xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/amdkfd/kfd_device_queue_manager.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: kfd_device_queue_manager.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2014 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: kfd_device_queue_manager.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $");
28 
29 #include <linux/ratelimit.h>
30 #include <linux/printk.h>
31 #include <linux/slab.h>
32 #include <linux/list.h>
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/sched.h>
36 #include "kfd_priv.h"
37 #include "kfd_device_queue_manager.h"
38 #include "kfd_mqd_manager.h"
39 #include "cik_regs.h"
40 #include "kfd_kernel_queue.h"
41 #include "amdgpu_amdkfd.h"
42 
43 /* Size of the per-pipe EOP queue */
44 #define CIK_HPD_EOP_BYTES_LOG2 11
45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
46 
47 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
48 					unsigned int pasid, unsigned int vmid);
49 
50 static int execute_queues_cpsch(struct device_queue_manager *dqm,
51 				enum kfd_unmap_queues_filter filter,
52 				uint32_t filter_param);
53 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
54 				enum kfd_unmap_queues_filter filter,
55 				uint32_t filter_param);
56 
57 static int map_queues_cpsch(struct device_queue_manager *dqm);
58 
59 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
60 				struct queue *q);
61 
62 static inline void deallocate_hqd(struct device_queue_manager *dqm,
63 				struct queue *q);
64 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
65 static int allocate_sdma_queue(struct device_queue_manager *dqm,
66 				struct queue *q);
67 static void kfd_process_hw_exception(struct work_struct *work);
68 
69 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)70 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
71 {
72 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
73 		return KFD_MQD_TYPE_SDMA;
74 	return KFD_MQD_TYPE_CP;
75 }
76 
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)77 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
78 {
79 	int i;
80 	int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
81 		+ pipe * dqm->dev->shared_resources.num_queue_per_pipe;
82 
83 	/* queue is available for KFD usage if bit is 1 */
84 	for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
85 		if (test_bit(pipe_offset + i,
86 			      dqm->dev->shared_resources.queue_bitmap))
87 			return true;
88 	return false;
89 }
90 
get_queues_num(struct device_queue_manager * dqm)91 unsigned int get_queues_num(struct device_queue_manager *dqm)
92 {
93 	return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
94 				KGD_MAX_QUEUES);
95 }
96 
get_queues_per_pipe(struct device_queue_manager * dqm)97 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
98 {
99 	return dqm->dev->shared_resources.num_queue_per_pipe;
100 }
101 
get_pipes_per_mec(struct device_queue_manager * dqm)102 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
103 {
104 	return dqm->dev->shared_resources.num_pipe_per_mec;
105 }
106 
get_num_sdma_engines(struct device_queue_manager * dqm)107 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm)
108 {
109 	return dqm->dev->device_info->num_sdma_engines;
110 }
111 
get_num_xgmi_sdma_engines(struct device_queue_manager * dqm)112 static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm)
113 {
114 	return dqm->dev->device_info->num_xgmi_sdma_engines;
115 }
116 
get_num_sdma_queues(struct device_queue_manager * dqm)117 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
118 {
119 	return dqm->dev->device_info->num_sdma_engines
120 			* dqm->dev->device_info->num_sdma_queues_per_engine;
121 }
122 
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)123 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
124 {
125 	return dqm->dev->device_info->num_xgmi_sdma_engines
126 			* dqm->dev->device_info->num_sdma_queues_per_engine;
127 }
128 
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)129 void program_sh_mem_settings(struct device_queue_manager *dqm,
130 					struct qcm_process_device *qpd)
131 {
132 	return dqm->dev->kfd2kgd->program_sh_mem_settings(
133 						dqm->dev->kgd, qpd->vmid,
134 						qpd->sh_mem_config,
135 						qpd->sh_mem_ape1_base,
136 						qpd->sh_mem_ape1_limit,
137 						qpd->sh_mem_bases);
138 }
139 
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q)140 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q)
141 {
142 	struct kfd_dev *dev = qpd->dqm->dev;
143 
144 	if (!KFD_IS_SOC15(dev->device_info->asic_family)) {
145 		/* On pre-SOC15 chips we need to use the queue ID to
146 		 * preserve the user mode ABI.
147 		 */
148 		q->doorbell_id = q->properties.queue_id;
149 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
150 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
151 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
152 		 * doorbell assignments based on the engine and queue id.
153 		 * The doobell index distance between RLC (2*i) and (2*i+1)
154 		 * for a SDMA engine is 512.
155 		 */
156 		uint32_t *idx_offset =
157 				dev->shared_resources.sdma_doorbell_idx;
158 
159 		q->doorbell_id = idx_offset[q->properties.sdma_engine_id]
160 			+ (q->properties.sdma_queue_id & 1)
161 			* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
162 			+ (q->properties.sdma_queue_id >> 1);
163 	} else {
164 		/* For CP queues on SOC15 reserve a free doorbell ID */
165 		unsigned int found;
166 
167 		found = find_first_zero_bit(qpd->doorbell_bitmap,
168 					    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
169 		if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
170 			pr_debug("No doorbells available");
171 			return -EBUSY;
172 		}
173 		set_bit(found, qpd->doorbell_bitmap);
174 		q->doorbell_id = found;
175 	}
176 
177 	q->properties.doorbell_off =
178 		kfd_get_doorbell_dw_offset_in_bar(dev, q->process,
179 					  q->doorbell_id);
180 
181 	return 0;
182 }
183 
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)184 static void deallocate_doorbell(struct qcm_process_device *qpd,
185 				struct queue *q)
186 {
187 	unsigned int old;
188 	struct kfd_dev *dev = qpd->dqm->dev;
189 
190 	if (!KFD_IS_SOC15(dev->device_info->asic_family) ||
191 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
192 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
193 		return;
194 
195 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
196 	WARN_ON(!old);
197 }
198 
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)199 static int allocate_vmid(struct device_queue_manager *dqm,
200 			struct qcm_process_device *qpd,
201 			struct queue *q)
202 {
203 	int allocated_vmid = -1, i;
204 
205 	for (i = dqm->dev->vm_info.first_vmid_kfd;
206 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
207 		if (!dqm->vmid_pasid[i]) {
208 			allocated_vmid = i;
209 			break;
210 		}
211 	}
212 
213 	if (allocated_vmid < 0) {
214 		pr_err("no more vmid to allocate\n");
215 		return -ENOSPC;
216 	}
217 
218 	pr_debug("vmid allocated: %d\n", allocated_vmid);
219 
220 	dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
221 
222 	set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
223 
224 	qpd->vmid = allocated_vmid;
225 	q->properties.vmid = allocated_vmid;
226 
227 	program_sh_mem_settings(dqm, qpd);
228 
229 	/* qpd->page_table_base is set earlier when register_process()
230 	 * is called, i.e. when the first queue is created.
