = StackDepotPut(*stack);
244 u32 alloc_context_id = meta->alloc_context_id;
245
246 // Check tail magic.
247 uptr tagged_size = TaggedSize(orig_size);
248 if (flags()->free_checks_tail_magic && orig_size &&
249 tagged_size != orig_size) {
250 uptr tail_size = tagged_size - orig_size - 1;
251 CHECK_LT(tail_size, kShadowAlignment);
252 void *tail_beg = reinterpret_cast<void *>(
253 reinterpret_cast<uptr>(aligned_ptr) + orig_size);
254 tag_t short_granule_memtag = *(reinterpret_cast<tag_t *>(
255 reinterpret_cast<uptr>(tail_beg) + tail_size));
256 if (tail_size &&
257 (internal_memcmp(tail_beg, tail_magic, tail_size) ||
258 (in_taggable_region && pointer_tag != short_granule_memtag)))
259 ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr),
260 orig_size, tail_magic);
261 }
262
263 meta->set_requested_size(0);
264 meta->alloc_context_id = 0;
265 // This memory will not be reused by anyone else, so we are free to keep it
266 // poisoned.
267 Thread *t = GetCurrentThread();
268 if (flags()->max_free_fill_size > 0) {
269 uptr fill_size =
270 Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size);
271 internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size);
272 }
273 if (in_taggable_region && flags()->tag_in_free && malloc_bisect(stack, 0) &&
274 atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) {
275 // Always store full 8-bit tags on free to maximize UAF detection.
276 tag_t tag;
277 if (t) {
278 // Make sure we are not using a short granule tag as a poison tag. This
279 // would make us attempt to read the memory on a UaF.
280 // The tag can be zero if tagging is disabled on this thread.
281 do {
282 tag = t->GenerateRandomTag(/*num_bits=*/8);
283 } while (
284 UNLIKELY((tag < kShadowAlignment || tag == pointer_tag) && tag != 0));
285 } else {
286 static_assert(kFallbackFreeTag >= kShadowAlignment,
287 "fallback tag must not be a short granule tag.");
288 tag = kFallbackFreeTag;
289 }
290 TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size),
291 tag);
292 }
293 if (t) {
294 allocator.Deallocate(t->allocator_cache(), aligned_ptr);
295 if (auto *ha = t->heap_allocations())
296 ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_context_id,
297 free_context_id, static_cast<u32>(orig_size)});
298 } else {
299 SpinMutexLock l(&fallback_mutex);
300 AllocatorCache *cache = &fallback_allocator_cache;
301 allocator.Deallocate(cache, aligned_ptr);
302 }
303 }
304
HwasanReallocate(StackTrace * stack,void * tagged_ptr_old,uptr new_size,uptr alignment)305 static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old,
306 uptr new_size, uptr alignment) {
307 void *untagged_ptr_old =
308 InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr_old))
309 ? UntagPtr(tagged_ptr_old)
310 : tagged_ptr_old;
311 if (CheckInvalidFree(stack, untagged_ptr_old, tagged_ptr_old))
312 return nullptr;
313 void *tagged_ptr_new =
314 HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
315 if (tagged_ptr_old && tagged_ptr_new) {
316 Metadata *meta =
317 reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old));
318 internal_memcpy(
319 UntagPtr(tagged_ptr_new), untagged_ptr_old,
320 Min(new_size, static_cast<uptr>(meta->get_requested_size())));
321 HwasanDeallocate(stack, tagged_ptr_old);
322 }
323 return tagged_ptr_new;
324 }
325
HwasanCalloc(StackTrace * stack,uptr nmemb,uptr size)326 static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
327 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
328 if (AllocatorMayReturnNull())
329 return nullptr;
330 ReportCallocOverflow(nmemb, size, stack);
331 }
332 return HwasanAllocate(stack, nmemb * size, sizeof(u64), true);
333 }
334
FindHeapChunkByAddress(uptr address)335 HwasanChunkView FindHeapChunkByAddress(uptr address) {
336 if (!allocator.PointerIsMine(reinterpret_cast<void *>(address)))
337 return HwasanChunkView();
338 void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
339 if (!block)
340 return HwasanChunkView();
341 Metadata *metadata =
342 reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
343 return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
344 }
345
AllocationSize(const void * tagged_ptr)346 static uptr AllocationSize(const void *tagged_ptr) {
347 const void *untagged_ptr = UntagPtr(tagged_ptr);
348 if (!untagged_ptr) return 0;
349 const void *beg = allocator.GetBlockBegin(untagged_ptr);
350 Metadata *b = (Metadata *)allocator.GetMetaData(untagged_ptr);
351 if (b->right_aligned) {
352 if (beg != reinterpret_cast<void *>(RoundDownTo(
353 reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment)))
354 return 0;
355 } else {
356 if (beg != untagged_ptr) return 0;
357 }
358 return b->get_requested_size();
