xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/nouveau/nvkm/subdev/clk/nouveau_nvkm_subdev_clk_gk20a.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: nouveau_nvkm_subdev_clk_gk20a.c,v 1.4 2021/12/18 23:45:39 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
25  *
26  */
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_clk_gk20a.c,v 1.4 2021/12/18 23:45:39 riastradh Exp $");
29 
30 #include "priv.h"
31 #include "gk20a.h"
32 
33 #include <core/tegra.h>
34 #include <subdev/timer.h>
35 
36 static const u8 _pl_to_div[] = {
37 /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
38 /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
39 };
40 
pl_to_div(u32 pl)41 static u32 pl_to_div(u32 pl)
42 {
43 	if (pl >= ARRAY_SIZE(_pl_to_div))
44 		return 1;
45 
46 	return _pl_to_div[pl];
47 }
48 
div_to_pl(u32 div)49 static u32 div_to_pl(u32 div)
50 {
51 	u32 pl;
52 
53 	for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) {
54 		if (_pl_to_div[pl] >= div)
55 			return pl;
56 	}
57 
58 	return ARRAY_SIZE(_pl_to_div) - 1;
59 }
60 
61 static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
62 	.min_vco = 1000000, .max_vco = 2064000,
63 	.min_u = 12000, .max_u = 38000,
64 	.min_m = 1, .max_m = 255,
65 	.min_n = 8, .max_n = 255,
66 	.min_pl = 1, .max_pl = 32,
67 };
68 
69 void
gk20a_pllg_read_mnp(struct gk20a_clk * clk,struct gk20a_pll * pll)70 gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll)
71 {
72 	struct nvkm_device *device = clk->base.subdev.device;
73 	u32 val;
74 
75 	val = nvkm_rd32(device, GPCPLL_COEFF);
76 	pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
77 	pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
78 	pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
79 }
80 
81 void
gk20a_pllg_write_mnp(struct gk20a_clk * clk,const struct gk20a_pll * pll)82 gk20a_pllg_write_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
83 {
84 	struct nvkm_device *device = clk->base.subdev.device;
85 	u32 val;
86 
87 	val = (pll->m & MASK(GPCPLL_COEFF_M_WIDTH)) << GPCPLL_COEFF_M_SHIFT;
88 	val |= (pll->n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
89 	val |= (pll->pl & MASK(GPCPLL_COEFF_P_WIDTH)) << GPCPLL_COEFF_P_SHIFT;
90 	nvkm_wr32(device, GPCPLL_COEFF, val);
91 }
92 
93 u32
gk20a_pllg_calc_rate(struct gk20a_clk * clk,struct gk20a_pll * pll)94 gk20a_pllg_calc_rate(struct gk20a_clk *clk, struct gk20a_pll *pll)
95 {
96 	u64 rate;
97 	u32 divider;
98 
99 	rate = clk->parent_rate * pll->n;
100 	divider = pll->m * clk->pl_to_div(pll->pl);
101 
102 	return rate / divider / 2;
103 }
104 
105 int
gk20a_pllg_calc_mnp(struct gk20a_clk * clk,unsigned long rate,struct gk20a_pll * pll)106 gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate,
107 		    struct gk20a_pll *pll)
108 {
109 	struct nvkm_subdev *subdev = &clk->base.subdev;
110 	u32 target_clk_f, ref_clk_f, target_freq;
111 	u32 min_vco_f, max_vco_f;
112 	u32 low_pl, high_pl, best_pl;
113 	u32 target_vco_f;
114 	u32 best_m, best_n;
115 	u32 best_delta = ~0;
116 	u32 pl;
117 
118 	target_clk_f = rate * 2 / KHZ;
119 	ref_clk_f = clk->parent_rate / KHZ;
120 
121 	target_vco_f = target_clk_f + target_clk_f / 50;
122 	max_vco_f = max(clk->params->max_vco, target_vco_f);
123 	min_vco_f = clk->params->min_vco;
124 	best_m = clk->params->max_m;
125 	best_n = clk->params->min_n;
126 	best_pl = clk->params->min_pl;
127 
128 	/* min_pl <= high_pl <= max_pl */
129 	high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
130 	high_pl = min(high_pl, clk->params->max_pl);
131 	high_pl = max(high_pl, clk->params->min_pl);
132 	high_pl = clk->div_to_pl(high_pl);
133 
