xref: /netbsd-src/usr.sbin/makemandb/custom_apropos_tokenizer.c (revision a8f4a23fe602b40dc850008fc138084646386098)
1 /*	$NetBSD: custom_apropos_tokenizer.c,v 1.6 2023/08/07 20:35:21 tnn Exp $	*/
2 /*
3 ** 2006 September 30
4 **
5 ** The author disclaims copyright to this source code.  In place of
6 ** a legal notice, here is a blessing:
7 **
8 **    May you do good and not evil.
9 **    May you find forgiveness for yourself and forgive others.
10 **    May you share freely, never taking more than you give.
11 **
12 *************************************************************************
13 ** Implementation of the full-text-search tokenizer that implements
14 ** a Porter stemmer.
15 */
16 
17 /*
18 ** The code in this file is only compiled if:
19 **
20 **     * The FTS3 module is being built as an extension
21 **       (in which case SQLITE_CORE is not defined), or
22 **
23 **     * The FTS3 module is being built into the core of
24 **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
25 */
26 
27 #include <assert.h>
28 #include <ctype.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <string.h>
32 
33 #include "custom_apropos_tokenizer.h"
34 #include "fts3_tokenizer.h"
35 #include "nostem.c"
36 
37 /*
38  * Class derived from sqlite3_tokenizer
39  */
40 typedef struct custom_apropos_tokenizer {
41 	sqlite3_tokenizer base;	/* Base class */
42 } custom_apropos_tokenizer;
43 
44 /*
45  * Class derived from sqlite3_tokenizer_cursor
46  */
47 typedef struct custom_apropos_tokenizer_cursor {
48 	sqlite3_tokenizer_cursor base;
49 	const char *zInput;	/* input we are tokenizing */
50 	size_t nInput;		/* size of the input */
51 	size_t iOffset;		/* current position in zInput */
52 	size_t iToken;		/* index of next token to be returned */
53 	char *zToken;		/* storage for current token */
54 	size_t nAllocated;		/* space allocated to zToken buffer */
55 } custom_apropos_tokenizer_cursor;
56 
57 /*
58  * Create a new tokenizer instance.
59  */
60 static int
aproposPorterCreate(int argc,const char * const * argv,sqlite3_tokenizer ** ppTokenizer)61 aproposPorterCreate(int argc, const char *const * argv,
62     sqlite3_tokenizer ** ppTokenizer)
63 {
64 	custom_apropos_tokenizer *t;
65 	t = calloc(1, sizeof(*t));
66 	if (t == NULL)
67 		return SQLITE_NOMEM;
68 	*ppTokenizer = &t->base;
69 	return SQLITE_OK;
70 }
71 
72 /*
73  * Destroy a tokenizer
74  */
75 static int
aproposPorterDestroy(sqlite3_tokenizer * pTokenizer)76 aproposPorterDestroy(sqlite3_tokenizer * pTokenizer)
77 {
78 	free(pTokenizer);
79 	return SQLITE_OK;
80 }
81 
82 /*
83  * Prepare to begin tokenizing a particular string.  The input
84  * string to be tokenized is zInput[0..nInput-1].  A cursor
85  * used to incrementally tokenize this string is returned in
86  * *ppCursor.
87  */
88 static int
aproposPorterOpen(sqlite3_tokenizer * pTokenizer,const char * zInput,int nInput,sqlite3_tokenizer_cursor ** ppCursor)89 aproposPorterOpen(
90     sqlite3_tokenizer * pTokenizer,	/* The tokenizer */
91     const char *zInput, int nInput,	/* String to be tokenized */
92     sqlite3_tokenizer_cursor ** ppCursor	/* OUT: Tokenization cursor */
93 )
94 {
95 	custom_apropos_tokenizer_cursor *c;
96 
97 	c = calloc(1, sizeof(*c));
98 	if (c == NULL)
99 		return SQLITE_NOMEM;
100 
101 	c->zInput = zInput;
102 	if (zInput != 0) {
103 		if (nInput < 0)
104 			c->nInput = strlen(zInput);
105 		else
106 			c->nInput = nInput;
107 	}
108 
109 	*ppCursor = &c->base;
110 	return SQLITE_OK;
111 }
112 
113 /*
114  * Close a tokenization cursor previously opened by a call to
115  * aproposPorterOpen() above.