359 }
360
hwasan_malloc(uptr size,StackTrace * stack)361 void *hwasan_malloc(uptr size, StackTrace *stack) {
362 return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
363 }
364
hwasan_calloc(uptr nmemb,uptr size,StackTrace * stack)365 void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
366 return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size));
367 }
368
hwasan_realloc(void * ptr,uptr size,StackTrace * stack)369 void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
370 if (!ptr)
371 return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
372 if (size == 0) {
373 HwasanDeallocate(stack, ptr);
374 return nullptr;
375 }
376 return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
377 }
378
hwasan_reallocarray(void * ptr,uptr nmemb,uptr size,StackTrace * stack)379 void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
380 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
381 errno = errno_ENOMEM;
382 if (AllocatorMayReturnNull())
383 return nullptr;
384 ReportReallocArrayOverflow(nmemb, size, stack);
385 }
386 return hwasan_realloc(ptr, nmemb * size, stack);
387 }
388
hwasan_valloc(uptr size,StackTrace * stack)389 void *hwasan_valloc(uptr size, StackTrace *stack) {
390 return SetErrnoOnNull(
391 HwasanAllocate(stack, size, GetPageSizeCached(), false));
392 }
393
hwasan_pvalloc(uptr size,StackTrace * stack)394 void *hwasan_pvalloc(uptr size, StackTrace *stack) {
395 uptr PageSize = GetPageSizeCached();
396 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
397 errno = errno_ENOMEM;
398 if (AllocatorMayReturnNull())
399 return nullptr;
400 ReportPvallocOverflow(size, stack);
401 }
402 // pvalloc(0) should allocate one page.
403 size = size ? RoundUpTo(size, PageSize) : PageSize;
404 return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
405 }
406
hwasan_aligned_alloc(uptr alignment,uptr size,StackTrace * stack)407 void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
408 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
409 errno = errno_EINVAL;
410 if (AllocatorMayReturnNull())
411 return nullptr;
412 ReportInvalidAlignedAllocAlignment(size, alignment, stack);
413 }
414 return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
415 }
416
hwasan_memalign(uptr alignment,uptr size,StackTrace * stack)417 void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
418 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
419 errno = errno_EINVAL;
420 if (AllocatorMayReturnNull())
421 return nullptr;
422 ReportInvalidAllocationAlignment(alignment, stack);
423 }
424 return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
425 }
426
hwasan_posix_memalign(void ** memptr,uptr alignment,uptr size,StackTrace * stack)427 int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
428 StackTrace *stack) {
429 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
430 if (AllocatorMayReturnNull())
431 return errno_EINVAL;
432 ReportInvalidPosixMemalignAlignment(alignment, stack);
433 }
434 void *ptr = HwasanAllocate(stack, size, alignment, false);
435 if (UNLIKELY(!ptr))
436 // OOM error is already taken care of by HwasanAllocate.
437 return errno_ENOMEM;
438 CHECK(IsAligned((uptr)ptr, alignment));
439 *memptr = ptr;
440 return 0;
441 }
442
hwasan_free(void * ptr,StackTrace * stack)443 void hwasan_free(void *ptr, StackTrace *stack) {
444 return HwasanDeallocate(stack, ptr);
445 }
446
447 } // namespace __hwasan
448
449 using namespace __hwasan;
450
__hwasan_enable_allocator_tagging()451 void __hwasan_enable_allocator_tagging() {
452 atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
453 }
454
__hwasan_disable_allocator_tagging()455 void __hwasan_disable_allocator_tagging() {
456 atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
457 }
458
__sanitizer_get_current_allocated_bytes()459 uptr __sanitizer_get_current_allocated_bytes() {
460 uptr stats[AllocatorStatCount];
461 allocator.GetStats(stats);
462 return stats[AllocatorStatAllocated];
463 }
464
__sanitizer_get_heap_size()465 uptr __sanitizer_get_heap_size() {
466 uptr stats[AllocatorStatCount];
467 allocator.GetStats(stats);
468 return stats[AllocatorStatMapped];
469 }
470
__sanitizer_get_free_bytes()471 uptr __sanitizer_get_free_bytes() { return 1; }
472
__sanitizer_get_unmapped_bytes()473 uptr __sanitizer_get_unmapped_bytes() { return 1; }
474
__sanitizer_get_estimated_allocated_size(uptr size)475 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
476
__sanitizer_get_ownership(const void * p)477 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
478
__sanitizer_get_allocated_size(const void * p)479 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
480