xref: /llvm-project/llvm/lib/Target/AArch64/AArch64RegisterInfo.cpp (revision 9829598933a0b79117891dd733fde5374e59f064)
1 //===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of the TargetRegisterInfo
10 // class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AArch64RegisterInfo.h"
15 #include "AArch64FrameLowering.h"
16 #include "AArch64InstrInfo.h"
17 #include "AArch64MachineFunctionInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "MCTargetDesc/AArch64AddressingModes.h"
20 #include "MCTargetDesc/AArch64InstPrinter.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/BinaryFormat/Dwarf.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterScavenging.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/TargetParser/Triple.h"
33 
34 using namespace llvm;
35 
36 #define GET_CC_REGISTER_LISTS
37 #include "AArch64GenCallingConv.inc"
38 #define GET_REGINFO_TARGET_DESC
39 #include "AArch64GenRegisterInfo.inc"
40 
41 AArch64RegisterInfo::AArch64RegisterInfo(const Triple &TT)
42     : AArch64GenRegisterInfo(AArch64::LR), TT(TT) {
43   AArch64_MC::initLLVMToCVRegMapping(this);
44 }
45 
46 /// Return whether the register needs a CFI entry. Not all unwinders may know
47 /// about SVE registers, so we assume the lowest common denominator, i.e. the
48 /// callee-saves required by the base ABI. For the SVE registers z8-z15 only the
49 /// lower 64-bits (d8-d15) need to be saved. The lower 64-bits subreg is
50 /// returned in \p RegToUseForCFI.
51 bool AArch64RegisterInfo::regNeedsCFI(unsigned Reg,
52                                       unsigned &RegToUseForCFI) const {
53   if (AArch64::PPRRegClass.contains(Reg))
54     return false;
55 
56   if (AArch64::ZPRRegClass.contains(Reg)) {
57     RegToUseForCFI = getSubReg(Reg, AArch64::dsub);
58     for (int I = 0; CSR_AArch64_AAPCS_SaveList[I]; ++I) {
59       if (CSR_AArch64_AAPCS_SaveList[I] == RegToUseForCFI)
60         return true;
61     }
62     return false;
63   }
64 
65   RegToUseForCFI = Reg;
66   return true;
67 }
68 
69 const MCPhysReg *
70 AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
71   assert(MF && "Invalid MachineFunction pointer.");
72 
73   if (MF->getFunction().getCallingConv() == CallingConv::GHC)
74     // GHC set of callee saved regs is empty as all those regs are
75     // used for passing STG regs around
76     return CSR_AArch64_NoRegs_SaveList;
77   if (MF->getFunction().getCallingConv() == CallingConv::PreserveNone)
78     return CSR_AArch64_NoneRegs_SaveList;
79   if (MF->getFunction().getCallingConv() == CallingConv::AnyReg)
80     return CSR_AArch64_AllRegs_SaveList;
81 
82   if (MF->getFunction().getCallingConv() == CallingConv::ARM64EC_Thunk_X64)
83     return CSR_Win_AArch64_Arm64EC_Thunk_SaveList;
84 
85   // Darwin has its own CSR_AArch64_AAPCS_SaveList, which means most CSR save
86   // lists depending on that will need to have their Darwin variant as well.
87   if (MF->getSubtarget<AArch64Subtarget>().isTargetDarwin())
88     return getDarwinCalleeSavedRegs(MF);
89 
90   if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
91     return CSR_Win_AArch64_CFGuard_Check_SaveList;
92   if (MF->getSubtarget<AArch64Subtarget>().isTargetWindows()) {
93     if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
94             ->supportSwiftError() &&
95         MF->getFunction().getAttributes().hasAttrSomewhere(
96             Attribute::SwiftError))
97       return CSR_Win_AArch64_AAPCS_SwiftError_SaveList;
98     if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
99       return CSR_Win_AArch64_AAPCS_SwiftTail_SaveList;
100     return CSR_Win_AArch64_AAPCS_SaveList;
101   }
102   if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
103     return CSR_AArch64_AAVPCS_SaveList;
104   if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
105     return CSR_AArch64_SVE_AAPCS_SaveList;
106   if (MF->getFunction().getCallingConv() ==
107           CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0)
108     report_fatal_error(
109         "Calling convention "
110         "AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 is only "
111         "supported to improve calls to SME ACLE save/restore/disable-za "
112         "functions, and is not intended to be used beyond that scope.");
113   if (MF->getFunction().getCallingConv() ==
114       CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1)
115     report_fatal_error(
116         "Calling convention "
117         "AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1 is "
118         "only supported to improve calls to SME ACLE __arm_get_current_vg "
119         "function, and is not intended to be used beyond that scope.");
120   if (MF->getFunction().getCallingConv() ==
121           CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2)
122     report_fatal_error(
123         "Calling convention "
124         "AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 is "
125         "only supported to improve calls to SME ACLE __arm_sme_state "
126         "and is not intended to be used beyond that scope.");
127   if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
128           ->supportSwiftError() &&
129       MF->getFunction().getAttributes().hasAttrSomewhere(
130           Attribute::SwiftError))
131     return CSR_AArch64_AAPCS_SwiftError_SaveList;
132   if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
133     return CSR_AArch64_AAPCS_SwiftTail_SaveList;
134   if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
135     return CSR_AArch64_RT_MostRegs_SaveList;
136   if (MF->getFunction().getCallingConv() == CallingConv::PreserveAll)
137     return CSR_AArch64_RT_AllRegs_SaveList;
138   if (MF->getFunction().getCallingConv() == CallingConv::Win64)
139     // This is for OSes other than Windows; Windows is a separate case further
140     // above.
