1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
22 /* All Rights Reserved */
23
24
25 /*
26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #ifndef _SYS_SYSMACROS_H
31 #define _SYS_SYSMACROS_H
32
33 #include <sys/param.h>
34 #include <sys/isa_defs.h>
35 #if defined(__FreeBSD__) && defined(_KERNEL)
36 #include <sys/libkern.h>
37 #endif
38 #if defined(__NetBSD__) && defined(_KERNEL)
39 #include <lib/libkern/libkern.h>
40 #endif
41
42 #ifdef __cplusplus
43 extern "C" {
44 #endif
45
46 /*
47 * Some macros for units conversion
48 */
49 /*
50 * Disk blocks (sectors) and bytes.
51 */
52 #define dtob(DD) ((DD) << DEV_BSHIFT)
53 #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
54 #define btodt(BB) ((BB) >> DEV_BSHIFT)
55 #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
56
57 /* common macros */
58 #ifndef MIN
59 #define MIN(a, b) ((a) < (b) ? (a) : (b))
60 #endif
61 #ifndef MAX
62 #define MAX(a, b) ((a) < (b) ? (b) : (a))
63 #endif
64 #ifndef ABS
65 #define ABS(a) ((a) < 0 ? -(a) : (a))
66 #endif
67 #ifndef SIGNOF
68 #define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0)
69 #endif
70
71 #ifdef _KERNEL
72
73 /*
74 * Convert a single byte to/from binary-coded decimal (BCD).
75 */
76 extern unsigned char byte_to_bcd[256];
77 extern unsigned char bcd_to_byte[256];
78
79 #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff]
80 #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff]
81
82 #endif /* _KERNEL */
83
84 #ifndef __NetBSD__
85
86 /*
87 * WARNING: The device number macros defined here should not be used by device
88 * drivers or user software. Device drivers should use the device functions
89 * defined in the DDI/DKI interface (see also ddi.h). Application software
90 * should make use of the library routines available in makedev(3). A set of
91 * new device macros are provided to operate on the expanded device number
92 * format supported in SVR4. Macro versions of the DDI device functions are
93 * provided for use by kernel proper routines only. Macro routines bmajor(),
94 * major(), minor(), emajor(), eminor(), and makedev() will be removed or
95 * their definitions changed at the next major release following SVR4.
96 */
97
98 #define O_BITSMAJOR 7 /* # of SVR3 major device bits */
99 #define O_BITSMINOR 8 /* # of SVR3 minor device bits */
100 #define O_MAXMAJ 0x7f /* SVR3 max major value */
101 #define O_MAXMIN 0xff /* SVR3 max minor value */
102
103
104 #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */
105 #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */
106 #define L_MAXMAJ32 0x3fff /* SVR4 max major value */
107 #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */
108 /* For 3b2 hardware devices the minor is */
109 /* restricted to 256 (0-255) */
110
111 #ifdef _LP64
112 #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */
113 #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */
114 #define L_MAXMAJ 0xfffffffful /* max major value */
115 #define L_MAXMIN 0xfffffffful /* max minor value */
116 #else
117 #define L_BITSMAJOR L_BITSMAJOR32
118 #define L_BITSMINOR L_BITSMINOR32
119 #define L_MAXMAJ L_MAXMAJ32
120 #define L_MAXMIN L_MAXMIN32
121 #endif
122
123 #ifdef illumos
124 #ifdef _KERNEL
125
126 /* major part of a device internal to the kernel */
127
128 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
129 #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
130
131 /* get internal major part of expanded device number */
132
133 #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)
134
135 /* minor part of a device internal to the kernel */
136
137 #define minor(x) (minor_t)((x) & O_MAXMIN)
138
139 /* get internal minor part of expanded device number */
140
141 #define getminor(x) (minor_t)((x) & L_MAXMIN)
142
143 #else
144
145 /* major part of a device external from the kernel (same as emajor below) */
146
147 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
148
149 /* minor part of a device external from the kernel (same as eminor below) */
150
151 #define minor(x) (minor_t)((x) & O_MAXMIN)
152
153 #endif /* _KERNEL */
154
155 /* create old device number */
156
157 #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))
158
159 /* make an new device number */
160
161 #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))
162
163
164 /*
165 * emajor() allows kernel/driver code to print external major numbers
166 * eminor() allows kernel/driver code to print external minor numbers
167 */
168
169 #define emajor(x) \
170 (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
171 NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)
172
173 #define eminor(x) \
174 (minor_t)((x) & O_MAXMIN)
175
176 /*
177 * get external major and minor device
178 * components from expanded device number
179 */
180 #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
181 NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
182 #define geteminor(x) (minor_t)((x) & L_MAXMIN)
183 #endif /* illumos */
184
185 /*
186 * These are versions of the kernel routines for compressing and
187 * expanding long device numbers that don't return errors.