116  */
117 static int
aproposPorterClose(sqlite3_tokenizer_cursor * pCursor)118 aproposPorterClose(sqlite3_tokenizer_cursor *pCursor)
119 {
120 	custom_apropos_tokenizer_cursor *c = (custom_apropos_tokenizer_cursor *) pCursor;
121 	free(c->zToken);
122 	free(c);
123 	return SQLITE_OK;
124 }
125 
126 /*
127  * Vowel or consonant
128  */
129 static const char cType[] = {
130 	0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
131 	1, 1, 1, 2, 1
132 };
133 
134 /*
135  * isConsonant() and isVowel() determine if their first character in
136  * the string they point to is a consonant or a vowel, according
137  * to Porter ruls.
138  *
139  * A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
140  * 'Y' is a consonant unless it follows another consonant,
141  * in which case it is a vowel.
142  *
143  * In these routine, the letters are in reverse order.  So the 'y' rule
144  * is that 'y' is a consonant unless it is followed by another
145  * consonent.
146  */
147 static int isVowel(const char*);
148 
149 static int
isConsonant(const char * z)150 isConsonant(const char *z)
151 {
152 	int j;
153 	char x = *z;
154 	if (x == 0)
155 		return 0;
156 	assert(x >= 'a' && x <= 'z');
157 	j = cType[x - 'a'];
158 	if (j < 2)
159 		return j;
160 	return z[1] == 0 || isVowel(z + 1);
161 }
162 
163 static int
isVowel(const char * z)164 isVowel(const char *z)
165 {
166 	int j;
167 	char x = *z;
168 	if (x == 0)
169 		return 0;
170 	assert(x >= 'a' && x <= 'z');
171 	j = cType[x - 'a'];
172 	if (j < 2)
173 		return 1 - j;
174 	return isConsonant(z + 1);
175 }
176 
177 /*
178  * Let any sequence of one or more vowels be represented by V and let
179  * C be sequence of one or more consonants.  Then every word can be
180  * represented as:
181  *
182  *           [C] (VC){m} [V]
183  *
184  * In prose:  A word is an optional consonant followed by zero or
185  * vowel-consonant pairs followed by an optional vowel.  "m" is the
186  * number of vowel consonant pairs.  This routine computes the value
187  * of m for the first i bytes of a word.
188  *
189  * Return true if the m-value for z is 1 or more.  In other words,
190  * return true if z contains at least one vowel that is followed
191  * by a consonant.
192  *
193  * In this routine z[] is in reverse order.  So we are really looking
194  * for an instance of a consonant followed by a vowel.