141     return CSR_AArch64_AAPCS_X18_SaveList;
142   if (MF->getInfo<AArch64FunctionInfo>()->isSVECC())
143     return CSR_AArch64_SVE_AAPCS_SaveList;
144   return CSR_AArch64_AAPCS_SaveList;
145 }
146 
147 const MCPhysReg *
148 AArch64RegisterInfo::getDarwinCalleeSavedRegs(const MachineFunction *MF) const {
149   assert(MF && "Invalid MachineFunction pointer.");
150   assert(MF->getSubtarget<AArch64Subtarget>().isTargetDarwin() &&
151          "Invalid subtarget for getDarwinCalleeSavedRegs");
152 
153   if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
154     report_fatal_error(
155         "Calling convention CFGuard_Check is unsupported on Darwin.");
156   if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
157     return CSR_Darwin_AArch64_AAVPCS_SaveList;
158   if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
159     report_fatal_error(
160         "Calling convention SVE_VectorCall is unsupported on Darwin.");
161   if (MF->getFunction().getCallingConv() ==
162           CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0)
163     report_fatal_error(
164         "Calling convention "
165         "AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 is "
166         "only supported to improve calls to SME ACLE save/restore/disable-za "
167         "functions, and is not intended to be used beyond that scope.");
168   if (MF->getFunction().getCallingConv() ==
169       CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1)
170     report_fatal_error(
171         "Calling convention "
172         "AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1 is "
173         "only supported to improve calls to SME ACLE __arm_get_current_vg "
174         "function, and is not intended to be used beyond that scope.");
175   if (MF->getFunction().getCallingConv() ==
176           CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2)
177     report_fatal_error(
178         "Calling convention "
179         "AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 is "
180         "only supported to improve calls to SME ACLE __arm_sme_state "
181         "and is not intended to be used beyond that scope.");
182   if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS)
183     return MF->getInfo<AArch64FunctionInfo>()->isSplitCSR()
184                ? CSR_Darwin_AArch64_CXX_TLS_PE_SaveList
185                : CSR_Darwin_AArch64_CXX_TLS_SaveList;
186   if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
187           ->supportSwiftError() &&
188       MF->getFunction().getAttributes().hasAttrSomewhere(
189           Attribute::SwiftError))
190     return CSR_Darwin_AArch64_AAPCS_SwiftError_SaveList;
191   if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
192     return CSR_Darwin_AArch64_AAPCS_SwiftTail_SaveList;
193   if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
194     return CSR_Darwin_AArch64_RT_MostRegs_SaveList;
195   if (MF->getFunction().getCallingConv() == CallingConv::PreserveAll)
196     return CSR_Darwin_AArch64_RT_AllRegs_SaveList;
197   if (MF->getFunction().getCallingConv() == CallingConv::Win64)
198     return CSR_Darwin_AArch64_AAPCS_Win64_SaveList;
199   if (MF->getInfo<AArch64FunctionInfo>()->isSVECC())
200     return CSR_Darwin_AArch64_SVE_AAPCS_SaveList;
201   return CSR_Darwin_AArch64_AAPCS_SaveList;
202 }
203 
204 const MCPhysReg *AArch64RegisterInfo::getCalleeSavedRegsViaCopy(
205     const MachineFunction *MF) const {
206   assert(MF && "Invalid MachineFunction pointer.");
207   if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
208       MF->getInfo<AArch64FunctionInfo>()->isSplitCSR())
209     return CSR_Darwin_AArch64_CXX_TLS_ViaCopy_SaveList;
210   return nullptr;
211 }
212 
213 void AArch64RegisterInfo::UpdateCustomCalleeSavedRegs(
214     MachineFunction &MF) const {
215   const MCPhysReg *CSRs = getCalleeSavedRegs(&MF);
216   SmallVector<MCPhysReg, 32> UpdatedCSRs;
217   for (const MCPhysReg *I = CSRs; *I; ++I)
218     UpdatedCSRs.push_back(*I);
219 
220   for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
221     if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
222       UpdatedCSRs.push_back(AArch64::GPR64commonRegClass.getRegister(i));
223     }
224   }
225   // Register lists are zero-terminated.
226   UpdatedCSRs.push_back(0);
227   MF.getRegInfo().setCalleeSavedRegs(UpdatedCSRs);
228 }
229 
230 const TargetRegisterClass *
231 AArch64RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
232                                        unsigned Idx) const {
233   // edge case for GPR/FPR register classes
234   if (RC == &AArch64::GPR32allRegClass && Idx == AArch64::hsub)
235     return &AArch64::FPR32RegClass;
236   else if (RC == &AArch64::GPR64allRegClass && Idx == AArch64::hsub)
237     return &AArch64::FPR64RegClass;
238 
239   // Forward to TableGen's default version.
240   return AArch64GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
241 }
242 
243 const uint32_t *
244 AArch64RegisterInfo::getDarwinCallPreservedMask(const MachineFunction &MF,
245                                                 CallingConv::ID CC) const {
246   assert(MF.getSubtarget<AArch64Subtarget>().isTargetDarwin() &&
247          "Invalid subtarget for getDarwinCallPreservedMask");
248 
249   if (CC == CallingConv::CXX_FAST_TLS)
250     return CSR_Darwin_AArch64_CXX_TLS_RegMask;
251   if (CC == CallingConv::AArch64_VectorCall)
252     return CSR_Darwin_AArch64_AAVPCS_RegMask;
253   if (CC == CallingConv::AArch64_SVE_VectorCall)
254     return CSR_Darwin_AArch64_SVE_AAPCS_RegMask;
255   if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0)
256     return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask;
257   if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1)
258     return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1_RegMask;
259   if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2)
260     return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2_RegMask;
261   if (CC == CallingConv::CFGuard_Check)
262     report_fatal_error(
263         "Calling convention CFGuard_Check is unsupported on Darwin.");
264   if (MF.getSubtarget<AArch64Subtarget>()
265           .getTargetLowering()
266           ->supportSwiftError() &&
267       MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
268     return CSR_Darwin_AArch64_AAPCS_SwiftError_RegMask;
269   if (CC == CallingConv::SwiftTail)
270     return CSR_Darwin_AArch64_AAPCS_SwiftTail_RegMask;
271   if (CC == CallingConv::PreserveMost)
272     return CSR_Darwin_AArch64_RT_MostRegs_RegMask;
273   if (CC == CallingConv::PreserveAll)
274     return CSR_Darwin_AArch64_RT_AllRegs_RegMask;
275   return CSR_Darwin_AArch64_AAPCS_RegMask;
276 }
277 
278 const uint32_t *
279 AArch64RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
280                                           CallingConv::ID CC) const {
281   bool SCS = MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
282   if (CC == CallingConv::GHC)
283     // This is academic because all GHC calls are (supposed to be) tail calls
284     return SCS ? CSR_AArch64_NoRegs_SCS_RegMask : CSR_AArch64_NoRegs_RegMask;
285   if (CC == CallingConv::PreserveNone)
286     return SCS ? CSR_AArch64_NoneRegs_SCS_RegMask
287                : CSR_AArch64_NoneRegs_RegMask;
288   if (CC == CallingConv::AnyReg)
289     return SCS ? CSR_AArch64_AllRegs_SCS_RegMask : CSR_AArch64_AllRegs_RegMask;
290 
291   // All the following calling conventions are handled differently on Darwin.