134 	/* min_pl <= low_pl <= max_pl */
135 	low_pl = min_vco_f / target_vco_f;
136 	low_pl = min(low_pl, clk->params->max_pl);
137 	low_pl = max(low_pl, clk->params->min_pl);
138 	low_pl = clk->div_to_pl(low_pl);
139 
140 	nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
141 		   clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl));
142 
143 	/* Select lowest possible VCO */
144 	for (pl = low_pl; pl <= high_pl; pl++) {
145 		u32 m, n, n2;
146 
147 		target_vco_f = target_clk_f * clk->pl_to_div(pl);
148 
149 		for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
150 			u32 u_f = ref_clk_f / m;
151 
152 			if (u_f < clk->params->min_u)
153 				break;
154 			if (u_f > clk->params->max_u)
155 				continue;
156 
157 			n = (target_vco_f * m) / ref_clk_f;
158 			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
159 
160 			if (n > clk->params->max_n)
161 				break;
162 
163 			for (; n <= n2; n++) {
164 				u32 vco_f;
165 
166 				if (n < clk->params->min_n)
167 					continue;
168 				if (n > clk->params->max_n)
169 					break;
170 
171 				vco_f = ref_clk_f * n / m;
172 
173 				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
174 					u32 delta, lwv;
175 
176 					lwv = (vco_f + (clk->pl_to_div(pl) / 2))
177 						/ clk->pl_to_div(pl);
178 					delta = abs(lwv - target_clk_f);
179 
180 					if (delta < best_delta) {
181 						best_delta = delta;
182 						best_m = m;
183 						best_n = n;
184 						best_pl = pl;
185 
186 						if (best_delta == 0)
187 							goto found_match;
188 					}
189 				}
190 			}
191 		}
192 	}
193 
194 found_match:
195 	WARN_ON(best_delta == ~0);
196 
197 	if (best_delta != 0)
198 		nvkm_debug(subdev,
199 			   "no best match for target @ %dMHz on gpc_pll",
200 			   target_clk_f / KHZ);
201 
202 	pll->m = best_m;
203 	pll->n = best_n;
204 	pll->pl = best_pl;
205 
206 	target_freq = gk20a_pllg_calc_rate(clk, pll);
207 
208 	nvkm_debug(subdev,
209 		   "actual target freq %d KHz, M %d, N %d, PL %d(div%d)\n",
210 		   target_freq / KHZ, pll->m, pll->n, pll->pl,
211 		   clk->pl_to_div(pll->pl));
212 	return 0;
213 }
214 
215 static int
gk20a_pllg_slide(struct gk20a_clk * clk,u32 n)216 gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
217 {
218 	struct nvkm_subdev *subdev = &clk->base.subdev;
219 	struct nvkm_device *device = subdev->device;
220 	struct gk20a_pll pll;
221 	int ret = 0;
222 
223 	/* get old coefficients */
224 	gk20a_pllg_read_mnp(clk, &pll);
225 	/* do nothing if NDIV is the same */
226 	if (n == pll.n)
227 		return 0;
228 
229 	/* pll slowdown mode */
230 	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
231 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
232 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
233 
234 	/* new ndiv ready for ramp */
235 	pll.n = n;
236 	udelay(1);
237 	gk20a_pllg_write_mnp(clk, &pll);
238 
239 	/* dynamic ramp to new ndiv */
240 	udelay(1);
241 	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
242 		  BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT),
243 		  BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT));
244 
245 	/* wait for ramping to complete */
246 	if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG,
247 		GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK,
248 		GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0)
249 		ret = -ETIMEDOUT;
250 
251 	/* exit slowdown mode */
252 	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
253 		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
254 		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
255 	nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
256 
257 	return ret;
