xref: /netbsd-src/external/cddl/osnet/dist/uts/common/sys/sysmacros.h (revision f3f87b32db28e53a1bc0e76f58272fc09a2f1453)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #ifndef _SYS_SYSMACROS_H
31 #define	_SYS_SYSMACROS_H
32 
33 #include <sys/param.h>
34 #include <sys/isa_defs.h>
35 #if defined(__FreeBSD__) && defined(_KERNEL)
36 #include <sys/libkern.h>
37 #endif
38 #if defined(__NetBSD__) && defined(_KERNEL)
39 #include <lib/libkern/libkern.h>
40 #endif
41 
42 #ifdef	__cplusplus
43 extern "C" {
44 #endif
45 
46 /*
47  * Some macros for units conversion
48  */
49 /*
50  * Disk blocks (sectors) and bytes.
51  */
52 #define	dtob(DD)	((DD) << DEV_BSHIFT)
53 #define	btod(BB)	(((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
54 #define	btodt(BB)	((BB) >> DEV_BSHIFT)
55 #define	lbtod(BB)	(((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
56 
57 /* common macros */
58 #ifndef MIN
59 #define	MIN(a, b)	((a) < (b) ? (a) : (b))
60 #endif
61 #ifndef MAX
62 #define	MAX(a, b)	((a) < (b) ? (b) : (a))
63 #endif
64 #ifndef ABS
65 #define	ABS(a)		((a) < 0 ? -(a) : (a))
66 #endif
67 #ifndef	SIGNOF
68 #define	SIGNOF(a)	((a) < 0 ? -1 : (a) > 0)
69 #endif
70 
71 #ifdef _KERNEL
72 
73 /*
74  * Convert a single byte to/from binary-coded decimal (BCD).
75  */
76 extern unsigned char byte_to_bcd[256];
77 extern unsigned char bcd_to_byte[256];
78 
79 #define	BYTE_TO_BCD(x)	byte_to_bcd[(x) & 0xff]
80 #define	BCD_TO_BYTE(x)	bcd_to_byte[(x) & 0xff]
81 
82 #endif	/* _KERNEL */
83 
84 #ifndef __NetBSD__
85 
86 /*
87  * WARNING: The device number macros defined here should not be used by device
88  * drivers or user software. Device drivers should use the device functions
89  * defined in the DDI/DKI interface (see also ddi.h). Application software
90  * should make use of the library routines available in makedev(3). A set of
91  * new device macros are provided to operate on the expanded device number
92  * format supported in SVR4. Macro versions of the DDI device functions are
93  * provided for use by kernel proper routines only. Macro routines bmajor(),
94  * major(), minor(), emajor(), eminor(), and makedev() will be removed or
95  * their definitions changed at the next major release following SVR4.
96  */
97 
98 #define	O_BITSMAJOR	7	/* # of SVR3 major device bits */
99 #define	O_BITSMINOR	8	/* # of SVR3 minor device bits */
100 #define	O_MAXMAJ	0x7f	/* SVR3 max major value */
101 #define	O_MAXMIN	0xff	/* SVR3 max minor value */
102 
103 
104 #define	L_BITSMAJOR32	14	/* # of SVR4 major device bits */
105 #define	L_BITSMINOR32	18	/* # of SVR4 minor device bits */
106 #define	L_MAXMAJ32	0x3fff	/* SVR4 max major value */
107 #define	L_MAXMIN32	0x3ffff	/* MAX minor for 3b2 software drivers. */
108 				/* For 3b2 hardware devices the minor is */
109 				/* restricted to 256 (0-255) */
110 
111 #ifdef _LP64
112 #define	L_BITSMAJOR	32	/* # of major device bits in 64-bit Solaris */
113 #define	L_BITSMINOR	32	/* # of minor device bits in 64-bit Solaris */
114 #define	L_MAXMAJ	0xfffffffful	/* max major value */
115 #define	L_MAXMIN	0xfffffffful	/* max minor value */
116 #else
117 #define	L_BITSMAJOR	L_BITSMAJOR32
118 #define	L_BITSMINOR	L_BITSMINOR32
119 #define	L_MAXMAJ	L_MAXMAJ32
120 #define	L_MAXMIN	L_MAXMIN32
121 #endif
122 
123 #ifdef illumos
124 #ifdef _KERNEL
125 
126 /* major part of a device internal to the kernel */
127 
128 #define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
129 #define	bmajor(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
130 
131 /* get internal major part of expanded device number */
132 
133 #define	getmajor(x)	(major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)
134 
135 /* minor part of a device internal to the kernel */
136 
137 #define	minor(x)	(minor_t)((x) & O_MAXMIN)
138 
139 /* get internal minor part of expanded device number */
140 
141 #define	getminor(x)	(minor_t)((x) & L_MAXMIN)
142 
143 #else
144 
145 /* major part of a device external from the kernel (same as emajor below) */
146 
147 #define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
148 
149 /* minor part of a device external from the kernel  (same as eminor below) */
150 
151 #define	minor(x)	(minor_t)((x) & O_MAXMIN)
152 
153 #endif	/* _KERNEL */
154 
155 /* create old device number */
156 
157 #define	makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))
158 
159 /* make an new device number */
160 
161 #define	makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))
162 
163 
164 /*
165  * emajor() allows kernel/driver code to print external major numbers
166  * eminor() allows kernel/driver code to print external minor numbers
167  */
168 
169 #define	emajor(x) \
170 	(major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
171 	    NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)
172 
173 #define	eminor(x) \
174 	(minor_t)((x) & O_MAXMIN)
175 
176 /*
177  * get external major and minor device
178  * components from expanded device number
179  */
180 #define	getemajor(x)	(major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
181 			    NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
182 #define	geteminor(x)	(minor_t)((x) & L_MAXMIN)
183 #endif /* illumos */
184 
185 /*
186  * These are versions of the kernel routines for compressing and
187  * expanding long device numbers that don't return errors.