231 	 */
232 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
233 			qpd->vmid,
234 			qpd->page_table_base);
235 	/* invalidate the VM context after pasid and vmid mapping is set up */
236 	kfd_flush_tlb(qpd_to_pdd(qpd));
237 
238 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
239 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->kgd,
240 				qpd->sh_hidden_private_base, qpd->vmid);
241 
242 	return 0;
243 }
244 
flush_texture_cache_nocpsch(struct kfd_dev * kdev,struct qcm_process_device * qpd)245 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
246 				struct qcm_process_device *qpd)
247 {
248 	const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf;
249 	int ret;
250 
251 	if (!qpd->ib_kaddr)
252 		return -ENOMEM;
253 
254 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
255 	if (ret)
256 		return ret;
257 
258 	return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
259 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
260 				pmf->release_mem_size / sizeof(uint32_t));
261 }
262 
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)263 static void deallocate_vmid(struct device_queue_manager *dqm,
264 				struct qcm_process_device *qpd,
265 				struct queue *q)
266 {
267 	/* On GFX v7, CP doesn't flush TC at dequeue */
268 	if (q->device->device_info->asic_family == CHIP_HAWAII)
269 		if (flush_texture_cache_nocpsch(q->device, qpd))
270 			pr_err("Failed to flush TC\n");
271 
272 	kfd_flush_tlb(qpd_to_pdd(qpd));
273 
274 	/* Release the vmid mapping */
275 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
276 	dqm->vmid_pasid[qpd->vmid] = 0;
277 
278 	qpd->vmid = 0;
279 	q->properties.vmid = 0;
280 }
281 
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)282 static int create_queue_nocpsch(struct device_queue_manager *dqm,
283 				struct queue *q,
284 				struct qcm_process_device *qpd)
285 {
286 	struct mqd_manager *mqd_mgr;
287 	int retval;
288 
289 	print_queue(q);
290 
291 	dqm_lock(dqm);
292 
293 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
294 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
295 				dqm->total_queue_count);
296 		retval = -EPERM;
297 		goto out_unlock;
298 	}
299 
300 	if (list_empty(&qpd->queues_list)) {
301 		retval = allocate_vmid(dqm, qpd, q);
302 		if (retval)
303 			goto out_unlock;
304 	}
305 	q->properties.vmid = qpd->vmid;
306 	/*
307 	 * Eviction state logic: mark all queues as evicted, even ones
308 	 * not currently active. Restoring inactive queues later only
309 	 * updates the is_evicted flag but is a no-op otherwise.
310 	 */
311 	q->properties.is_evicted = !!qpd->evicted;
312 
313 	q->properties.tba_addr = qpd->tba_addr;
314 	q->properties.tma_addr = qpd->tma_addr;
315 
316 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
317 			q->properties.type)];
318 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
319 		retval = allocate_hqd(dqm, q);
320 		if (retval)
321 			goto deallocate_vmid;
322 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
323 			q->pipe, q->queue);
324 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
325 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
326 		retval = allocate_sdma_queue(dqm, q);
327 		if (retval)
328 			goto deallocate_vmid;
329 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
330 	}
331 
332 	retval = allocate_doorbell(qpd, q);
333 	if (retval)
334 		goto out_deallocate_hqd;
335 
336 	/* Temporarily release dqm lock to avoid a circular lock dependency */
337 	dqm_unlock(dqm);
338 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
339 	dqm_lock(dqm);
340 
341 	if (!q->mqd_mem_obj) {
342 		retval = -ENOMEM;
343 		goto out_deallocate_doorbell;
344 	}
345 	mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
346 				&q->gart_mqd_addr, &q->properties);
347 	if (q->properties.is_active) {
348 		if (!dqm->sched_running) {
349 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
350 			goto add_queue_to_list;
351 		}
352 
353 		if (WARN(q->process->mm != current->mm,
354 					"should only run in user thread"))
355 			retval = -EFAULT;
356 		else
357 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
358 					q->queue, &q->properties, current->mm);
359 		if (retval)
360 			goto out_free_mqd;
361 	}
362 
363 add_queue_to_list:
364 	list_add(&q->list, &qpd->queues_list);
365 	qpd->queue_count++;
366 	if (q->properties.is_active)
367 		dqm->queue_count++;
368 
369 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
370 		dqm->sdma_queue_count++;
371 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
372 		dqm->xgmi_sdma_queue_count++;
373 
374 	/*
375 	 * Unconditionally increment this counter, regardless of the queue's
376 	 * type or whether the queue is active.
377 	 */
378 	dqm->total_queue_count++;
379 	pr_debug("Total of %d queues are accountable so far\n",
380 			dqm->total_queue_count);
381 	goto out_unlock;
382 
383 out_free_mqd:
384 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
385 out_deallocate_doorbell:
386 	deallocate_doorbell(qpd, q);
387 out_deallocate_hqd:
388 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
389 		deallocate_hqd(dqm, q);
390 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
391 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
392 		deallocate_sdma_queue(dqm, q);
393 deallocate_vmid:
394 	if (list_empty(&qpd->queues_list))
395 		deallocate_vmid(dqm, qpd, q);
396 out_unlock:
397 	dqm_unlock(dqm);
398 	return retval;
399 }
400 
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)401 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
402 {
403 	bool set;
404 	int pipe, bit, i;
405 
406 	set = false;
407 
408 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
409 			i < get_pipes_per_mec(dqm);
410 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
411 
412 		if (!is_pipe_enabled(dqm, 0, pipe))
413 			continue;
414 
415 		if (dqm->allocated_queues[pipe] != 0) {
416 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
417 			dqm->allocated_queues[pipe] &= ~(1 << bit);
418 			q->pipe = pipe;
419 			q->queue = bit;
420 			set = true;
421 			break;
422 		}
423 	}
424 
425 	if (!set)
426 		return -EBUSY;
427 
428 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
429 	/* horizontal hqd allocation */
430 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
431 
432 	return 0;
433 }
434 
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)435 static inline void deallocate_hqd(struct device_queue_manager *dqm,
436 				struct queue *q)
437 {
438 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
439 }
440 
441 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
442  * to avoid asynchronized access
443  */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)444 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
445 				struct qcm_process_device *qpd,
446 				struct queue *q)
447 {
448 	int retval;
449 	struct mqd_manager *mqd_mgr;
450 
451 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
452 			q->properties.type)];
453 
454 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
455 		deallocate_hqd(dqm, q);
456 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
457 		dqm->sdma_queue_count--;
458 		deallocate_sdma_queue(dqm, q);
459 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
460 		dqm->xgmi_sdma_queue_count--;
461 		deallocate_sdma_queue(dqm, q);
462 	} else {
463 		pr_debug("q->properties.type %d is invalid\n",
464 				q->properties.type);
465 		return -EINVAL;
466 	}
467 	dqm->total_queue_count--;
468 
469 	deallocate_doorbell(qpd, q);
470 
471 	if (!dqm->sched_running) {
472 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
473 		return 0;
474 	}
475 
476 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
477 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
478 				KFD_UNMAP_LATENCY_MS,
479 				q->pipe, q->queue);
480 	if (retval == -ETIME)
481 		qpd->reset_wavefronts = true;
482 
483 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
484 
485 	list_del(&q->list);
486 	if (list_empty(&qpd->queues_list)) {
487 		if (qpd->reset_wavefronts) {
488 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
489 					dqm->dev);
490 			/* dbgdev_wave_reset_wavefronts has to be called before
491 			 * deallocate_vmid(), i.e. when vmid is still in use.
492 			 */
493 			dbgdev_wave_reset_wavefronts(dqm->dev,
494 					qpd->pqm->process);
495 			qpd->reset_wavefronts = false;
496 		}
497 
498 		deallocate_vmid(dqm, qpd, q);
499 	}
500 	qpd->queue_count--;
501 	if (q->properties.is_active)
502 		dqm->queue_count--;
503 
504 	return retval;
505 }
506 
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)507 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
508 				struct qcm_process_device *qpd,
509 				struct queue *q)
510 {
511 	int retval;
512 
513 	dqm_lock(dqm);
514 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
515 	dqm_unlock(dqm);
516 
517 	return retval;
518 }
519 
update_queue(struct device_queue_manager * dqm,struct queue * q)520 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
521 {
522 	int retval = 0;
523 	struct mqd_manager *mqd_mgr;
524 	struct kfd_process_device *pdd;
525 	bool prev_active = false;
526 
527 	dqm_lock(dqm);
528 	pdd = kfd_get_process_device_data(q->device, q->process);
529 	if (!pdd) {
530 		retval = -ENODEV;
531 		goto out_unlock;
532 	}
533 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
534 			q->properties.type)];
535 
536 	/* Save previous activity state for counters */
537 	prev_active = q->properties.is_active;
538 
539 	/* Make sure the queue is unmapped before updating the MQD */
540 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
541 		retval = unmap_queues_cpsch(dqm,
542 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
543 		if (retval) {
544 			pr_err("unmap queue failed\n");
545 			goto out_unlock;
546 		}
547 	} else if (prev_active &&
548 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
549 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
550 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
551 
552 		if (!dqm->sched_running) {
553 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
554 			goto out_unlock;
555 		}
556 
557 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
558 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
559 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
560 		if (retval) {
561 			pr_err("destroy mqd failed\n");
562 			goto out_unlock;
563 		}
564 	}
565 
566 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties);
567 
568 	/*
569 	 * check active state vs. the previous state and modify
570 	 * counter accordingly. map_queues_cpsch uses the
571 	 * dqm->queue_count to determine whether a new runlist must be
572 	 * uploaded.