195  */
196 static int
m_gt_0(const char * z)197 m_gt_0(const char *z)
198 {
199 	while (isVowel(z)) {
200 		z++;
201 	}
202 	if (*z == 0)
203 		return 0;
204 	while (isConsonant(z)) {
205 		z++;
206 	}
207 	return *z != 0;
208 }
209 
210 /* Like mgt0 above except we are looking for a value of m which is
211  * exactly 1
212  */
213 static int
m_eq_1(const char * z)214 m_eq_1(const char *z)
215 {
216 	while (isVowel(z)) {
217 		z++;
218 	}
219 	if (*z == 0)
220 		return 0;
221 	while (isConsonant(z)) {
222 		z++;
223 	}
224 	if (*z == 0)
225 		return 0;
226 	while (isVowel(z)) {
227 		z++;
228 	}
229 	if (*z == 0)
230 		return 1;
231 	while (isConsonant(z)) {
232 		z++;
233 	}
234 	return *z == 0;
235 }
236 
237 /* Like mgt0 above except we are looking for a value of m>1 instead
238  * or m>0
239  */
240 static int
m_gt_1(const char * z)241 m_gt_1(const char *z)
242 {
243 	while (isVowel(z)) {
244 		z++;
245 	}
246 	if (*z == 0)
247 		return 0;
248 	while (isConsonant(z)) {
249 		z++;
250 	}
251 	if (*z == 0)
252 		return 0;
253 	while (isVowel(z)) {
254 		z++;
255 	}
256 	if (*z == 0)
257 		return 0;
258 	while (isConsonant(z)) {
259 		z++;
260 	}
261 	return *z != 0;
262 }
263 
264 /*
265  * Return TRUE if there is a vowel anywhere within z[0..n-1]
266  */
267 static int
hasVowel(const char * z)268 hasVowel(const char *z)
269 {
270 	while (isConsonant(z)) {
271 		z++;
272 	}
273 	return *z != 0;
274 }
275 
276 /*
277  * Return TRUE if the word ends in a double consonant.
278  *
279  * The text is reversed here. So we are really looking at
280  * the first two characters of z[].
281  */
282 static int
doubleConsonant(const char * z)283 doubleConsonant(const char *z)
284 {
285 	return isConsonant(z) && z[0] == z[1];
286 }
287 
288 /*
289  * Return TRUE if the word ends with three letters which
290  * are consonant-vowel-consonent and where the final consonant
291  * is not 'w', 'x', or 'y'.
292  *
293  * The word is reversed here.  So we are really checking the
294  * first three letters and the first one cannot be in [wxy].
295  */
296 static int
star_oh(const char * z)297 star_oh(const char *z)
298 {
299 	return isConsonant(z) &&
300 	    z[0] != 'w' && z[0] != 'x' && z[0] != 'y' &&
301 	    isVowel(z + 1) &&
302 	    isConsonant(z + 2);
303 }
304 
305 /*
306  * If the word ends with zFrom and xCond() is true for the stem
307  * of the word that precedes the zFrom ending, then change the
308  * ending to zTo.
309  *
310  * The input word *pz and zFrom are both in reverse order.  zTo
311  * is in normal order.
312  *
313  * Return TRUE if zFrom matches.  Return FALSE if zFrom does not
314  * match.  Not that TRUE is returned even if xCond() fails and
315  * no substitution occurs.
316  */
317 static int
stem(char ** pz,const char * zFrom,const char * zTo,int (* xCond)(const char *))318 stem(
319     char **pz,			/* The word being stemmed (Reversed) */
320     const char *zFrom,		/* If the ending matches this... (Reversed) */
321     const char *zTo,		/* ... change the ending to this (not reversed) */
322     int (*xCond) (const char *)	/* Condition that must be true */
323 )
324 {
325 	char *z = *pz;
326 	while (*zFrom && *zFrom == *z) {
327 		z++;
328 		zFrom++;
329 	}
330 	if (*zFrom != 0)
331 		return 0;
332 	if (xCond && !xCond(z))
333 		return 1;
334 	while (*zTo) {
335 		*(--z) = *(zTo++);
336 	}
337 	*pz = z;
338 	return 1;
339 }
340 
341 /*
342  * This is the fallback stemmer used when the porter stemmer is
343  * inappropriate.  The input word is copied into the output with
344  * US-ASCII case folding.  If the input word is too long (more
345  * than 20 bytes if it contains no digits or more than 6 bytes if
346  * it contains digits) then word is truncated to 20 or 6 bytes
347  * by taking 10 or 3 bytes from the beginning and end.