188 */
189 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
190
191 #define DEVCMPL(x) (x)
192 #define DEVEXPL(x) (x)
193
194 #else
195
196 #define DEVCMPL(x) \
197 (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
198 ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
199 ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
200
201 #define DEVEXPL(x) \
202 (((x) == NODEV32) ? NODEV : \
203 makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
204
205 #endif /* L_BITSMAJOR32 ... */
206
207 /* convert to old (SVR3.2) dev format */
208
209 #define cmpdev(x) \
210 (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
211 ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
212 ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
213
214 /* convert to new (SVR4) dev format */
215
216 #define expdev(x) \
217 (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
218 ((x) & O_MAXMIN))
219
220 #endif /* !__NetBSD__ */
221
222 /*
223 * Macro for checking power of 2 address alignment.
224 */
225 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
226
227 #ifndef __NetBSD__
228
229 /*
230 * Macros for counting and rounding.
231 */
232 #define howmany(x, y) (((x)+((y)-1))/(y))
233 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y))
234
235 #endif /* !__NetBSD__ */
236
237 /*
238 * Macro to determine if value is a power of 2
239 */
240 #define ISP2(x) (((x) & ((x) - 1)) == 0)
241
242 /*
243 * Macros for various sorts of alignment and rounding. The "align" must
244 * be a power of 2. Often times it is a block, sector, or page.
245 */
246
247 /*
248 * return x rounded down to an align boundary
249 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
250 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
251 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
252 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
253 */
254 #define P2ALIGN(x, align) ((x) & -(align))
255
256 /*
257 * return x % (mod) align
258 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
259 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
260 */
261 #define P2PHASE(x, align) ((x) & ((align) - 1))
262
263 /*
264 * return how much space is left in this block (but if it's perfectly
265 * aligned, return 0).
266 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
267 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
268 */
269 #define P2NPHASE(x, align) (-(x) & ((align) - 1))
270
271 /*
272 * return x rounded up to an align boundary
273 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
274 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
275 */
276 #define P2ROUNDUP(x, align) (-(-(x) & -(align)))
277
278 /*
279 * return the ending address of the block that x is in
280 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
281 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
282 */
283 #define P2END(x, align) (-(~(x) & -(align)))
284
285 /*
286 * return x rounded up to the next phase (offset) within align.
287 * phase should be < align.
288 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
289 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
290 */
291 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align)))
292
293 /*
294 * return TRUE if adding len to off would cause it to cross an align
295 * boundary.
296 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
297 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
298 */
299 #define P2BOUNDARY(off, len, align) \
300 (((off) ^ ((off) + (len) - 1)) > (align) - 1)
301
302 /*
303 * Return TRUE if they have the same highest bit set.
304 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
305 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
306 */
307 #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y)))
308
309 /*
310 * Typed version of the P2* macros. These macros should be used to ensure
311 * that the result is correctly calculated based on the data type of (x),
312 * which is passed in as the last argument, regardless of the data
313 * type of the alignment. For example, if (x) is of type uint64_t,
314 * and we want to round it up to a page boundary using "PAGESIZE" as
315 * the alignment, we can do either
316 * P2ROUNDUP(x, (uint64_t)PAGESIZE)
317 * or
318 * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
319 */
320 #define P2ALIGN_TYPED(x, align, type) \
321 ((type)(x) & -(type)(align))
322 #define P2PHASE_TYPED(x, align, type) \
323 ((type)(x) & ((type)(align) - 1))
324 #define P2NPHASE_TYPED(x, align, type) \
325 (-(type)(x) & ((type)(align) - 1))
326 #define P2ROUNDUP_TYPED(x, align, type) \
327 (-(-(type)(x) & -(type)(align)))
328 #define P2END_TYPED(x, align, type) \
329 (-(~(type)(x) & -(type)(align)))
330 #define P2PHASEUP_TYPED(x, align, phase, type) \
331 ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
332 #define P2CROSS_TYPED(x, y, align, type) \
333 (((type)(x) ^ (type)(y)) > (type)(align) - 1)
334 #define P2SAMEHIGHBIT_TYPED(x, y, type) \
335 (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
336
337 /*
338 * Macros to atomically increment/decrement a variable. mutex and var
339 * must be pointers.