573 	 */
574 	if (q->properties.is_active && !prev_active)
575 		dqm->queue_count++;
576 	else if (!q->properties.is_active && prev_active)
577 		dqm->queue_count--;
578 
579 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
580 		retval = map_queues_cpsch(dqm);
581 	else if (q->properties.is_active &&
582 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
583 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
584 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
585 		if (WARN(q->process->mm != current->mm,
586 			 "should only run in user thread"))
587 			retval = -EFAULT;
588 		else
589 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
590 						   q->pipe, q->queue,
591 						   &q->properties, current->mm);
592 	}
593 
594 out_unlock:
595 	dqm_unlock(dqm);
596 	return retval;
597 }
598 
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)599 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
600 					struct qcm_process_device *qpd)
601 {
602 	struct queue *q;
603 	struct mqd_manager *mqd_mgr;
604 	struct kfd_process_device *pdd;
605 	int retval, ret = 0;
606 
607 	dqm_lock(dqm);
608 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
609 		goto out;
610 
611 	pdd = qpd_to_pdd(qpd);
612 	pr_info_ratelimited("Evicting PASID 0x%x queues\n",
613 			    pdd->process->pasid);
614 
615 	/* Mark all queues as evicted. Deactivate all active queues on
616 	 * the qpd.
617 	 */
618 	list_for_each_entry(q, &qpd->queues_list, list) {
619 		q->properties.is_evicted = true;
620 		if (!q->properties.is_active)
621 			continue;
622 
623 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
624 				q->properties.type)];
625 		q->properties.is_active = false;
626 		dqm->queue_count--;
627 
628 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
629 			continue;
630 
631 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
632 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
633 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
634 		if (retval && !ret)
635 			/* Return the first error, but keep going to
636 			 * maintain a consistent eviction state
637 			 */
638 			ret = retval;
639 	}
640 
641 out:
642 	dqm_unlock(dqm);
643 	return ret;
644 }
645 
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)646 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
647 				      struct qcm_process_device *qpd)
648 {
649 	struct queue *q;
650 	struct kfd_process_device *pdd;
651 	int retval = 0;
652 
653 	dqm_lock(dqm);
654 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
655 		goto out;
656 
657 	pdd = qpd_to_pdd(qpd);
658 	pr_info_ratelimited("Evicting PASID 0x%x queues\n",
659 			    pdd->process->pasid);
660 
661 	/* Mark all queues as evicted. Deactivate all active queues on
662 	 * the qpd.
663 	 */
664 	list_for_each_entry(q, &qpd->queues_list, list) {
665 		q->properties.is_evicted = true;
666 		if (!q->properties.is_active)
667 			continue;
668 
669 		q->properties.is_active = false;
670 		dqm->queue_count--;
671 	}
672 	retval = execute_queues_cpsch(dqm,
673 				qpd->is_debug ?
674 				KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
675 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
676 
677 out:
678 	dqm_unlock(dqm);
679 	return retval;
680 }
681 
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)682 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
683 					  struct qcm_process_device *qpd)
684 {
685 	struct mm_struct *mm = NULL;
686 	struct queue *q;
687 	struct mqd_manager *mqd_mgr;
688 	struct kfd_process_device *pdd;
689 	uint64_t pd_base;
690 	int retval, ret = 0;
691 
692 	pdd = qpd_to_pdd(qpd);
693 	/* Retrieve PD base */
694 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
695 
696 	dqm_lock(dqm);
697 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
698 		goto out;
699 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
700 		qpd->evicted--;
701 		goto out;
702 	}
703 
704 	pr_info_ratelimited("Restoring PASID 0x%x queues\n",
705 			    pdd->process->pasid);
706 
707 	/* Update PD Base in QPD */
708 	qpd->page_table_base = pd_base;
709 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
710 
711 	if (!list_empty(&qpd->queues_list)) {
712 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
713 				dqm->dev->kgd,
714 				qpd->vmid,
715 				qpd->page_table_base);
716 		kfd_flush_tlb(pdd);
717 	}
718 
719 	/* Take a safe reference to the mm_struct, which may otherwise
720 	 * disappear even while the kfd_process is still referenced.
721 	 */
722 	mm = get_task_mm(pdd->process->lead_thread);
723 	if (!mm) {
724 		ret = -EFAULT;
725 		goto out;
726 	}
727 
728 	/* Remove the eviction flags. Activate queues that are not
729 	 * inactive for other reasons.
730 	 */
731 	list_for_each_entry(q, &qpd->queues_list, list) {
732 		q->properties.is_evicted = false;
733 		if (!QUEUE_IS_ACTIVE(q->properties))
734 			continue;
735 
736 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
737 				q->properties.type)];
738 		q->properties.is_active = true;
739 		dqm->queue_count++;
740 
741 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
742 			continue;
743 
744 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
745 				       q->queue, &q->properties, mm);
746 		if (retval && !ret)
747 			/* Return the first error, but keep going to
748 			 * maintain a consistent eviction state
749 			 */
750 			ret = retval;
751 	}
752 	qpd->evicted = 0;
753 out:
754 	if (mm)
755 		mmput(mm);
756 	dqm_unlock(dqm);
757 	return ret;
758 }
759 
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)760 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
761 					struct qcm_process_device *qpd)
762 {
763 	struct queue *q;
764 	struct kfd_process_device *pdd;
765 	uint64_t pd_base;
766 	int retval = 0;
767 
768 	pdd = qpd_to_pdd(qpd);
769 	/* Retrieve PD base */
770 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
771 
772 	dqm_lock(dqm);
773 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
774 		goto out;
775 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
776 		qpd->evicted--;
777 		goto out;
778 	}
779 
780 	pr_info_ratelimited("Restoring PASID 0x%x queues\n",
781 			    pdd->process->pasid);
782 
783 	/* Update PD Base in QPD */
784 	qpd->page_table_base = pd_base;
785 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
786 
787 	/* activate all active queues on the qpd */
788 	list_for_each_entry(q, &qpd->queues_list, list) {
789 		q->properties.is_evicted = false;
790 		if (!QUEUE_IS_ACTIVE(q->properties))
791 			continue;
792 
793 		q->properties.is_active = true;
794 		dqm->queue_count++;
795 	}
796 	retval = execute_queues_cpsch(dqm,
797 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
798 	qpd->evicted = 0;
799 out:
800 	dqm_unlock(dqm);
801 	return retval;
802 }
803 
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)804 static int register_process(struct device_queue_manager *dqm,
805 					struct qcm_process_device *qpd)
806 {
807 	struct device_process_node *n;
808 	struct kfd_process_device *pdd;
809 	uint64_t pd_base;
810 	int retval;
811 
812 	n = kzalloc(sizeof(*n), GFP_KERNEL);
813 	if (!n)
814 		return -ENOMEM;
815 
816 	n->qpd = qpd;
817 
818 	pdd = qpd_to_pdd(qpd);
819 	/* Retrieve PD base */
820 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
821 
822 	dqm_lock(dqm);
823 	list_add(&n->list, &dqm->queues);
824 
825 	/* Update PD Base in QPD */
826 	qpd->page_table_base = pd_base;
827 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
828 
829 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
830 
831 	dqm->processes_count++;
832 
833 	dqm_unlock(dqm);
834 
835 	/* Outside the DQM lock because under the DQM lock we can't do
836 	 * reclaim or take other locks that others hold while reclaiming.