292   if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin()) {
293     if (SCS)
294       report_fatal_error("ShadowCallStack attribute not supported on Darwin.");
295     return getDarwinCallPreservedMask(MF, CC);
296   }
297 
298   if (CC == CallingConv::AArch64_VectorCall)
299     return SCS ? CSR_AArch64_AAVPCS_SCS_RegMask : CSR_AArch64_AAVPCS_RegMask;
300   if (CC == CallingConv::AArch64_SVE_VectorCall)
301     return SCS ? CSR_AArch64_SVE_AAPCS_SCS_RegMask
302                : CSR_AArch64_SVE_AAPCS_RegMask;
303   if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0)
304     return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask;
305   if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1)
306     return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1_RegMask;
307   if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2)
308     return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2_RegMask;
309   if (CC == CallingConv::CFGuard_Check)
310     return CSR_Win_AArch64_CFGuard_Check_RegMask;
311   if (MF.getSubtarget<AArch64Subtarget>().getTargetLowering()
312           ->supportSwiftError() &&
313       MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
314     return SCS ? CSR_AArch64_AAPCS_SwiftError_SCS_RegMask
315                : CSR_AArch64_AAPCS_SwiftError_RegMask;
316   if (CC == CallingConv::SwiftTail) {
317     if (SCS)
318       report_fatal_error("ShadowCallStack attribute not supported with swifttail");
319     return CSR_AArch64_AAPCS_SwiftTail_RegMask;
320   }
321   if (CC == CallingConv::PreserveMost)
322     return SCS ? CSR_AArch64_RT_MostRegs_SCS_RegMask
323                : CSR_AArch64_RT_MostRegs_RegMask;
324   if (CC == CallingConv::PreserveAll)
325     return SCS ? CSR_AArch64_RT_AllRegs_SCS_RegMask
326                : CSR_AArch64_RT_AllRegs_RegMask;
327 
328   return SCS ? CSR_AArch64_AAPCS_SCS_RegMask : CSR_AArch64_AAPCS_RegMask;
329 }
330 
331 const uint32_t *AArch64RegisterInfo::getCustomEHPadPreservedMask(
332     const MachineFunction &MF) const {
333   if (MF.getSubtarget<AArch64Subtarget>().isTargetLinux())
334     return CSR_AArch64_AAPCS_RegMask;
335 
336   return nullptr;
337 }
338 
339 const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const {
340   if (TT.isOSDarwin())
341     return CSR_Darwin_AArch64_TLS_RegMask;
342 
343   assert(TT.isOSBinFormatELF() && "Invalid target");
344   return CSR_AArch64_TLS_ELF_RegMask;
345 }
346 
347 void AArch64RegisterInfo::UpdateCustomCallPreservedMask(MachineFunction &MF,
348                                                  const uint32_t **Mask) const {
349   uint32_t *UpdatedMask = MF.allocateRegMask();
350   unsigned RegMaskSize = MachineOperand::getRegMaskSize(getNumRegs());
351   memcpy(UpdatedMask, *Mask, sizeof(UpdatedMask[0]) * RegMaskSize);
352 
353   for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
354     if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
355       for (MCPhysReg SubReg :
356            subregs_inclusive(AArch64::GPR64commonRegClass.getRegister(i))) {
357         // See TargetRegisterInfo::getCallPreservedMask for how to interpret the
358         // register mask.
359         UpdatedMask[SubReg / 32] |= 1u << (SubReg % 32);
360       }
361     }
362   }
363   *Mask = UpdatedMask;
364 }
365 
366 const uint32_t *AArch64RegisterInfo::getSMStartStopCallPreservedMask() const {
367   return CSR_AArch64_SMStartStop_RegMask;
368 }
369 
370 const uint32_t *
371 AArch64RegisterInfo::SMEABISupportRoutinesCallPreservedMaskFromX0() const {
372   return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask;
373 }
374 
375 const uint32_t *AArch64RegisterInfo::getNoPreservedMask() const {
376   return CSR_AArch64_NoRegs_RegMask;
377 }
378 
379 const uint32_t *
380 AArch64RegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF,
381                                                 CallingConv::ID CC) const {
382   // This should return a register mask that is the same as that returned by
383   // getCallPreservedMask but that additionally preserves the register used for
384   // the first i64 argument (which must also be the register used to return a
385   // single i64 return value)
386   //
387   // In case that the calling convention does not use the same register for
388   // both, the function should return NULL (does not currently apply)
389   assert(CC != CallingConv::GHC && "should not be GHC calling convention.");
390   if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin())
391     return CSR_Darwin_AArch64_AAPCS_ThisReturn_RegMask;
392   return CSR_AArch64_AAPCS_ThisReturn_RegMask;
393 }
394 
395 const uint32_t *AArch64RegisterInfo::getWindowsStackProbePreservedMask() const {
396   return CSR_AArch64_StackProbe_Windows_RegMask;
397 }
398 
399 std::optional<std::string>
400 AArch64RegisterInfo::explainReservedReg(const MachineFunction &MF,
401                                         MCRegister PhysReg) const {
402   if (hasBasePointer(MF) && MCRegisterInfo::regsOverlap(PhysReg, AArch64::X19))
403     return std::string("X19 is used as the frame base pointer register.");
404 
405   if (MF.getSubtarget<AArch64Subtarget>().isWindowsArm64EC()) {
406     bool warn = false;
407     if (MCRegisterInfo::regsOverlap(PhysReg, AArch64::X13) ||
408         MCRegisterInfo::regsOverlap(PhysReg, AArch64::X14) ||
409         MCRegisterInfo::regsOverlap(PhysReg, AArch64::X23) ||
410         MCRegisterInfo::regsOverlap(PhysReg, AArch64::X24) ||
411         MCRegisterInfo::regsOverlap(PhysReg, AArch64::X28))
412       warn = true;
413 
414     for (unsigned i = AArch64::B16; i <= AArch64::B31; ++i)
415       if (MCRegisterInfo::regsOverlap(PhysReg, i))
416         warn = true;
417 
418     if (warn)
419       return std::string(AArch64InstPrinter::getRegisterName(PhysReg)) +
420              " is clobbered by asynchronous signals when using Arm64EC.";
421   }
422 
423   return {};
424 }
425 
426 BitVector
427 AArch64RegisterInfo::getStrictlyReservedRegs(const MachineFunction &MF) const {
428   const AArch64FrameLowering *TFI = getFrameLowering(MF);
429 
430   // FIXME: avoid re-calculating this every time.
431   BitVector Reserved(getNumRegs());
432   markSuperRegs(Reserved, AArch64::WSP);
433   markSuperRegs(Reserved, AArch64::WZR);
434 
435   if (TFI->hasFP(MF) || TT.isOSDarwin())
436     markSuperRegs(Reserved, AArch64::W29);
437 
438   if (MF.getSubtarget<AArch64Subtarget>().isWindowsArm64EC()) {
439     // x13, x14, x23, x24, x28, and v16-v31 are clobbered by asynchronous
440     // signals, so we can't ever use them.