348  */
349 static void
copy_stemmer(const char * zIn,size_t nIn,char * zOut,size_t * pnOut)350 copy_stemmer(const char *zIn, size_t nIn, char *zOut, size_t *pnOut)
351 {
352 	size_t i, mx, j;
353 	int hasDigit = 0;
354 	for (i = 0; i < nIn; i++) {
355 		char c = zIn[i];
356 		if (c >= 'A' && c <= 'Z') {
357 			zOut[i] = c - 'A' + 'a';
358 		} else {
359 			if (c >= '0' && c <= '9')
360 				hasDigit = 1;
361 			zOut[i] = c;
362 		}
363 	}
364 	mx = hasDigit ? 3 : 10;
365 	if (nIn > mx * 2) {
366 		for (j = mx, i = nIn - mx; i < nIn; i++, j++) {
367 			zOut[j] = zOut[i];
368 		}
369 		i = j;
370 	}
371 	zOut[i] = 0;
372 	*pnOut = i;
373 }
374 
375 
376 /*
377  * Stem the input word zIn[0..nIn-1].  Store the output in zOut.
378  * zOut is at least big enough to hold nIn bytes.  Write the actual
379  * size of the output word (exclusive of the '\0' terminator) into *pnOut.
380  *
381  * Any upper-case characters in the US-ASCII character set ([A-Z])
382  * are converted to lower case.  Upper-case UTF characters are
383  * unchanged.
384  *
385  * Words that are longer than about 20 bytes are stemmed by retaining
386  * a few bytes from the beginning and the end of the word.  If the
387  * word contains digits, 3 bytes are taken from the beginning and
388  * 3 bytes from the end.  For long words without digits, 10 bytes
389  * are taken from each end.  US-ASCII case folding still applies.
390  *
391  * If the input word contains not digits but does characters not
392  * in [a-zA-Z] then no stemming is attempted and this routine just
393  * copies the input into the input into the output with US-ASCII
394  * case folding.
395  *
396  * Stemming never increases the length of the word.  So there is
397  * no chance of overflowing the zOut buffer.
398  */
399 static void
porter_stemmer(const char * zIn,size_t nIn,char * zOut,size_t * pnOut)400 porter_stemmer(const char *zIn, size_t nIn, char *zOut, size_t *pnOut)
401 {
402 	size_t i, j;
403 	char zReverse[28];
404 	char *z, *z2;
405 	if (nIn < 3 || nIn >= sizeof(zReverse) - 7) {
406 		/* The word is too big or too small for the porter stemmer.
407 		 * Fallback to the copy stemmer
408 		 */
409 		copy_stemmer(zIn, nIn, zOut, pnOut);
410 		return;
411 	}
412 
413 	for (i = 0, j = sizeof(zReverse) - 6; i < nIn; i++, j--) {
414 		char c = zIn[i];
415 		if (c >= 'A' && c <= 'Z') {
416 			zReverse[j] = c + 'a' - 'A';
417 		} else if (c >= 'a' && c <= 'z') {
418 			zReverse[j] = c;
419 		} else {
420 			/* The use of a character not in [a-zA-Z] means that
421 			 * we fallback * to the copy stemmer
422 			 */
423 			copy_stemmer(zIn, nIn, zOut, pnOut);
424 			return;
425 		}
426 	}
427 	memset(&zReverse[sizeof(zReverse) - 5], 0, 5);
428 	z = &zReverse[j + 1];
429 
430 
431 	/* Step 1a */
432 	if (z[0] == 's') {
433 		if (
434 		    !stem(&z, "sess", "ss", 0) &&
435 		    !stem(&z, "sei", "i", 0) &&
436 		    !stem(&z, "ss", "ss", 0)