837 	 */
838 	kfd_inc_compute_active(dqm->dev);
839 
840 	return retval;
841 }
842 
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)843 static int unregister_process(struct device_queue_manager *dqm,
844 					struct qcm_process_device *qpd)
845 {
846 	int retval;
847 	struct device_process_node *cur, *next;
848 
849 	pr_debug("qpd->queues_list is %s\n",
850 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
851 
852 	retval = 0;
853 	dqm_lock(dqm);
854 
855 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
856 		if (qpd == cur->qpd) {
857 			list_del(&cur->list);
858 			kfree(cur);
859 			dqm->processes_count--;
860 			goto out;
861 		}
862 	}
863 	/* qpd not found in dqm list */
864 	retval = 1;
865 out:
866 	dqm_unlock(dqm);
867 
868 	/* Outside the DQM lock because under the DQM lock we can't do
869 	 * reclaim or take other locks that others hold while reclaiming.
870 	 */
871 	if (!retval)
872 		kfd_dec_compute_active(dqm->dev);
873 
874 	return retval;
875 }
876 
877 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,unsigned int pasid,unsigned int vmid)878 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
879 			unsigned int vmid)
880 {
881 	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
882 						dqm->dev->kgd, pasid, vmid);
883 }
884 
init_interrupts(struct device_queue_manager * dqm)885 static void init_interrupts(struct device_queue_manager *dqm)
886 {
887 	unsigned int i;
888 
889 	for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
890 		if (is_pipe_enabled(dqm, 0, i))
891 			dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
892 }
893 
initialize_nocpsch(struct device_queue_manager * dqm)894 static int initialize_nocpsch(struct device_queue_manager *dqm)
895 {
896 	int pipe, queue;
897 
898 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
899 
900 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
901 					sizeof(unsigned int), GFP_KERNEL);
902 	if (!dqm->allocated_queues)
903 		return -ENOMEM;
904 
905 	mutex_init(&dqm->lock_hidden);
906 	INIT_LIST_HEAD(&dqm->queues);
907 	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
908 	dqm->sdma_queue_count = 0;
909 	dqm->xgmi_sdma_queue_count = 0;
910 
911 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
912 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
913 
914 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
915 			if (test_bit(pipe_offset + queue,
916 				     dqm->dev->shared_resources.queue_bitmap))
917 				dqm->allocated_queues[pipe] |= 1 << queue;
918 	}
919 
920 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
921 
922 	dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
923 	dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
924 
925 	return 0;
926 }
927 
uninitialize(struct device_queue_manager * dqm)928 static void uninitialize(struct device_queue_manager *dqm)
929 {
930 	int i;
931 
932 	WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
933 
934 	kfree(dqm->allocated_queues);
935 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
936 		kfree(dqm->mqd_mgrs[i]);
937 	mutex_destroy(&dqm->lock_hidden);
938 }
939 
start_nocpsch(struct device_queue_manager * dqm)940 static int start_nocpsch(struct device_queue_manager *dqm)
941 {
942 	pr_info("SW scheduler is used");
943 	init_interrupts(dqm);
944 
945 	if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
946 		return pm_init(&dqm->packets, dqm);
947 	dqm->sched_running = true;
948 
949 	return 0;
950 }
951 
stop_nocpsch(struct device_queue_manager * dqm)952 static int stop_nocpsch(struct device_queue_manager *dqm)
953 {
954 	if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
955 		pm_uninit(&dqm->packets, false);
956 	dqm->sched_running = false;
957 
958 	return 0;
959 }
960 
pre_reset(struct device_queue_manager * dqm)961 static void pre_reset(struct device_queue_manager *dqm)
962 {
963 	dqm_lock(dqm);
964 	dqm->is_resetting = true;
965 	dqm_unlock(dqm);
966 }
967 
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)968 static int allocate_sdma_queue(struct device_queue_manager *dqm,
969 				struct queue *q)
970 {
971 	int bit;
972 
973 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
974 		if (dqm->sdma_bitmap == 0)
975 			return -ENOMEM;
976 		bit = __ffs64(dqm->sdma_bitmap);
977 		dqm->sdma_bitmap &= ~(1ULL << bit);
978 		q->sdma_id = bit;
979 		q->properties.sdma_engine_id = q->sdma_id %
980 				get_num_sdma_engines(dqm);
981 		q->properties.sdma_queue_id = q->sdma_id /
982 				get_num_sdma_engines(dqm);
983 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
984 		if (dqm->xgmi_sdma_bitmap == 0)
985 			return -ENOMEM;
986 		bit = __ffs64(dqm->xgmi_sdma_bitmap);
987 		dqm->xgmi_sdma_bitmap &= ~(1ULL << bit);
988 		q->sdma_id = bit;
989 		/* sdma_engine_id is sdma id including
990 		 * both PCIe-optimized SDMAs and XGMI-
991 		 * optimized SDMAs. The calculation below
992 		 * assumes the first N engines are always
993 		 * PCIe-optimized ones
994 		 */
995 		q->properties.sdma_engine_id = get_num_sdma_engines(dqm) +
996 				q->sdma_id % get_num_xgmi_sdma_engines(dqm);
997 		q->properties.sdma_queue_id = q->sdma_id /
998 				get_num_xgmi_sdma_engines(dqm);
999 	}
1000 
1001 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1002 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1003 
1004 	return 0;
1005 }
1006 
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1007 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1008 				struct queue *q)
1009 {
1010 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1011 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1012 			return;
1013 		dqm->sdma_bitmap |= (1ULL << q->sdma_id);
1014 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1015 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1016 			return;
1017 		dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id);
1018 	}
1019 }
1020 
1021 /*
1022  * Device Queue Manager implementation for cp scheduler
1023  */
1024 
set_sched_resources(struct device_queue_manager * dqm)1025 static int set_sched_resources(struct device_queue_manager *dqm)
1026 {
1027 	int i, mec;
1028 	struct scheduling_resources res;
1029 
1030 	res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1031 
1032 	res.queue_mask = 0;
1033 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1034 		mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1035 			/ dqm->dev->shared_resources.num_pipe_per_mec;
1036 
1037 		if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
1038 			continue;
1039 
1040 		/* only acquire queues from the first MEC */
1041 		if (mec > 0)
1042 			continue;
1043 
1044 		/* This situation may be hit in the future if a new HW
1045 		 * generation exposes more than 64 queues. If so, the
1046 		 * definition of res.queue_mask needs updating
1047 		 */
1048 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1049 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1050 			break;
1051 		}
1052 
1053 		res.queue_mask |= (1ull << i);
1054 	}
1055 	res.gws_mask = ~0ull;
1056 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1057 
1058 	pr_debug("Scheduling resources:\n"
1059 			"vmid mask: 0x%8X\n"
1060 			"queue mask: 0x%8llX\n",
1061 			res.vmid_mask, res.queue_mask);
1062 
1063 	return pm_send_set_resources(&dqm->packets, &res);
1064 }
1065 