441     markSuperRegs(Reserved, AArch64::W13);
442     markSuperRegs(Reserved, AArch64::W14);
443     markSuperRegs(Reserved, AArch64::W23);
444     markSuperRegs(Reserved, AArch64::W24);
445     markSuperRegs(Reserved, AArch64::W28);
446     for (unsigned i = AArch64::B16; i <= AArch64::B31; ++i)
447       markSuperRegs(Reserved, i);
448   }
449 
450   for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
451     if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(i))
452       markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
453   }
454 
455   if (hasBasePointer(MF))
456     markSuperRegs(Reserved, AArch64::W19);
457 
458   // SLH uses register W16/X16 as the taint register.
459   if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
460     markSuperRegs(Reserved, AArch64::W16);
461 
462   // FFR is modelled as global state that cannot be allocated.
463   if (MF.getSubtarget<AArch64Subtarget>().hasSVE())
464     Reserved.set(AArch64::FFR);
465 
466   // SME tiles are not allocatable.
467   if (MF.getSubtarget<AArch64Subtarget>().hasSME()) {
468     for (MCPhysReg SubReg : subregs_inclusive(AArch64::ZA))
469       Reserved.set(SubReg);
470   }
471 
472   // VG cannot be allocated
473   Reserved.set(AArch64::VG);
474 
475   if (MF.getSubtarget<AArch64Subtarget>().hasSME2()) {
476     for (MCSubRegIterator SubReg(AArch64::ZT0, this, /*self=*/true);
477          SubReg.isValid(); ++SubReg)
478       Reserved.set(*SubReg);
479   }
480 
481   markSuperRegs(Reserved, AArch64::FPCR);
482   markSuperRegs(Reserved, AArch64::FPMR);
483   markSuperRegs(Reserved, AArch64::FPSR);
484 
485   if (MF.getFunction().getCallingConv() == CallingConv::GRAAL) {
486     markSuperRegs(Reserved, AArch64::X27);
487     markSuperRegs(Reserved, AArch64::X28);
488     markSuperRegs(Reserved, AArch64::W27);
489     markSuperRegs(Reserved, AArch64::W28);
490   }
491 
492   assert(checkAllSuperRegsMarked(Reserved));
493 
494   // Add _HI registers after checkAllSuperRegsMarked as this check otherwise
495   // becomes considerably more expensive.
496   Reserved.set(AArch64::WSP_HI);
497   Reserved.set(AArch64::WZR_HI);
498   static_assert(AArch64::W30_HI - AArch64::W0_HI == 30,
499                 "Unexpected order of registers");
500   Reserved.set(AArch64::W0_HI, AArch64::W30_HI);
501   static_assert(AArch64::B31_HI - AArch64::B0_HI == 31,
502                 "Unexpected order of registers");
503   Reserved.set(AArch64::B0_HI, AArch64::B31_HI);
504   static_assert(AArch64::H31_HI - AArch64::H0_HI == 31,
505                 "Unexpected order of registers");
506   Reserved.set(AArch64::H0_HI, AArch64::H31_HI);
507   static_assert(AArch64::S31_HI - AArch64::S0_HI == 31,
508                 "Unexpected order of registers");
509   Reserved.set(AArch64::S0_HI, AArch64::S31_HI);
510   static_assert(AArch64::D31_HI - AArch64::D0_HI == 31,
511                 "Unexpected order of registers");
512   Reserved.set(AArch64::D0_HI, AArch64::D31_HI);
513   static_assert(AArch64::Q31_HI - AArch64::Q0_HI == 31,
514                 "Unexpected order of registers");
515   Reserved.set(AArch64::Q0_HI, AArch64::Q31_HI);
516 
517   return Reserved;
518 }
519 
520 BitVector
521 AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
522   BitVector Reserved(getNumRegs());
523   for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
524     if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReservedForRA(i))
525       markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
526   }
527 
528   if (MF.getSubtarget<AArch64Subtarget>().isLRReservedForRA()) {
529     // In order to prevent the register allocator from using LR, we need to
530     // mark it as reserved. However we don't want to keep it reserved throughout
531     // the pipeline since it prevents other infrastructure from reasoning about
532     // it's liveness. We use the NoVRegs property instead of IsSSA because
533     // IsSSA is removed before VirtRegRewriter runs.
534     if (!MF.getProperties().hasProperty(
535             MachineFunctionProperties::Property::NoVRegs))
536       markSuperRegs(Reserved, AArch64::LR);
537   }
538 
539   assert(checkAllSuperRegsMarked(Reserved));
540 
541   // Handle strictlyReservedRegs separately to avoid re-evaluating the assert,
542   // which becomes considerably expensive when considering the _HI registers.
543   Reserved |= getStrictlyReservedRegs(MF);
544 
545   return Reserved;
546 }
547 
548 bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF,
549                                         MCRegister Reg) const {
550   return getReservedRegs(MF)[Reg];
551 }
552 
553 bool AArch64RegisterInfo::isStrictlyReservedReg(const MachineFunction &MF,
554                                                 MCRegister Reg) const {
555   return getStrictlyReservedRegs(MF)[Reg];
556 }
557 
558 bool AArch64RegisterInfo::isAnyArgRegReserved(const MachineFunction &MF) const {
559   return llvm::any_of(*AArch64::GPR64argRegClass.MC, [this, &MF](MCPhysReg r) {
560     return isStrictlyReservedReg(MF, r);
561   });
562 }
563 
564 void AArch64RegisterInfo::emitReservedArgRegCallError(
565     const MachineFunction &MF) const {
566   const Function &F = MF.getFunction();
567   F.getContext().diagnose(DiagnosticInfoUnsupported{F, ("AArch64 doesn't support"
568     " function calls if any of the argument registers is reserved.")});
569 }
570 
571 bool AArch64RegisterInfo::isAsmClobberable(const MachineFunction &MF,
572                                           MCRegister PhysReg) const {
573   // SLH uses register X16 as the taint register but it will fallback to a different
574   // method if the user clobbers it. So X16 is not reserved for inline asm but is
575   // for normal codegen.
576   if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening) &&
577         MCRegisterInfo::regsOverlap(PhysReg, AArch64::X16))
578     return true;
579 
580   // ZA/ZT0 registers are reserved but may be permitted in the clobber list.
581   if (PhysReg == AArch64::ZA || PhysReg == AArch64::ZT0)
582     return true;
583 
584   return !isReservedReg(MF, PhysReg);
585 }
586 
587 const TargetRegisterClass *
588 AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF,
589                                       unsigned Kind) const {
590   return &AArch64::GPR64spRegClass;
591 }
592 
593 const TargetRegisterClass *
594 AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
595   if (RC == &AArch64::CCRRegClass)
596     return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV.