437 		    ) {
438 			z++;
439 		}
440 	}
441 	/* Step 1b */
442 	z2 = z;
443 	if (stem(&z, "dee", "ee", m_gt_0)) {
444 		/* Do nothing.  The work was all in the test */
445 	} else if (
446 		    (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
447 		    && z != z2
448 	    ) {
449 		if (stem(&z, "ta", "ate", 0) ||
450 		    stem(&z, "lb", "ble", 0) ||
451 		    stem(&z, "zi", "ize", 0)) {
452 			/* Do nothing.  The work was all in the test */
453 		} else if (doubleConsonant(z) && (*z != 'l' && *z != 's' && *z != 'z')) {
454 			z++;
455 		} else if (m_eq_1(z) && star_oh(z)) {
456 			*(--z) = 'e';
457 		}
458 	}
459 	/* Step 1c */
460 	if (z[0] == 'y' && hasVowel(z + 1)) {
461 		z[0] = 'i';
462 	}
463 	/* Step 2 */
464 	switch (z[1]) {
465 	case 'a':
466 		if (!stem(&z, "lanoita", "ate", m_gt_0)) {
467 			stem(&z, "lanoit", "tion", m_gt_0);
468 		}
469 		break;
470 	case 'c':
471 		if (!stem(&z, "icne", "ence", m_gt_0)) {
472 			stem(&z, "icna", "ance", m_gt_0);
473 		}
474 		break;
475 	case 'e':
476 		stem(&z, "rezi", "ize", m_gt_0);
477 		break;
478 	case 'g':
479 		stem(&z, "igol", "log", m_gt_0);
480 		break;
481 	case 'l':
482 		if (!stem(&z, "ilb", "ble", m_gt_0)
483 		    && !stem(&z, "illa", "al", m_gt_0)
484 		    && !stem(&z, "iltne", "ent", m_gt_0)
485 		    && !stem(&z, "ile", "e", m_gt_0)
486 		    ) {
487 			stem(&z, "ilsuo", "ous", m_gt_0);
488 		}
489 		break;
490 	case 'o':
491 		if (!stem(&z, "noitazi", "ize", m_gt_0)
492 		    && !stem(&z, "noita", "ate", m_gt_0)
493 		    ) {
494 			stem(&z, "rota", "ate", m_gt_0);
495 		}
496 		break;
497 	case 's':
498 		if (!stem(&z, "msila", "al", m_gt_0)
499 		    && !stem(&z, "ssenevi", "ive", m_gt_0)
500 		    && !stem(&z, "ssenluf", "ful", m_gt_0)
501 		    ) {
502 			stem(&z, "ssensuo", "ous", m_gt_0);
503 		}
504 		break;
505 	case 't':
506 		if (!stem(&z, "itila", "al", m_gt_0)
507 		    && !stem(&z, "itivi", "ive", m_gt_0)
508 		    ) {
509 			stem(&z, "itilib", "ble", m_gt_0);
510 		}
511 		break;
512 	}
513 
514 	/* Step 3 */
515 	switch (z[0]) {
516 	case 'e':
517 		if (!stem(&z, "etaci", "ic", m_gt_0)
518 		    && !stem(&z, "evita", "", m_gt_0)
519 		    ) {
520 			stem(&z, "ezila", "al", m_gt_0);
521 		}
522 		break;
523 	case 'i':
524 		stem(&z, "itici", "ic", m_gt_0);
525 		break;
526 	case 'l':
527 		if (!stem(&z, "laci", "ic", m_gt_0)) {
528 			stem(&z, "luf", "", m_gt_0);
529 		}
530 		break;
531 	case 's':
532 		stem(&z, "ssen", "", m_gt_0);
533 		break;
534 	}
535 
536 	/* Step 4 */
537 	switch (z[1]) {
538 	case 'a':
539 		if (z[0] == 'l' && m_gt_1(z + 2)) {
540 			z += 2;
541 		}
542 		break;
543 	case 'c':
544 		if (z[0] == 'e' && z[2] == 'n' && (z[3] == 'a' || z[3] == 'e') && m_gt_1(z + 4)) {
545 			z += 4;
546 		}
547 		break;
548 	case 'e':
549 		if (z[0] == 'r' && m_gt_1(z + 2)) {
550 			z += 2;
551 		}
552 		break;
553 	case 'i':
554 		if (z[0] == 'c' && m_gt_1(z + 2)) {