initialize_cpsch(struct device_queue_manager * dqm)1066 static int initialize_cpsch(struct device_queue_manager *dqm)
1067 {
1068 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1069 
1070 	mutex_init(&dqm->lock_hidden);
1071 	INIT_LIST_HEAD(&dqm->queues);
1072 	dqm->queue_count = dqm->processes_count = 0;
1073 	dqm->sdma_queue_count = 0;
1074 	dqm->xgmi_sdma_queue_count = 0;
1075 	dqm->active_runlist = false;
1076 	dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
1077 	dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
1078 
1079 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1080 
1081 	return 0;
1082 }
1083 
start_cpsch(struct device_queue_manager * dqm)1084 static int start_cpsch(struct device_queue_manager *dqm)
1085 {
1086 	int retval;
1087 
1088 	retval = 0;
1089 
1090 	retval = pm_init(&dqm->packets, dqm);
1091 	if (retval)
1092 		goto fail_packet_manager_init;
1093 
1094 	retval = set_sched_resources(dqm);
1095 	if (retval)
1096 		goto fail_set_sched_resources;
1097 
1098 	pr_debug("Allocating fence memory\n");
1099 
1100 	/* allocate fence memory on the gart */
1101 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1102 					&dqm->fence_mem);
1103 
1104 	if (retval)
1105 		goto fail_allocate_vidmem;
1106 
1107 	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
1108 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1109 
1110 	init_interrupts(dqm);
1111 
1112 	dqm_lock(dqm);
1113 	/* clear hang status when driver try to start the hw scheduler */
1114 	dqm->is_hws_hang = false;
1115 	dqm->is_resetting = false;
1116 	dqm->sched_running = true;
1117 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1118 	dqm_unlock(dqm);
1119 
1120 	return 0;
1121 fail_allocate_vidmem:
1122 fail_set_sched_resources:
1123 	pm_uninit(&dqm->packets, false);
1124 fail_packet_manager_init:
1125 	return retval;
1126 }
1127 
stop_cpsch(struct device_queue_manager * dqm)1128 static int stop_cpsch(struct device_queue_manager *dqm)
1129 {
1130 	bool hanging;
1131 
1132 	dqm_lock(dqm);
1133 	if (!dqm->is_hws_hang)
1134 		unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1135 	hanging = dqm->is_hws_hang || dqm->is_resetting;
1136 	dqm->sched_running = false;
1137 	dqm_unlock(dqm);
1138 
1139 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1140 	pm_uninit(&dqm->packets, hanging);
1141 
1142 	return 0;
1143 }
1144 
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1145 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1146 					struct kernel_queue *kq,
1147 					struct qcm_process_device *qpd)
1148 {
1149 	dqm_lock(dqm);
1150 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1151 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1152 				dqm->total_queue_count);
1153 		dqm_unlock(dqm);
1154 		return -EPERM;
1155 	}
1156 
1157 	/*
1158 	 * Unconditionally increment this counter, regardless of the queue's
1159 	 * type or whether the queue is active.
1160 	 */
1161 	dqm->total_queue_count++;
1162 	pr_debug("Total of %d queues are accountable so far\n",
1163 			dqm->total_queue_count);
1164 
1165 	list_add(&kq->list, &qpd->priv_queue_list);
1166 	dqm->queue_count++;
1167 	qpd->is_debug = true;
1168 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1169 	dqm_unlock(dqm);
1170 
1171 	return 0;
1172 }
1173 
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1174 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1175 					struct kernel_queue *kq,
1176 					struct qcm_process_device *qpd)
1177 {
1178 	dqm_lock(dqm);
1179 	list_del(&kq->list);
1180 	dqm->queue_count--;
1181 	qpd->is_debug = false;
1182 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1183 	/*
1184 	 * Unconditionally decrement this counter, regardless of the queue's
1185 	 * type.
1186 	 */
1187 	dqm->total_queue_count--;
1188 	pr_debug("Total of %d queues are accountable so far\n",
1189 			dqm->total_queue_count);
1190 	dqm_unlock(dqm);
1191 }
1192 
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)1193 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1194 			struct qcm_process_device *qpd)
1195 {
1196 	int retval;
1197 	struct mqd_manager *mqd_mgr;
1198 
1199 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1200 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1201 				dqm->total_queue_count);
1202 		retval = -EPERM;
1203 		goto out;
1204 	}
1205 
1206 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1207 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1208 		dqm_lock(dqm);
1209 		retval = allocate_sdma_queue(dqm, q);
1210 		dqm_unlock(dqm);
1211 		if (retval)
1212 			goto out;
1213 	}
1214 
1215 	retval = allocate_doorbell(qpd, q);
1216 	if (retval)
1217 		goto out_deallocate_sdma_queue;
1218 
1219 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1220 			q->properties.type)];
1221 
1222 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1223 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1224 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1225 	q->properties.tba_addr = qpd->tba_addr;
1226 	q->properties.tma_addr = qpd->tma_addr;
1227 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1228 	if (!q->mqd_mem_obj) {
1229 		retval = -ENOMEM;
1230 		goto out_deallocate_doorbell;
1231 	}
1232 
1233 	dqm_lock(dqm);
1234 	/*
1235 	 * Eviction state logic: mark all queues as evicted, even ones
1236 	 * not currently active. Restoring inactive queues later only
1237 	 * updates the is_evicted flag but is a no-op otherwise.
1238 	 */
1239 	q->properties.is_evicted = !!qpd->evicted;
1240 	mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1241 				&q->gart_mqd_addr, &q->properties);
1242 
1243 	list_add(&q->list, &qpd->queues_list);
1244 	qpd->queue_count++;
1245 
1246 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1247 		dqm->sdma_queue_count++;
1248 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1249 		dqm->xgmi_sdma_queue_count++;
1250 
1251 	if (q->properties.is_active) {
1252 		dqm->queue_count++;
1253 		retval = execute_queues_cpsch(dqm,
1254 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1255 	}
1256 
1257 	/*
1258 	 * Unconditionally increment this counter, regardless of the queue's
1259 	 * type or whether the queue is active.
1260 	 */
1261 	dqm->total_queue_count++;
1262 
1263 	pr_debug("Total of %d queues are accountable so far\n",
1264 			dqm->total_queue_count);
1265 
1266 	dqm_unlock(dqm);
1267 	return retval;
1268 
1269 out_deallocate_doorbell:
1270 	deallocate_doorbell(qpd, q);
1271 out_deallocate_sdma_queue:
1272 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1273 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1274 		dqm_lock(dqm);
1275 		deallocate_sdma_queue(dqm, q);
1276 		dqm_unlock(dqm);
1277 	}
1278 out:
1279 	return retval;
1280 }
1281 
amdkfd_fence_wait_timeout(unsigned int * fence_addr,unsigned int fence_value,unsigned int timeout_ms)1282 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1283 				unsigned int fence_value,
1284 				unsigned int timeout_ms)
1285 {
1286 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1287 
1288 	while (*fence_addr != fence_value) {
1289 		if (time_after(jiffies, end_jiffies)) {
1290 			pr_err("qcm fence wait loop timeout expired\n");
1291 			/* In HWS case, this is used to halt the driver thread
1292 			 * in order not to mess up CP states before doing
1293 			 * scandumps for FW debugging.