340 */
341 #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
342 #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
343
344 /*
345 * Macros to declare bitfields - the order in the parameter list is
346 * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields
347 * because if a field crosses a byte boundary it's not likely to be meaningful
348 * without reassembly in its nonnative endianness.
349 */
350 #ifndef __NetBSD__
351
352 #if defined(_BIT_FIELDS_LTOH)
353 #define DECL_BITFIELD2(_a, _b) \
354 uint8_t _a, _b
355 #define DECL_BITFIELD3(_a, _b, _c) \
356 uint8_t _a, _b, _c
357 #define DECL_BITFIELD4(_a, _b, _c, _d) \
358 uint8_t _a, _b, _c, _d
359 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \
360 uint8_t _a, _b, _c, _d, _e
361 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \
362 uint8_t _a, _b, _c, _d, _e, _f
363 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \
364 uint8_t _a, _b, _c, _d, _e, _f, _g
365 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \
366 uint8_t _a, _b, _c, _d, _e, _f, _g, _h
367 #elif defined(_BIT_FIELDS_HTOL)
368 #define DECL_BITFIELD2(_a, _b) \
369 uint8_t _b, _a
370 #define DECL_BITFIELD3(_a, _b, _c) \
371 uint8_t _c, _b, _a
372 #define DECL_BITFIELD4(_a, _b, _c, _d) \
373 uint8_t _d, _c, _b, _a
374 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \
375 uint8_t _e, _d, _c, _b, _a
376 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \
377 uint8_t _f, _e, _d, _c, _b, _a
378 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \
379 uint8_t _g, _f, _e, _d, _c, _b, _a
380 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \
381 uint8_t _h, _g, _f, _e, _d, _c, _b, _a
382 #else
383 #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
384 #endif /* _BIT_FIELDS_LTOH */
385
386 #endif /* ! __NetBSD__ */
387
388 #if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof)
389
390 /* avoid any possibility of clashing with <stddef.h> version */
391
392 #define offsetof(s, m) ((size_t)(&(((s *)0)->m)))
393 #endif
394
395 #ifdef __NetBSD__
396
397 #include <sys/bitops.h>
398
399 #ifdef _LP64
400 #define highbit(i) fls64((i))
401 #else
402 #define highbit(i) fls32((i))
403 #endif
404 #define highbit64(i) fls64((i))
405
406 #else /* __NetBSD__ */
407
408 /*
409 * Find highest one bit set.
410 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
411 * High order bit is 31 (or 63 in _LP64 kernel).
412 */
413 static __inline int
highbit(ulong_t i)414 highbit(ulong_t i)
415 {
416 #if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSL)
417 return (flsl(i));
418 #else
419 register int h = 1;
420
421 if (i == 0)
422 return (0);
423 #ifdef _LP64
424 if (i & 0xffffffff00000000ul) {
425 h += 32; i >>= 32;
426 }
427 #endif
428 if (i & 0xffff0000) {
429 h += 16; i >>= 16;
430 }
431 if (i & 0xff00) {
432 h += 8; i >>= 8;
433 }
434 if (i & 0xf0) {
435 h += 4; i >>= 4;
436 }
437 if (i & 0xc) {
438 h += 2; i >>= 2;
439 }
440 if (i & 0x2) {
441 h += 1;
442 }
443 return (h);
444 #endif
445 }
446
447 /*
448 * Find highest one bit set.
449 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
450 */
451 static __inline int
highbit64(uint64_t i)452 highbit64(uint64_t i)
453 {
454 #if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSLL)
455 return (flsll(i));
456 #else
457 int h = 1;
458
459 if (i == 0)
460 return (0);
461 if (i & 0xffffffff00000000ULL) {
462 h += 32; i >>= 32;
463 }
464 if (i & 0xffff0000) {
465 h += 16; i >>= 16;
466 }
467 if (i & 0xff00) {
468 h += 8; i >>= 8;
469 }
470 if (i & 0xf0) {
471 h += 4; i >>= 4;
472 }
473 if (i & 0xc) {
474 h += 2; i >>= 2;
475 }
476 if (i & 0x2) {
477 h += 1;
478 }
479 return (h);
480 #endif
481 }
482
483 #endif /* __NetBSD__ */
484
485 #ifdef __cplusplus
486 }
487 #endif
488
489 #endif /* _SYS_SYSMACROS_H */
490