555 			z += 2;
556 		}
557 		break;
558 	case 'l':
559 		if (z[0] == 'e' && z[2] == 'b' && (z[3] == 'a' || z[3] == 'i') && m_gt_1(z + 4)) {
560 			z += 4;
561 		}
562 		break;
563 	case 'n':
564 		if (z[0] == 't') {
565 			if (z[2] == 'a') {
566 				if (m_gt_1(z + 3)) {
567 					z += 3;
568 				}
569 			} else if (z[2] == 'e') {
570 				if (!stem(&z, "tneme", "", m_gt_1)
571 				    && !stem(&z, "tnem", "", m_gt_1)
572 				    ) {
573 					stem(&z, "tne", "", m_gt_1);
574 				}
575 			}
576 		}
577 		break;
578 	case 'o':
579 		if (z[0] == 'u') {
580 			if (m_gt_1(z + 2)) {
581 				z += 2;
582 			}
583 		} else if (z[3] == 's' || z[3] == 't') {
584 			stem(&z, "noi", "", m_gt_1);
585 		}
586 		break;
587 	case 's':
588 		if (z[0] == 'm' && z[2] == 'i' && m_gt_1(z + 3)) {
589 			z += 3;
590 		}
591 		break;
592 	case 't':
593 		if (!stem(&z, "eta", "", m_gt_1)) {
594 			stem(&z, "iti", "", m_gt_1);
595 		}
596 		break;
597 	case 'u':
598 		if (z[0] == 's' && z[2] == 'o' && m_gt_1(z + 3)) {
599 			z += 3;
600 		}
601 		break;
602 	case 'v':
603 	case 'z':
604 		if (z[0] == 'e' && z[2] == 'i' && m_gt_1(z + 3)) {
605 			z += 3;
606 		}
607 		break;
608 	}
609 
610 	/* Step 5a */
611 	if (z[0] == 'e') {
612 		if (m_gt_1(z + 1)) {
613 			z++;
614 		} else if (m_eq_1(z + 1) && !star_oh(z + 1)) {
615 			z++;
616 		}
617 	}
618 	/* Step 5b */
619 	if (m_gt_1(z) && z[0] == 'l' && z[1] == 'l') {
620 		z++;
621 	}
622 	/* z[] is now the stemmed word in reverse order.  Flip it back
623 	 * around into forward order and return.
624 	 */
625 	*pnOut = i = strlen(z);
626 	zOut[i] = 0;
627 	while (*z) {
628 		zOut[--i] = *(z++);
629 	}
630 }
631 
632 /*
633  * Based on whether the input word is in the nostem list or not
634  * call porter stemmer to stem it, or call copy_stemmer to keep it
635  * as it is (copy_stemmer converts simply converts it to lower case)
636  * Returns  SQLITE_OK if stemming is successful, an error code for
637  * any errors
638  */
639 static int
do_stem(const char * zIn,size_t nIn,char * zOut,size_t * pnOut)640 do_stem(const char *zIn, size_t nIn, char *zOut, size_t *pnOut)
641 {
642 	/* Before looking up the word in the hash table, convert it to lower-case */
643 	char *dupword = malloc(nIn);
644 	if (dupword == NULL)
645 		return SQLITE_NOMEM;
646 
647 	for (size_t i = 0; i < nIn; i++)
648 		dupword[i] = tolower((unsigned char) zIn[i]);
649 
650 	size_t idx = nostem_hash(dupword, nIn);
651 	if (strncmp(nostem[idx], dupword, nIn) == 0 && nostem[idx][nIn] == 0)
652 		copy_stemmer(zIn, nIn, zOut, pnOut);
653 	else
654 		porter_stemmer(zIn, nIn, zOut, pnOut);
655 
656 	free(dupword);
657 	return SQLITE_OK;
658 }
659 
660 
661 /*
662  * Characters that can be part of a token.  We assume any character
663  * whose value is greater than 0x80 (any UTF character) can be
664  * part of a token.  In other words, delimiters all must have
665  * values of 0x7f or lower.