188  */
189 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
190 
191 #define	DEVCMPL(x)	(x)
192 #define	DEVEXPL(x)	(x)
193 
194 #else
195 
196 #define	DEVCMPL(x)	\
197 	(dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
198 	    ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
199 	    ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
200 
201 #define	DEVEXPL(x)	\
202 	(((x) == NODEV32) ? NODEV : \
203 	makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
204 
205 #endif /* L_BITSMAJOR32 ... */
206 
207 /* convert to old (SVR3.2) dev format */
208 
209 #define	cmpdev(x) \
210 	(o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
211 	    ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
212 	    ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
213 
214 /* convert to new (SVR4) dev format */
215 
216 #define	expdev(x) \
217 	(dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
218 	    ((x) & O_MAXMIN))
219 
220 #endif	/* !__NetBSD__ */
221 
222 /*
223  * Macro for checking power of 2 address alignment.
224  */
225 #define	IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
226 
227 #ifndef __NetBSD__
228 
229 /*
230  * Macros for counting and rounding.
231  */
232 #define	howmany(x, y)	(((x)+((y)-1))/(y))
233 #define	roundup(x, y)	((((x)+((y)-1))/(y))*(y))
234 
235 #endif	/* !__NetBSD__ */
236 
237 /*
238  * Macro to determine if value is a power of 2
239  */
240 #define	ISP2(x)		(((x) & ((x) - 1)) == 0)
241 
242 /*
243  * Macros for various sorts of alignment and rounding.  The "align" must
244  * be a power of 2.  Often times it is a block, sector, or page.
245  */
246 
247 /*
248  * return x rounded down to an align boundary
249  * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
250  * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
251  * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
252  * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
253  */
254 #define	P2ALIGN(x, align)		((x) & -(align))
255 
256 /*
257  * return x % (mod) align
258  * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
259  * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
260  */
261 #define	P2PHASE(x, align)		((x) & ((align) - 1))
262 
263 /*
264  * return how much space is left in this block (but if it's perfectly
265  * aligned, return 0).
266  * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
267  * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
268  */
269 #define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
270 
271 /*
272  * return x rounded up to an align boundary
273  * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
274  * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
275  */
276 #define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
277 
278 /*
279  * return the ending address of the block that x is in
280  * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
281  * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
282  */
283 #define	P2END(x, align)			(-(~(x) & -(align)))
284 
285 /*
286  * return x rounded up to the next phase (offset) within align.
287  * phase should be < align.
288  * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
289  * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
290  */
291 #define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
292 
293 /*
294  * return TRUE if adding len to off would cause it to cross an align
295  * boundary.
296  * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
297  * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
298  */
299 #define	P2BOUNDARY(off, len, align) \
300 	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
301 
302 /*
303  * Return TRUE if they have the same highest bit set.
304  * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
305  * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
306  */
307 #define	P2SAMEHIGHBIT(x, y)		(((x) ^ (y)) < ((x) & (y)))
308 
309 /*
310  * Typed version of the P2* macros.  These macros should be used to ensure
311  * that the result is correctly calculated based on the data type of (x),
312  * which is passed in as the last argument, regardless of the data
313  * type of the alignment.  For example, if (x) is of type uint64_t,
314  * and we want to round it up to a page boundary using "PAGESIZE" as
315  * the alignment, we can do either
316  *	P2ROUNDUP(x, (uint64_t)PAGESIZE)
317  * or
318  *	P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
319  */
320 #define	P2ALIGN_TYPED(x, align, type)	\
321 	((type)(x) & -(type)(align))
322 #define	P2PHASE_TYPED(x, align, type)	\
323 	((type)(x) & ((type)(align) - 1))
324 #define	P2NPHASE_TYPED(x, align, type)	\
325 	(-(type)(x) & ((type)(align) - 1))
326 #define	P2ROUNDUP_TYPED(x, align, type)	\
327 	(-(-(type)(x) & -(type)(align)))
328 #define	P2END_TYPED(x, align, type)	\
329 	(-(~(type)(x) & -(type)(align)))
330 #define	P2PHASEUP_TYPED(x, align, phase, type)	\
331 	((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
332 #define	P2CROSS_TYPED(x, y, align, type)	\
333 	(((type)(x) ^ (type)(y)) > (type)(align) - 1)
334 #define	P2SAMEHIGHBIT_TYPED(x, y, type) \
335 	(((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
336 
337 /*
338  * Macros to atomically increment/decrement a variable.  mutex and var
339  * must be pointers.