597   return RC;
598 }
599 
600 unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; }
601 
602 bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
603   const MachineFrameInfo &MFI = MF.getFrameInfo();
604 
605   // In the presence of variable sized objects or funclets, if the fixed stack
606   // size is large enough that referencing from the FP won't result in things
607   // being in range relatively often, we can use a base pointer to allow access
608   // from the other direction like the SP normally works.
609   //
610   // Furthermore, if both variable sized objects are present, and the
611   // stack needs to be dynamically re-aligned, the base pointer is the only
612   // reliable way to reference the locals.
613   if (MFI.hasVarSizedObjects() || MF.hasEHFunclets()) {
614     if (hasStackRealignment(MF))
615       return true;
616 
617     auto &ST = MF.getSubtarget<AArch64Subtarget>();
618     if (ST.hasSVE() || ST.isStreaming()) {
619       const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
620       // Frames that have variable sized objects and scalable SVE objects,
621       // should always use a basepointer.
622       if (!AFI->hasCalculatedStackSizeSVE() || AFI->getStackSizeSVE())
623         return true;
624     }
625 
626     // Conservatively estimate whether the negative offset from the frame
627     // pointer will be sufficient to reach. If a function has a smallish
628     // frame, it's less likely to have lots of spills and callee saved
629     // space, so it's all more likely to be within range of the frame pointer.
630     // If it's wrong, we'll materialize the constant and still get to the
631     // object; it's just suboptimal. Negative offsets use the unscaled
632     // load/store instructions, which have a 9-bit signed immediate.
633     return MFI.getLocalFrameSize() >= 256;
634   }
635 
636   return false;
637 }
638 
639 bool AArch64RegisterInfo::isArgumentRegister(const MachineFunction &MF,
640                                              MCRegister Reg) const {
641   CallingConv::ID CC = MF.getFunction().getCallingConv();
642   const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
643   bool IsVarArg = STI.isCallingConvWin64(MF.getFunction().getCallingConv(),
644                                          MF.getFunction().isVarArg());
645 
646   auto HasReg = [](ArrayRef<MCRegister> RegList, MCRegister Reg) {
647     return llvm::is_contained(RegList, Reg);
648   };
649 
650   switch (CC) {
651   default:
652     report_fatal_error("Unsupported calling convention.");
653   case CallingConv::GHC:
654     return HasReg(CC_AArch64_GHC_ArgRegs, Reg);
655   case CallingConv::PreserveNone:
656     if (!MF.getFunction().isVarArg())
657       return HasReg(CC_AArch64_Preserve_None_ArgRegs, Reg);
658     [[fallthrough]];
659   case CallingConv::C:
660   case CallingConv::Fast:
661   case CallingConv::PreserveMost:
662   case CallingConv::PreserveAll:
663   case CallingConv::CXX_FAST_TLS:
664   case CallingConv::Swift:
665   case CallingConv::SwiftTail:
666   case CallingConv::Tail:
667     if (STI.isTargetWindows()) {
668       if (IsVarArg)
669         return HasReg(CC_AArch64_Win64_VarArg_ArgRegs, Reg);
670       switch (CC) {
671       default:
672         return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
673       case CallingConv::Swift:
674       case CallingConv::SwiftTail:
675         return HasReg(CC_AArch64_Win64PCS_Swift_ArgRegs, Reg) ||
676                HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
677       }
678     }
679     if (!STI.isTargetDarwin()) {
680       switch (CC) {
681       default:
682         return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg);
683       case CallingConv::Swift:
684       case CallingConv::SwiftTail:
685         return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg) ||
686                HasReg(CC_AArch64_AAPCS_Swift_ArgRegs, Reg);
687       }
688     }
689     if (!IsVarArg) {
690       switch (CC) {
691       default:
692         return HasReg(CC_AArch64_DarwinPCS_ArgRegs, Reg);
693       case CallingConv::Swift:
694       case CallingConv::SwiftTail:
695         return HasReg(CC_AArch64_DarwinPCS_ArgRegs, Reg) ||
696                HasReg(CC_AArch64_DarwinPCS_Swift_ArgRegs, Reg);
697       }
698     }
699     if (STI.isTargetILP32())
700       return HasReg(CC_AArch64_DarwinPCS_ILP32_VarArg_ArgRegs, Reg);
701     return HasReg(CC_AArch64_DarwinPCS_VarArg_ArgRegs, Reg);
702   case CallingConv::Win64:
703     if (IsVarArg)
704       HasReg(CC_AArch64_Win64_VarArg_ArgRegs, Reg);
705     return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
706   case CallingConv::CFGuard_Check:
707     return HasReg(CC_AArch64_Win64_CFGuard_Check_ArgRegs, Reg);
708   case CallingConv::AArch64_VectorCall:
709   case CallingConv::AArch64_SVE_VectorCall:
710   case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0:
711   case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1:
712   case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2:
713     if (STI.isTargetWindows())
714       return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
715     return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg);
716   }
717 }
718 
719 Register
720 AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
721   const AArch64FrameLowering *TFI = getFrameLowering(MF);
722   return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP;
723 }
724 
725 bool AArch64RegisterInfo::requiresRegisterScavenging(
726     const MachineFunction &MF) const {
727   return true;
728 }
729 
730 bool AArch64RegisterInfo::requiresVirtualBaseRegisters(
731     const MachineFunction &MF) const {
732   return true;
733 }
734 
735 bool
736 AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const {
737   // This function indicates whether the emergency spillslot should be placed
738   // close to the beginning of the stackframe (closer to FP) or the end
739   // (closer to SP).
740   //
741   // The beginning works most reliably if we have a frame pointer.
742   // In the presence of any non-constant space between FP and locals,
743   // (e.g. in case of stack realignment or a scalable SVE area), it is
744   // better to use SP or BP.
745   const AArch64FrameLowering &TFI = *getFrameLowering(MF);
746   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
747   assert((!MF.getSubtarget<AArch64Subtarget>().hasSVE() ||
748           AFI->hasCalculatedStackSizeSVE()) &&
749          "Expected SVE area to be calculated by this point");
750   return TFI.hasFP(MF) && !hasStackRealignment(MF) && !AFI->getStackSizeSVE();
751 }
752 
753 bool AArch64RegisterInfo::requiresFrameIndexScavenging(
754     const MachineFunction &MF) const {
755   return true;
756 }
757 
758 bool
759 AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const {
760   const MachineFrameInfo &MFI = MF.getFrameInfo();
761   if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack())
762     return true;
763   return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken();
764 }
765 
766 /// needsFrameBaseReg - Returns true if the instruction's frame index
767 /// reference would be better served by a base register other than FP
768 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
769 /// references it should create new base registers for.