666  */
667 static const char porterIdChar[] = {
668 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
669 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,	/* 3x */
670 	0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* 4x */
671 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,	/* 5x */
672 	0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* 6x */
673 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,	/* 7x */
674 };
675 
676 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
677 
678 /*
679  * Extract the next token from a tokenization cursor.  The cursor must
680  * have been opened by a prior call to aproposPorterOpen().
681  */
682 static int
aproposPorterNext(sqlite3_tokenizer_cursor * pCursor,const char ** pzToken,int * pnBytes,int * piStartOffset,int * piEndOffset,int * piPosition)683 aproposPorterNext(
684     sqlite3_tokenizer_cursor *pCursor,	/* Cursor returned by aproposPorterOpen */
685     const char **pzToken,	/* OUT: *pzToken is the token text */
686     int *pnBytes,		/* OUT: Number of bytes in token */
687     int *piStartOffset,		/* OUT: Starting offset of token */
688     int *piEndOffset,		/* OUT: Ending offset of token */
689     int *piPosition		/* OUT: Position integer of token */
690 )
691 {
692 	custom_apropos_tokenizer_cursor *c = (custom_apropos_tokenizer_cursor *) pCursor;
693 	const char *z = c->zInput;
694 
695 	while (c->iOffset < c->nInput) {
696 		size_t iStartOffset, ch;
697 
698 		/* Scan past delimiter characters */
699 		while (c->iOffset < c->nInput && isDelim(z[c->iOffset])) {
700 			c->iOffset++;
701 		}
702 
703 		/* Count non-delimiter characters. */
704 		iStartOffset = c->iOffset;
705 		while (c->iOffset < c->nInput && !isDelim(z[c->iOffset])) {
706 			c->iOffset++;
707 		}
708 
709 		if (c->iOffset > iStartOffset) {
710 			size_t n = c->iOffset - iStartOffset;
711 			if (n > c->nAllocated) {
712 				char *pNew;
713 				c->nAllocated = n + 20;
714 				pNew = realloc(c->zToken, c->nAllocated);
715 				if (!pNew)
716 					return SQLITE_NOMEM;
717 				c->zToken = pNew;
718 			}
719 
720 			size_t temp;
721 			int stemStatus = do_stem(&z[iStartOffset], n, c->zToken, &temp);
722 			if (stemStatus != SQLITE_OK)
723 				return stemStatus;
724 			*pnBytes = temp;
725 
726 			*pzToken = c->zToken;
727 			*piStartOffset = iStartOffset;
728 			*piEndOffset = c->iOffset;
729 			*piPosition = c->iToken++;
730 			return SQLITE_OK;
731 		}
732 	}
733 	return SQLITE_DONE;
734 }
735 
736 /*
737  * The set of routines that implement the porter-stemmer tokenizer
738  */
739 static const sqlite3_tokenizer_module aproposPorterTokenizerModule = {
740 	0,
741 	aproposPorterCreate,
742 	aproposPorterDestroy,
743 	aproposPorterOpen,
744 	aproposPorterClose,
745 	aproposPorterNext,
746 	0
747 };
748 
749 /*
750  * Allocate a new porter tokenizer.  Return a pointer to the new
751  * tokenizer in *ppModule
752  */
753 void
get_custom_apropos_tokenizer(sqlite3_tokenizer_module const ** ppModule)754 get_custom_apropos_tokenizer(sqlite3_tokenizer_module const ** ppModule)
755 {
756 	*ppModule = &aproposPorterTokenizerModule;
757 }
758