1294 			 */
1295 			while (halt_if_hws_hang)
1296 				schedule();
1297 
1298 			return -ETIME;
1299 		}
1300 		schedule();
1301 	}
1302 
1303 	return 0;
1304 }
1305 
unmap_sdma_queues(struct device_queue_manager * dqm)1306 static int unmap_sdma_queues(struct device_queue_manager *dqm)
1307 {
1308 	int i, retval = 0;
1309 
1310 	for (i = 0; i < dqm->dev->device_info->num_sdma_engines +
1311 		dqm->dev->device_info->num_xgmi_sdma_engines; i++) {
1312 		retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
1313 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false, i);
1314 		if (retval)
1315 			return retval;
1316 	}
1317 	return retval;
1318 }
1319 
1320 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)1321 static int map_queues_cpsch(struct device_queue_manager *dqm)
1322 {
1323 	int retval;
1324 
1325 	if (!dqm->sched_running)
1326 		return 0;
1327 	if (dqm->queue_count <= 0 || dqm->processes_count <= 0)
1328 		return 0;
1329 	if (dqm->active_runlist)
1330 		return 0;
1331 
1332 	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1333 	pr_debug("%s sent runlist\n", __func__);
1334 	if (retval) {
1335 		pr_err("failed to execute runlist\n");
1336 		return retval;
1337 	}
1338 	dqm->active_runlist = true;
1339 
1340 	return retval;
1341 }
1342 
1343 /* dqm->lock mutex has to be locked before calling this function */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param)1344 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1345 				enum kfd_unmap_queues_filter filter,
1346 				uint32_t filter_param)
1347 {
1348 	int retval = 0;
1349 
1350 	if (!dqm->sched_running)
1351 		return 0;
1352 	if (dqm->is_hws_hang)
1353 		return -EIO;
1354 	if (!dqm->active_runlist)
1355 		return retval;
1356 
1357 	pr_debug("Before destroying queues, sdma queue count is : %u, xgmi sdma queue count is : %u\n",
1358 		dqm->sdma_queue_count, dqm->xgmi_sdma_queue_count);
1359 
1360 	if (dqm->sdma_queue_count > 0 || dqm->xgmi_sdma_queue_count)
1361 		unmap_sdma_queues(dqm);
1362 
1363 	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
1364 			filter, filter_param, false, 0);
1365 	if (retval)
1366 		return retval;
1367 
1368 	*dqm->fence_addr = KFD_FENCE_INIT;
1369 	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
1370 				KFD_FENCE_COMPLETED);
1371 	/* should be timed out */
1372 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1373 				queue_preemption_timeout_ms);
1374 	if (retval) {
1375 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1376 		dqm->is_hws_hang = true;
1377 		/* It's possible we're detecting a HWS hang in the
1378 		 * middle of a GPU reset. No need to schedule another
1379 		 * reset in this case.
1380 		 */
1381 		if (!dqm->is_resetting)
1382 			schedule_work(&dqm->hw_exception_work);
1383 		return retval;
1384 	}
1385 
1386 	pm_release_ib(&dqm->packets);
1387 	dqm->active_runlist = false;
1388 
1389 	return retval;
1390 }
1391 
1392 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param)1393 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1394 				enum kfd_unmap_queues_filter filter,
1395 				uint32_t filter_param)
1396 {
1397 	int retval;
1398 
1399 	if (dqm->is_hws_hang)
1400 		return -EIO;
1401 	retval = unmap_queues_cpsch(dqm, filter, filter_param);
1402 	if (retval)
1403 		return retval;
1404 
1405 	return map_queues_cpsch(dqm);
1406 }
1407 
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1408 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1409 				struct qcm_process_device *qpd,
1410 				struct queue *q)
1411 {
1412 	int retval;
1413 	struct mqd_manager *mqd_mgr;
1414 
1415 	retval = 0;
1416 
1417 	/* remove queue from list to prevent rescheduling after preemption */
1418 	dqm_lock(dqm);
1419 
1420 	if (qpd->is_debug) {
1421 		/*
1422 		 * error, currently we do not allow to destroy a queue
1423 		 * of a currently debugged process
1424 		 */
1425 		retval = -EBUSY;
1426 		goto failed_try_destroy_debugged_queue;
1427 
1428 	}
1429 
1430 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1431 			q->properties.type)];
1432 
1433 	deallocate_doorbell(qpd, q);
1434 
1435 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1436 		dqm->sdma_queue_count--;
1437 		deallocate_sdma_queue(dqm, q);
1438 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1439 		dqm->xgmi_sdma_queue_count--;
1440 		deallocate_sdma_queue(dqm, q);
1441 	}
1442 
1443 	list_del(&q->list);
1444 	qpd->queue_count--;
1445 	if (q->properties.is_active) {
1446 		dqm->queue_count--;
1447 		retval = execute_queues_cpsch(dqm,
1448 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1449 		if (retval == -ETIME)
1450 			qpd->reset_wavefronts = true;
1451 	}
1452 
1453 	/*
1454 	 * Unconditionally decrement this counter, regardless of the queue's
1455 	 * type
1456 	 */
1457 	dqm->total_queue_count--;
1458 	pr_debug("Total of %d queues are accountable so far\n",
1459 			dqm->total_queue_count);
1460 
1461 	dqm_unlock(dqm);
1462 
1463 	/* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */
1464 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1465 
1466 	return retval;
1467 
1468 failed_try_destroy_debugged_queue:
1469 
1470 	dqm_unlock(dqm);
1471 	return retval;
1472 }
1473 
1474 /*
1475  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1476  * stay in user mode.
1477  */
1478 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1479 /* APE1 limit is inclusive and 64K aligned. */
1480 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1481 
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size)1482 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1483 				   struct qcm_process_device *qpd,
1484 				   enum cache_policy default_policy,
1485 				   enum cache_policy alternate_policy,
1486 				   void __user *alternate_aperture_base,
1487 				   uint64_t alternate_aperture_size)
1488 {
1489 	bool retval = true;
1490 
1491 	if (!dqm->asic_ops.set_cache_memory_policy)
1492 		return retval;
1493 
1494 	dqm_lock(dqm);
1495 
1496 	if (alternate_aperture_size == 0) {
1497 		/* base > limit disables APE1 */
1498 		qpd->sh_mem_ape1_base = 1;
1499 		qpd->sh_mem_ape1_limit = 0;
1500 	} else {
1501 		/*
1502 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1503 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1504 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1505 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1506 		 * Verify that the base and size parameters can be
1507 		 * represented in this format and convert them.
1508 		 * Additionally restrict APE1 to user-mode addresses.
1509 		 */
1510 
1511 		uint64_t base = (uintptr_t)alternate_aperture_base;
1512 		uint64_t limit = base + alternate_aperture_size - 1;
1513 
1514 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1515 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1516 			retval = false;
1517 			goto out;
1518 		}
1519 
1520 		qpd->sh_mem_ape1_base = base >> 16;
1521 		qpd->sh_mem_ape1_limit = limit >> 16;
1522 	}
1523 
1524 	retval = dqm->asic_ops.set_cache_memory_policy(
1525 			dqm,
1526 			qpd,
1527 			default_policy,
1528 			alternate_policy,
1529 			alternate_aperture_base,
1530 			alternate_aperture_size);
1531 
1532 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1533 		program_sh_mem_settings(dqm, qpd);
1534 
1535 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1536 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1537 		qpd->sh_mem_ape1_limit);
1538 
1539 out:
1540 	dqm_unlock(dqm);
1541 	return retval;
1542 }
1543 
set_trap_handler(struct device_queue_manager * dqm,struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1544 static int set_trap_handler(struct device_queue_manager *dqm,
1545 				struct qcm_process_device *qpd,
1546 				uint64_t tba_addr,
1547 				uint64_t tma_addr)
1548 {
1549 	uint64_t *tma;
1550 
1551 	if (dqm->dev->cwsr_enabled) {
1552 		/* Jump from CWSR trap handler to user trap */
1553 		tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1554 		tma[0] = tba_addr;
1555 		tma[1] = tma_addr;
1556 	} else {
1557 		qpd->tba_addr = tba_addr;
1558 		qpd->tma_addr = tma_addr;
1559 	}
1560 
1561 	return 0;
1562 }
1563 
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1564 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1565 		struct qcm_process_device *qpd)
1566 {
1567 	struct queue *q, *next;
1568 	struct device_process_node *cur, *next_dpn;
1569 	int retval = 0;
1570 	bool found = false;
1571 
1572 	dqm_lock(dqm);
1573 
1574 	/* Clear all user mode queues */
1575 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1576 		int ret;
1577 
1578 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1579 		if (ret)
1580 			retval = ret;
1581 	}
1582 
1583 	/* Unregister process */
1584 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1585 		if (qpd == cur->qpd) {
1586 			list_del(&cur->list);
1587 			kfree(cur);
1588 			dqm->processes_count--;
1589 			found = true;
1590 			break;
1591 		}
1592 	}
1593 
1594 	dqm_unlock(dqm);
1595 
1596 	/* Outside the DQM lock because under the DQM lock we can't do
1597 	 * reclaim or take other locks that others hold while reclaiming.