770 bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI,
771                                             int64_t Offset) const {
772   for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i)
773     assert(i < MI->getNumOperands() &&
774            "Instr doesn't have FrameIndex operand!");
775 
776   // It's the load/store FI references that cause issues, as it can be difficult
777   // to materialize the offset if it won't fit in the literal field. Estimate
778   // based on the size of the local frame and some conservative assumptions
779   // about the rest of the stack frame (note, this is pre-regalloc, so
780   // we don't know everything for certain yet) whether this offset is likely
781   // to be out of range of the immediate. Return true if so.
782 
783   // We only generate virtual base registers for loads and stores, so
784   // return false for everything else.
785   if (!MI->mayLoad() && !MI->mayStore())
786     return false;
787 
788   // Without a virtual base register, if the function has variable sized
789   // objects, all fixed-size local references will be via the frame pointer,
790   // Approximate the offset and see if it's legal for the instruction.
791   // Note that the incoming offset is based on the SP value at function entry,
792   // so it'll be negative.
793   MachineFunction &MF = *MI->getParent()->getParent();
794   const AArch64FrameLowering *TFI = getFrameLowering(MF);
795   MachineFrameInfo &MFI = MF.getFrameInfo();
796 
797   // Estimate an offset from the frame pointer.
798   // Conservatively assume all GPR callee-saved registers get pushed.
799   // FP, LR, X19-X28, D8-D15. 64-bits each.
800   int64_t FPOffset = Offset - 16 * 20;
801   // Estimate an offset from the stack pointer.
802   // The incoming offset is relating to the SP at the start of the function,
803   // but when we access the local it'll be relative to the SP after local
804   // allocation, so adjust our SP-relative offset by that allocation size.
805   Offset += MFI.getLocalFrameSize();
806   // Assume that we'll have at least some spill slots allocated.
807   // FIXME: This is a total SWAG number. We should run some statistics
808   //        and pick a real one.
809   Offset += 128; // 128 bytes of spill slots
810 
811   // If there is a frame pointer, try using it.
812   // The FP is only available if there is no dynamic realignment. We
813   // don't know for sure yet whether we'll need that, so we guess based
814   // on whether there are any local variables that would trigger it.
815   if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset))
816     return false;
817 
818   // If we can reference via the stack pointer or base pointer, try that.
819   // FIXME: This (and the code that resolves the references) can be improved
820   //        to only disallow SP relative references in the live range of
821   //        the VLA(s). In practice, it's unclear how much difference that
822   //        would make, but it may be worth doing.
823   if (isFrameOffsetLegal(MI, AArch64::SP, Offset))
824     return false;
825 
826   // If even offset 0 is illegal, we don't want a virtual base register.
827   if (!isFrameOffsetLegal(MI, AArch64::SP, 0))
828     return false;
829 
830   // The offset likely isn't legal; we want to allocate a virtual base register.
831   return true;
832 }
833 
834 bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
835                                              Register BaseReg,
836                                              int64_t Offset) const {
837   assert(MI && "Unable to get the legal offset for nil instruction.");
838   StackOffset SaveOffset = StackOffset::getFixed(Offset);
839   return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal;
840 }
841 
842 /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
843 /// at the beginning of the basic block.
844 Register
845 AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
846                                                   int FrameIdx,
847                                                   int64_t Offset) const {
848   MachineBasicBlock::iterator Ins = MBB->begin();
849   DebugLoc DL; // Defaults to "unknown"
850   if (Ins != MBB->end())
851     DL = Ins->getDebugLoc();
852   const MachineFunction &MF = *MBB->getParent();
853   const AArch64InstrInfo *TII =
854       MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
855   const MCInstrDesc &MCID = TII->get(AArch64::ADDXri);
856   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
857   Register BaseReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
858   MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF));
859   unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
860 
861   BuildMI(*MBB, Ins, DL, MCID, BaseReg)
862       .addFrameIndex(FrameIdx)
863       .addImm(Offset)
864       .addImm(Shifter);
865 
866   return BaseReg;
867 }
868 
869 void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
870                                             int64_t Offset) const {
871   // ARM doesn't need the general 64-bit offsets
872   StackOffset Off = StackOffset::getFixed(Offset);
873 
874   unsigned i = 0;
875   while (!MI.getOperand(i).isFI()) {
876     ++i;
877     assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
878   }
879 
880   const MachineFunction *MF = MI.getParent()->getParent();
881   const AArch64InstrInfo *TII =
882       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
883   bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII);
884   assert(Done && "Unable to resolve frame index!");
885   (void)Done;
886 }
887 
888 // Create a scratch register for the frame index elimination in an instruction.
889 // This function has special handling of stack tagging loop pseudos, in which
890 // case it can also change the instruction opcode.
891 static Register
892 createScratchRegisterForInstruction(MachineInstr &MI, unsigned FIOperandNum,
893                                     const AArch64InstrInfo *TII) {
894   // ST*Gloop have a reserved scratch register in operand 1. Use it, and also
895   // replace the instruction with the writeback variant because it will now
896   // satisfy the operand constraints for it.
897   Register ScratchReg;
898   if (MI.getOpcode() == AArch64::STGloop ||
899       MI.getOpcode() == AArch64::STZGloop) {
900     assert(FIOperandNum == 3 &&
901            "Wrong frame index operand for STGloop/STZGloop");
902     unsigned Op = MI.getOpcode() == AArch64::STGloop ? AArch64::STGloop_wback
903                                                      : AArch64::STZGloop_wback;
904     ScratchReg = MI.getOperand(1).getReg();
905     MI.getOperand(3).ChangeToRegister(ScratchReg, false, false, true);
906     MI.setDesc(TII->get(Op));
907     MI.tieOperands(1, 3);
908   } else {
909     ScratchReg =
910         MI.getMF()->getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
911     MI.getOperand(FIOperandNum)
912         .ChangeToRegister(ScratchReg, false, false, true);
913   }
914   return ScratchReg;
915 }
916 
917 void AArch64RegisterInfo::getOffsetOpcodes(
918     const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const {
919   // The smallest scalable element supported by scaled SVE addressing
920   // modes are predicates, which are 2 scalable bytes in size. So the scalable
921   // byte offset must always be a multiple of 2.
922   assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
923 
924   // Add fixed-sized offset using existing DIExpression interface.