340  */
341 #define	INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
342 #define	DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
343 
344 /*
345  * Macros to declare bitfields - the order in the parameter list is
346  * Low to High - that is, declare bit 0 first.  We only support 8-bit bitfields
347  * because if a field crosses a byte boundary it's not likely to be meaningful
348  * without reassembly in its nonnative endianness.
349  */
350 #ifndef __NetBSD__
351 
352 #if defined(_BIT_FIELDS_LTOH)
353 #define	DECL_BITFIELD2(_a, _b)				\
354 	uint8_t _a, _b
355 #define	DECL_BITFIELD3(_a, _b, _c)			\
356 	uint8_t _a, _b, _c
357 #define	DECL_BITFIELD4(_a, _b, _c, _d)			\
358 	uint8_t _a, _b, _c, _d
359 #define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
360 	uint8_t _a, _b, _c, _d, _e
361 #define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
362 	uint8_t _a, _b, _c, _d, _e, _f
363 #define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
364 	uint8_t _a, _b, _c, _d, _e, _f, _g
365 #define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
366 	uint8_t _a, _b, _c, _d, _e, _f, _g, _h
367 #elif defined(_BIT_FIELDS_HTOL)
368 #define	DECL_BITFIELD2(_a, _b)				\
369 	uint8_t _b, _a
370 #define	DECL_BITFIELD3(_a, _b, _c)			\
371 	uint8_t _c, _b, _a
372 #define	DECL_BITFIELD4(_a, _b, _c, _d)			\
373 	uint8_t _d, _c, _b, _a
374 #define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
375 	uint8_t _e, _d, _c, _b, _a
376 #define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
377 	uint8_t _f, _e, _d, _c, _b, _a
378 #define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
379 	uint8_t _g, _f, _e, _d, _c, _b, _a
380 #define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
381 	uint8_t _h, _g, _f, _e, _d, _c, _b, _a
382 #else
383 #error	One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
384 #endif  /* _BIT_FIELDS_LTOH */
385 
386 #endif /* ! __NetBSD__ */
387 
388 #if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof)
389 
390 /* avoid any possibility of clashing with <stddef.h> version */
391 
392 #define	offsetof(s, m)	((size_t)(&(((s *)0)->m)))
393 #endif
394 
395 #ifdef __NetBSD__
396 
397 #include <sys/bitops.h>
398 
399 #ifdef _LP64
400 #define highbit(i)	fls64((i))
401 #else
402 #define highbit(i)	fls32((i))
403 #endif
404 #define highbit64(i)	fls64((i))
405 
406 #else /* __NetBSD__ */
407 
408 /*
409  * Find highest one bit set.
410  *      Returns bit number + 1 of highest bit that is set, otherwise returns 0.
411  * High order bit is 31 (or 63 in _LP64 kernel).
412  */
413 static __inline int
highbit(ulong_t i)414 highbit(ulong_t i)
415 {
416 #if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSL)
417 	return (flsl(i));
418 #else
419 	register int h = 1;
420 
421 	if (i == 0)
422 		return (0);
423 #ifdef _LP64
424 	if (i & 0xffffffff00000000ul) {
425 		h += 32; i >>= 32;
426 	}
427 #endif
428 	if (i & 0xffff0000) {
429 		h += 16; i >>= 16;
430 	}
431 	if (i & 0xff00) {
432 		h += 8; i >>= 8;
433 	}
434 	if (i & 0xf0) {
435 		h += 4; i >>= 4;
436 	}
437 	if (i & 0xc) {
438 		h += 2; i >>= 2;
439 	}
440 	if (i & 0x2) {
441 		h += 1;
442 	}
443 	return (h);
444 #endif
445 }
446 
447 /*
448  * Find highest one bit set.
449  *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
450  */
451 static __inline int
highbit64(uint64_t i)452 highbit64(uint64_t i)
453 {
454 #if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSLL)
455 	return (flsll(i));
456 #else
457 	int h = 1;
458 
459 	if (i == 0)
460 		return (0);
461 	if (i & 0xffffffff00000000ULL) {
462 		h += 32; i >>= 32;
463 	}
464 	if (i & 0xffff0000) {
465 		h += 16; i >>= 16;
466 	}
467 	if (i & 0xff00) {
468 		h += 8; i >>= 8;
469 	}
470 	if (i & 0xf0) {
471 		h += 4; i >>= 4;
472 	}
473 	if (i & 0xc) {
474 		h += 2; i >>= 2;
475 	}
476 	if (i & 0x2) {
477 		h += 1;
478 	}
479 	return (h);
480 #endif
481 }
482 
483 #endif /* __NetBSD__ */
484 
485 #ifdef	__cplusplus
486 }
487 #endif
488 
489 #endif	/* _SYS_SYSMACROS_H */
490