258 }
259 
260 static int
gk20a_pllg_enable(struct gk20a_clk * clk)261 gk20a_pllg_enable(struct gk20a_clk *clk)
262 {
263 	struct nvkm_device *device = clk->base.subdev.device;
264 	u32 val;
265 
266 	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
267 	nvkm_rd32(device, GPCPLL_CFG);
268 
269 	/* enable lock detection */
270 	val = nvkm_rd32(device, GPCPLL_CFG);
271 	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
272 		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
273 		nvkm_wr32(device, GPCPLL_CFG, val);
274 	}
275 
276 	/* wait for lock */
277 	if (nvkm_wait_usec(device, 300, GPCPLL_CFG, GPCPLL_CFG_LOCK,
278 			   GPCPLL_CFG_LOCK) < 0)
279 		return -ETIMEDOUT;
280 
281 	/* switch to VCO mode */
282 	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
283 		BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
284 
285 	return 0;
286 }
287 
288 static void
gk20a_pllg_disable(struct gk20a_clk * clk)289 gk20a_pllg_disable(struct gk20a_clk *clk)
290 {
291 	struct nvkm_device *device = clk->base.subdev.device;
292 
293 	/* put PLL in bypass before disabling it */
294 	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
295 
296 	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
297 	nvkm_rd32(device, GPCPLL_CFG);
298 }
299 
300 static int
gk20a_pllg_program_mnp(struct gk20a_clk * clk,const struct gk20a_pll * pll)301 gk20a_pllg_program_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
302 {
303 	struct nvkm_subdev *subdev = &clk->base.subdev;
304 	struct nvkm_device *device = subdev->device;
305 	struct gk20a_pll cur_pll;
306 	int ret;
307 
308 	gk20a_pllg_read_mnp(clk, &cur_pll);
309 
310 	/* split VCO-to-bypass jump in half by setting out divider 1:2 */
311 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
312 		  GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
313 	/* Intentional 2nd write to assure linear divider operation */
314 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
315 		  GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
316 	nvkm_rd32(device, GPC2CLK_OUT);
317 	udelay(2);
318 
319 	gk20a_pllg_disable(clk);
320 
321 	gk20a_pllg_write_mnp(clk, pll);
322 
323 	ret = gk20a_pllg_enable(clk);
324 	if (ret)
325 		return ret;
326 
327 	/* restore out divider 1:1 */
328 	udelay(2);
329 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
330 		  GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
331 	/* Intentional 2nd write to assure linear divider operation */
332 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
333 		  GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
334 	nvkm_rd32(device, GPC2CLK_OUT);
335 
336 	return 0;
337 }
338 
339 static int
gk20a_pllg_program_mnp_slide(struct gk20a_clk * clk,const struct gk20a_pll * pll)340 gk20a_pllg_program_mnp_slide(struct gk20a_clk *clk, const struct gk20a_pll *pll)
341 {
342 	struct gk20a_pll cur_pll;
343 	int ret;
344 
345 	if (gk20a_pllg_is_enabled(clk)) {
346 		gk20a_pllg_read_mnp(clk, &cur_pll);
347 
348 		/* just do NDIV slide if there is no change to M and PL */
349 		if (pll->m == cur_pll.m && pll->pl == cur_pll.pl)
350 			return gk20a_pllg_slide(clk, pll->n);
351 
352 		/* slide down to current NDIV_LO */
353 		cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
354 		ret = gk20a_pllg_slide(clk, cur_pll.n);
355 		if (ret)
356 			return ret;
357 	}
358 
359 	/* program MNP with the new clock parameters and new NDIV_LO */
360 	cur_pll = *pll;
361 	cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
362 	ret = gk20a_pllg_program_mnp(clk, &cur_pll);
363 	if (ret)
364 		return ret;
365 
366 	/* slide up to new NDIV */