925   DIExpression::appendOffset(Ops, Offset.getFixed());
926 
927   unsigned VG = getDwarfRegNum(AArch64::VG, true);
928   int64_t VGSized = Offset.getScalable() / 2;
929   if (VGSized > 0) {
930     Ops.push_back(dwarf::DW_OP_constu);
931     Ops.push_back(VGSized);
932     Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
933     Ops.push_back(dwarf::DW_OP_mul);
934     Ops.push_back(dwarf::DW_OP_plus);
935   } else if (VGSized < 0) {
936     Ops.push_back(dwarf::DW_OP_constu);
937     Ops.push_back(-VGSized);
938     Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
939     Ops.push_back(dwarf::DW_OP_mul);
940     Ops.push_back(dwarf::DW_OP_minus);
941   }
942 }
943 
944 bool AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
945                                               int SPAdj, unsigned FIOperandNum,
946                                               RegScavenger *RS) const {
947   assert(SPAdj == 0 && "Unexpected");
948 
949   MachineInstr &MI = *II;
950   MachineBasicBlock &MBB = *MI.getParent();
951   MachineFunction &MF = *MBB.getParent();
952   const MachineFrameInfo &MFI = MF.getFrameInfo();
953   const AArch64InstrInfo *TII =
954       MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
955   const AArch64FrameLowering *TFI = getFrameLowering(MF);
956   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
957   bool Tagged =
958       MI.getOperand(FIOperandNum).getTargetFlags() & AArch64II::MO_TAGGED;
959   Register FrameReg;
960 
961   // Special handling of dbg_value, stackmap patchpoint statepoint instructions.
962   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
963       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
964       MI.getOpcode() == TargetOpcode::STATEPOINT) {
965     StackOffset Offset =
966         TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg,
967                                         /*PreferFP=*/true,
968                                         /*ForSimm=*/false);
969     Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm());
970     MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/);
971     MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getFixed());
972     return false;
973   }
974 
975   if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) {
976     MachineOperand &FI = MI.getOperand(FIOperandNum);
977     StackOffset Offset = TFI->getNonLocalFrameIndexReference(MF, FrameIndex);
978     assert(!Offset.getScalable() &&
979            "Frame offsets with a scalable component are not supported");
980     FI.ChangeToImmediate(Offset.getFixed());
981     return false;
982   }
983 
984   StackOffset Offset;
985   if (MI.getOpcode() == AArch64::TAGPstack) {
986     // TAGPstack must use the virtual frame register in its 3rd operand.
987     const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
988     FrameReg = MI.getOperand(3).getReg();
989     Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
990                                       AFI->getTaggedBasePointerOffset());
991   } else if (Tagged) {
992     StackOffset SPOffset = StackOffset::getFixed(
993         MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize());
994     if (MFI.hasVarSizedObjects() ||
995         isAArch64FrameOffsetLegal(MI, SPOffset, nullptr, nullptr, nullptr) !=
996             (AArch64FrameOffsetCanUpdate | AArch64FrameOffsetIsLegal)) {
997       // Can't update to SP + offset in place. Precalculate the tagged pointer
998       // in a scratch register.
999       Offset = TFI->resolveFrameIndexReference(
1000           MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
1001       Register ScratchReg =
1002           MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
1003       emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset,
1004                       TII);
1005       BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(AArch64::LDG), ScratchReg)
1006           .addReg(ScratchReg)
1007           .addReg(ScratchReg)
1008           .addImm(0);
1009       MI.getOperand(FIOperandNum)
1010           .ChangeToRegister(ScratchReg, false, false, true);
1011       return false;
1012     }
1013     FrameReg = AArch64::SP;
1014     Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
1015                                    (int64_t)MFI.getStackSize());
1016   } else {
1017     Offset = TFI->resolveFrameIndexReference(
1018         MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
1019   }
1020 
1021   // Modify MI as necessary to handle as much of 'Offset' as possible
1022   if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII))
1023     return true;
1024 
1025   assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) &&
1026          "Emergency spill slot is out of reach");
1027 
1028   // If we get here, the immediate doesn't fit into the instruction.  We folded
1029   // as much as possible above.  Handle the rest, providing a register that is
1030   // SP+LargeImm.
1031   Register ScratchReg =
1032       createScratchRegisterForInstruction(MI, FIOperandNum, TII);
1033   emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII);
1034   return false;
1035 }
1036 
1037 unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
1038                                                   MachineFunction &MF) const {
1039   const AArch64FrameLowering *TFI = getFrameLowering(MF);
1040 
1041   switch (RC->getID()) {
1042   default:
1043     return 0;
1044   case AArch64::GPR32RegClassID:
1045   case AArch64::GPR32spRegClassID:
1046   case AArch64::GPR32allRegClassID:
1047   case AArch64::GPR64spRegClassID:
1048   case AArch64::GPR64allRegClassID:
1049   case AArch64::GPR64RegClassID:
1050   case AArch64::GPR32commonRegClassID:
1051   case AArch64::GPR64commonRegClassID:
1052     return 32 - 1                                   // XZR/SP
1053               - (TFI->hasFP(MF) || TT.isOSDarwin()) // FP
1054               - MF.getSubtarget<AArch64Subtarget>().getNumXRegisterReserved()
1055               - hasBasePointer(MF);  // X19
1056   case AArch64::FPR8RegClassID:
1057   case AArch64::FPR16RegClassID:
1058   case AArch64::FPR32RegClassID:
1059   case AArch64::FPR64RegClassID:
1060   case AArch64::FPR128RegClassID:
1061     return 32;
1062 
1063   case AArch64::MatrixIndexGPR32_8_11RegClassID:
1064   case AArch64::MatrixIndexGPR32_12_15RegClassID:
1065     return 4;
1066 
1067   case AArch64::DDRegClassID:
1068   case AArch64::DDDRegClassID:
1069   case AArch64::DDDDRegClassID:
1070   case AArch64::QQRegClassID:
1071   case AArch64::QQQRegClassID:
1072   case AArch64::QQQQRegClassID:
1073     return 32;
1074 
1075   case AArch64::FPR128_loRegClassID:
1076   case AArch64::FPR64_loRegClassID:
1077   case AArch64::FPR16_loRegClassID:
1078     return 16;
1079   case AArch64::FPR128_0to7RegClassID:
1080     return 8;
1081   }
1082 }
1083 
1084 // FORM_TRANSPOSED_REG_TUPLE nodes are created to improve register allocation
1085 // where a consecutive multi-vector tuple is constructed from the same indices
1086 // of multiple strided loads. This may still result in unnecessary copies
1087 // between the loads and the tuple. Here we try to return a hint to assign the
1088 // contiguous ZPRMulReg starting at the same register as the first operand of
1089 // the pseudo, which should be a subregister of the first strided load.
1090 //
1091 // For example, if the first strided load has been assigned $z16_z20_z24_z28
1092 // and the operands of the pseudo are each accessing subregister zsub2, we
1093 // should look through through Order to find a contiguous register which
1094 // begins with $z24 (i.e. $z24_z25_z26_z27).