1598 	 */
1599 	if (found)
1600 		kfd_dec_compute_active(dqm->dev);
1601 
1602 	return retval;
1603 }
1604 
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)1605 static int get_wave_state(struct device_queue_manager *dqm,
1606 			  struct queue *q,
1607 			  void __user *ctl_stack,
1608 			  u32 *ctl_stack_used_size,
1609 			  u32 *save_area_used_size)
1610 {
1611 	struct mqd_manager *mqd_mgr;
1612 	int r;
1613 
1614 	dqm_lock(dqm);
1615 
1616 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
1617 	    q->properties.is_active || !q->device->cwsr_enabled) {
1618 		r = -EINVAL;
1619 		goto dqm_unlock;
1620 	}
1621 
1622 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
1623 
1624 	if (!mqd_mgr->get_wave_state) {
1625 		r = -EINVAL;
1626 		goto dqm_unlock;
1627 	}
1628 
1629 	r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack,
1630 			ctl_stack_used_size, save_area_used_size);
1631 
1632 dqm_unlock:
1633 	dqm_unlock(dqm);
1634 	return r;
1635 }
1636 
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1637 static int process_termination_cpsch(struct device_queue_manager *dqm,
1638 		struct qcm_process_device *qpd)
1639 {
1640 	int retval;
1641 	struct queue *q, *next;
1642 	struct kernel_queue *kq, *kq_next;
1643 	struct mqd_manager *mqd_mgr;
1644 	struct device_process_node *cur, *next_dpn;
1645 	enum kfd_unmap_queues_filter filter =
1646 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1647 	bool found = false;
1648 
1649 	retval = 0;
1650 
1651 	dqm_lock(dqm);
1652 
1653 	/* Clean all kernel queues */
1654 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1655 		list_del(&kq->list);
1656 		dqm->queue_count--;
1657 		qpd->is_debug = false;
1658 		dqm->total_queue_count--;
1659 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1660 	}
1661 
1662 	/* Clear all user mode queues */
1663 	list_for_each_entry(q, &qpd->queues_list, list) {
1664 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1665 			dqm->sdma_queue_count--;
1666 			deallocate_sdma_queue(dqm, q);
1667 		} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1668 			dqm->xgmi_sdma_queue_count--;
1669 			deallocate_sdma_queue(dqm, q);
1670 		}
1671 
1672 		if (q->properties.is_active)
1673 			dqm->queue_count--;
1674 
1675 		dqm->total_queue_count--;
1676 	}
1677 
1678 	/* Unregister process */
1679 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1680 		if (qpd == cur->qpd) {
1681 			list_del(&cur->list);
1682 			kfree(cur);
1683 			dqm->processes_count--;
1684 			found = true;
1685 			break;
1686 		}
1687 	}
1688 
1689 	retval = execute_queues_cpsch(dqm, filter, 0);
1690 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1691 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1692 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1693 		qpd->reset_wavefronts = false;
1694 	}
1695 
1696 	dqm_unlock(dqm);
1697 
1698 	/* Outside the DQM lock because under the DQM lock we can't do
1699 	 * reclaim or take other locks that others hold while reclaiming.
1700 	 */
1701 	if (found)
1702 		kfd_dec_compute_active(dqm->dev);
1703 
1704 	/* Lastly, free mqd resources.
1705 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
1706 	 */
1707 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1708 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1709 				q->properties.type)];
1710 		list_del(&q->list);
1711 		qpd->queue_count--;
1712 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1713 	}
1714 
1715 	return retval;
1716 }
1717 
init_mqd_managers(struct device_queue_manager * dqm)1718 static int init_mqd_managers(struct device_queue_manager *dqm)
1719 {
1720 	int i, j;
1721 	struct mqd_manager *mqd_mgr;
1722 
1723 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
1724 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
1725 		if (!mqd_mgr) {
1726 			pr_err("mqd manager [%d] initialization failed\n", i);
1727 			goto out_free;
1728 		}
1729 		dqm->mqd_mgrs[i] = mqd_mgr;
1730 	}
1731 
1732 	return 0;
1733 
1734 out_free:
1735 	for (j = 0; j < i; j++) {
1736 		kfree(dqm->mqd_mgrs[j]);
1737 		dqm->mqd_mgrs[j] = NULL;
1738 	}
1739 
1740 	return -ENOMEM;
1741 }
1742 
1743 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)1744 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
1745 {
1746 	int retval;
1747 	struct kfd_dev *dev = dqm->dev;
1748 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
1749 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
1750 		(dev->device_info->num_sdma_engines +
1751 		dev->device_info->num_xgmi_sdma_engines) *
1752 		dev->device_info->num_sdma_queues_per_engine +
1753 		dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
1754 
1755 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size,
1756 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
1757 		(void *)&(mem_obj->cpu_ptr), true);
1758 
1759 	return retval;
1760 }
1761 
device_queue_manager_init(struct kfd_dev * dev)1762 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1763 {
1764 	struct device_queue_manager *dqm;
1765 
1766 	pr_debug("Loading device queue manager\n");
1767 
1768 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1769 	if (!dqm)
1770 		return NULL;
1771 
1772 	switch (dev->device_info->asic_family) {
1773 	/* HWS is not available on Hawaii. */
1774 	case CHIP_HAWAII:
1775 	/* HWS depends on CWSR for timely dequeue. CWSR is not
1776 	 * available on Tonga.
1777 	 *
1778 	 * FIXME: This argument also applies to Kaveri.