367 	return gk20a_pllg_slide(clk, pll->n);
368 }
369 
370 static struct nvkm_pstate
371 gk20a_pstates[] = {
372 	{
373 		.base = {
374 			.domain[nv_clk_src_gpc] = 72000,
375 			.voltage = 0,
376 		},
377 	},
378 	{
379 		.base = {
380 			.domain[nv_clk_src_gpc] = 108000,
381 			.voltage = 1,
382 		},
383 	},
384 	{
385 		.base = {
386 			.domain[nv_clk_src_gpc] = 180000,
387 			.voltage = 2,
388 		},
389 	},
390 	{
391 		.base = {
392 			.domain[nv_clk_src_gpc] = 252000,
393 			.voltage = 3,
394 		},
395 	},
396 	{
397 		.base = {
398 			.domain[nv_clk_src_gpc] = 324000,
399 			.voltage = 4,
400 		},
401 	},
402 	{
403 		.base = {
404 			.domain[nv_clk_src_gpc] = 396000,
405 			.voltage = 5,
406 		},
407 	},
408 	{
409 		.base = {
410 			.domain[nv_clk_src_gpc] = 468000,
411 			.voltage = 6,
412 		},
413 	},
414 	{
415 		.base = {
416 			.domain[nv_clk_src_gpc] = 540000,
417 			.voltage = 7,
418 		},
419 	},
420 	{
421 		.base = {
422 			.domain[nv_clk_src_gpc] = 612000,
423 			.voltage = 8,
424 		},
425 	},
426 	{
427 		.base = {
428 			.domain[nv_clk_src_gpc] = 648000,
429 			.voltage = 9,
430 		},
431 	},
432 	{
433 		.base = {
434 			.domain[nv_clk_src_gpc] = 684000,
435 			.voltage = 10,
436 		},
437 	},
438 	{
439 		.base = {
440 			.domain[nv_clk_src_gpc] = 708000,
441 			.voltage = 11,
442 		},
443 	},
444 	{
445 		.base = {
446 			.domain[nv_clk_src_gpc] = 756000,
447 			.voltage = 12,
448 		},
449 	},
450 	{
451 		.base = {
452 			.domain[nv_clk_src_gpc] = 804000,
453 			.voltage = 13,
454 		},
455 	},
456 	{
457 		.base = {
458 			.domain[nv_clk_src_gpc] = 852000,
459 			.voltage = 14,
460 		},
461 	},
462 };
463 
464 int
gk20a_clk_read(struct nvkm_clk * base,enum nv_clk_src src)465 gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
466 {
467 	struct gk20a_clk *clk = gk20a_clk(base);
468 	struct nvkm_subdev *subdev = &clk->base.subdev;
469 	struct nvkm_device *device = subdev->device;
470 	struct gk20a_pll pll;
471 
472 	switch (src) {
473 	case nv_clk_src_crystal:
474 		return device->crystal;
475 	case nv_clk_src_gpc:
476 		gk20a_pllg_read_mnp(clk, &pll);
477 		return gk20a_pllg_calc_rate(clk, &pll) / GK20A_CLK_GPC_MDIV;
478 	default:
479 		nvkm_error(subdev, "invalid clock source %d\n", src);
480 		return -EINVAL;
481 	}
482 }
483 
484 int
gk20a_clk_calc(struct nvkm_clk * base,struct nvkm_cstate * cstate)485 gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
486 {
487 	struct gk20a_clk *clk = gk20a_clk(base);
488 
489 	return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
490 					 GK20A_CLK_GPC_MDIV, &clk->pll);
491 }
492 
493 int
gk20a_clk_prog(struct nvkm_clk * base)494 gk20a_clk_prog(struct nvkm_clk *base)
495 {
496 	struct gk20a_clk *clk = gk20a_clk(base);
497 	int ret;
498 
499 	ret = gk20a_pllg_program_mnp_slide(clk, &clk->pll);
500 	if (ret)
501 		ret = gk20a_pllg_program_mnp(clk, &clk->pll);
502 
503 	return ret;
504 }
505 
506 void
gk20a_clk_tidy(struct nvkm_clk * base)507 gk20a_clk_tidy(struct nvkm_clk *base)
508 {
509 }
510 
511 int
gk20a_clk_setup_slide(struct gk20a_clk * clk)512 gk20a_clk_setup_slide(struct gk20a_clk *clk)
513 {
514 	struct nvkm_subdev *subdev = &clk->base.subdev;
515 	struct nvkm_device *device = subdev->device;
516 	u32 step_a, step_b;
517 
518 	switch (clk->parent_rate) {
519 	case 12000000:
520 	case 12800000:
521 	case 13000000:
522 		step_a = 0x2b;
523 		step_b = 0x0b;
524 		break;
525 	case 19200000:
526 		step_a = 0x12;
527 		step_b = 0x08;
528 		break;
529 	case 38400000:
530 		step_a = 0x04;
531 		step_b = 0x05;
532 		break;
533 	default:
534 		nvkm_error(subdev, "invalid parent clock rate %u KHz",
535 			   clk->parent_rate / KHZ);