1095 //
1096 bool AArch64RegisterInfo::getRegAllocationHints(
1097     Register VirtReg, ArrayRef<MCPhysReg> Order,
1098     SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
1099     const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
1100   const MachineRegisterInfo &MRI = MF.getRegInfo();
1101 
1102   // The SVE calling convention preserves registers Z8-Z23. As a result, there
1103   // are no ZPR2Strided or ZPR4Strided registers that do not overlap with the
1104   // callee-saved registers and so by default these will be pushed to the back
1105   // of the allocation order for the ZPRStridedOrContiguous classes.
1106   // If any of the instructions which define VirtReg are used by the
1107   // FORM_TRANSPOSED_REG_TUPLE pseudo, we want to favour reducing copy
1108   // instructions over reducing the number of clobbered callee-save registers,
1109   // so we add the strided registers as a hint.
1110   unsigned RegID = MRI.getRegClass(VirtReg)->getID();
1111   // Look through uses of the register for FORM_TRANSPOSED_REG_TUPLE.
1112   if ((RegID == AArch64::ZPR2StridedOrContiguousRegClassID ||
1113        RegID == AArch64::ZPR4StridedOrContiguousRegClassID) &&
1114       any_of(MRI.use_nodbg_instructions(VirtReg), [](const MachineInstr &Use) {
1115         return Use.getOpcode() ==
1116                    AArch64::FORM_TRANSPOSED_REG_TUPLE_X2_PSEUDO ||
1117                Use.getOpcode() == AArch64::FORM_TRANSPOSED_REG_TUPLE_X4_PSEUDO;
1118       })) {
1119     const TargetRegisterClass *StridedRC =
1120         RegID == AArch64::ZPR2StridedOrContiguousRegClassID
1121             ? &AArch64::ZPR2StridedRegClass
1122             : &AArch64::ZPR4StridedRegClass;
1123 
1124     for (MCPhysReg Reg : Order)
1125       if (StridedRC->contains(Reg))
1126         Hints.push_back(Reg);
1127 
1128     return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF,
1129                                                      VRM);
1130   }
1131 
1132   for (MachineInstr &MI : MRI.def_instructions(VirtReg)) {
1133     if (MI.getOpcode() != AArch64::FORM_TRANSPOSED_REG_TUPLE_X2_PSEUDO &&
1134         MI.getOpcode() != AArch64::FORM_TRANSPOSED_REG_TUPLE_X4_PSEUDO)
1135       return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints,
1136                                                        MF, VRM);
1137 
1138     unsigned FirstOpSubReg = MI.getOperand(1).getSubReg();
1139     switch (FirstOpSubReg) {
1140     case AArch64::zsub0:
1141     case AArch64::zsub1:
1142     case AArch64::zsub2:
1143     case AArch64::zsub3:
1144       break;
1145     default:
1146       continue;
1147     }
1148 
1149     // Look up the physical register mapped to the first operand of the pseudo.
1150     Register FirstOpVirtReg = MI.getOperand(1).getReg();
1151     if (!VRM->hasPhys(FirstOpVirtReg))
1152       continue;
1153 
1154     MCRegister TupleStartReg =
1155         getSubReg(VRM->getPhys(FirstOpVirtReg), FirstOpSubReg);
1156     for (unsigned I = 0; I < Order.size(); ++I)
1157       if (MCRegister R = getSubReg(Order[I], AArch64::zsub0))
1158         if (R == TupleStartReg)
1159           Hints.push_back(Order[I]);
1160   }
1161 
1162   return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF,
1163                                                    VRM);
1164 }
1165 
1166 unsigned AArch64RegisterInfo::getLocalAddressRegister(
1167   const MachineFunction &MF) const {
1168   const auto &MFI = MF.getFrameInfo();
1169   if (!MF.hasEHFunclets() && !MFI.hasVarSizedObjects())
1170     return AArch64::SP;
1171   else if (hasStackRealignment(MF))
1172     return getBaseRegister();
1173   return getFrameRegister(MF);
1174 }
1175 
1176 /// SrcRC and DstRC will be morphed into NewRC if this returns true
1177 bool AArch64RegisterInfo::shouldCoalesce(
1178     MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg,
1179     const TargetRegisterClass *DstRC, unsigned DstSubReg,
1180     const TargetRegisterClass *NewRC, LiveIntervals &LIS) const {
1181   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
1182 
1183   if (MI->isCopy() &&
1184       ((DstRC->getID() == AArch64::GPR64RegClassID) ||
1185        (DstRC->getID() == AArch64::GPR64commonRegClassID)) &&
1186       MI->getOperand(0).getSubReg() && MI->getOperand(1).getSubReg())
1187     // Do not coalesce in the case of a 32-bit subregister copy
1188     // which implements a 32 to 64 bit zero extension
1189     // which relies on the upper 32 bits being zeroed.
1190     return false;
1191 
1192   auto IsCoalescerBarrier = [](const MachineInstr &MI) {
1193     switch (MI.getOpcode()) {
1194     case AArch64::COALESCER_BARRIER_FPR16:
1195     case AArch64::COALESCER_BARRIER_FPR32:
1196     case AArch64::COALESCER_BARRIER_FPR64:
1197     case AArch64::COALESCER_BARRIER_FPR128:
1198       return true;
1199     default:
1200       return false;
1201     }
1202   };
1203 
1204   // For calls that temporarily have to toggle streaming mode as part of the
1205   // call-sequence, we need to be more careful when coalescing copy instructions
1206   // so that we don't end up coalescing the NEON/FP result or argument register
1207   // with a whole Z-register, such that after coalescing the register allocator
1208   // will try to spill/reload the entire Z register.
1209   //
1210   // We do this by checking if the node has any defs/uses that are
1211   // COALESCER_BARRIER pseudos. These are 'nops' in practice, but they exist to
1212   // instruct the coalescer to avoid coalescing the copy.
1213   if (MI->isCopy() && SubReg != DstSubReg &&
1214       (AArch64::ZPRRegClass.hasSubClassEq(DstRC) ||
1215        AArch64::ZPRRegClass.hasSubClassEq(SrcRC))) {
1216     unsigned SrcReg = MI->getOperand(1).getReg();
1217     if (any_of(MRI.def_instructions(SrcReg), IsCoalescerBarrier))
1218       return false;
1219     unsigned DstReg = MI->getOperand(0).getReg();
1220     if (any_of(MRI.use_nodbg_instructions(DstReg), IsCoalescerBarrier))
1221       return false;
1222   }
1223 
1224   return true;
1225 }
1226 
1227 bool AArch64RegisterInfo::shouldAnalyzePhysregInMachineLoopInfo(
1228     MCRegister R) const {
1229   return R == AArch64::VG;
1230 }
1231