1779 	 */
1780 	case CHIP_TONGA:
1781 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1782 		break;
1783 	default:
1784 		dqm->sched_policy = sched_policy;
1785 		break;
1786 	}
1787 
1788 	dqm->dev = dev;
1789 	switch (dqm->sched_policy) {
1790 	case KFD_SCHED_POLICY_HWS:
1791 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1792 		/* initialize dqm for cp scheduling */
1793 		dqm->ops.create_queue = create_queue_cpsch;
1794 		dqm->ops.initialize = initialize_cpsch;
1795 		dqm->ops.start = start_cpsch;
1796 		dqm->ops.stop = stop_cpsch;
1797 		dqm->ops.pre_reset = pre_reset;
1798 		dqm->ops.destroy_queue = destroy_queue_cpsch;
1799 		dqm->ops.update_queue = update_queue;
1800 		dqm->ops.register_process = register_process;
1801 		dqm->ops.unregister_process = unregister_process;
1802 		dqm->ops.uninitialize = uninitialize;
1803 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1804 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1805 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1806 		dqm->ops.set_trap_handler = set_trap_handler;
1807 		dqm->ops.process_termination = process_termination_cpsch;
1808 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1809 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1810 		dqm->ops.get_wave_state = get_wave_state;
1811 		break;
1812 	case KFD_SCHED_POLICY_NO_HWS:
1813 		/* initialize dqm for no cp scheduling */
1814 		dqm->ops.start = start_nocpsch;
1815 		dqm->ops.stop = stop_nocpsch;
1816 		dqm->ops.pre_reset = pre_reset;
1817 		dqm->ops.create_queue = create_queue_nocpsch;
1818 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
1819 		dqm->ops.update_queue = update_queue;
1820 		dqm->ops.register_process = register_process;
1821 		dqm->ops.unregister_process = unregister_process;
1822 		dqm->ops.initialize = initialize_nocpsch;
1823 		dqm->ops.uninitialize = uninitialize;
1824 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1825 		dqm->ops.set_trap_handler = set_trap_handler;
1826 		dqm->ops.process_termination = process_termination_nocpsch;
1827 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1828 		dqm->ops.restore_process_queues =
1829 			restore_process_queues_nocpsch;
1830 		dqm->ops.get_wave_state = get_wave_state;
1831 		break;
1832 	default:
1833 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1834 		goto out_free;
1835 	}
1836 
1837 	switch (dev->device_info->asic_family) {
1838 	case CHIP_CARRIZO:
1839 		device_queue_manager_init_vi(&dqm->asic_ops);
1840 		break;
1841 
1842 	case CHIP_KAVERI:
1843 		device_queue_manager_init_cik(&dqm->asic_ops);
1844 		break;
1845 
1846 	case CHIP_HAWAII:
1847 		device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1848 		break;
1849 
1850 	case CHIP_TONGA:
1851 	case CHIP_FIJI:
1852 	case CHIP_POLARIS10:
1853 	case CHIP_POLARIS11:
1854 	case CHIP_POLARIS12:
1855 	case CHIP_VEGAM:
1856 		device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1857 		break;
1858 
1859 	case CHIP_VEGA10:
1860 	case CHIP_VEGA12:
1861 	case CHIP_VEGA20:
1862 	case CHIP_RAVEN:
1863 	case CHIP_RENOIR:
1864 	case CHIP_ARCTURUS:
1865 		device_queue_manager_init_v9(&dqm->asic_ops);
1866 		break;
1867 	case CHIP_NAVI10:
1868 	case CHIP_NAVI12:
1869 	case CHIP_NAVI14:
1870 		device_queue_manager_init_v10_navi10(&dqm->asic_ops);
1871 		break;
1872 	default:
1873 		WARN(1, "Unexpected ASIC family %u",
1874 		     dev->device_info->asic_family);
1875 		goto out_free;
1876 	}
1877 
1878 	if (init_mqd_managers(dqm))
1879 		goto out_free;
1880 
1881 	if (allocate_hiq_sdma_mqd(dqm)) {
1882 		pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
1883 		goto out_free;
1884 	}
1885 
1886 	if (!dqm->ops.initialize(dqm))
1887 		return dqm;
1888 
1889 out_free:
1890 	kfree(dqm);
1891 	return NULL;
1892 }
1893 
deallocate_hiq_sdma_mqd(struct kfd_dev * dev,struct kfd_mem_obj * mqd)1894 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev,
1895 				    struct kfd_mem_obj *mqd)
1896 {
1897 	WARN(!mqd, "No hiq sdma mqd trunk to free");
1898 
1899 	amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem);
1900 }
1901 
device_queue_manager_uninit(struct device_queue_manager * dqm)1902 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1903 {
1904 	dqm->ops.uninitialize(dqm);
1905 	deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
1906 	kfree(dqm);
1907 }
1908 
kfd_process_vm_fault(struct device_queue_manager * dqm,unsigned int pasid)1909 int kfd_process_vm_fault(struct device_queue_manager *dqm,
1910 			 unsigned int pasid)
1911 {
1912 	struct kfd_process_device *pdd;
1913 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1914 	int ret = 0;
1915 
1916 	if (!p)
1917 		return -EINVAL;
1918 	pdd = kfd_get_process_device_data(dqm->dev, p);
1919 	if (pdd)
1920 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
1921 	kfd_unref_process(p);
1922 
1923 	return ret;
1924 }
1925 
kfd_process_hw_exception(struct work_struct * work)1926 static void kfd_process_hw_exception(struct work_struct *work)
1927 {
1928 	struct device_queue_manager *dqm = container_of(work,
1929 			struct device_queue_manager, hw_exception_work);
1930 	amdgpu_amdkfd_gpu_reset(dqm->dev->kgd);
1931 }
1932 
1933 #if defined(CONFIG_DEBUG_FS)
1934 
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)1935 static void seq_reg_dump(struct seq_file *m,
1936 			 uint32_t (*dump)[2], uint32_t n_regs)
1937 {
1938 	uint32_t i, count;
1939 
1940 	for (i = 0, count = 0; i < n_regs; i++) {
1941 		if (count == 0 ||
1942 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
1943 			seq_printf(m, "%s    %08x: %08x",
1944 				   i ? "\n" : "",
1945 				   dump[i][0], dump[i][1]);
1946 			count = 7;
1947 		} else {
1948 			seq_printf(m, " %08x", dump[i][1]);
1949 			count--;
1950 		}
1951 	}
1952 
1953 	seq_puts(m, "\n");
1954 }
1955 
dqm_debugfs_hqds(struct seq_file * m,void * data)1956 int dqm_debugfs_hqds(struct seq_file *m, void *data)
1957 {
1958 	struct device_queue_manager *dqm = data;
1959 	uint32_t (*dump)[2], n_regs;
1960 	int pipe, queue;
1961 	int r = 0;
1962 
1963 	if (!dqm->sched_running) {
1964 		seq_printf(m, " Device is stopped\n");
1965 
1966 		return 0;
1967 	}
1968 
1969 	r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd,
1970 					KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE,
1971 					&dump, &n_regs);
1972 	if (!r) {
1973 		seq_printf(m, "  HIQ on MEC %d Pipe %d Queue %d\n",
1974 			   KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
1975 			   KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
1976 			   KFD_CIK_HIQ_QUEUE);
1977 		seq_reg_dump(m, dump, n_regs);
1978 
1979 		kfree(dump);
1980 	}
1981 
1982 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1983 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1984 
1985 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
1986 			if (!test_bit(pipe_offset + queue,
1987 				      dqm->dev->shared_resources.queue_bitmap))
1988 				continue;
1989 
1990 			r = dqm->dev->kfd2kgd->hqd_dump(
1991 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1992 			if (r)
1993 				break;
1994 
1995 			seq_printf(m, "  CP Pipe %d, Queue %d\n",
1996 				  pipe, queue);
1997 			seq_reg_dump(m, dump, n_regs);
1998 
1999 			kfree(dump);
2000 		}
2001 	}
2002 
2003 	for (pipe = 0; pipe < get_num_sdma_engines(dqm) +
2004 			get_num_xgmi_sdma_engines(dqm); pipe++) {
2005 		for (queue = 0;
2006 		     queue < dqm->dev->device_info->num_sdma_queues_per_engine;
2007 		     queue++) {
2008 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
2009 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
2010 			if (r)
2011 				break;
2012 
2013 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
2014 				  pipe, queue);
2015 			seq_reg_dump(m, dump, n_regs);
2016 
2017 			kfree(dump);
2018 		}
2019 	}
2020 
2021 	return r;
2022 }
2023 
dqm_debugfs_execute_queues(struct device_queue_manager * dqm)2024 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm)
2025 {
2026 	int r = 0;
2027 
2028 	dqm_lock(dqm);
2029 	dqm->active_runlist = true;
2030 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
2031 	dqm_unlock(dqm);
2032 
2033 	return r;
2034 }
2035 
2036 #endif
2037