536 		return -EINVAL;
537 	}
538 
539 	nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
540 		step_a << GPCPLL_CFG2_PLL_STEPA_SHIFT);
541 	nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
542 		step_b << GPCPLL_CFG3_PLL_STEPB_SHIFT);
543 
544 	return 0;
545 }
546 
547 void
gk20a_clk_fini(struct nvkm_clk * base)548 gk20a_clk_fini(struct nvkm_clk *base)
549 {
550 	struct nvkm_device *device = base->subdev.device;
551 	struct gk20a_clk *clk = gk20a_clk(base);
552 
553 	/* slide to VCO min */
554 	if (gk20a_pllg_is_enabled(clk)) {
555 		struct gk20a_pll pll;
556 		u32 n_lo;
557 
558 		gk20a_pllg_read_mnp(clk, &pll);
559 		n_lo = gk20a_pllg_n_lo(clk, &pll);
560 		gk20a_pllg_slide(clk, n_lo);
561 	}
562 
563 	gk20a_pllg_disable(clk);
564 
565 	/* set IDDQ */
566 	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1);
567 }
568 
569 static int
gk20a_clk_init(struct nvkm_clk * base)570 gk20a_clk_init(struct nvkm_clk *base)
571 {
572 	struct gk20a_clk *clk = gk20a_clk(base);
573 	struct nvkm_subdev *subdev = &clk->base.subdev;
574 	struct nvkm_device *device = subdev->device;
575 	int ret;
576 
577 	/* get out from IDDQ */
578 	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0);
579 	nvkm_rd32(device, GPCPLL_CFG);
580 	udelay(5);
581 
582 	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK,
583 		  GPC2CLK_OUT_INIT_VAL);
584 
585 	ret = gk20a_clk_setup_slide(clk);
586 	if (ret)
587 		return ret;
588 
589 	/* Start with lowest frequency */
590 	base->func->calc(base, &base->func->pstates[0].base);
591 	ret = base->func->prog(&clk->base);
592 	if (ret) {
593 		nvkm_error(subdev, "cannot initialize clock\n");
594 		return ret;
595 	}
596 
597 	return 0;
598 }
599 
600 static const struct nvkm_clk_func
601 gk20a_clk = {
602 	.init = gk20a_clk_init,
603 	.fini = gk20a_clk_fini,
604 	.read = gk20a_clk_read,
605 	.calc = gk20a_clk_calc,
606 	.prog = gk20a_clk_prog,
607 	.tidy = gk20a_clk_tidy,
608 	.pstates = gk20a_pstates,
609 	.nr_pstates = ARRAY_SIZE(gk20a_pstates),
610 	.domains = {
611 		{ nv_clk_src_crystal, 0xff },
612 		{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
613 		{ nv_clk_src_max }
614 	}
615 };
616 
617 int
gk20a_clk_ctor(struct nvkm_device * device,int index,const struct nvkm_clk_func * func,const struct gk20a_clk_pllg_params * params,struct gk20a_clk * clk)618 gk20a_clk_ctor(struct nvkm_device *device, int index,
619 		const struct nvkm_clk_func *func,
620 		const struct gk20a_clk_pllg_params *params,
621 		struct gk20a_clk *clk)
622 {
623 	struct nvkm_device_tegra *tdev = device->func->tegra(device);
624 	int ret;
625 	int i;
626 
627 	/* Finish initializing the pstates */
628 	for (i = 0; i < func->nr_pstates; i++) {
629 		INIT_LIST_HEAD(&func->pstates[i].list);
630 		func->pstates[i].pstate = i + 1;
631 	}
632 
633 	clk->params = params;
634 	clk->parent_rate = clk_get_rate(tdev->clk);
635 
636 	ret = nvkm_clk_ctor(func, device, index, true, &clk->base);
637 	if (ret)
638 		return ret;
639 
640 	nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n",
641 		   clk->parent_rate / KHZ);
642 
643 	return 0;
644 }
645 
646 int
gk20a_clk_new(struct nvkm_device * device,int index,struct nvkm_clk ** pclk)647 gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
648 {
649 	struct gk20a_clk *clk;
650 	int ret;
651 
652 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
653 	if (!clk)
654 		return -ENOMEM;
655 	*pclk = &clk->base;
656 
657 	ret = gk20a_clk_ctor(device, index, &gk20a_clk, &gk20a_pllg_params,
658 			      clk);
659 
660 	clk->pl_to_div = pl_to_div;
661 	clk->div_to_pl = div_to_pl;
662 
663 	return ret;
664 }
665